WorldWideScience

Sample records for single sheet resume

  1. Effect of a Resume-Writing Workshop on Resume-Writing Skills

    Science.gov (United States)

    Tillotson, Kenyon; Osborn, Debra

    2012-01-01

    What is the best way to teach someone how to write an effective resume? A workshop format was used to teach college students the skills needed to write a successful resume. Archival data consisting of student resumes and rubric score sheets were used to determine the effectiveness of a resume-writing workshop by using a pre-post design evaluating…

  2. Single-particle potential from resummed ladder diagrams

    International Nuclear Information System (INIS)

    Kaiser, N.

    2013-01-01

    A recent work on the resummation of fermionic in-medium ladder diagrams to all orders is extended by calculating the complex single-particle potential U(p, k f ) + i W(p, k f ) p > k f . The on-shell single-particle potential is constructed by means of a complex-valued in-medium loop that includes corrections from a test particle of momentum vector p added to the filled Fermi sea. The single-particle potential U(k f , k f ) at the Fermi surface as obtained from the resummation of the combined particle and hole ladder diagrams is shown to satisfy the Hugenholtz-Van-Hove theorem. The perturbative contributions at various orders a n in the scattering length are deduced and checked against the known analytical results at order a 1 and a 2 . The limit a → ∞ is studied as a special case and a strong momentum dependence of the real (and imaginary) single-particle potential is found. This feature indicates an instability against a phase transition to a state with an empty shell inside the Fermi sphere such that the density gets reduced by about 5%. The imaginary single-particle potential vanishes linearly at the Fermi surface. For comparison, the same analysis is performed for the resummed particle-particle ladder diagrams alone. In this truncation an instability for hole excitations near the Fermi surface is found at strong coupling. For the set of particle-hole ring diagrams the single-particle potential is calculated as well. Furthermore, the resummation of in-medium ladder diagrams to all orders is studied for a two-dimensional Fermi gas with a short-range two-body contact interaction. (orig.)

  3. Vibrational analysis of single-layered graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sakhaee-Pour, A; Ahmadian, M T [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R [Department of Mechanical Engineering and Institute for Nano Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: sakhaee@alum.sharif.edu, E-mail: naghdabd@sharif.edu

    2008-02-27

    A molecular structural mechanics method has been implemented to investigate the vibrational behavior of single-layered graphene sheets. By adopting this approach, mode shapes and natural frequencies are obtained. Vibrational analysis is performed with different chirality and boundary conditions. Numerical results from the atomistic modeling are employed to develop predictive equations via a statistical nonlinear regression model. With the proposed equations, fundamental frequencies of single-layered graphene sheets with considered boundary conditions can be predicted within 3% difference with respect to the atomistic simulation.

  4. Single Point Incremental Forming using a Dummy Sheet

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, Beatriz; Bay, Niels

    2007-01-01

    A new version of single point incremental forming (SPIF) is presented. This version includes a dummy sheet on top of the work piece, thus forming two sheets instead of one. The dummy sheet, which is in contact with the rotating tool pin, is discarded after forming. The new set-up influences....... The possible influence of friction between the two sheets is furthermore investigated. The results show that the use of a dummy sheet reduces wear of the work piece to almost zero, but also causes a decrease in formability. Bulging of the planar sides of the pyramid is reduced and surface roughness...

  5. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  6. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  7. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  8. Resummed tree heptagon

    Science.gov (United States)

    Belitsky, A. V.

    2018-04-01

    The form factor program for the regularized space-time S-matrix in planar maximally supersymmetric gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube excitations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function of 't Hooft coupling. Both MHV and non-MHV amplitudes are described in a uniform, systematic fashion within this framework, with the difference between the two encoded in coupling-dependent helicity form factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is coupling independent and is known for any number of charged excitations from solutions of a system of Watson and Mirror equations. This description allows one to resum the infinite series of form factors and recover the space-time S-matrix exactly in kinematical variables at a given order of perturbation series. Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grassmann component of the heptagon with an infinite number of small fermion-antifermion pairs accounted for in NMHV two-channel conformal blocks.

  9. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    Science.gov (United States)

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  10. A Two-Step Resume Information Extraction Algorithm

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2018-01-01

    Full Text Available With the rapid growth of Internet-based recruiting, there are a great number of personal resumes among recruiting systems. To gain more attention from the recruiters, most resumes are written in diverse formats, including varying font size, font colour, and table cells. However, the diversity of format is harmful to data mining, such as resume information extraction, automatic job matching, and candidates ranking. Supervised methods and rule-based methods have been proposed to extract facts from resumes, but they strongly rely on hierarchical structure information and large amounts of labelled data, which are hard to collect in reality. In this paper, we propose a two-step resume information extraction approach. In the first step, raw text of resume is identified as different resume blocks. To achieve the goal, we design a novel feature, Writing Style, to model sentence syntax information. Besides word index and punctuation index, word lexical attribute and prediction results of classifiers are included in Writing Style. In the second step, multiple classifiers are employed to identify different attributes of fact information in resumes. Experimental results on a real-world dataset show that the algorithm is feasible and effective.

  11. The effect of Linkedin on deception in resumes.

    Science.gov (United States)

    Guillory, Jamie; Hancock, Jeffrey T

    2012-03-01

    This study explores how Linkedin shapes patterns of deception in resumes. The general self-presentation goal to appear favorably to others motivates deception when one's true characteristics are inconsistent with their desired impression. Because Linkedin makes resume claims public, deception patterns should be altered relative to traditional resumes. Participants (n=119) in a between-subjects experiment created resumes in one of three resume settings: a traditional (offline) resume, private Linkedin profiles, or publicly available Linkedin profiles. Findings suggest that the public nature of Linkedin resume claims affected the kinds of deception used to create positive impressions, but did not affect the overall frequency of deception. Compared with traditional resumes, Linkedin resumes were less deceptive about the kinds of information that count most to employers, namely an applicant's prior work experience and responsibilities, but more deceptive about interests and hobbies. The results stand in contrast to assumptions that Internet-based communication is more deceptive than traditional formats, and suggests that a framework that considers deception as a resource for self-presentation can account for the findings.

  12. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  13. Single point incremental forming: Formability of PC sheets

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  14. Integrated single- and two-photon light sheet microscopy using accelerating beams

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2017-01-01

    We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode......, an increase in the field of view over the use of a standard Gaussian beam by a factor of six is demonstrated. This implementation for light sheet microscopy opens up new possibilities across a wide range of biomedical applications, especially for the study of neuronal processes....

  15. Anisotropic carrier mobility in single- and bi-layer C3N sheets

    Science.gov (United States)

    Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin

    2018-05-01

    Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.

  16. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  17. Fairness in Paper and Video Resume Screening

    NARCIS (Netherlands)

    A.M.F. Hiemstra (Annemarie)

    2013-01-01

    markdownabstract__Abstract__ Recent technological developments have resulted in the introduction of a new type of resume, the video resume, which can be described as a video message in which applicants present themselves to potential employers. Research is struggling to keep pace with the speed

  18. Trends in the Employment Process: Resumes and Job Application Letters.

    Science.gov (United States)

    Spinks, Neld; Wells, Barron

    1999-01-01

    Surveys of Fortune 500 companies in 1978, 1985, and 1995 revealed trends and preferences in content of resumes and cover letters. Compared to earlier years, current preferences were for both letters and resumes in the initial contact, more emphasis on grammar and spelling, and acceptance of two-page resumes. (SK)

  19. RESUMING WORK

    CERN Document Server

    2004-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: • if the medical absence has been for 21 calendar days or longer • if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  20. RESUMING WORK

    CERN Document Server

    2003-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: - if the medical absence has been for 21 calendar days or longer - if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service Tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  1. RESUMING WORK

    CERN Multimedia

    2003-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: - if the medical absence has been for 21 calendar days or longer - if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  2. The Five-Year Resume: A Career Planning Exercise

    Science.gov (United States)

    Laker, Dennis R.; Laker, Ruth

    2007-01-01

    For most college students, lack of career planning wastes time and resources and may result in years of "career drift." Lack of planning can also lead to deception once students begin seeking career-related employment. Faced with a competitive job market, some students inflate and exaggerate their resumes. The five-year resume exercise helps…

  3. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  4. Optimization of Single Point Incremental Forming of Al5052-O Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Il; Xiao, Xiao; Do, Van Cuong; Kim, Young Suk [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-03-15

    Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

  5. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  6. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  7. Mode I fracture toughness analysis of a single-layer grapheme sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ky, Minh Nguyen; Yum, Young Jin [University of Ulsan, Ulsan (Korea, Republic of)

    2014-09-15

    To predict the fracture toughness of a single-layer graphene sheet (SLGS), analytical formulations were devised for the hexagonal honeycomb lattice using a linkage equivalent discrete frame structure. Broken bonds were identified by a sharp increase in the position of the atoms. As crack propagation progressed, the crack tip position and crack path were updated from broken bonds in the molecular dynamics (MD) model. At each step in the simulation, the atomic model was centered on the crack tip to adaptively follow its path. A new formula was derived analytically from the deformation and bending mechanism of solid-state carbon-carbon bonds so as to describe the mode I fracture of SLGS. The fracture toughness of single-layer graphene is governed by a competition between bond breaking and bond rotation at a crack tip. K-field based displacements were applied on the boundary of the micromechanical model, and FEM results were obtained and compared with theoretical findings. The critical stress intensity factor for a graphene sheet was found to be K{sub IC} = 2.63 ∼ 3.2 MPa√m for the case of a zigzag crack.

  8. Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2018-04-01

    In the present article, the hygro-thermal wave propagation properties of single-layered graphene sheets (SLGSs) are investigated for the first time employing a nonlocal strain gradient theory. A refined higher-order two-variable plate theory is utilized to derive the kinematic relations of graphene sheets. Here, nonlocal strain gradient theory is used to achieve a more precise analysis of small-scale plates. In the framework of the Hamilton's principle, the final governing equations are developed. Moreover, these obtained equations are deemed to be solved analytically and the wave frequency values are achieved. Some parametric studies are organized to investigate the influence of different variants such as nonlocal parameter, length scale parameter, wave number, temperature gradient and moisture concentration on the wave frequency of graphene sheets.

  9. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene

    Science.gov (United States)

    Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid

    2018-04-01

    Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.

  10. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  11. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  12. Acceptance of Medical Resume Completion at Dr. Radjiman Wediodiningrat Lawang Psychiatric Hospital

    Directory of Open Access Journals (Sweden)

    Silvia Shinta Devi

    2017-02-01

    Sistem kesehatan di Indonesia mengalami perubahan besar dengan diberlakukannya program Asuransi Kesehatan Nasional. Resume medis memiliki peran penting dalam klaim asuransi kesehatan, sehingga resume medis yang terlambat dan tidak lengkap akan mengganggu proses klaim asuransi. Penelitian ini bertujuan untuk mengetahui pengaruh persepsi kemudahan penggunaan, persepsi manfaat, dan sikap pada penerimaan dokter dalam menyelesaikan resume medis. di Dr Radjiman Wedyodiningrat Psychiatric Hospital Lawang berdasarkan Technology Acceptance Model. Technology Acceptance Model digunakan sebagai model dalam penelitian ini karena resume medis merupakan salah satu bentuk teknologi informasi yang masih dilakukan secara manual. Pengumpulan data untuk penelitian ini dilakukan pada bulan Maret 2016 dengan menggunakan kuesioner yang diberikan kepada 32 dokter di Rumah Sakit Jiwa Dr Radjiman Wediodiningrat Lawang. Skala Likert lima tingkat digunakan untuk mengukur setiap item variabel. Data dianalisis dengan menggunakan Partial Least Square. Hasil penelitian menunjukan bahwa secara umum, acceptance dokter di RSJ Dr. Radjiman Wediodiningrat Lawang terhadap pengisian resume medis masuk dalam kategori ringgi dan memiliki perceived usefulness and attitude yang dalam kategori baik, sedangkan perceived ease of use dalam kategori sedang.

  13. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  14. Managing recruitment and selection in the digital age: e-HRM and resumes

    NARCIS (Netherlands)

    Furtmueller-Ettinger, Elfriede; Wilderom, Celeste P.M.; Tate, Mary

    2011-01-01

    Recruiters, in the business of screening job applicants, are increasingly dependent on information systems especially digital resume databases. However, the current literature does not provide a consensus on the requirements for resume content for digital recruiting. This research contributes to the

  15. Printed energy storage devices by integration of electrodes and separators into single sheets of paper

    KAUST Repository

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2010-01-01

    We report carbon nanotube thin film-based supercapacitors fabricated with printing methods, where electrodes and separators are integrated into single sheets of commercial paper. Carbon nanotube films are easily printed with Meyer rod coating or ink

  16. RESUME 99. Rapid environmental surveying using mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, S; Mellander, H; Lindgren, J; Finck, R [Swedish Radiation Protection Inst.(Sweden); Lauritzen, B [Risoe National Lab., (Denmark)

    2000-08-01

    This report describes the exercise RESUME 99 that took place in the surroundings of Gaevle in Sweden, September 6-9, 1999. The exercise was a part of the project BOK-1.2, Mobile measurements and measurement strategies, within the NKS research program for 1998-2001. RESUME 99 was primarily aimed at testing mobile gamma spectrometry with systems carried by cars, but also in situ measurements were carried out during the exercise. In the exercise, the activity levels of {sup 137} Cs stemming from Chernobyl accident in 1986 was measured and mapped. The objectives of the exercise were to train participating teams in measuring, to test co-operation for nuclear emergency preparedness, and to prepare for a larger European exercise in 2001. Another objective of the exercise was to integrate the carborne gamma-ray survey with recent airborne gamma-ray survey measurements of the area. The exercise generated a substantial database that can be used for further research in this field. Several interesting features were included in the RESUME 99 exercise, such as advanced on-site processing of data and direct presentation of results on an exercise web site. This report describes the planning, preparation and execution of the exercise, the participating teams, and results that was presented during the exercise. (au)

  17. RESUME 99. Rapid environmental surveying using mobile equipment

    International Nuclear Information System (INIS)

    Karlsson, S.; Mellander, H.; Lindgren, J.; Finck, R.; Lauritzen, B.

    2000-08-01

    This report describes the exercise RESUME 99 that took place in the surroundings of Gaevle in Sweden, September 6-9, 1999. The exercise was a part of the project BOK-1.2, Mobile measurements and measurement strategies, within the NKS research program for 1998-2001. RESUME 99 was primarily aimed at testing mobile gamma spectrometry with systems carried by cars, but also in situ measurements were carried out during the exercise. In the exercise, the activity levels of 137 Cs stemming from Chernobyl accident in 1986 was measured and mapped. The objectives of the exercise were to train participating teams in measuring, to test co-operation for nuclear emergency preparedness, and to prepare for a larger European exercise in 2001. Another objective of the exercise was to integrate the carborne gamma-ray survey with recent airborne gamma-ray survey measurements of the area. The exercise generated a substantial database that can be used for further research in this field. Several interesting features were included in the RESUME 99 exercise, such as advanced on-site processing of data and direct presentation of results on an exercise web site. This report describes the planning, preparation and execution of the exercise, the participating teams, and results that was presented during the exercise. (au)

  18. Resummed coefficient function for the shape function

    OpenAIRE

    Aglietti, U.

    2001-01-01

    We present a leading evaluation of the resummed coefficient function for the shape function. It is also shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function computed on the lattice to the physical QCD distributions.

  19. Timelike single-logarithm-resummed splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-08-15

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  20. Streamlining resummed QCD calculations using Monte Carlo integration

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, David; Feige, Ilya; Freytsis, Marat; Schwartz, Matthew D. [Center for the Fundamental Laws of Nature, Harvard University,17 Oxford St., Cambridge, MA 02138 (United States)

    2016-08-18

    Some of the most arduous and error-prone aspects of precision resummed calculations are related to the partonic hard process, having nothing to do with the resummation. In particular, interfacing to parton-distribution functions, combining various channels, and performing the phase space integration can be limiting factors in completing calculations. Conveniently, however, most of these tasks are already automated in many Monte Carlo programs, such as MADGRAPH http://dx.doi.org/10.1007/JHEP07(2014)079, ALPGEN http://dx.doi.org/10.1088/1126-6708/2003/07/001 or SHERPA http://dx.doi.org/10.1088/1126-6708/2009/02/007. In this paper, we show how such programs can be used to produce distributions of partonic kinematics with associated color structures representing the hard factor in a resummed distribution. These distributions can then be used to weight convolutions of jet, soft and beam functions producing a complete resummed calculation. In fact, only around 1000 unweighted events are necessary to produce precise distributions. A number of examples and checks are provided, including e{sup +}e{sup −} two- and four-jet event shapes, n-jettiness and jet-mass related observables at hadron colliders at next-to-leading-log (NLL) matched to leading order (LO). Attached code can be used to modify MADGRAPH to export the relevant LO hard functions and color structures for arbitrary processes.

  1. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  2. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  3. Resumes as a Proactive Career Development Tool: An Innovation at Keuka College Career Center.

    Science.gov (United States)

    Miner, Todd

    2000-01-01

    A proactive resume can help individuals understand workplace demands and their fit with them. Development of proactive resumes focuses first on employability skills and then on skills and attributes of specific professions or careers. (SK)

  4. Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu

    2000-01-01

    Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.

  5. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  6. Blue Collar & Beyond: Resumes for Skilled Trades & Services.

    Science.gov (United States)

    Parker, Yana

    This book, which is designed for individuals in skilled trades and service occupations, contains 132 sample resumes for occupations in the following occupational categories: automotive and heavy equipment; construction and maintenance; customer service; hotel, restaurant, and food service; office; trades; warehouse, manufacturing, and electronics;…

  7. Writing for the Robot: How Employer Search Tools Have Influenced Resume Rhetoric and Ethics

    Science.gov (United States)

    Amare, Nicole; Manning, Alan

    2009-01-01

    To date, business communication scholars and textbook writers have encouraged resume rhetoric that accommodates technology, for example, recommending keyword-enhancing techniques to attract the attention of searchbots: customized search engines that allow companies to automatically scan resumes for relevant keywords. However, few scholars have…

  8. Direct Laser Writing of Single-Material Sheets with Programmable Self-Rolling Capability

    Science.gov (United States)

    Bauhofer, Anton; KröDel, Sebastian; Bilal, Osama; Daraio, Chiara; Constantinescu, Andrei

    Direct laser writing, a sub-class of two-photon polymerization, facilitates 3D-printing of single-material microstructures with inherent residual stresses. Here we show that controlled distribution of these stresses allows for fast and cost-effective fabrication of structures with programmable self-rolling capability. We investigate 2D sheets that evolve into versatile 3D structures. Precise control over the shape morphing potential is acquired through variations in geometry and writing parameters. Effects of capillary action and gravity were shown to be relevant for very thin sheets (thickness 1.5um) are dominated by residual stresses and adhesion forces. The presented structures create local tensions up to 180MPa, causing rolling curvatures of 25E3m-1. A comprehensive analytical model that captures the relevant influence factors was developed based on laminate plate theory. The predicted curvature and directionality correspond well with the experimentally obtained data. Potential applications are found in drug encapsulation and particle traps for emulsions with differing surface energies. This work was supported by the Swiss National Science Foundation.

  9. Resummed B→Xulν decay distributions to next-to-leading order

    International Nuclear Information System (INIS)

    Aglietti, U.

    2001-01-01

    We perform factorization of the most general distribution in semileptonic B→X u decays and we resum the threshold logarithms to next-to-leading order. From this (triple-differential) distribution, any other distribution is obtained by integration. As an application of our method, we derive simple analytical expressions for a few distributions, resummed to leading approximation. It is shown that the shape function can be directly determined by measuring the distribution in m X 2 /E X 2 , not in m X 2 /m B 2 . We compute the resummed hadron energy spectrum, which has a 'Sudakov shoulder', and we show how the distribution in the singular region is related to the shape function. We also present an improved formula for the photon spectrum in B→X s γ, which includes soft-gluon resummation and non-leading operators in the effective Hamiltonian. We explicitly show that the same non-perturbative function -- namely, the shape function -- controls the non-perturbative effects in all the distributions in the semileptonic and in the rare decay

  10. Bifurcation of Jovian magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  11. Jet fragmentation and predictions of the resummed perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Safonov, Alexei Nikolayevich [Univ. of Florida, Gainesville, FL (United States)

    2001-01-01

    This dissertation is dedicated to the experimental analysis of jet fragmentation, the process of formation of jets of particles produced in high-energy collisions, and to the comparison of the results to the predictions of resummed perturbative calculations within Quantum Chromodynamics.

  12. Tema 8. Principis físics dels semiconductors (Resum)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Resum del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  13. Integrating Writing Skills and Ethics Training in Business Communication Pedagogy: A Resume Case Study Exemplar

    Science.gov (United States)

    Conn, Cynthia E.

    2008-01-01

    An integrated approach to teaching resume construction in the business communication classroom focuses on simultaneously (a) emphasizing writing-related proficiencies and (b) encouraging ethical and moral orientations to this task. This article provides a resume construction exemplar that operationalizes these two pedagogical goals. The techniques…

  14. Bifurcation of Jovian magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  15. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2017-07-01

    Full Text Available Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene:polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria.

  16. PIXEL 2010 - A Resume

    International Nuclear Information System (INIS)

    Wermes, N.

    2011-01-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This resume attempts to extract the main statements of the results and developments presented at this conference.

  17. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear

    KAUST Repository

    Duan, Wen Hui

    2011-08-01

    The initiation and development of wrinkles in a single layer graphene sheet subjected to in-plane shear displacements are investigated. The dependence of the wavelength and amplitude of wrinkles on the applied shear displacements is explicitly obtained with molecular mechanics simulations. A continuum model is developed for the characteristics of the wrinkles which show that the wrinkle wavelength decreases with an increase in shear loading, while the amplitude of the wrinkles is found to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science, and the development of the fluidic electronics. © 2011 Elsevier Ltd. All rights reserved.

  18. China Likely to Resume Oil Futures Soon

    Institute of Scientific and Technical Information of China (English)

    Chang Tianle

    2002-01-01

    @@ China is likely to resume operation of its oil futures this year, according to reports from the media about a futures conference organized by the Shanghai Futures Exchange (SHFE) in late May. "As China has become an important oil producer and consumer,the demand for our own oil futures market emerges,which will help China oil-related enterprises hedge risks," said Li Ruisheng, vice president of PetroChina's refining and marketing company.

  19. Anti-site defected MoS2 sheet-based single electron transistor as a gas sensor

    Science.gov (United States)

    Sharma, Archana; Husain, Mushahid; Srivastava, Anurag; Khan, Mohd. Shahid

    2018-05-01

    To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to study the adsorption of CO and CO2 gas molecules on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (MoS). The strong interaction between Mo metal with pristine MoS2 sheet suggests its strong binding nature. Doping Mo into MoS2 sheet enhances CO and CO2 adsorption strength. The sensing response of MoS-doped MoS2 system to CO and CO2 gas molecules is obtained in the single electron transistor (SET) environment by varying bias voltage. Doping reduces charging energy of the device which results in fast switching of the device from OFF to ON state.

  20. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  1. Linearly resummed hydrodynamics in a weakly curved spacetime

    Science.gov (United States)

    Bu, Yanyan; Lublinsky, Michael

    2015-04-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space [1, 2] to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. [1, 2], we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. [3], the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  2. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    Science.gov (United States)

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  3. Resummed memory kernels in generalized system-bath master equations

    International Nuclear Information System (INIS)

    Mavros, Michael G.; Van Voorhis, Troy

    2014-01-01

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics

  4. Forced tearing of ductile and brittle thin sheets.

    Science.gov (United States)

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  5. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Science.gov (United States)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  6. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  7. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  8. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    Highlights: • Graphene oxide sheets supported Ag nanoparticles composites are successfully prepared via γ-irradiation without surfactant or functional agent. • Ag nanoparticles exhibit single crystalline structure and parabolic distribution on the surface of graphene oxide sheets. • Proposing a view that the growth of intercellular AgNPs can be limited by graphite oxide. - Abstract: This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 10{sup 6} and detection limit of 1.0 × 10{sup −7} M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  9. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    International Nuclear Information System (INIS)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-01-01

    Highlights: • Graphene oxide sheets supported Ag nanoparticles composites are successfully prepared via γ-irradiation without surfactant or functional agent. • Ag nanoparticles exhibit single crystalline structure and parabolic distribution on the surface of graphene oxide sheets. • Proposing a view that the growth of intercellular AgNPs can be limited by graphite oxide. - Abstract: This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 10"6 and detection limit of 1.0 × 10"−"7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  10. Theoretical Predictions of Freestanding Honeycomb Sheets of Cadmium Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Kent, Paul R [ORNL; Xie, Yu [ORNL; Terrones Maldonado, Humberto [ORNL; Smith, Sean C [ORNL

    2014-01-01

    Two-dimensional (2D) nanocrystals of CdX (X = S, Se, Te) typically grown by colloidal synthesis are coated with organic ligands. Recent experimental work on ZnSe showed that the organic ligands can be removed at elevated temperature, giving a freestanding 2D sheet of ZnSe. In this theoretical work, freestanding single- to few-layer sheets of CdX, each possessing a pseudo honeycomb lattice, are considered by cutting along all possible lattice planes of the bulk zinc blende (ZB) and wurtzite (WZ) phases. Using density functional theory, we have systematically studied their geometric structures, energetics, and electronic properties. A strong surface distortion is found to occur for all of the layered sheets, and yet all of the pseudo honeycomb lattices are preserved, giving unique types of surface corrugations and different electronic properties. The energetics, in combination with phonon mode calculations and molecular dynamics simulations, indicate that the syntheses of these freestanding 2D sheets could be selective, with the single- to few-layer WZ110, WZ100, and ZB110 sheets being favored. Through the GW approximation, it is found that all single-layer sheets have large band gaps falling into the ultraviolet range, while thicker sheets in general have reduced band gaps in the visible and ultraviolet range. On the basis of the present work and the experimental studies on freestanding double-layer sheets of ZnSe, we envision that the freestanding 2D layered sheets of CdX predicted herein are potential synthesis targets, which may offer tunable band gaps depending on their structural features including surface corrugations, stacking motifs, and number of layers.

  11. On Resumming Inflationary Perturbations beyond One-loop

    DEFF Research Database (Denmark)

    Riotto, Antonio; Sloth, Martin Snoager

    2008-01-01

    It is well known that the correlation functions of a scalar field in a quasi-de Sitter space exhibit at the loop level cumulative infra-red effects proportional to the total number of e-foldings of inflation. Using the in-in formalism, we explore the behavior of these infra-red effects in the large...... N limit of an O(N) invariant scalar field theory with quartic self-interactions. By resumming all higher-order loop diagrams non-perturbatively, we show that the connected four-point correlation function, which is a signal of non-Gaussianity, is non-perturbatively enhanced with respect to its tree-level...

  12. A Fundamental Study of Stretch-Drawing Process of Sheet Metals : Single and Double Operations

    Science.gov (United States)

    Gotoh, Manabu; Kim, Young-soo; Yamashita, Minoru

    1998-05-01

    Fundamental and informative data of axisymmetric stretch-drawing of several sheet metals with thichness of 0.7 1.0 mm are presented especially for single and double operations. Very small radius is applied to the die-profile (or -shoulder) in all operations to induce wall-thinning by the effect of bending-under-tension, from which the name `stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by the single and double stretch-drawings from smaller cirlcular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional LDR (=limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valueable information on this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation. Fracturing is found to occur at the middle section of the wall part or at the die-profile other than at the punch profile common in the usual deep-drawing process. Numerical simulation of the single stretch-drawing process is also performed by use of DYNA-3D code to confirm that a satisfactory prediction especially in the depth of the drawn-cup can be done at least in a practical sense, although this kind of numerical analysis is very difficult because of the severity or localization of deformation around the die profile. The drawn cup of SUS304 among others fractures in a couple of weeks after the operation due to the residual circumferential tensile stress, whereas that of SUS304L does not. In the double stretch-drawing, it is confirmed that very deeper

  13. Printed energy storage devices by integration of electrodes and separators into single sheets of paper

    Science.gov (United States)

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2010-05-01

    We report carbon nanotube thin film-based supercapacitors fabricated with printing methods, where electrodes and separators are integrated into single sheets of commercial paper. Carbon nanotube films are easily printed with Meyer rod coating or ink-jet printing onto a paper substrate due to the excellent ink absorption of paper. A specific capacity of 33 F/g at a high specific power of 250 000 W/kg is achieved with an organic electrolyte. Such a lightweight paper-based supercapacitor could be used to power paper electronics such as transistors or displays.

  14. Energized Oxygen : Speiser Current Sheet Bifurcation

    Science.gov (United States)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  15. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  16. The resummed Higgs boson transverse momentum distribution at the LHC

    CERN Document Server

    Kulesza, A; Vogelsang, W

    2003-01-01

    We apply QCD resummation techniques to study the transverse momentum distribution of Higgs bosons produced via gluon-gluon fusion at the LHC. In particular we focus on the joint resummation formalism which resums both threshold and transverse momentum corrections simultaneously. A comparison of results obtained in the joint and the standard recoil resummation frameworks is presented.

  17. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Directory of Open Access Journals (Sweden)

    H. F. Yang

    2018-03-01

    Full Text Available Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation. Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001 copper surface structure but also discovered that the square graphene sheets’ sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures

  18. Dabhol resumes

    International Nuclear Information System (INIS)

    Burr, M.T.

    1997-01-01

    Shockwaves were felt throughout the global business community when political forces in India stalled out the Dabhol power project. Lenders and investors felt even less secure about the risks involved with developing infrastructure projects in emerging economies, and Dabhol came to symbolize the sinkholes that lie in wait for even the best-devised projects with the strongest sponsors. The project resumed in early December, however, after the Bombay High Court dismissed the only remaining lawsuit filed against Dabhol Power Co. Now, the Dabhol project is set to become an example of how a project can succeed in a big way if it has developers with integrity, skill, flexibility, and--above all--a great deal of patience. Originally a 695 MW facility, Dabhol was renegotiated so the complex totals 2,450 MW, with one 740 MW phase and another 1,710 MW phase. open-quotes The additional capacity allowed us to recover the costs we incurred during cancellation,close quotes says Rebecca Mark, CEO of Enron Development Corp. in Houston, Texas. open-quotes We reduced rates for the second phase, and we'll handle it on a competitive basis when it comes to specifying equipment.close quotes Enron is the lead developer of the project, with an 80 percent equity stake. GE Capital of Stamford, Conn., USA, and Bechtel Enterprises of San Francisco, Calif., each hold a 10 percent share in the project. open-quotes The changes in the project have had little effect on the financing arrangements. Additional project costs which resulted from the delays were funded by the equity group, and the debt levels and terms remain consistent with those of the original closing,close quotes says Everett Smith III, executive vice president and director-international, for GE Capital Services Structured Finance Group

  19. Linearly resummed hydrodynamics in a weakly curved spacetime

    International Nuclear Information System (INIS)

    Bu, Yanyan; Lublinsky, Michael

    2015-01-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064) to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature N=4 super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS 5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid’s energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064), we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. (http://dx.doi.org/10.1103/PhysRevD.80.065026), the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  20. Linearly resummed hydrodynamics in a weakly curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan; Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-04-24

    We extend our study of all-order linearly resummed hydrodynamics in a flat space (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064) to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature N=4 super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS{sub 5} geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid’s energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064), we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. (http://dx.doi.org/10.1103/PhysRevD.80.065026), the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  1. Physical Attractiveness, Age, and Sex as Determinants of Reactions to Resumes.

    Science.gov (United States)

    Quereshi, M. Y.; Kay, Janet P.

    1986-01-01

    Physical attractiveness, age, and sex were manipulated to determine their effect on the evaluation of 54 hypothetical applicants' resumes for three different jobs by 60 Master's in Business Administration students. Physical attractiveness favorably influenced the suitability ratings for all jobs; raters' sex and age were not significant but…

  2. Printed energy storage devices by integration of electrodes and separators into single sheets of paper

    KAUST Repository

    Hu, Liangbing

    2010-01-01

    We report carbon nanotube thin film-based supercapacitors fabricated with printing methods, where electrodes and separators are integrated into single sheets of commercial paper. Carbon nanotube films are easily printed with Meyer rod coating or ink-jet printing onto a paper substrate due to the excellent ink absorption of paper. A specific capacity of 33 F/g at a high specific power of 250 000 W/kg is achieved with an organic electrolyte. Such a lightweight paper-based supercapacitor could be used to power paper electronics such as transistors or displays. © 2010 American Institute of Physics.

  3. Fast imaging of live organisms with sculpted light sheets

    Science.gov (United States)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  4. Resumming Long-Distance Contributions to the QCD Pressure

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2001-01-01

    The strict coupling constant expansion for the free energy of hot QCD plasma shows bad convergence at all reasonable temperatures, and does not agree well with its 4d lattice determination. This has recently lead to various refined resummations, whereby the agreement with the lattice result should improve, at the cost of a loss of a formal agreement with the coupling constant expansion and particularly with its large infrared sensitive ``long-distance'' contributions. We show here how to resum the dominant long-distance effects by using a 3d effective field theory, and determine their magnitude by simple lattice Monte Carlo simulations.

  5. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  6. Phonon dispersions in graphene sheet and single-walled carbon ...

    Indian Academy of Sciences (India)

    Abstract. In the present research paper, phonons in graphene sheet have been calculated by con- structing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic. X-ray scattering as well as ...

  7. Oil flow resumes in war torn onshore Neutral Zone

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Oil production has resumed in the war ravaged onshore fields of the Neutral Zone between Saudi Arabia and Kuwait 1 year after the end of Persian Gulf War. Initial production of about 40,000 b/d is expected to rise to 60,000 b/d by year end. This paper reports that prior to the January-February 1991 war to oust occupying Iraqi military forces from Kuwait, the Neutral Zone's Wafra, South Umm Gudair, and South Fuwaris onshore fields produced about 135,000 b/d

  8. How Writing Quality Influences Readers' Judgements of Resumes in Business and Engineering.

    Science.gov (United States)

    Charney, Davida H.; And Others

    1992-01-01

    Investigates how job recruiters seeking to fill positions in mechanical engineering or marketing are influenced by the quality of writing in student resumes. Finds that teachers must assess how accurately they and their students understand the community's discourse practices to help students enter a professional discourse community. (PRA)

  9. The operational staff during exercise RESUME-95

    International Nuclear Information System (INIS)

    Jensen, J.

    1997-01-01

    With more than 100 participants entering the exercise RESUME-95 the Exercise Planning Committee decided to establish an operational staff named Directing Staff (DISTAFF) to ensure that the exercise plan was followed, the planned activities were carried out and to intervene if anything went wrong. In general the duties of the operational staff involve tasks such as secretarial assistance, keeping log of the progress of the situation and gathering, updating and distributing information on all aspects of the situation. Throughout the entire event it is the staff's responsibility to keep a general view of the current situation and to make the necessary plans for the progress of the situation based on the available information. Furthermore the staff should ensure necessary contact to the public and to the media. (au)

  10. The operational staff during exercise RESUME-95

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J. [Jensen Consult, Virum (Denmark)

    1997-12-31

    With more than 100 participants entering the exercise RESUME-95 the Exercise Planning Committee decided to establish an operational staff named Directing Staff (DISTAFF) to ensure that the exercise plan was followed, the planned activities were carried out and to intervene if anything went wrong. In general the duties of the operational staff involve tasks such as secretarial assistance, keeping log of the progress of the situation and gathering, updating and distributing information on all aspects of the situation. Throughout the entire event it is the staff`s responsibility to keep a general view of the current situation and to make the necessary plans for the progress of the situation based on the available information. Furthermore the staff should ensure necessary contact to the public and to the media. (au).

  11. The operational staff during exercise RESUME-95

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J [Jensen Consult, Virum (Denmark)

    1998-12-31

    With more than 100 participants entering the exercise RESUME-95 the Exercise Planning Committee decided to establish an operational staff named Directing Staff (DISTAFF) to ensure that the exercise plan was followed, the planned activities were carried out and to intervene if anything went wrong. In general the duties of the operational staff involve tasks such as secretarial assistance, keeping log of the progress of the situation and gathering, updating and distributing information on all aspects of the situation. Throughout the entire event it is the staff`s responsibility to keep a general view of the current situation and to make the necessary plans for the progress of the situation based on the available information. Furthermore the staff should ensure necessary contact to the public and to the media. (au).

  12. Resummed two-loop calculation of the disjoining pressure of a symmetric electrolyte soap film

    International Nuclear Information System (INIS)

    Dean, D.S.; Horgan, R.R.

    2004-01-01

    In this paper we consider the calculation of the disjoining pressure of a symmetric electrolytic soap film correct to two loops in perturbation theory. We show that the disjoining pressure is finite when the loop expansion is resummed using a cumulant expansion and requires no short distance cutoff in order to give a finite result. The loop expansion is resummed in terms of an expansion in g=l B /l D where l D is the Debye length and l B is the Bjerrum length. We show that there there is a nonanalytic contribution of order g ln(g). We also show that the two-loop correction is greater than the one-loop term at large film thicknesses suggesting a nonperturbative correction to the one-loop result in this limit

  13. Pre-LGM Northern Hemisphere ice sheet topography

    Directory of Open Access Journals (Sweden)

    J. Kleman

    2013-10-01

    Full Text Available We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS 5b (86.2 kyr model age and 4 (64 kyr model age. From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland, by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  14. Comparison of the results of the RESUME-95 exercise

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J. [Beredskabsstyrelsen, Birkeroed (Denmark); Scott, M. [Univ. of Glasgow, Dept. of Statistics, Glasgow, Scotland (United Kingdom)

    1997-12-31

    Within the framework of the Nordic Nuclear Safety Research program (NKS), RESUME-95 (Rapid Environmental Surveying using Mobile equipment) took place in Finland in August 1995. Amongst the purposes of the exercise were: to test the ability of existing airborne, car-borne and in-situ instruments to map contaminated areas (in this case from Chernobyl) and; to establish the comparability of results obtained with different systems. Preliminary analysis has shown that major features of the spatial distribution of the contaminants were identified by all teams, but that significant variations in absolute figures were observed. In this paper, we describe some of the quantitative analysis undertaken to assess the comparability of the results and to explore any difference in them. We discuss future actions within a European framework of off-site emergency management to ensure comparability of results and to encourage development of standardisation techniques. Each participating team has already produced reports of their own results, and preliminary analysis has shown that major features of the spatial distribution of the contaminants were identified by all teams, but that variations in absolute figures were observed (some possible explanations for this include the calibrating procedures used and the assumptions concerning the vertical source distribution). In this paper, we describe some of the quantitative analysis undertaken to assess the comparability of the results and to explore any differences in them. In addition, from the experience gained from RESUME-95, we discuss future actions within a European framework of off-site emergency management to ensure comparability of results and to encourage standardisation techniques to be developed. (au).

  15. Comparison of the results of the RESUME-95 exercise

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J [Beredskabsstyrelsen, Birkeroed (Denmark); Scott, M [Univ. of Glasgow, Dept. of Statistics, Glasgow, Scotland (United Kingdom)

    1998-12-31

    Within the framework of the Nordic Nuclear Safety Research program (NKS), RESUME-95 (Rapid Environmental Surveying using Mobile equipment) took place in Finland in August 1995. Amongst the purposes of the exercise were: to test the ability of existing airborne, car-borne and in-situ instruments to map contaminated areas (in this case from Chernobyl) and; to establish the comparability of results obtained with different systems. Preliminary analysis has shown that major features of the spatial distribution of the contaminants were identified by all teams, but that significant variations in absolute figures were observed. In this paper, we describe some of the quantitative analysis undertaken to assess the comparability of the results and to explore any difference in them. We discuss future actions within a European framework of off-site emergency management to ensure comparability of results and to encourage development of standardisation techniques. Each participating team has already produced reports of their own results, and preliminary analysis has shown that major features of the spatial distribution of the contaminants were identified by all teams, but that variations in absolute figures were observed (some possible explanations for this include the calibrating procedures used and the assumptions concerning the vertical source distribution). In this paper, we describe some of the quantitative analysis undertaken to assess the comparability of the results and to explore any differences in them. In addition, from the experience gained from RESUME-95, we discuss future actions within a European framework of off-site emergency management to ensure comparability of results and to encourage standardisation techniques to be developed. (au).

  16. Development of a low energy micro sheet forming machine

    Science.gov (United States)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  17. The metric theory of tensor products Grothendieck's resume revisited

    CERN Document Server

    Diestel, Joe; Swart, Johan; Swarte, Johannes Laurentius; Diestel, Joseph

    2008-01-01

    Grothendieck's Resumé is a landmark in functional analysis. Despite having appeared more than a half century ago, its techniques and results are still not widely known nor appreciated. This is due, no doubt, to the fact that Grothendieck included practically no proofs, and the presentation is based on the theory of the very abstract notion of tensor products. This book aims at providing the details of Grothendieck's constructions and laying bare how the important classes of operators are a consequence of the abstract operations on tensor norms. Particular attention is paid to how the classical

  18. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching(SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition,etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000?C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  19. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  20. Safety of Resuming Tumor Necrosis Factor Inhibitors in Ankylosing Spondylitis Patients Concomitant with the Treatment of Active Tuberculosis: A Retrospective Nationwide Registry of the Korean Society of Spondyloarthritis Research

    Science.gov (United States)

    Kim, Hye Won; Kwon, Seong Ryul; Jung, Kyong-Hee; Kim, Seong-Kyu; Baek, Han Joo; Seo, Mi Ryung; Bang, So-Young; Lee, Hye-Soon; Suh, Chang-Hee; Jung, Ju Yang; Son, Chang-Nam; Shim, Seung Cheol; Lee, Sang-Hoon; Lee, Seung-Geun; Lee, Yeon-Ah; Lee, Eun Young; Kim, Tae-Hwan

    2016-01-01

    Backgrounds Patients who develop an active tuberculosis infection during tumor necrosis factor (TNF) inhibitor treatment typically discontinue TNF inhibitor and receive standard anti-tuberculosis treatment. However, there is currently insufficient information on patient outcomes following resumption of TNF inhibitor treatment during ongoing anti- tuberculosis treatment. Our study was designed to investigate the safety of resuming TNF inhibitors in ankylosing spondylitis (AS) patients who developed tuberculosis as a complication of the use of TNF inhibitors. Methods Through the nationwide registry of the Korean Society of Spondyloarthritis Research, 3929 AS patients who were prescribed TNF inhibitors were recruited between June 2003 and June 2014 at fourteen referral hospitals. Clinical information was analyzed about the patients who experienced tuberculosis after exposure to TNF inhibitors. The clinical features of resumers and non-resumers of TNF inhibitors were compared and the outcomes of tuberculosis were surveyed individually. Findings Fifty-six AS patients were treated for tuberculosis associated with TNF inhibitors. Among them, 23 patients resumed TNF inhibitors, and these patients were found to be exposed to TNF inhibitors for a longer period of time and experienced more frequent disease flare-up after discontinuation of TNF inhibitors compared with those who did not resume. Fifteen patients resumed TNF inhibitors during anti-tuberculosis treatment (early resumers) and 8 after completion of anti-tuberculosis treatment (late resumers). Median time to resuming TNF inhibitor from tuberculosis was 3.3 and 9.0 months in the early and late resumers, respectively. Tuberculosis was treated successfully in all resumers and did not relapse in any of them during follow-up (median 33.8 [IQR; 20.8–66.7] months). Conclusions Instances of tuberculosis were treated successfully in our AS patients, even when given concomitantly with TNF inhibitors. We suggest that early

  1. Rapid Prototyping by Single Point Incremental Forming of Sheet Metal

    DEFF Research Database (Denmark)

    Skjødt, Martin

    2008-01-01

    . The process is incremental forming since plastic deformation takes place in a small local zone underneath the forming tool, i.e. the sheet is formed as a summation of the movement of the local plastic zone. The process is slow and therefore only suited for prototypes or small batch production. On the other...... in the plastic zone. Using these it is demonstrated that the growth rate of accumulated damage in SPIF is small compared to conventional sheet forming processes. This combined with an explanation why necking is suppressed is a new theory stating that SPIF is limited by fracture and not necking. The theory...... SPIF. A multi stage strategy is presented which allows forming of a cup with vertical sides in about half of the depth. It is demonstrated that this results in strain paths which are far from straight, but strains are still limited by a straight fracture line in the principal strain space. The multi...

  2. Personnel Administrators' Preferences for Resume Content: A Survey and Review of Empirically Based Conclusions.

    Science.gov (United States)

    Hutchinson, Kevin L.

    1984-01-01

    Reports results of a survey of Fortune 500 personnel administrators' preferences for the content of resumes submitted by college students entering the job market. Concludes that textbooks, teachers, and applicants should not only include but stress this preferred content. (PD)

  3. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  4. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  5. Discrete-time retrial queue with Bernoulli vacation, preemptive resume and feedback customers

    Directory of Open Access Journals (Sweden)

    Peishu Chen

    2015-09-01

    Full Text Available Purpose: We consider a discrete-time Geo/G/1 retrial queue where the retrial time follows a general distribution, the server subject to Bernoulli vacation policy and the customer has preemptive resume priority, Bernoulli feedback strategy. The main purpose of this paper is to derive the generating functions of the stationary distribution of the system state, the orbit size and some important performance measures. Design/methodology: Using probability generating function technique, some valuable and interesting performance measures of the system are obtained. We also investigate two stochastic decomposition laws and present some numerical results. Findings: We obtain the probability generating functions of the system state distribution as well as those of the orbit size and the system size distributions. We also obtain some analytical expressions for various performance measures such as idle and busy probabilities, mean orbit and system sizes. Originality/value: The analysis of discrete-time retrial queues with Bernoulli vacation, preemptive resume and feedback customers is interesting and to the best of our knowledge, no other scientific journal paper has dealt with this question. This fact gives the reason why efforts should be taken to plug this gap.

  6. Combining resummed Higgs predictions across jet bins

    Energy Technology Data Exchange (ETDEWEB)

    Boughezal, Radja [Argonne National Laboratory, IL (United States). High Energy Physics Division; Liu, Xiaohui; Petriello, Frank [Argonne National Laboratory, IL (United States). High Energy Physics Division; Northwestern Univ., Evanston, IL (United States). Dept. of Physics and Astronomy; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Walsh, Jonathan R. [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley Laboratory; California Univ., Berkeley, CA (United States). Center for Theoretical Physics

    2013-12-15

    Experimental analyses often use jet binning to distinguish between different kinematic regimes and separate contributions from background processes. To accurately model theoretical uncertainties in these measurements, a consistent description of the jet bins is required. We present a complete framework for the combination of resummed results for production processes in different exclusive jet bins, focusing on Higgs production in gluon fusion as an example. We extend the resummation of the H+1-jet cross section into the challenging low transverse momentum region, lowering the uncertainties considerably. We provide combined predictions with resummation for cross sections in the H+0-jet and H+1-jet bins, and give an improved theory covariance matrix for use in experimental studies. We estimate that the relevant theoretical uncertainties on the signal strength in the H{yields}WW{sup *} analysis are reduced by nearly a factor of 2 compared to the current value.

  7. Structural and electronic properties of hydrogen adsorptions on BC3 sheet and graphene: a comparative study

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan; Huang, Zhi-Quan; Lin, Wen-Huan; Albao, Marvin A; Su, Wan-Sheng

    2011-01-01

    We have systematically investigated the effect of hydrogen adsorption on a single BC 3 sheet as well as graphene using first-principles calculations. Specifically, a comparative study of the energetically favorable atomic configurations for both H-adsorbed BC 3 sheets and graphene at different hydrogen concentrations ranging from 1/32 to 4/32 ML and 1/8 to 1 ML was undertaken. The preferred hydrogen arrangement on the single BC 3 sheet and graphene was found to have the same property as that of the adsorbed H atoms on the neighboring C atoms on the opposite sides of the sheet. Moreover, at low coverage of H, the pattern of hydrogen adsorption on the BC 3 shows a proclivity toward formation on the same ring, contrasting their behavior on graphene where they tend to form the elongated zigzag chains instead. Lastly, both the hydrogenated BC 3 sheet and graphene exhibit alternation of semiconducting and metallic properties as the H concentration is increased. These results suggest the possibility of manipulating the bandgaps in a single BC 3 sheet and graphene by controlling the H concentrations on the BC 3 sheet and graphene.

  8. Optimization of the single point incremental forming process for titanium sheets by using response surface

    Directory of Open Access Journals (Sweden)

    Saidi Badreddine

    2016-01-01

    Full Text Available The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution& Moreover considerable forces can occur. They must be controlled in order to preserve the tooling. In this paper, a numerical approach is proposed in order to minimize the maximum force achieved during the incremental forming of titanium sheets and to maximize the minimal thickness. A surface response methodology is used to find the optimal values of two input parameters of the process, the punch diameter and the vertical step size of the tool path.

  9. RESUME-95: Results of an International Field Test of Mobile Equipment for Emergency Response

    DEFF Research Database (Denmark)

    Hovgaard, Jens; Scott, Marian

    1997-01-01

    In 1995 the exercise RESUME-95 (Rapid Environmental Surveying Using Mobile Equipment) took place in Finland. Groups from 8 European countries joined the exercise. The methods used were airborne gamma-ray measurements, car-borne measurements and in situ stationary measurements. The results of the ...

  10. RESUME 95. Rapid environmental surveying using mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The RESUME95 exercise - Rapid Environmental Surveying Using Mobile Equipment, took place in Finland in August 1995. The objectives of the RESUME exercise were to compare different monitoring systems when used under the same conditions as well as to compare results from similar systems with different data analysis and presentation software. Another objective was to acquire some basic knowledge to standardize and cross calibrate the European air-borne gamma-ray surveying capability so that the results from different systems could be directly comparable. The exercise involved 10 airborn monitoring teams, 7 teams with vehicle monitoring systems as well as ground survey teams from 8 countries. Most systems incorporated GPS satellite navigational aids and computers for real time display of the data which was also recorded for post flight analysis. Most of the car- and airborne systems were based on Nal detectors whereas most of the In-situ systems and a few airborne systems were based on HpGe detectors. The exercise took place in an area near Lahti. Three different areas were surveyed. These were 1) An airfield near Vesivehmaa, which was intended as a calibration site. Soil samples had been taken previously and used to establish the {sup 137}Cs activity of the soil as well as the activity of the natural radioactivity elements {sup 40}K, {sup 214}Bi and {sup 208}Tl. 2) An area contaminated by the Chernobyl nuclear accident, Area II. This area was intended to test the capabilities of the car- and airborne teams for mapping {sup 137}Cs. A number of predefined points in the area were used by In-situ teams. 3) An area with a variety of hidden readioactive sources, Area III. These sources of {sup 60}Co, {sup 137}Cs, {sup 192}Lr and {sup 99}Tc ranged in activity from 0.6 mCi to 15 Ci and was used to test the capability of the different air-borne teams for locating lost radioactive sources. (EG).

  11. RESUME 95. Rapid environmental surveying using mobile equipment

    International Nuclear Information System (INIS)

    1997-01-01

    The RESUME95 exercise - Rapid Environmental Surveying Using Mobile Equipment, took place in Finland in August 1995. The objectives of the RESUME exercise were to compare different monitoring systems when used under the same conditions as well as to compare results from similar systems with different data analysis and presentation software. Another objective was to acquire some basic knowledge to standardize and cross calibrate the European air-borne gamma-ray surveying capability so that the results from different systems could be directly comparable. The exercise involved 10 airborn monitoring teams, 7 teams with vehicle monitoring systems as well as ground survey teams from 8 countries. Most systems incorporated GPS satellite navigational aids and computers for real time display of the data which was also recorded for post flight analysis. Most of the car- and airborne systems were based on Nal detectors whereas most of the In-situ systems and a few airborne systems were based on HpGe detectors. The exercise took place in an area near Lahti. Three different areas were surveyed. These were 1) An airfield near Vesivehmaa, which was intended as a calibration site. Soil samples had been taken previously and used to establish the 137 Cs activity of the soil as well as the activity of the natural radioactivity elements 40 K, 214 Bi and 208 Tl. 2) An area contaminated by the Chernobyl nuclear accident, Area II. This area was intended to test the capabilities of the car- and airborne teams for mapping 137 Cs. A number of predefined points in the area were used by In-situ teams. 3) An area with a variety of hidden readioactive sources, Area III. These sources of 60 Co, 137 Cs, 192 Lr and 99 Tc ranged in activity from 0.6 mCi to 15 Ci and was used to test the capability of the different air-borne teams for locating lost radioactive sources. (EG)

  12. RESUME 95. Rapid environmental surveying using mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The RESUME95 exercise - Rapid Environmental Surveying Using Mobile Equipment, took place in Finland in August 1995. The objectives of the RESUME exercise were to compare different monitoring systems when used under the same conditions as well as to compare results from similar systems with different data analysis and presentation software. Another objective was to acquire some basic knowledge to standardize and cross calibrate the European air-borne gamma-ray surveying capability so that the results from different systems could be directly comparable. The exercise involved 10 airborn monitoring teams, 7 teams with vehicle monitoring systems as well as ground survey teams from 8 countries. Most systems incorporated GPS satellite navigational aids and computers for real time display of the data which was also recorded for post flight analysis. Most of the car- and airborne systems were based on Nal detectors whereas most of the In-situ systems and a few airborne systems were based on HpGe detectors. The exercise took place in an area near Lahti. Three different areas were surveyed. These were 1) An airfield near Vesivehmaa, which was intended as a calibration site. Soil samples had been taken previously and used to establish the {sup 137}Cs activity of the soil as well as the activity of the natural radioactivity elements {sup 40}K, {sup 214}Bi and {sup 208}Tl. 2) An area contaminated by the Chernobyl nuclear accident, Area II. This area was intended to test the capabilities of the car- and airborne teams for mapping {sup 137}Cs. A number of predefined points in the area were used by In-situ teams. 3) An area with a variety of hidden readioactive sources, Area III. These sources of {sup 60}Co, {sup 137}Cs, {sup 192}Lr and {sup 99}Tc ranged in activity from 0.6 mCi to 15 Ci and was used to test the capability of the different air-borne teams for locating lost radioactive sources. (EG).

  13. Results form RESUME 95. Measurements with mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lidstroem, K.; Ulvsand, T.; Aagren, G. [National Defence Research Establisment, Div. of Ionising Radiation and Fallout, Umeaa (Sweden)

    1997-12-31

    This paper presents the results obtained during the NKS, (EKO-3), Exercise Resume-95 by a group from the Division of Ionising Radiation and Fallout, FOA, Umeaa, Sweden. Field gamma measurements were performed in two areas with a HPGe-detector (p-type, 50% relative efficiency) mounted vertically 1 m above the ground or horizontally in a car. One of the areas was an airfield, Vesivehmaa, where 19 measurements were done. The calculated Cs-137 activity was 52.1 {+-} 4.5 kBq/m{sup 2} assuming a two slice distribution model with a homogenous density and activity distribution in each slice. The report contains also the results from a task which included the finding, classification and estimation of the activity of hidden sources within two 10{sup *} 10 m-areas. (au).

  14. Results form RESUME 95. Measurements with mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lidstroem, K; Ulvsand, T; Aagren, G [National Defence Research Establisment, Div. of Ionising Radiation and Fallout, Umeaa (Sweden)

    1998-12-31

    This paper presents the results obtained during the NKS, (EKO-3), Exercise Resume-95 by a group from the Division of Ionising Radiation and Fallout, FOA, Umeaa, Sweden. Field gamma measurements were performed in two areas with a HPGe-detector (p-type, 50% relative efficiency) mounted vertically 1 m above the ground or horizontally in a car. One of the areas was an airfield, Vesivehmaa, where 19 measurements were done. The calculated Cs-137 activity was 52.1 {+-} 4.5 kBq/m{sup 2} assuming a two slice distribution model with a homogenous density and activity distribution in each slice. The report contains also the results from a task which included the finding, classification and estimation of the activity of hidden sources within two 10{sup *} 10 m-areas. (au).

  15. A Comparison of Resume Content Preferences of Fortune 500 Personnel Administrators and Business Communication Instructors.

    Science.gov (United States)

    Harcourt, Jules; Krizan, A. C.

    1989-01-01

    Compares current and past resume content preferences of Fortune 500 personnel administrators and business communication instructors. Finds that personnel administrators now want less personal information and more evidence of achievement and accomplishments in college and on the job. (MS)

  16. Effects of high-intensity training and resumed training on macroelement and microelement of elite basketball athletes.

    Science.gov (United States)

    Wang, Lijuan; Zhang, Jun; Wang, Jiahong; He, Wangxiao; Huang, Hongen

    2012-11-01

    The purpose of this study was to assess the effects of high-intensity training and resumed training in hot and humid environment on plasma macro- and microelements levels of elite Han Chinese basketball players. Ten well-trained elite basketball athletes' plasma macroelements (chlorin, sodium, potassium, and calcium), creatine kinase (CK), and creatine kinase-MB (CK-MB) were measured before and after a 2-h high-intensity training, and microelements (zinc, copper, iron, and selenium) were determined before and after a 1-week high-intensity training and after a 1-week resumed training. The blood CK and CK-MB levels of the elite basketball athletes were significantly increased (P basketball training. The macroelements (chlorin, sodium, and calcium) levels of blood increased significantly except potassium after high-intensity basketball training. No significant differences (P > 0.05) were found in zinc and copper levels; nevertheless, the levels of plasma selenium and plasma iron were significantly lower (P training. After a 1-week resumed training, except zinc, all of microelements measured had a trend toward original levels. These results implicated that high-intensity training would provoke the change of macroelements which would lead to electrolyte disturbance. In addition, the present study suggested that a 1-week high-intensity training would have an impact on microelement levels, especially for selenium and iron.

  17. Optical excitations in CuO2-sheets doped and undoped with electrons

    International Nuclear Information System (INIS)

    Tokura, Y.; Arima, T.; Koshihara, S.; Takagi, H.; Ido, T.; Ishibashi, S.; Uchida, S.

    1989-01-01

    This paper reports optical reflectance spectra measured on single crystals of parent families of high T c copper oxide compounds with single-layered CuO 2 -sheets, which clearly show the strong transitons across the charge-transfer (CT) gaps at 1.5-2.0 eV in various types of CuO 2 -sheets. The carrier-doping effects on the CT excitations have been investigated on the Sr-doped La 2 CuO 4 and Ce-doped Nd 2 O 4 crystals

  18. Airborne mapping of radioactive contamination. Results from a test in Finland, RESUME95

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, S.; Smethurst, M.A. [Geological Survey of Norway (Norway)

    1997-12-31

    The Geological Survey of Norway participated in the exercise RESUME95 (Rapid Environmental Surveying Using Mobile Equipment 95) in Finland, during August 1995. The purpose of the exercise was to 1) test preparedness in the Nordic countries for accidents involving the release and dispersal of radioactive material, 2) compare results from the different teams participating in the exercise, 3) establish routines for the exchange of data and 4) investigate the possibility of international assistance in the event of nuclear accidents. The Geological Survey of Norway carried out a survey over three test areas (area I, II and III). All three areas were contaminated with man made radionuclides in the days following the Chernobyl nuclear reactor accident. The Cesium-137 contamination level was reported to be about 50 kBq/m{sup 2} in area I, and this area was used for calibration. In area II mapping of Cesium-137 ground concentration was carried out. Detection of hidden artificial radiation sources were the main purpose in area III. This report describes the exercise - RESUME95, field operations, calibration, mapping of Cesium-137 ground concentration and detection of hidden point sources. Results are presented as colour maps. (au).

  19. Airborne mapping of radioactive contamination. Results from a test in Finland, RESUME95

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, S; Smethurst, M A [Geological Survey of Norway (Norway)

    1998-12-31

    The Geological Survey of Norway participated in the exercise RESUME95 (Rapid Environmental Surveying Using Mobile Equipment 95) in Finland, during August 1995. The purpose of the exercise was to 1) test preparedness in the Nordic countries for accidents involving the release and dispersal of radioactive material, 2) compare results from the different teams participating in the exercise, 3) establish routines for the exchange of data and 4) investigate the possibility of international assistance in the event of nuclear accidents. The Geological Survey of Norway carried out a survey over three test areas (area I, II and III). All three areas were contaminated with man made radionuclides in the days following the Chernobyl nuclear reactor accident. The Cesium-137 contamination level was reported to be about 50 kBq/m{sup 2} in area I, and this area was used for calibration. In area II mapping of Cesium-137 ground concentration was carried out. Detection of hidden artificial radiation sources were the main purpose in area III. This report describes the exercise - RESUME95, field operations, calibration, mapping of Cesium-137 ground concentration and detection of hidden point sources. Results are presented as colour maps. (au).

  20. Outcomes Associated With Resuming Warfarin Treatment After Hemorrhagic Stroke or Traumatic Intracranial Hemorrhage in Patients With Atrial Fibrillation.

    Science.gov (United States)

    Nielsen, Peter Brønnum; Larsen, Torben Bjerregaard; Skjøth, Flemming; Lip, Gregory Y H

    2017-04-01

    The increase in the risk for bleeding associated with antithrombotic therapy causes a dilemma in patients with atrial fibrillation (AF) who sustain an intracranial hemorrhage (ICH). A thrombotic risk is present; however, a risk for serious harm associated with resumption of anticoagulation therapy also exists. To investigate the prognosis associated with resuming warfarin treatment stratified by the type of ICH (hemorrhagic stroke or traumatic ICH). This nationwide observational cohort study included patients with AF who sustained an incident ICH event during warfarin treatment from January 1, 1998, through February 28, 2016. Follow-up was completed April 30, 2016. Resumption of warfarin treatment was evaluated after hospital discharge. No oral anticoagulant treatment or resumption of warfarin treatment, included as a time-dependent exposure. One-year observed event rates per 100 person-years were calculated, and treatment strategies were compared using time-dependent Cox proportional hazards regression models with adjustment for age, sex, length of hospital stay, comorbidities, and concomitant medication use. A total of 2415 patients with AF in this cohort (1481 men [61.3%] and 934 women [38.7%]; mean [SD] age, 77.1 years [9.1 years]) sustained an ICH event. Of these events, 1325 were attributable to hemorrhagic stroke and 1090 were secondary to trauma. During the first year, 305 patients with a hemorrhagic stroke (23.0%) died, whereas 210 in the traumatic ICH group (19.3%) died. Among patients with hemorrhagic stroke, resuming warfarin therapy was associated with a lower rate of ischemic stroke or systemic embolism (SE) (adjusted hazard ratio [AHR], 0.49; 95% CI, 0.24-1.02) and an increased rate of recurrent ICH (AHR, 1.31; 95% CI, 0.68-2.50) compared with not resuming warfarin therapy, but these differences did not reach statistical significance. For patients with traumatic ICH, resuming warfarin therapy also was associated with a lower rate of ischemic stroke

  1. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. New technology for the production of magnesium strips and sheets

    Directory of Open Access Journals (Sweden)

    R. Kawalla

    2008-07-01

    Full Text Available A new production technology for magnesium strip, based on twin-roll-casting and strip rolling was developed in Freiberg Germany. By means of this economic method it is possible to produce strips in deep drawing quality with good forming properties in order to satisfy the request for low cost Mg sheets in the automotive and electronic industry. Both, coils as single sheets, were manufactured and rolled to a thickness of 1mm(0,5 mm. The technology of the new process and the properties of the twin-roll-casted material and the final sheets are presented.

  3. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  4. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  5. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  6. Synthesis, characterization and optical properties of sheet-like ZnO

    International Nuclear Information System (INIS)

    Liu, Changzhen; Meng, Dawei; Wu, Xiuling; Wang, Yongqian; Yu, Xiaohong; Zhang, Zhengjie; Liu, Xiaoyang

    2011-01-01

    Highlights: → Sheet-like ZnO with regular hexagon shape was synthesized with a two-step method. → Sheet-like ZnO predecessor was synthesized at low temperature in open system. → The diameter and thickness of ZnO sheet can be controlled conveniently. → This low-cost and environmentally benign approach is controllable and reproducible. → Sheet-like ZnO may have potential application in optical and electrical devices. -- Abstract: Sheet-like ZnO with regular hexagon shape and uniform diameter has been successfully synthesized through a two-step method without any metal catalyst. First, the sheet-like ZnO precursor was synthesized in a weak alkaline carbamide environment with stirring in a constant temperature water-bath by the homogeneous precipitation method, then sheet-like ZnO was obtained by calcining at 600 o C for 2 h. The structures and optical properties of sheet-like ZnO have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and UV-vis-NIR spectrophotometer. The results reveal that the product is highly crystalline with hexagonal wurtzite phase and has appearance of hexagon at (0 0 0 1) plane. The HRTEM images confirm that the individual sheet-like ZnO is single crystal. The PL spectrum exhibits a narrow ultraviolet emission at 397 nm and a broad visible emission centering at 502 nm. The band gap of sheet-like ZnO is about 3.15 eV.

  7. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  8. 76 FR 38110 - Notice of Intent To Resume the Agricultural Labor Survey and Farm Labor Reports.

    Science.gov (United States)

    2011-06-29

    ... agricultural productivity; wage rates are used in the administration of the H-2A Program and for setting... DEPARTMENT OF AGRICULTURE National Agricultural Statistics Service Notice of Intent To Resume the Agricultural Labor Survey and Farm Labor Reports. AGENCY: National Agricultural Statistics Service, USDA...

  9. The effect of a new communication template on anticipated willingness to initiate or resume allergen immunotherapy

    DEFF Research Database (Denmark)

    Calderon, Moises A; Cox, Linda; Casale, Thomas B

    2015-01-01

    to validate the new communication template and to assess its impact on anticipated willingness to initiate or resume allergen immunotherapy. RESULTS: We surveyed a total of 261 patients (France: 57; Germany: 51; Spain: 52; USA: 51; Russia: 50), comprising 127 "early abandoners" and 134 "non...

  10. An exact algorithm for the N-sheet two dimensional single stock-size ...

    African Journals Online (AJOL)

    For each set found, an integer program is solved to produce a feasible or sometimes optimal ... In this paper a two-dimensional cutting stock problem ... The concept of the 2D-SLOPP is extended to a 2D-SLOPP over N same size sheets, called.

  11. Low cost light-sheet microscopy for whole brain imaging

    Science.gov (United States)

    Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia

    2018-02-01

    Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.

  12. Moisture content in raw rubber sheet analyzed by transflectance near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Ronnarit Rittiron

    2014-07-01

    Full Text Available Moisture content is an important trait for rubber sheet trading system. Therefore, a calibration equation for predicting moisture content was created by near infrared (NIR technique in order to develop a more fair trading system in Thailand. Spectra were recorded in two systems. One was measurement on each rubber sheet and the other was on a pile of sheets. Both were measured by a handheld NIR spectrometer in the short wavelength region (700–1100 nm in the transflectance mode using Teflon as a diffuse reflector. The spectra showed the peak at about 900 nm which belongs to isoprene, the major component of rubber sheet. Pretreatment with second derivative was applied to remove baseline shift effect occurring due to thickness differences on each rubber sheet. From validation results, moisture contents predicted by single sheet system were more accurate than a pile of sheet system with standard error of prediction (SEP = 0.39% and bias of -0.07%, and they were not significantly different from the actual values at 95% confidence. As a result, determining moisture content in each rubber sheet by a handheld NIR spectrometer provided accurate values, easy and rapid operation.

  13. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mirage effect from thermally modulated transparent carbon nanotube sheets.

    Science.gov (United States)

    Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H

    2011-10-28

    The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.

  15. Determination of the forming limit diagram of zinc electro-galvanized steel sheets

    Directory of Open Access Journals (Sweden)

    W. Fracz

    2012-04-01

    Full Text Available Forming limit curves (FLC of deep drawing steel sheets have been determined experimentally and calculated on the base of the material tensile properties following the Hill, Swift, Marciniak-Kuczyński and Sing-Rao methods. Only the FLC modeled from a singly linear forming limit stress curve exhibits good consistence with experimental curve. It was established that a linearized limit stress locus describes adequately the actual localized neck conditions for the material chosen in this study. The quantitative X-ray microanalysis of the Fe contents in the sheet surface layer composition was used to determine cracking limit curve (CLC of electro-galvanized steel sheet. The change in zinc layer (and base sheet metal thickness was used as a criteria in calculation of the CLC.

  16. An approach to eliminate stepped features in multistage incremental sheet forming process: Experimental and FEA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nirala, Harish Kumar; Jain, Prashant K.; Tandon, Puneet [PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur Jabalpur-482005, Madhya Pradesh (India); Roy, J. J.; Samal, M. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-15

    Incremental sheet forming (ISF) is a recently developed manufacturing technique. In ISF, forming is done by applying deformation force through the motion of Numerically controlled (NC) single point forming tool on the clamped sheet metal blank. Single Point Incremental sheet forming (SPISF) is also known as a die-less forming process because no die is required to fabricate any component by using this process. Now a day it is widely accepted for rapid manufacturing of sheet metal components. The formability of SPISF process improves by adding some intermediate stages into it, which is known as Multi-stage SPISF (MSPISF) process. However during forming in MSPISF process because of intermediate stages stepped features are generated. This paper investigates the generation of stepped features with simulation and experimental results. An effective MSPISF strategy is proposed to remove or eliminate this generated undesirable stepped features.

  17. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Directory of Open Access Journals (Sweden)

    Vince Beachley

    2014-08-01

    Full Text Available A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications.

  18. Dynamics of fluid lines, sheets, filaments and membranes

    International Nuclear Information System (INIS)

    Coutris, N.

    1988-01-01

    We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr

  19. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  20. Creating Helical Tool Paths for Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Hancock, Michael H.; Bay, Niels

    2007-01-01

    Single point incremental forming (SPIF) is a relatively new sheet forming process. A sheet is clamped in a rig and formed incrementally using a rotating single point tool in the form of a rod with a spherical end. The process is often performed on a CNC milling machine and the tool movement...

  1. Model for next-to-leading order threshold resummed form factors

    International Nuclear Information System (INIS)

    Aglietti, Ugo; Ricciardi, Giulia

    2004-01-01

    We present a model for next-to-leading order resummed threshold form factors based on a timelike coupling recently introduced in the framework of small x physics. Improved expressions for the form factors in N-space are obtained which are not plagued by Landau-pole singularities, as the included absorptive effects - usually neglected - act as regulators. The physical reason is that, because of faster decay of gluon jets, there is not enough resolution time to observe the Landau pole. Our form factors reduce to the standard ones when the absorptive parts related to the coupling are neglected. The inverse transform from N-space to x-space can be done directly without any prescription and we obtain analytical expressions for the form factors, which are well defined in all x-space

  2. Preliminary Investigation of Impact on Multiple-Sheet Structures and an Evaluation of the Meteoroid Hazard to Space Vehicles

    Science.gov (United States)

    Nysmith, C. Robert; Summers, James L.

    1961-01-01

    Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull.

  3. Decree 368/013 To grant to Resume Gas S A the concession to build and operate the pipeline linking the re gasification terminal Puntas de Sayago with Southern Cross Pipeline

    International Nuclear Information System (INIS)

    2013-01-01

    Terminal project to be installed in the Resume Tips by Resume Gas S A under Boot mode (Build, Operate, Own, Transfer) in order to receive liquefied natural gas, re gasify and injecting it into the transmission network in the country

  4. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  5. Strontium-90 fluoride data sheet

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1981-06-01

    This report is a compilation of available data and appropriate literature references on the properties of strontium-90 fluoride and nonradioactive strontium fluoride. The objective of the document is to compile in a single source pertinent data to assist potential users in the development, licensing, and use of /sup 90/SrF/sub 2/-fueled radioisotope heat sources for terrestrial power conversion and thermal applications. The report is an update of the Strontium-90 Fluoride Data Sheet (BNWL-2284) originally issued in April 1977.

  6. Rapid model building of beta-sheets in electron-density maps.

    Science.gov (United States)

    Terwilliger, Thomas C

    2010-03-01

    A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.

  7. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  8. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  9. Confined disclinations: exterior versus material constraints in developable thin elastic sheets.

    Science.gov (United States)

    Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C; Witten, Thomas A

    2015-02-01

    We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ε and thin wedges. In this regime, the single parameter δ/ε^{2} determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.

  10. Description and classification of uranium oxide hydrate sheet topologies

    International Nuclear Information System (INIS)

    Miller, M.L.; Burns, P.C.; Ewing, R.C.; Finch, R.J.

    1996-01-01

    The uranyl oxide hydrates (UOH) are important corrosion products of uraninite and UO 2 in spent nuclear fuel under oxidizing conditions. However, the systematics of the crystal chemistry, thermodynamic parameters, and solubilities of this mineral group are poorly understood. With the exception of the synthetic UO 2 (OH) 2 polymorphs, all UOH crystal structures are based on sheets of edge-sharing 5 and 4-coordinated uranyl dipyramids. This structural similarity suggests that it is possible to develop a model by which to estimate the thermodynamic behavior of UOHs from data on structural endmember phases. Toward this end, a method of quantitatively describing all known UOH sheets has been developed. Only four structural unit chains are required to construct the uranyl oxide hydrate sheets (as well as the structurally similar U 3 O 8 sheets). The H-chain is restricted to α-UO 2 (OH) 2 and is made up of hexagonally coordinated uranyl ions sharing opposing edges. The arrowhead chain composed of pentagonal dipyramids sharing edges and alternating with trigonal vacancies is present in all other UOH sheets. These arrowhead chains are directed and can occur in both an Up-arrow and Down-arrow sense within a single sheet. The P-chain consists of edge-sharing pentagonal dipyramids forming a zigzag chain. The P-chain is flanked on both sides by arrowhead chains of the same sense. The remaining structural unit is a discontinuous chain of rhombic dipyramids. This R-chain is produced when nested adjacent Up-arrow and Down-arrow arrowhead chains are translated by a diagonal shift. This chain occurs in sheets which contain only 4-coordinate uranyl ion and those containing both 4- and 5-coordinate uranyl ions

  11. Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

    Science.gov (United States)

    Nasir, Saleem; Islam, Saeed; Gul, Taza; Shah, Zahir; Khan, Muhammad Altaf; Khan, Waris; Khan, Aurang Zeb; Khan, Saima

    2018-05-01

    In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302-307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

  12. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  13. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    Science.gov (United States)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  14. Graphene: powder, flakes, ribbons, and sheets.

    Science.gov (United States)

    James, Dustin K; Tour, James M

    2013-10-15

    Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar

  15. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  16. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  17. Geometric stability, electronic structure, and intercalation mechanism of Co adatom anchors on graphene sheets

    International Nuclear Information System (INIS)

    Tang, Yanan; Chen, Weiguang; Li, Chenggang; Dai, Xianqi; Li, Wei

    2015-01-01

    We perform a systematic study of the adsorption of Co adatom on monolayer and bilayer graphene sheets, and the calculated results are compared through the van der Waals density functional (vdW-DF) and the generalized gradient approximation of Perdew, Burke and Ernzernhof (GGA + PBE) methods. For the single Co adatom, its adsorption energy at vacancy site was found to be larger than at the high-symmetry adsorption sites. For the different vdW corrections, the calculated adsorption energies of Co adatom on graphene substrates are slightly changed to some extent, but they do not affect the most preferable adsorption configurations. NEB calculations prove that the Co adatom has smaller energy barrier within pristine bilayer graphene (PBG) than that on the upper layer, indicating the high mobility of Co atom anchors at overlayer and easily aggregates. For the PBG substrate, the Co adatom intercalates into graphene sheets with a large energy barrier (9.29 eV). On the bilayer graphene with a single-vacancy (SV), the Co adatom can easily be trapped at the SV site and intercalates into graphene sheets with a much lower energy barrier (2.88 eV). These results provide valuable information on the intercalation reaction and the formation mechanism of metal impurity in graphene sheets. (paper)

  18. Soft gluon resummation for the single-spin production of W±-bosons

    International Nuclear Information System (INIS)

    Weber, A.

    1993-01-01

    We carefully study the production of W ± -bosons in singly-polarized hadron-hadron collisions. In the region of small transverse momenta of the produced W ± we perform the soft gluon resummation to double logarithmic accuracy. Special emphasis is laid on matching the resummed expression to the O(α s ) perturbative result valid at large transverse momenta. We investigate the phenomenological relevance of our results for pp-collisions at RHIC and show that in the future single-spin W ± -production may help to shed more light on the surprising EMC-result. (orig.)

  19. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  20. A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes.

    Science.gov (United States)

    Niu, Hong Yun; Cai, Ya Qi; Shi, Ya Li; Wei, Fu Sheng; Liu, Jie Min; Jiang, Gui Bin

    2008-11-01

    A new kind of solid-phase extraction disk based on a sheet of single-walled carbon nanotubes (SWCNTs) is developed in this study. The properties of such disks are tested, and different disks showed satisfactory reproducibility. One liter of aqueous solution can pass through the disk within 10-100 min while still allowing good recoveries. Two disks (DD-disk) can be stacked to enrich phthalate esters, bisphenol A (BPA), 4-n-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and chlorophenols from various volumes of solution. The results show that SWCNT disks have high extraction ability for all analytes. The SWCNT disk can extract polar chlorophenols more efficiently than a C(18) disk from water solution. Unlike the activated carbon disk, analytes adsorbed by the new disks can be eluted completely with 8-15 mL of methanol or acetonitrile. Finally, the DD-disk system is used to pretreat 1000-mL real-world water samples spiked with BPA, 4-OP and 4-NP. Detection limits of 7, 25, and 38 ng L(-1) for BPA, 4-OP, and 4-NP, respectively, were achieved under optimized conditions. The advantages of this new disk include its strong adsorption ability, its high flow rate and its easy preparation.

  1. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  2. Trends in ice sheet mass balance, 1992 to 2017

    Science.gov (United States)

    Shepherd, A.; Ivins, E. R.; Smith, B.; Velicogna, I.; Whitehouse, P. L.; Rignot, E. J.; van den Broeke, M. R.; Briggs, K.; Hogg, A.; Krinner, G.; Joughin, I. R.; Nowicki, S.; Payne, A. J.; Scambos, T.; Schlegel, N.; Moyano, G.; Konrad, H.

    2017-12-01

    The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a community effort, jointly supported by ESA and NASA, that aims to provide a consensus estimate of ice sheet mass balance from satellite gravimetry, altimetry and mass budget assessments, on an annual basis. The project has five experiment groups, one for each of the satellite techniques and two others to analyse surface mass balance (SMB) and glacial isostatic adjustment (GIA). The basic premise for the exercise is that individual ice sheet mass balance datasets are generated by project participants using common spatial and temporal domains to allow meaningful inter-comparison, and this controlled comparison in turn supports aggregation of the individual datasets over their full period. Participation is open to the full community, and the quality and consistency of submissions is regulated through a series of data standards and documentation requirements. The second phase of IMBIE commenced in 2015, with participant data submitted in 2016 and a combined estimate due for public release in 2017. Data from 48 participant groups were submitted to one of the three satellite mass balance technique groups or to the ancillary dataset groups. The individual mass balance estimates and ancillary datasets have been compared and combined within the respective groups. Following this, estimates of ice sheet mass balance derived from the individual techniques were then compared and combined. The result is single estimates of ice sheet mass balance for Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula. The participants, methodology and results of the exercise will be presented in this paper.

  3. Punchless Drawing of Magnesium Alloy Sheet under Cold Condition and its Computation

    International Nuclear Information System (INIS)

    Yamashita, Minoru; Hattori, Toshio; Sato, Joji

    2011-01-01

    The punchless drawing with Maslennikov's technique was applied to the circular cup drawing of magnesium alloy AZ31B sheet under cold condition. The elastic rubber ring was used instead of the 'hard' punch, where the compressed ring dragged the sheet inward the die cavity. Attainable circumferential strain of the blank was increased by this technique with repetitive drawing operation. Thickness of the rubber pad affected little the attainable strain. The shape appearance became better when a harder rubber was used. The cup forming by single drawing operation was also tested using a small die shoulder radius. The LDR of 1.250 was obtained with the straight cup wall. Further, the computation of the punchless drawing was also conducted for the single drawing operation. The computed deformation pattern was well consistent with the corresponding experimental result.

  4. Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theory

    International Nuclear Information System (INIS)

    Schoenherr, Marek

    2011-01-01

    With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or HERA. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner. In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive QED, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision

  5. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  6. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  7. A Scheme for the Growth of Graphene Sheets Embedded with Nanocones

    Directory of Open Access Journals (Sweden)

    Yu-Peng Liu

    2017-02-01

    Full Text Available Based on the monolayer growth mode of graphene sheets (2D crystal by chemical vapor deposition (CVD on a Cu surface, it should be possible to grow the 2D crystal embedded with single wall carbon nanocones (SWCNC if nano-conical pits are pre-fabricated on the surface. However, a previous experiment showed that the growing graphene sheet can cross grain boundaries without bending, which seems to invalidate this route for growing SWCNCs. The criterion of Gibbs free energy was applied in the present work to address this issue, showing that the sheet can grow into the valley of a boundary if the boundary has a slope instead of a quarter-turn shape, and SWCNCs can be obtained by this route as long as the lower diameter of the pre-fabricated pit is larger than 1.6 nm and the deposition temperature is higher than 750 K.

  8. Charting Monosynaptic Connectivity Maps by Two-Color Light-Sheet Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Christian J. Niedworok

    2012-11-01

    Full Text Available Cellular resolution three-dimensional (3D visualization of defined, fluorescently labeled long-range neuronal networks in the uncut adult mouse brain has been elusive. Here, a virus-based strategy is described that allowed fluorescent labeling of centrifugally projecting neuronal populations in the ventral forebrain and their directly, monosynaptically connected bulbar interneurons upon a single stereotaxic injection into select neuronal populations. Implementation of improved tissue clearing combined with light-sheet fluorescence microscopy permitted imaging of the resulting connectivity maps in a single whole-brain scan. Subsequent 3D reconstructions revealed the exact distribution of the diverse neuronal ensembles monosynaptically connected with distinct bulbar interneuron populations. Moreover, rehydratation of brains after light-sheet fluorescence imaging enabled the immunohistochemical identification of synaptically connected neurons. Thus, this study describes a method for identifying monosynaptic connectivity maps from distinct, virally labeled neuronal populations that helps in better understanding of information flow in neural systems.

  9. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  10. Analysis of time-dependent changes in Bitemarks on Styrofoam sheets

    Directory of Open Access Journals (Sweden)

    Djeapragassam Parimala

    2015-01-01

    Full Text Available Context: The scope of Bitemarks in forensic dentistry is widening as they help the forensic expert in identifying the perpetuator in medicolegal cases. The greatest challenge in Bitemarks analysis is the time-dependent changes produced in Bitemark patterns on various substrates at the scene of the crime. Aims: To analyze the time-dependent changes in Bitemarks on Styrofoam sheets. Settings and Design: Single centered prospective study. Materials and Methods: Twenty-five subjects were randomly chosen, and dental casts prepared. Then test bites were registered on Styrofoam sheets, overlays prepared from these test bites on subsequent days (day 1, 2, 3, 4 and checked for matching accuracy. Statistical Analysis Used: The data were analyzed using Kruskal-Wallis ANOVA to compare the overlays from dental stone cast with test bites on Styrofoam sheets on subsequent days. Results: The P value was found to be 1 which is statistically not significant implying that there were no significant time-dependent changes in the pattern of Bitemarks. Conclusions: There were no time-dependent changes in the pattern of Bitemarks on Styrofoam sheets hence they serve as better materials than Bitemarks on human skin or food substrates obtained from the scene of the crime.

  11. Comparison of results at area 1 and area 2 between different Swedish in-situ teams in the RESUME-95 exercise

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C.L. [Malmoe Univ. Hospital, Lund Univ., Dept. of Radiation Physics (Sweden)

    1997-12-31

    In the beginning of 1996 the Department of Radiation Physics in Malmoe was commissioned by the Swedish Radiation Protection Institute to perform a compilation of the results obtained by the Swedish in-situ teams that participated in the RESUME-95 exercise. The aim of this survey is to study the coherence in the reported activity data between the groups. It is not the purpose to see this comparison as a performance ranking of individual laboratories. Any such comparison must be made with precaution since the teams generally have collected their data with different equipment and by different methods. In this work, all in-situ teams have been given code-names, where each team has been labelled a number from 1 to 5. For more details, the interested reader is referred to the internal reports made by each team that (supposedly) also are to be included in the major compilation of the in-situ gamma spectrometry in the RESUME-95 exercise by Danish Emergency Management Agency. (au).

  12. Comparison of results at area 1 and area 2 between different Swedish in-situ teams in the RESUME-95 exercise

    International Nuclear Information System (INIS)

    Raeaef, C.L.

    1997-01-01

    In the beginning of 1996 the Department of Radiation Physics in Malmoe was commissioned by the Swedish Radiation Protection Institute to perform a compilation of the results obtained by the Swedish in-situ teams that participated in the RESUME-95 exercise. The aim of this survey is to study the coherence in the reported activity data between the groups. It is not the purpose to see this comparison as a performance ranking of individual laboratories. Any such comparison must be made with precaution since the teams generally have collected their data with different equipment and by different methods. In this work, all in-situ teams have been given code-names, where each team has been labelled a number from 1 to 5. For more details, the interested reader is referred to the internal reports made by each team that (supposedly) also are to be included in the major compilation of the in-situ gamma spectrometry in the RESUME-95 exercise by Danish Emergency Management Agency. (au)

  13. Comparison of results at area 1 and area 2 between different Swedish in-situ teams in the RESUME-95 exercise

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C L [Malmoe Univ. Hospital, Lund Univ., Dept. of Radiation Physics (Sweden)

    1998-12-31

    In the beginning of 1996 the Department of Radiation Physics in Malmoe was commissioned by the Swedish Radiation Protection Institute to perform a compilation of the results obtained by the Swedish in-situ teams that participated in the RESUME-95 exercise. The aim of this survey is to study the coherence in the reported activity data between the groups. It is not the purpose to see this comparison as a performance ranking of individual laboratories. Any such comparison must be made with precaution since the teams generally have collected their data with different equipment and by different methods. In this work, all in-situ teams have been given code-names, where each team has been labelled a number from 1 to 5. For more details, the interested reader is referred to the internal reports made by each team that (supposedly) also are to be included in the major compilation of the in-situ gamma spectrometry in the RESUME-95 exercise by Danish Emergency Management Agency. (au).

  14. The decisional balance sheet to promote healthy behavior among ethnically diverse older adults.

    Science.gov (United States)

    Geller, Karly S; Mendoza, Ilora D; Timbobolan, Jasah; Montjoy, Holly L; Nigg, Claudio R

    2012-01-01

    The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Specific suggestions for similar programs are reported. © 2011 Wiley Periodicals, Inc.

  15. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    Science.gov (United States)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 106 and detection limit of 1.0 × 10-7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  16. Exploring the brain on multiple scales with correlative two-photon and light sheet microscopy

    Science.gov (United States)

    Silvestri, Ludovico; Allegra Mascaro, Anna Letizia; Costantini, Irene; Sacconi, Leonardo; Pavone, Francesco S.

    2014-02-01

    One of the unique features of the brain is that its activity cannot be framed in a single spatio-temporal scale, but rather spans many orders of magnitude both in space and time. A single imaging technique can reveal only a small part of this complex machinery. To obtain a more comprehensive view of brain functionality, complementary approaches should be combined into a correlative framework. Here, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, taking advantage of blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living thy1-GFP-M mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from the apical portion, the whole pyramidal neuron can then be segmented. The correlative approach presented here allows contextualizing within a three-dimensional anatomic framework the neurons whose dynamics have been observed with high detail in vivo.

  17. Best Management Practice, Fact Sheet 2. Sheet Flow to Open Space

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This publication explains what sheet flow to open space is, where and how it is used, their limitations, routine and nonroutine maintenance, expected costs, and a glossary of terms. This fact sheet is one of a 15-part series on urban stormwater management practices.

  18. A new uranyl phosphate sheet in the crystal structure of furongite

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Philippo, Simon [Musee National d' Historie Naturelle, Luxembourg (Luxembourg). Section Mineralogie

    2017-06-15

    The crystal structure of furongite, Al{sub 4}[(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}](OH){sub 2}(H{sub 2}O){sub 19.5}, from the Kobokobo pegmatite, Kivu, Democratic Republic of Congo, was solved for the first time. Furongite is triclinic, the space group P anti 1, Z=2, a = 12.1685(8), b = 14.1579(6), c = 17.7884(6) Aa, α = 79.822(3), β = 77.637(4), γ = 67.293(2) , and V = 2746.2(2)Aa{sup 3}. The crystal structure was refined from single crystal X-ray diffraction data to R{sub 1} = 0.0733 for 7716 unique observed reflections, and to wR{sub 2} = 0.2081 for all 12,538 unique reflections. The structure of furongite contains infinite uranyl phosphate sheets of composition [(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}]{sup 10-} which are parallel to (1 0 1). The sheets are constituted by UrO{sub 5} pentagonal bipyramids and PO{sub 4} tetrahedra which share edges and vertices, and adjacent sheets are linked by a dense network of hydrogen bonds. Running through the sheets and connected mainly to the free apical oxygen atom of PO4 tetrahedra are Al octahedra connected together to form remarkable Al{sub 2}O{sub 5}(OH)(H{sub 2}O){sub 5} and Al{sub 4}O{sub 8}(OH){sub 2}(H{sub 2}O){sub 10} clusters. These Al clusters are only bonded to one sheet, and do not connect two adjacent sheets together. The topology of the uranyl phosphate sheets is related to the uranophane anion topology, and can be described as a new geometrical isomer of the uranophane group. Furongite is the first uranyl phosphate reported in nature with a U:P ratio of 2:3.

  19. Hyperspectral light sheet microscopy

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  20. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  1. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  2. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  3. Study on team evaluation (5). On application of behavior observation-based teamwork evaluation sheet for power plant operator team

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Sugihara, Yoshikuni

    2009-01-01

    This report discusses the range of application of the behavior observation-based teamwork evaluation sheet. Under the concept of this method, teamwork evaluation sheet is developed, which assumes a certain single failure (failure of feed water transmitter). The evaluation sheets are applied to evaluate team work of 26 thermal power plant operator teams in combined under abnormal operating conditions of failure of feed water transmitter, feed draft fan or steam flow governor. As a result of ANOVA, it finds that there are no differences between 3 kinds of single failure. In addition, the similar analysis is executed to 3 kinds of multiple failures (steam generator tube rapture, loss of coolant accident and loss of secondary coolant accident) under which 7 PWR nuclear power plant operator teams are evaluated. As a result, ANOVA shows no differences between 3 kinds of multiple failures. These results indicate that a behavior observation-based team work evaluation sheet, which is designed for a certain abnormal condition, is applicable to the abnormal conditions that have the same development of abnormal conditions. (author)

  4. Mobile gamma spectrometry. Evaluation of the Resume 99 exercise

    International Nuclear Information System (INIS)

    Mellander, H.; Karlsson, S.; Aage, H.K.; Korsbech, U.; Lauritzen, B.; Smethurst, M.

    2002-06-01

    During the RESUME 99 exercise, the radiocaesium ( 137 Cs) activity in the surroundings of Gavle in central Sweden was ma p ped using car-borne gamma-ray spectrometry (CGS). The CGS data along with airborne gamma-ray spectrometry (AGS) data from the same area have been used to examine possible correlations between the CGS and AGS results, detector type and position, and geographical information, such as land-use and road type. The overall differences between various CGS results are small, while larger differences are found between AGS and CGS results. In general only little correlation was found with land-use and with road-type and width. The differences between AGS and CGS results arise because airborne detectors have a different field of view than a ground-based detector. From an analysis of the depth-dependency of AGS and CGS data for a depth-distributed source, it is found that the mean mass depth may be inferred from the ratio of AGS to CGS spectral count rates. Integration of AGS and CGS data requires a precise definition of quantities and units for reporting activity concentrations in a complicated geometry and care must be taken to translate AGS results into equivalent CGS quantities taking into account the spatial distribution of the radionuclides. (au)

  5. Mobile gamma spectrometry. Evaluation of the Resume 99 exercise

    Energy Technology Data Exchange (ETDEWEB)

    Mellander, H.; Karlsson, S. [Swedish Radiation Protection Authority, Stockholm (Sweden); Aage, H.K.; Korsbech, U. [Technical Univ. of Denmark, Lyngby (Denmark); Lauritzen, B. [Risoe National Laboratory, Roskilde (Denmark); Smethurst, M. [Geological Survey of Norway, Trondheim (Norway)

    2002-06-01

    During the RESUME 99 exercise, the radiocaesium ({sup 137}Cs) activity in the surroundings of Gavle in central Sweden was ma{sup p}ped using car-borne gamma-ray spectrometry (CGS). The CGS data along with airborne gamma-ray spectrometry (AGS) data from the same area have been used to examine possible correlations between the CGS and AGS results, detector type and position, and geographical information, such as land-use and road type. The overall differences between various CGS results are small, while larger differences are found between AGS and CGS results. In general only little correlation was found with land-use and with road-type and width. The differences between AGS and CGS results arise because airborne detectors have a different field of view than a ground-based detector. From an analysis of the depth-dependency of AGS and CGS data for a depth-distributed source, it is found that the mean mass depth may be inferred from the ratio of AGS to CGS spectral count rates. Integration of AGS and CGS data requires a precise definition of quantities and units for reporting activity concentrations in a complicated geometry and care must be taken to translate AGS results into equivalent CGS quantities taking into account the spatial distribution of the radionuclides. (au)

  6. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  7. Compressive pre-stress effects on magnetostrictive behaviors of highly textured Galfenol and Alfenol thin sheets

    Directory of Open Access Journals (Sweden)

    Julia R. Downing

    2017-05-01

    Full Text Available Fe-Ga (Galfenol and Fe-Al (Alfenol are rare-earth-free magnetostrictive alloys with mechanical robustness and strong magnetoelastic coupling. Since highly textured Galfenol and Alfenol thin sheets along orientations have been developed with magnetostrictive performances of ∼270 ppm and ∼160 ppm, respectively, they have been of great interest in sensor and energy harvesting applications. In this work, we investigate stress-dependent magnetostrictive behaviors in highly textured rolled sheets of NbC-added Fe80Al20 and Fe81Ga19 alloys with a single (011 grain coverage of ∼90%. A compact fixture was designed and used to introduce a uniform compressive pre-stress to those thin sheet samples along a [100] direction. As compressive pre-stress was increased to above 100 MPa, the maximum observed magnetostriction increased 42% in parallel magnetostriction along the stress direction, λ//, in highly textured (011 Fe81Ga19 thin sheets for a compressive pre-stress of 60 MPa. The same phenomena were observed for (011 Fe80Al20 (maximum increase of 88% with a 49 MPa compressive stress. This trend is shown to be consistent with published results on the effect of pre-stress on magnetostriction in rods of single crystal and textured polycrystalline Fe-Ga alloy of similar compositions, and single crystal data gathered using our experimental set up. Interestingly, the saturating field (Hs does not vary with pre-stresses, while the saturating field in rod-shaped samples of Fe-Ga increases with an increase of pre-stress. This suggests that for a range of compressive pre-stresses, thin sheet samples have larger values of d33 transduction coefficients and susceptibility than rod-shaped samples of similar alloy compositions, and hence they should provide performance benefits when used in sensor and actuator device applications. Thus, we discuss potential reasons for the unexpected trends in Hs with pre-stress, and present preliminary results from tests conducted

  8. Thin lead sheets in the decorative features in Pavia Charterhouse.

    Science.gov (United States)

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  9. 46 CFR 232.4 - Balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  10. Dacitic ash-flow sheet near Superior and Globe, Arizona

    Science.gov (United States)

    Peterson, Donald W.

    1961-01-01

    , and their relative proportions are fairly uniform. Almost three-fourths of the phenocrysts are plagioclase, one-tenth quartz, one-tenth biotite, and the remainder sanidine, magnetite, and hornblende, with accessory sphene, zircon, and appetite. Pumice fragments are nearly equidimensional near the top of the sheet, and downward they become progressively more flattened until they finally disappear. The zones and the pumice fragment flattening ration (ratio of length to height) provide means for recognizing several faults within the sheet. Twelve new chemical analyses are nearly uniform in composition. If named according to chemical composition, the rock would be a quartz latite, but when named according to phenocrysts, it is a dacite. From the field occurrence and the interpretation of relict textures, it is concluded that the deposit is an ash-flow sheet containing large amounts of welded tuff, and that it was emplaced by a type of nuee ardente instead of a lava flow or air-fall shower. The nature of zoning and trend of flattening ratios indicate a series of eruptions in rapid enough succession for the sheet to form a single cooling unit. Except in the lower part of the sheet, original textures were obscured by devitrification and crystallization during cooling. Nearly uniform mineralogy and chemistry suggest a single magnetic source. A nearly circular area, about 3? miles in diameter, of altered dacite and earlier volcanic rocks, bounded by intricately faulted and brecciated older rocks, may be the site of a caldera that represents the source of the eruptions.

  11. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  12. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear

    KAUST Repository

    Duan, Wen Hui; Gong, Kai; Wang, Quan

    2011-01-01

    to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science

  13. Synthesis and characterization of straight and stacked-sheet AlN nanowires with high purity

    International Nuclear Information System (INIS)

    Lei, M.; Yang, H.; Li, P.G.; Tang, W.H.

    2008-01-01

    Large-scale AlN nanowires with hexagonal crystal structure were synthesized by the direct nitridation method at high temperatures. The experimental results indicate that these single-crystalline AlN nanowires have high purity and consist of straight and stacked-sheet nanowires. It is found that straight AlN nanowire grows along [1, 1, -2, 0] direction, whereas the stacked-sheet nanowire with hexagonal cross section is along [0 0 0 1] direction. It is thought that vapor-solid (VS) mechanism should be responsible for the growth of AlN nanowires

  14. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Thronson, Gregory D.

    2017-06-14

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  15. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism.

    Science.gov (United States)

    Maglica, Željka; Özdemir, Emre; McKinney, John D

    2015-02-17

    ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The

  16. Derivation of a numerical solution of the 3D coupled velocity field for an ice sheet – ice shelf system, incorporating both full and approximate stress solutions

    NARCIS (Netherlands)

    Reerink, T.J.|info:eu-repo/dai/nl/304831905; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Borsboom, P.-P.

    2009-01-01

    To overcome the mechanical coupling of an ice sheet with an ice shelf, one single set of velocity equations is presented covering both the sheet and the shelf. This set is obtained by applying shared sheet-shelf approximations. The hydrostatic approximation and a constant density are the only

  17. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  18. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Zayakin, Andrey V.

    2011-01-17

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  19. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    International Nuclear Information System (INIS)

    Zayakin, Andrey V.

    2011-01-01

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  20. Single meson photoproduction and IR renormalons

    International Nuclear Information System (INIS)

    Agaev, S.S.

    1996-10-01

    Single pseudoscalar and vector mesons inclusive photoproduction γh → MX via higher twist mechanism is calculated using the QCD running coupling constant method. It is proved that in the context of this method a higher twist contribution to the photoproduction cross section cannot be normalized in terms of the meson electromagnetic form factor. The structure of infrared renormalon singularities of the higher twist subprocess cross section and the resumed expression (the Borel sum) for it are found. Comparisons are made with earlier results, as well as with leading twist cross section. Phenomenological effects of studied contributions for π, K, ρ-meson photoproduction are discussed. (author). 21 refs, 8 figs

  1. Resuming growth in Latin America: short and long term policies

    Directory of Open Access Journals (Sweden)

    Julio Lopez G.

    2008-09-01

    Full Text Available The authors of this paper assert that the paralysis of the state generated by the crises of the 1970s and 1980s deprived the economies of the region of an important lever to resume and sustain growth. They thus maintain that to overcome stagnation it will be necessary to reconstruct the state's capacity to implement pro-growth policies. Following Keynes and Kalecki's ideas, but also classical development economists, the authors argue, first, that short-term macroeconomic policies, to reduce unemployment and to increase the degree of capacity utilization, should be used to promote the generation of profits to firms and to wake up entrepreneurs' animal spirits. Short-term expansionary policies should be coupled with measures to improve competitiveness and avoid balance of payments problems. They also claim that alternatives to the liberal programme will fail unless a pro-growth strategy is adopted which includes both short- and long-term policies. They thus propose that long-term policies must complete the package, signaling: a sustained increases of effective demand in the future; and b investment priorities to ensure that capacities will be created in strategic sectors and branches of the economy.

  2. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  3. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  4. Dynamics of Radially Expanding Liquid Sheets

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  5. Buckling and stretching of thin viscous sheets

    Science.gov (United States)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  6. Single-domain epitaxial silicene on diboride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Gill, T. G. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Sadowski, J. T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Copel, M.; Tromp, R. M. [IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Hirjibehedin, C. F. [London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom)

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  7. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  8. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    Science.gov (United States)

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Rapid Ice Sheet Change Observatory (RISCO)

    Science.gov (United States)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images

  10. Characterization and improvement of highly inclined optical sheet microscopy

    Science.gov (United States)

    Vignolini, T.; Curcio, V.; Gardini, L.; Capitanio, M.; Pavone, F. S.

    2018-02-01

    Highly Inclined and Laminated Optical sheet (HILO) microscopy is an optical technique that employs a highly inclined laser beam to illuminate the sample with a thin sheet of light that can be scanned through the sample volume1 . HILO is an efficient illumination technique when applied to fluorescence imaging of thick samples owing to the confined illumination volume that allows high contrast imaging while retaining deep scanning capability in a wide-field configuration. The restricted illumination volume is crucial to limit background fluorescence originating from portions of the sample far from the focal plane, especially in applications such as single molecule localization and super-resolution imaging2-4. Despite its widespread use, current literature lacks comprehensive reports of the actual advantages of HILO in these kinds of microscopies. Here, we thoroughly characterize the propagation of a highly inclined beam through fluorescently labeled samples and implement appropriate beam shaping for optimal application to single molecule and super-resolution imaging. We demonstrate that, by reducing the beam size along the refracted axis only, the excitation volume is consequently reduced while maintaining a field of view suitable for single cell imaging. We quantify the enhancement in signal-tobackground ratio with respect to the standard HILO technique and apply our illumination method to dSTORM superresolution imaging of the actin and vimentin cytoskeleton. We define the conditions to achieve localization precisions comparable to state-of-the-art reports, obtain a significant improvement in the image contrast, and enhanced plane selectivity within the sample volume due to the further confinement of the inclined beam.

  11. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  12. Adjustable focus laser sheet module for generating constant maximum width sheets for use in optical flow diagnostics

    International Nuclear Information System (INIS)

    Hult, J; Mayer, S

    2011-01-01

    A general design of a laser light sheet module with adjustable focus is presented, where the maximum sheet width is preserved over a fixed region. In contrast, conventional focusing designs are associated with a variation in maximum sheet width with focal position. A four lens design is proposed here, where the first three lenses are employed for focusing, and the last for sheet expansion. A maximum sheet width of 1100 µm was maintained over a 50 mm long distance, for focal distances ranging from 75 to 500 mm, when a 532 nm laser beam with a beam quality factor M 2 = 29 was used for illumination

  13. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  14. 17 CFR 210.6-04 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.6-04... sheets. This rule is applicable to balance sheets filed by registered investment companies except for... of this part. Balance sheets filed under this rule shall comply with the following provisions: Assets...

  15. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    . Montmorillonite was usually pre-interacted with organics to increase the interlayer space, and then exfoliated to single or several layers by using ultrasonic. Among the nano-sheets, the surfaces are strongly charged negatively, while the edges are positively charged. This characteristic allows the adsorption of cations or anions, as well as the substances with negative or positive charges. Graphite can be oxidized and exfoliated into graphene oxide (GO, which has a huge specific surface area and plentiful of functional groups such as carboxyl, epoxy, carbonyl and hydroxyl, leading to high adsorption capacity to heavy metals in water. Nano-sheet molybdenite is a novel two-dimensional material with single or several layers of MoS2 sheets. The most common method to prepare nano-sheet molybdenite is exfoliated from bulk molybdenite through chemical method based on ion intercalation process. A large quantity of functional groups and S atom on the sheets are the active sites for adsorbing heavy metals in water. Nano-sheet minerals are used as adsorbents in the form of three-dimension hydrogels. They are featured by the huge specific surface area and high adsorption efficiency. In addition, the clean and smooth surfaces allow heavy metals to adsorb directly by film dispersion. Without any barrier of mesopores and micropores, the adsorption rate could be well improved. These characteristics would lead to the extremely large adsorption capacity and high adsorption rate. Currently, nano-sheet minerals as adsorbent is a very hot research topic in the field of heavy metal removal. It is expected that nanosheet minerals will be promising adsorbents in the removal of heavy metals from water.

  16. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  17. The transposition of the balance sheet to financial and functional balance sheet. Research and development

    Directory of Open Access Journals (Sweden)

    Liana GĂDĂU

    2015-09-01

    Full Text Available As the title suggests, through this paper we want to highlight the necessity of treating again the content and the form of the balance sheet in order to adapt it to a more efficient analysis, this way surpassing the informational valences of the classic balance sheet. The functional and the financial balance sheet will be taken into account. These models of balance sheet permit the complex analyses regarding the solvability or the bankruptcy risk of an enterprise to take place, and also other analyses, like the analysis of the structure and the financial/ functional equilibrium, the analysis of the company on operating cycles and their role in the functioning of the company. Through the particularities offered by each of these two models of balance sheet, we want to present the advantages of a superior informing. This content of this material is based on a vast investigation of the specialized literature.

  18. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    Science.gov (United States)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  19. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    Science.gov (United States)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  20. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  1. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  2. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  3. Physiotherapy exercise programmes: are instructional exercise sheets effective?

    Science.gov (United States)

    Smith, Jo; Lewis, Jeremy; Prichard, Diana

    2005-01-01

    Effective compliance with physiotherapy exercises is only possible if patients remember the exercises accurately. The purpose of this study was to assess how well elderly in-patients remembered simple physiotherapy exercises, by comparing the ability to accurately reproduce a set of exercises in a group of patients that had received a written exercise sheet, with a group that had not. The study also aimed to investigate the relationship between memory for exercises and cognition. Sixty-four in-patients in an acute hospital were taught 3 exercises. Half of the subjects were randomised to receive exercise sheets to reinforce the teaching (Group 1). The rest of the subjects did not receive this memory aid (Group 2). Two to three days later subjects were asked to demonstrate their exercises. The accurate recall of the exercises was scored using a new assessment scale with a maximum score of 24. The mean exercise score was 17.19 for group 1 (SD = 5.91) and 16.24 for Group 2 (SD = 6.01). There was no significant difference in exercise score between groups (Mann Whitney U test p = 0.44). There was a statistically significant small positive correlation between exercise score and cognition (tau = 0.263). The study showed that older adult in-patients do not remember physiotherapy exercises effectively after a single teaching session and that their memory is not significantly improved by provision of an exercise sheet.

  4. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  5. Resummed Higgs cross section at N3LL

    International Nuclear Information System (INIS)

    Bonvini, Marco; Marzani, Simone

    2014-05-01

    We present accurate predictions for the inclusive production of a Higgs boson in proton-proton collisions, via gluon-gluon fusion. Our calculation includes next-to-next-to-leading order (NNLO) corrections in perturbative QCD, as well as the resummation of threshold-enhanced contributions to next-to-next-to-next-to-leading logarithmic (N 3 LL) accuracy, with the inclusion of the recently-determined three-loop constant coefficient (sometimes referred to as N 3 LL' accuracy). Our result correctly accounts for finite top, bottom and charm masses at leading order (LO) and next-to-leading order (NLO), and includes the exact top mass dependence at NNLO. At the resummed level the dependence on top, bottom and charm mass is accounted for at NLL, while only the top mass at NNLL. The all-order calculation is improved by a suitable choice of the soft terms, dictated by analyticity conditions and by the inclusion of subleading corrections of collinear origin, which improve the accuracy of the resummation away from the threshold region. We present results for different collider energies and we study perturbative uncertainties by varying renormalization and factorization scales. We find that, at current LHC energies, the resummation corrects the NNLO result by as much as 20 % at μ R =μ F =m H , while the correction is much smaller, 5.5 %, at μ R =μ F =m H /2. While the central value of NNLO+N 3 LL result depends very mildly on the scale choice, we argue that a more realiable estimate of the theoretical uncertainty is found if the perturbative scales are canonically varied about m H .

  6. Energy Efficient Aeration in a Single Low Pressure Hollow Sheet Membrane Filtration Module

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Rasmussen, Michael R.

    2011-01-01

    The main drawback of membrane bioreactors (MBR) systems is the fouling of the membrane, which is decreased and/or prevented through gas sparging. However, this practice is based on rules of thumb or a trial-and-error approaches which are tedious, very time-consuming, do not necessarily provide...... optimal fouling control and they are not energy efficient. Therefore, dedicated experiments are needed to fully understand the hydrodynamics of it. A hollow sheet (HS) MBR was studied. Experimental velocity measurements were made using micro-propellers and compared to CFD results. A good agreement between...... is homogeneously distributes over the predominant part of the membrane surface....

  7. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  8. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  9. Disintegration of liquid sheets

    Science.gov (United States)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  10. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  11. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  12. Mobility Balance Sheet 2009

    International Nuclear Information System (INIS)

    Jorritsma, P.; Derriks, H.; Francke, J.; Gordijn, H.; Groot, W.; Harms, L.; Van der Loop, H.; Peer, S.; Savelberg, F.; Wouters, P.

    2009-06-01

    The Mobility Balance Sheet provides an overview of the state of the art of mobility in the Netherlands. In addition to describing the development of mobility this report also provides explanations for the growth of passenger and freight transport. Moreover, the Mobility Balance Sheet also focuses on a topical theme: the effects of economic crises on mobility. [nl

  13. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  14. Manifold free multiple sheet superplastic forming

    Science.gov (United States)

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  15. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  16. Sheet-bulk metal forming – forming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  17. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    Science.gov (United States)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  18. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    Science.gov (United States)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  19. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy.

    Science.gov (United States)

    Ho, Jia-Jung; Ghosh, Ayanjeet; Zhang, Tianqi O; Zanni, Martin T

    2018-02-08

    Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.

  20. On Jovian plasma sheet structure

    International Nuclear Information System (INIS)

    Khurana, K.K.; Kivelson, M.G.

    1989-01-01

    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  1. Rubella - Fact Sheet for Parents

    Science.gov (United States)

    ... and 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Rubéola The best way ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  2. A single-step synthesis of nitrogen-doped graphene sheets decorated with cobalt hydroxide nanoflakes for the determination of dopamine

    Directory of Open Access Journals (Sweden)

    Muhammad Mehmood Shahid

    2017-10-01

    Full Text Available Nitrogen-doped reduced graphene oxide (NrGO sheets decorated with Co(OH2 nanoflakes were prepared by a single-step hydrothermal process. The morphological and structural characterizations of as synthesized NrGO@Co(OH2 nanoflakes were performed by field emission scanning electron microscopy (FESEM, EDX-mapping and X-ray diffraction (XRD. NrGO@Co(OH2 nanoflakes modified glassy carbon electrode (GCE was used for electrochemical sensing of dopamine in neutral medium. The nanocomposite modified electrode showed enhanced electrochemical sensing ability for the detection of dopamine and the limit of detection (LoD was found to be 0.201 μM with a sensitivity value of 0.0286 ± 0.002 mA mM−1. Interference studies revealed that NrGO@Co(OH2─GCE endow excellent selectivity for DA detection even in the presence of higher concentration of common co-existing physiological interfering analytes. Additionally, proposed sensor demonstrated excellent performance in urine samples with promising reproducibility and stability. Keywords: Nitrogen doped graphene, Dopamine, Electrochemical sensor, Amperometric detection

  3. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  4. Detection of single quantum dots in model organisms with sheet illumination microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany); Wagner, Toni U. [Institute of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Harms, Gregory S., E-mail: gregory.harms@virchow.uni-wuerzburg.de [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany)

    2009-12-18

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  5. Detection of single quantum dots in model organisms with sheet illumination microscopy

    International Nuclear Information System (INIS)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.

    2009-01-01

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  6. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  7. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  8. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    Science.gov (United States)

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  9. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)

    OpenAIRE

    Bindschadler, Robert A.; Nowicki, Sophie; Abe-Ouchi, Ayako; Aschwanden, Andy; Choi, Hyeungu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; Herzfeld, Ute; Jackson, Charles; Johnson, Jesse; Khroulev, Constantine; Levermann, Anders; Lipscomb, William H.

    2013-01-01

    Ten ice-sheet models are used to study sensitivity of the Greenland and Antarctic ice sheets to prescribed changes of surface mass balance, sub-ice-shelf melting and basal sliding. Results exhibit a large range in projected contributions to sea-level change. In most cases, the ice volume above flotation lost is linearly dependent on the strength of the forcing. Combinations of forcings can be closely approximated by linearly summing the contributions from single forcing experiments, suggestin...

  10. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  11. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    Science.gov (United States)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  12. Petrology of the gabbro and sheeted basaltic intrusives at North Cape, New Zealand

    International Nuclear Information System (INIS)

    Hopper, D.J.; Smith, I.E.M.

    1996-01-01

    The North Cape massif consists of a semi-conformable sequence of serpentinite, gabbro, sheeted sill and dike units, and pillow lavas. Although structurally disrupted, they can be interpreted in terms of an idealised ophiolite sequence and represent the most complete sequence in the Northland Ophiolite. Their age is considered to be Late Cretaceous-Paleocene on the basis of microfossils in associated sediments. Early Miocene K-Ar ages from igneous rocks are thought to reflect the time of emplacement as a thrust sheet of oceanic crust and upper mantle. The gabbros are divided into a lower unit characterised by well-developed cumulate layering and an upper unit which is massive; the sheeted sills and dikes are quartz-diorite and microgabbro interleaved with minor pillow lava. Two phases of alteration are observed, a pervasive low-grade greenschist metamorphism attributed to sea-water interaction after formation as oceanic crust, and an overprinting zeolitic alteration which is possibly post-emplacement. Their tholeiitic nature as well as overlapping geochemical compositions suggest that the gabbros and sheeted dikes and sills represent different components of a single magmatic system related by simple fractionation processes. Several lines of evidence suggest that the magmas that formed the North Cape gabbro and sheeted intrusives have subduction-related chemical characteristics. In the gabbro, calcic plagioclase (An 86-92 ) and depleted Zr and Y abundances, and in the sheeted intrusives depleted high field strength element abundances relative to typical MORB, is indicative of a subduction signature. The presence of subduction-related characteristics within the Northland Ophiolite suggests that it may have originated at a back-arc basin rather than a major ocean ridge spreading centre. (author). 64 refs., 12 figs., 7 tabs

  13. A numerical analysis on forming limits during spiral and concentric single point incremental forming

    Science.gov (United States)

    Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.

    2017-01-01

    Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.

  14. Filament structure, organization, and dynamics in MreB sheets.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  15. Geometrical nonlinear free vibration of multi-layered graphene sheets

    International Nuclear Information System (INIS)

    Wang Jinbao; He Xiaoqiao; Kitipornchai, S; Zhang Hongwu

    2011-01-01

    A nonlinear continuum model is developed for the nonlinear vibration analysis of multi-layered graphene sheets (MLGSs), in which the nonlinear van der Waals (vdW) interaction between any two layers is formulated explicitly. The nonlinear equations of motion are studied by the harmonic-balance methods. Based on the present model, the nonlinear stiffened amplitude-frequency relations of double-layered graphene sheets (DLGSs) are investigated in the spectral neighbourhood of lower frequencies. The influence of the vdW interaction on the vibration properties of DLGSs is well illustrated by plotting the resulting modes' shapes, in which in-phase and anti-phase vibrations of DLGSs are studied. In particular, the large-amplitude vibration which associates with the anti-phase resonant frequencies, separating DLGS into single-layered GSs, is a promising application that needs to be explored further. In contrast, the vibration modes that are associated with the resonant frequencies are nonidentical and give various vibration patterns, which indicates that MLGSs are highly suited to being used as high-frequency resonators.

  16. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    Science.gov (United States)

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  17. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  18. Settlement during vibratory sheet piling

    NARCIS (Netherlands)

    Meijers, P.

    2007-01-01

    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  19. 49 CFR 1243.2 - Condensed balance sheet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Condensed balance sheet. 1243.2 Section 1243.2... § 1243.2 Condensed balance sheet. Commencing with reports for the 3 months beginning January 1, 1972, and... hereby, required to compile and file quarterly reports of balance sheet items in accordance with...

  20. Electron energization in the geomagnetic tail current sheet

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1984-01-01

    Electron motion in the distant tail current sheet is evaluated and found to violate the guiding center approximation at energies > or approx. =100 eV. Most electrons within the energy range approx.10 -1 -10 2 keV that enter the current sheet become trapped within the magnetic field reversal region. These electrons then convect earthward and gain energy from the cross-tail electric field. If the energy spectrum of electrons entering the current sheet is similar to that of electrons from the boundary layer surrounding the magnetotail, the energy gain from the electric field produces electron energy spectra comparable to those observed in the earth's plasma sheet. Thus current sheet interactions can be a significant source of particles and energy for plasma sheet electrons as well as for plasma sheet ions. A small fraction of electrons within the current sheet has its pitch angles scattered so as to be ejected from the current sheet within the atmospheric loss cone. These electrons can account for the electron precipitation near the high-latitude boundary of energetic electrons, which is approximately isotropic in pitch angle up to at least several hundred keV. Current sheet interaction should cause approximately isotropic auroral precipitation up to several hundred keV energies, which extends to significantly lower latitudes for ions than for electrons in agreement with low-altitude satellite observations. Electron precipitation associated with diffuse aurora generally has a transition at 1-10 keV to anisotropic pitch angle distributions. Such electron precipitation cannot be explained by current sheet interactions, but it can be explained by pitch angle diffusion driven by plasma turbulence

  1. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  2. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Science.gov (United States)

    Gnäupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-08-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2…3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  3. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    International Nuclear Information System (INIS)

    Gnaeupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-01-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2...3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material

  4. Tube sheet design for PFBR steam generator

    International Nuclear Information System (INIS)

    Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1991-01-01

    Top and bottom tube sheets of PFBR Steam Generators have been analysed with 3D and axisymmetric models using CASTEM Programs. Analysis indicates that the effects of piping reactions at the inlet/outlet nozzles on the primary stresses in the tube sheets are negligible and the asymmetricity of the deformation pattern introduced in the tube sheet by the presence of inlet/outlet and manhole nozzles is insignificant. The minimum tube sheet thicknesses for evaporator and reheater are 135 mm and 75 mm respectively. Further analysis has indicated the minimum fillet radius at the junction of tube sheet and dished end should be 20 mm. Simplified methodology has been developed to arrive at the number of thermal baffles required to protect the tube sheet against fatigue damage due to thermal transient. This method has been applied to PFBR steam generators to determine the required number of thermal baffles. For protecting the bottom tube sheet of evaporator against the thermal shock due to feed water and secondary pump trip, one thermal shield is found to be sufficient. Further analysis is required to decide upon the actual number to take care of the severe thermal transient, following the event of sudden dumping of water/steam, immediately after the sodium-water reaction. (author)

  5. 17 CFR 210.5-02 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... customers at the date of the balance sheet. Include a general description of the prerequisites for billing... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.5-02... Balance sheets. The purpose of this rule is to indicate the various line items and certain additional...

  6. Pressure balance between lobe and plasma sheet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Paschmann, G.; Luehr, H.

    1990-01-01

    Using eight months of AMPTE/IRM plasma and magnetic field data, the authors have done a statistical survey on the balance of total (thermal and magnetic) pressure in the Earth's plasma sheet and tail lobe. About 300,000 measurements obtained in the plasma sheet and the lobe were compared for different levels of magnetic activity as well as different distances from the Earth. The data show that lobe and plasma sheet pressure balance very well. Even in the worst case they do not deviate by more than half of the variance in the data itself. Approximately constant total pressure was also seen during a quiet time pass when IRM traversed nearly the whole magnetotail in the vertical direction, from the southern hemisphere lobe through the neutral sheet and into the northern plasma sheet boundary layer

  7. Results from the RESUME-95 exercise. In-situ gamma spectrometry performed at Vesivehmaa Airport, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C.L. [Univ. Hospital MAS, Lund Univ., Dept. of Radiation Physics, Malmoe (Sweden)

    1997-12-31

    The Department of Radiation Physics in Malmoe has an agreement with the Swedish Radiation Protection Institute, in which we are obliged to perform instantaneous field measurements of gamma-emitting radionuclides in case of a major release of radionuclides in the environment. The department possesses a High Purity Germanium detector system (35 % commercial at 1.33 MeV) with a PC software spectrum analyser that was purchased and calibrated for this reason. The aim of our participation in the RESUME-95{sup 1} exercise, which took place in Vaeaexsy, Finland, in August 1995, was both to obtain efficiency values for different source geometries (both artificial and natural radionuclides) in field and to compare our results with those of other groups. Furthermore, this exercise was an ideal opportunity to test the full equipment under field conditions. (au).

  8. Results from the RESUME-95 exercise. In-situ gamma spectrometry performed at Vesivehmaa Airport, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C L [Univ. Hospital MAS, Lund Univ., Dept. of Radiation Physics, Malmoe (Sweden)

    1998-12-31

    The Department of Radiation Physics in Malmoe has an agreement with the Swedish Radiation Protection Institute, in which we are obliged to perform instantaneous field measurements of gamma-emitting radionuclides in case of a major release of radionuclides in the environment. The department possesses a High Purity Germanium detector system (35 % commercial at 1.33 MeV) with a PC software spectrum analyser that was purchased and calibrated for this reason. The aim of our participation in the RESUME-95{sup 1} exercise, which took place in Vaeaexsy, Finland, in August 1995, was both to obtain efficiency values for different source geometries (both artificial and natural radionuclides) in field and to compare our results with those of other groups. Furthermore, this exercise was an ideal opportunity to test the full equipment under field conditions. (au).

  9. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  10. 17 CFR 210.7-03 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.7-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Insurance Companies § 210.7-03 Balance sheets. (a... otherwise permitted by the Commission, should appear on the face of the balance sheets and in the notes...

  11. Disposal sheet for preventing scattering of radioactive contaminated material

    International Nuclear Information System (INIS)

    Miyasaka, Shun-ichi; Kurioka, Hitoshi; Nakamura, Kenjiro.

    1990-01-01

    Upon disposal of vinyl sheets at the final stage of dismantling operation for nuclear buildings, etc., radioactive contaminated materials caused by cutting concretes, etc. remain on the sheets. In view of the above, members capable of restoring original shape due to the temperature difference are attached to the sheet main body so that the sheet main body may be folded into a bag-like shape. Since the members as described above are bent upon temperature elevation in the sheets, the sheet main body is pulled by the members and then spontaneously folded into a bag-like shape. As a result, the radioactive contaminated materials remaining on the sheets are wrapped into the sheet main body free from touch to operator's hands or without scattering to the surrounding. This can prevent operator's external and internal exposure. (T.M.)

  12. Neutron spatial distribution measurement with 6Li-contained thermoluminescent sheets

    International Nuclear Information System (INIS)

    Konnai, A.; Odano, N.; Sawamura, H.; Ozasa, N.; Ishikawa, Y.

    2006-01-01

    We have been developing a thermoluminescent (TL) sheet for photon dosimetry (TL sheet) with thermoluminescent material of LiF:Mg, Cu, P and a co-polymer of ethylene and tetrafluoroethylene. For the purpose of a development of simple method for neutron spatial distribution measurement, TL sheet for neutron detection (NTL sheet) is made by adding 94.7% enriched 6 LiF to TL sheet. TL material in TL sheet is directly excited by ionizing radiation whereas, in the case of neutron detection, TL material in NTL sheet is indirectly excited by neutron capture reaction. That is neutron distribution can be obtained with TL caused by α particle from 6 Li(n, α) 3 H reaction. Responses of NTL sheets to neutrons were examined at the neutron beam irradiation facility for Boron Neutron Capture Therapy (BNCT) in JRR-4 research reactor in Japan Atomic Energy Agency. TL and NTL sheets were exposed to striped and roundly distributed neutron fields. Attenuations of neutron flux in air and water were also observed using NTL sheets. TL sheets were also exposed on the same conditions and compared with NTL sheets. TL intensity ratios of NTL sheet to TL sheet were consistent with the calculated value from 6 Li content. Thermal neutron attenuation observed by NTL sheet also corresponded with the result measured by Au wire radioactivation and TLD chips, which were currently used in BNCT at JRR-4. These results were analyzed with by Monte Carlo simulation. The present results indicated that NTL sheet is applicable to measurement of neutron spatial distribution. (author)

  13. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    Science.gov (United States)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  14. Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-10-01

    Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.

  15. On the possible eigenoscillations of neutral sheets

    International Nuclear Information System (INIS)

    Almeida, W.A.; Costa, J.M. da; Aruquipa, E.G.; Sudano, J.P.

    1974-12-01

    A neutral sheet model with hyperbolic tangent equilibrium magnetic field and hyperbolic square secant density profiles is considered. It is shown that the equation for small oscillations takes the form of an eigenvalue oscillation problem. Computed eigenfrequencies of the geomagnetic neutral sheet were found to be in the range of the resonant frequencies of the geomagnetic plasma sheet computed by other authors

  16. Uranium mining sites - Thematic sheets

    International Nuclear Information System (INIS)

    2009-01-01

    A first sheet proposes comments, data and key numbers about uranium extraction in France: general overview of uranium mining sites, status of waste rock and tailings after exploitation, site rehabilitation. The second sheet addresses the sources of exposure to ionizing radiations due to ancient uranium mining sites: discussion on the identification of these sources associated with these sites, properly due to mining activities or to tailings, or due to the transfer of radioactive substances towards water and to the contamination of sediments, description of the practice and assessment of radiological control of mining sites. A third sheet addresses the radiological exposure of public to waste rocks, and the dose assessment according to exposure scenarios: main exposure ways to be considered, studied exposure scenarios (passage on backfilled path and grounds, stay in buildings built on waste rocks, keeping mineralogical samples at home). The fourth sheet addresses research programmes of the IRSN on uranium and radon: epidemiological studies (performed on mine workers; on French and on European cohorts, French and European studies on the risk of lung cancer associated with radon in housing), study of the biological effects of chronic exposures. The last sheet addresses studies and expertises performed by the IRSN on ancient uranium mining sites in France: studies commissioned by public authorities, radioactivity control studies performed by the IRSN about mining sites, participation of the IRSN to actions to promote openness to civil society

  17. Total deposition of cesium-137 measured in Finland during the exercise 'RESUME 95' in August 1995

    International Nuclear Information System (INIS)

    Geer, L.E. De; Vintersved, I.; Arntsing, R.

    1997-01-01

    In the exercise called 'RESUME 95' the Nuclear Detection Group from the National Defence Research Establishment in Stockholm participated with field gamma ray measurements combined with soil sampling and profile measurements. The results are presented in this report for the measurements of cesium-137. We considered the measurements of cesium-137 at the airfield the most important part of the in-situ exercise. Data was of course collected also for cesium-134 and natural radionuclides but time has not permitted a full analysis of these radionuclides. The methodology would, however, be the same as applied for cesium-137. Less attention was paid for area II and due to limited personnel resources the search exercise was not fully carried out. (au)

  18. Total deposition of cesium-137 measured in Finland during the exercise `RESUME 95` in August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Geer, L.E. De; Vintersved, I.; Arntsing, R. [National Defence Research Establisment, Nuclear Detection Group, Stockholm (Sweden)

    1997-12-31

    In the exercise called `RESUME 95` the Nuclear Detection Group from the National Defence Research Establishment in Stockholm participated with field gamma ray measurements combined with soil sampling and profile measurements. The results are presented in this report for the measurements of cesium-137. We considered the measurements of cesium-137 at the airfield the most important part of the in-situ exercise. Data was of course collected also for cesium-134 and natural radionuclides but time has not permitted a full analysis of these radionuclides. The methodology would, however, be the same as applied for cesium-137. Less attention was paid for area II and due to limited personnel resources the search exercise was not fully carried out. (au).

  19. Total deposition of cesium-137 measured in Finland during the exercise `RESUME 95` in August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Geer, L.E. De; Vintersved, I; Arntsing, R [National Defence Research Establisment, Nuclear Detection Group, Stockholm (Sweden)

    1998-12-31

    In the exercise called `RESUME 95` the Nuclear Detection Group from the National Defence Research Establishment in Stockholm participated with field gamma ray measurements combined with soil sampling and profile measurements. The results are presented in this report for the measurements of cesium-137. We considered the measurements of cesium-137 at the airfield the most important part of the in-situ exercise. Data was of course collected also for cesium-134 and natural radionuclides but time has not permitted a full analysis of these radionuclides. The methodology would, however, be the same as applied for cesium-137. Less attention was paid for area II and due to limited personnel resources the search exercise was not fully carried out. (au).

  20. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  1. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  2. A first-principles study on adsorption behaviors of pristine and Li-decorated graphene sheets toward hydrazine molecules

    Science.gov (United States)

    Zeng, Huadong; Cheng, Xinlu; Wang, Wei

    2018-03-01

    The adsorption behaviors and properties of hydrazine (N2H4) molecules on pristine and Li-decorated graphene sheets were investigated by means of first-principles based on density functional theory. We systematically analyzed the optimal geometry, average binding energy, charge transfer, charge density difference and density of states of N2H4 molecules adsorbed on pristine and Li-decorated graphene sheets. It is found that the interaction between single N2H4 molecule and pristine graphene is weak physisorption with the low binding energy of -0.026 eV, suggesting that the pristine graphene sheet is insensitive to the presence of N2H4 molecule. However, it is markedly enhanced after lithium decoration with the high binding energy of -1.004 eV, verifying that the Li-decorated graphene sheet is significantly sensitive to detect N2H4 molecule. Meanwhile, the effects of the concentrations of N2H4 molecules on two different substrates were studied detailedly. For pristine graphene substrate, the average binding energy augments apparently with increasing the number of N2H4 molecules, which is mainly attributed to the van der Waals interactions and hydrogen bonds among N2H4 clusters. Li-decorated graphene sheet has still a strong affinity to N2H4 molecules despite the corresponding average binding energy emerges a contrary tendency. Overall, Li-decorated graphene sheet could be considered as a potential gas sensor in field of hydrazine molecules.

  3. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    Holbert, R.K. Jr.; Dobbins, A.G.; Bennett, R.K. Jr.

    1986-01-01

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  4. World-sheet gauge fields in superstrings

    International Nuclear Information System (INIS)

    Porrati, M.; Tomboulis, E.T.

    1989-01-01

    We investigate the introduction of world-sheet 2-dimensional gauge fields in a manner consistent with world-sheet supersymmetry. We obtain the effective string action resulting from the exact integration over the world-sheet gauge fields to show that it generally describes string models with spontaneous breaking of gauge symmetries with continuous breaking parameters. We examine the question of spacetime supersymmetry spontaneous breaking, and show that breaking with continuous, in particular arbitrarily small breaking parameters does not occur; only breaking for discrete values of parameters is possible. (orig.)

  5. Survey of large-amplitude flapping motions in the midtail current sheet

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2006-08-01

    Full Text Available We surveyed fast current sheet crossings (flapping motions over the distance range 10–30 RE in the magnetotail covered by the Geotail spacecraft. Since the local tilts of these dynamic sheets are large and variable in these events, we compare three different methods of evaluating current sheet normals using 4-s/c Cluster data and define the success criteria for the single-spacecraft-based method (MVA to obtain the reliable results. Then, after identifying more than ~1100 fast CS crossings over a 3-year period of Geotail observations in 1997–1999, we address their parameters, spatial distribution and activity dependence. We confirm that over the entire distance covered and LT bins, fast crossings have considerable tilts in the YZ plane (from estimated MVA normals which show a preferential appearance of one (YZ kink-like mode that is responsible for these severe current sheet perturbations. Their occurrence is highly inhomogeneous; it sharply increases with radial distance and has a peak in the tail center (with some duskward shift, resembling the occurrence of the BBFs, although there is no one-to-one local correspondence between these two phenomena. The crossing durations typically spread around 1 min and decrease significantly where the high-speed flows are registered. Based on an AE index superposed epoch study, the flapping motions prefer to appear during the substorm expansion phase, although a considerable number of events without any electrojet and auroral activity were also observed. We also present statistical distributions of other parameters and briefly discuss what could be possible mechanisms to generate the flapping motions.

  6. Threshold and jet radius joint resummation for single-inclusive jet production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohui [Beijing Normal Univ. (China). Center of Advanced Quantum Studies; Moch, Sven-Olaf [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Ringer, Felix [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Division

    2017-08-15

    We present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Longstanding numerical issues are overcome by performing the resummation directly in momentum space within Soft Collinear Effective Theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  7. Environmental constraints on West Antarctic ice-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, D R; MacAyeal, D R

    1987-01-01

    Small perturbations in Antarctic environmental conditions can culminate in the demise of the Antarctic ice sheet's western sector. This may have happened during the last interglacial period, and could recur within the next millennium due to atmospheric warming from trace gas and CO/sub 2/ increases. In this study, we investigate the importance of sea-level, accumulation rate, and ice influx from the East Antarctic ice sheet in the re-establishment of the West Antarctic ice sheet from a thin cover using a time-dependent numerical ice-shelf model. Our results show that a precursor to the West Antarctic ice sheet can form within 3000 years. Sea-level lowering caused by ice-sheet development in the Northern Hemisphere has the greatest environmental influence. Under favorable conditions, ice grounding occurs over all parts of the West Antarctic ice sheet except up-stream of Thwaites Glacier and in the Ross Sea region.

  8. Hydrothermal growth of upright-standing ZnO sheet microcrystals

    International Nuclear Information System (INIS)

    Shi, Ruixia; Yang, Ping; Dong, Xiaobin; Jia, Changchao; Li, Jia

    2014-01-01

    Highlights: • Upright-standing ZnO sheet microcrystals were hydrothermally fabricated. • The ZnO sheets were prepared with sodium oxalate at 70 °C without any surfactant. • The preferable adsorption of oxalate anions causes the formation of ZnO sheet. • The continuous growth in six directions leads to the formation of hexagonal sheets. - Abstract: Large-scale upright-standing ZnO sheet microcrystals were fabricated on Zn substrate using sodium oxalate as structure-directing agent by a hydrothermal method at low temperature (70 °C) without any surfactant. The sheets are about 3–5 μm in dimension and 100–300 nm in thickness. The strong and narrow diffraction peaks of ZnO indicate that the sample has a good crystallinity and size. The morphology of sheet-like ZnO varied with the concentrations of sodium oxalate and reaction time. The sheet-like ZnO would transform into rod-like ones when sodium oxalate was substituted by equivalent sodium acetate. The formation of sheet-like ZnO is attributed to the preferable adsorption of oxalate anions on (0 0 0 1) face of ZnO, which inhibits the intrinsic growth of ZnO. Additionally, the continuous growth in six (0 1 −1 0) directions that have the lowest surface energy leads to the formation of hexagonal sheets

  9. Numerical analysis of tailored sheets to improve the quality of components made by SPIF

    Science.gov (United States)

    Gagliardi, Francesco; Ambrogio, Giuseppina; Cozza, Anna; Pulice, Diego; Filice, Luigino

    2018-05-01

    In this paper, the authors pointed out a study on the profitable combination of forming techniques. More in detail, the attention has been put on the combination of the single point incremental forming (SPIF) and, generally, speaking, of an additional process that can lead to a material thickening on the initial blank considering the local thinning which the sheets undergo at. Focalizing the attention of the research on the excessive thinning of parts made by SPIF, a hybrid approach can be thought as a viable solution to reduce the not homogeneous thickness distribution of the sheet. In fact, the basic idea is to work on a blank previously modified by a deformation step performed, for instance, by forming, additive or subtractive processes. To evaluate the effectiveness of this hybrid solution, a FE numerical model has been defined to analyze the thickness variation on tailored sheets incrementally formed optimizing the material distribution according to the shape to be manufactured. Simulations based on the explicit formulation have been set up for the model implementation. The mechanical properties of the sheet material have been taken in literature and a frustum of cone as benchmark profile has been considered for the performed analysis. The outcomes of numerical model have been evaluated in terms of both maximum thinning and final thickness distribution. The feasibility of the proposed approach will be deeply detailed in the paper.

  10. 12 CFR 615.5211 - Risk categories-balance sheet assets.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Risk categories-balance sheet assets. 615.5211...—balance sheet assets. Section 615.5210(c) specifies certain balance sheet assets that are not assigned to the risk categories set forth below. All other balance sheet assets are assigned to the percentage...

  11. Reinforcement of Bolted Timber Joints Using GFRP Sheets in Poplar and Pine Woods

    Directory of Open Access Journals (Sweden)

    Mehrab Madhoushi

    2013-01-01

    Full Text Available Failure in timber structures occurs mainly in crucial points such as joints areas. Therefore, the idea of using composite sheets in timber joints has been intro-duced as a method in order to increase the strength and ductility behaviour of timber joints. This research aims to study the behaviour of bolted joints in poplar and pine woods, which are reinforced by two types of GFRP sheets. A single shear bolted joint consisted of 3 timber members whose length and width were 30 cm in length and 5 cm in width. The thickness of each member was 4 cm for internal part and 2 cm for external part. The employed steel bolt was 10 cm in length and 1 cm in diameter. In this respect, one layer of GFRP sheet was used to be bonded to timber members by using epoxy resin and left between the clamps for 24 hours. They were then kept at room temperature for three weeks. Also the effect of adding a wood veneer on the reinforced joints was investigated. The tensile strength of the reinforced and control samples (un-reinforced joints was measured according to ASTM D5652-92 standard. The results show that the reinforced samples have higher tensile strength compared to that of reinforced joints, although it is not statistically signifcant. Also, two types of sheets infuence the joint behaviour as the reinforced joints display more ductility behaviour.

  12. The plasma sheet boundary and Ksub(p)

    International Nuclear Information System (INIS)

    Freeman, J.W.

    1975-01-01

    Freeman and Maguire (1967) first drew attention to the intrusion of energetic plasma from the tail to the geostationary orbit during geomagnetically disturbed times. Vasyliunas (1968) reported a correlation between the inward extension of the inner boundary of the plasma sheet and the Ksub(p) index and pointed out that the plasma sheet could occasionally reach the geostationary orbit distance. More recently McIlwain (1972) using the more refined detectors aboard the ATS-5 geostationary space-craft, has emphasized the correlation between the location of the plasma sheet boundary along the ATS orbit and geomagnetic activity. Using some older but unpublished data from the Suprathermal Ion Detector aboard the ATS-1 geostationary satellite, the relation between the local time occurrence of the plasma sheet at the geostationary orbit (6.6Rsub(E)) and Ksub(p) index is reported and then a relationship for the shift in the plasma sheet radial position is derived. (Auth.)

  13. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find...... the most optimal method, a Round Robin exercise was conducted in which the scientific community was asked to provide their best SEC estimate over the Jakobshavn Isbr drainage basin. The participants used both repeat-track (RT), overlapping footprints, and the cross-over (XO) methods, and both ICESat laser...... and Envisat radar altimeter data were used. Based on this and feedback sheets describing their methods we found that a combination of the RT and XO techniques yielded the best results. In the following, the obtained results will be presented and discussed....

  14. Probability based hydrologic catchments of the Greenland Ice Sheet

    Science.gov (United States)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  15. On the balance of stresses in the plasma sheet.

    Science.gov (United States)

    Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.

    1972-01-01

    The stress resulting from magnetic tension on the neutral sheet must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of plasma flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the plasma sheet. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral sheet, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the plasma sheet just outside the neutral sheet. The second case requires, in addition, that the plasma flow speed within the neutral sheet be of the order of or larger than the Alfven speed outside the neutral sheet. Stress balance in the third case requires that just outside the neutral sheet the plasma pressure obey the marginal firehose stability condition.

  16. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  17. Can I look at my list? An evaluation of a 'prompt sheet' within an oncology outpatient clinic.

    Science.gov (United States)

    Glynne-Jones, R; Ostler, P; Lumley-Graybow, S; Chait, I; Hughes, R; Grainger, J; Leverton, T J

    2006-06-01

    We introduced a patient 'prompt sheet' into our clinic between January 2004 and January 2005. The aim was to determine whether it would facilitate communication and help patients in obtaining their desired level of information about their illness, and assist with decision making. We conducted an audit survey to investigate the way follow-up takes place in our oncology clinic, to determine what works and what does not work in the clinic, and to examine how patients access the most useful information and to assess the utility of, and patient satisfaction with, a locally developed pilot prompt sheet. A single questionnaire was designed to elicit information on patients' information needs, overall satisfaction with the oncology clinic, and uptake and perceived usefulness of the prompt sheet. We carried out an audit survey in the form of a Likert-scale questionnaire (33 questions), followed immediately afterwards by a semi-structured interview. A specialist nurse asked a range of open questions about what was good and bad about the clinic and the prompt sheets. Despite efforts to ensure that all patients received the prompt-sheet leaflets, only 254 out of 300 (85%) received them. Of these, 195 (65%) felt that they were 'very helpful', and 30 (10%) found them 'fairly helpful'. However, 15 (5%) had no strong feelings and only three found them either fairly or completely unhelpful. One-third of the patients were able to ask more questions about their disease as a result of the prompt sheet, although they felt the doctor was busy and did not want to take up too much of their time. Men with prostate cancer found the prompt sheet particularly helpful to ask questions. This satisfaction audit suggests that our pilot prompt sheet is helpful to patients attending oncology outpatient appointments, particularly for men with prostate cancer. We aim to adapt the present prompt sheet on the basis of the replies obtained, and re-audit in the future.

  18. Nonparaxial Bessel and Bessel–Gauss pincers light-sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-01-23

    Highlights: • Bessel and Bessel–Gauss autofocusing light sheets (i.e. beams in 2D) are developed. • The light-sheets are synthesized based on the angular spectrum decomposition method. • Computations of the scattering, radiation force and torque benefit from the solutions. - Abstract: Nonparaxial optical Bessel and Bessel–Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  19. Nonparaxial Bessel and Bessel–Gauss pincers light-sheets

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2017-01-01

    Highlights: • Bessel and Bessel–Gauss autofocusing light sheets (i.e. beams in 2D) are developed. • The light-sheets are synthesized based on the angular spectrum decomposition method. • Computations of the scattering, radiation force and torque benefit from the solutions. - Abstract: Nonparaxial optical Bessel and Bessel–Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  20. Buckling Behavior of Substrate Supported Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Kuijian Yang

    2016-01-01

    Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.

  1. Production of an Amorphous Fe_<75>Si_<10>B_<15> Sheet by a Metallic Mold Casting Method and its Properties

    OpenAIRE

    Inoue, Akihisa; Yamamoto, Hirokazu; Saito, Takanobu; Masumoto, Tsuyosi

    1993-01-01

    The application of a metallic mold casting method to an Fe_Si_B_ alloy with the largest glass-forming ability in (Fe, Co, Ni)-Si-B system was found to cause the formation of a mostly single amorphous phase in a sheet form with a thickness of 0.1 mm. No distinct difference in thermal stability (crystallization temperature and heat of crystallization), hardness, Curie temperature and magnetization is detected between the as-cast sheet and the melt-spun amorphous ribbon with a thickness of 0.02 ...

  2. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.

    Science.gov (United States)

    Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan

    2012-08-21

    Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.

  3. Fabrication of Carbon Nanotube Polymer Actuator Using Nanofiber Sheet

    Science.gov (United States)

    Kato, Hayato; Shimizu, Akikazu; Sato, Taiga; Kushida, Masahito

    2017-11-01

    Carbon nanotube polymer actuators were developed using composite nanofiber sheets fabricated by multi-walled carbon nanotubes(MWCNTs) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Nanofiber sheets were fabricated by electrospinning method. The effect of flow rate and polymer concentration on nanofiber formation were verified for optimum condition for fabricating nanofiber sheets. We examined the properties of MWCNT/PVDF-HFP nanofiber sheets, as follows. Electrical conductivity and mechanical strength increased as the MWCNT weight ratio increased. We fabricated carbon nanotube polymer actuators using MWCNT/PVDF-HFP nanofiber sheets and succeeded in operating of our actuators.

  4. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    Science.gov (United States)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  5. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  6. APPLICATIONS OF A SINGLE CARBON ELECTRODE

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... ABSTRACT: A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. ... applications: welding, spot welding, hole piercing, etc. The metal tube holding the carbon electrodes is banded with ...

  7. Joining of Aluminium Alloy Sheets by Rectangular Mechanical Clinching

    International Nuclear Information System (INIS)

    Abe, Y.; Mori, K.; Kato, T.

    2011-01-01

    A mechanical clinching has the advantage of low running costs. However, the joint strength is not high. To improve the maximum load of the joined sheets by a mechanical clinching, square and rectangular mechanical clinching were introduced. In the mechanical clinching, the two sheets are mechanically joined by forming an interlock between the lower and upper sheets by the punch and die. The joined length with the interlock was increased by the rectangular punch and die. The deforming behaviours of the sheets in the mechanical clinching were investigated, and then the interlock in the sheets had distribution in the circumference of the projection. Although the interlocks were formed in both projection side and diagonal, the interlock in the diagonal was smaller because of the long contact length between the lower sheet and the die cavity surface. The maximum load of the joined sheets by the rectangular mechanical clinching was two times larger than the load by the round mechanical clinching.

  8. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  9. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  10. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  11. Spina Bifida: General Information. Fact Sheet Number 12 = La Espina Bifida: Informacion General. Fact Sheet Number 12.

    Science.gov (United States)

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet offers definitions of the three types of spina bifida, outlines their incidence, describes characteristics of individuals with spina bifida, and reviews educational implications. The fact sheet emphasizes that school programs should be flexible to accommodate these students' special needs and frequent absences, that children with…

  12. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  13. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Mohamad, Azizan Bin; Suzuki, Ryo [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Okagawa, Keigo [Department of Electrical and Electronics Engineering, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi ohi, Shinagawa-ku, Tokyo 140-0011 (Japan)

    2016-08-15

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in parts of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.

  14. Synthesis of nanometre-thick MoO3 sheets

    Science.gov (United States)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  15. Fact Sheets on Pesticides in Schools.

    Science.gov (United States)

    National Coalition against the Misuse of Pesticides, Washington, DC.

    This document consists of a collection of fact sheets about the use of pesticides in schools and how to reduce it. The sheets are: (1) "Alternatives to Using Pesticides in Schools: What Is Integrated Pest Management?"; (2) "Health Effects of 48 Commonly Used Pesticides in Schools"; (3) "The Schooling of State Pesticide…

  16. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  17. Motion and shape of snowplough sheets in coaxial accelerators

    International Nuclear Information System (INIS)

    Tsagas, N.F.; Mair, G.L.R.; Prinn, A.E.

    1978-01-01

    A long coaxial accelerator is filled with helium at initial gas pressure between 0.2 and 4 Torr. When connected to a large capacitor at < - 10 kV a discharge is started at one end; the central electrode has negative polarity. The velocity of the plasma sheet, the snowplough, and its shape have been derived from streak photographs for terminal currents between about 100 and 300 kA. The motion of the sheet has been analysed by balancing the electromagnetic driving force against the inertia of the mass of the gas swept up by a plane sheet taken to be impenetrable to gas atoms. The calculated positions and average sheet velocities, which involve simplifying assumptions, have been found to be in good agreement with observations at different positions and pressures. Also the shape of the sheet has been derived by allowing for the sheet's curvature in the linear momentum equation while net radial motions causing variations in profile have, at first, been excluded. The calculated shape of the sheet is very nearly that photographically observed. The axial velocity of a sheet element is evaluated under the assumption that the plasma is azimuthally uniform, free of spikes and that the vessel's wall does not affect the shape. (author)

  18. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  19. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  20. Orientation and Morphology Effects in Rapid Silicon Sheet Solidification

    Science.gov (United States)

    Ciszek, T. F.

    1984-01-01

    Radial growth anisotropies and equilibrium forms of point nucleated, dislocation free silicon sheets spreading horizontally on the free surface of a silicon melt were measured for (100), (110), (111), and (112) sheet planes. The growth process was recorded. Qualitative Wulff surface free energy polar plots were deduced from the equilibrium shapes for each sheet plane. Predicted geometries for the tip shape of unidirectional, dislocation free, horizontally grown sheets growing in various directions within the planes were analyzed. Polycrystalline sheets and dendrite propagation were analyzed. For dendrites, growth rates on the order of 2.5 m/min and growth rate anisotropies of 25 are measured.

  1. 47 CFR 32.101 - Structure of the balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Structure of the balance sheet accounts. 32.101... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.101 Structure of the balance sheet accounts. The Balance Sheet accounts shall be maintained as follows...

  2. Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics

    Directory of Open Access Journals (Sweden)

    Saeid Reza Asemi

    Full Text Available Recently, graphene sheets have shown significant potential for environmental engineering applications such as wastewater treatment. Different non-classical theories have been used for modeling of such nano-sized systems to take account of the effect of small length scale. Among all size-dependent theories, the nonlocal elasticity theory has been commonly used to examine the stability of nano-sized structures. Some research works have been reported about the mechanical behavior of rectangular nanoplates with the consideration of thermal effects. However, in comparison with the rectangular graphene sheets, research works about the nanoplates of circular shape are very limited, especially for the buckling properties with thermal effects. Hence, in this paper, an axisymmetric buckling analysis of circular single-layered graphene sheets (SLGS is presented by decoupling the nonlocal equations of Eringen theory. Constitutive relations are modified to describe the nonlocal effects. The governing equations are derived using equilibrium equations of the circular plate in polar coordinates. Numerical solutions for buckling loads are computed using Galerkin method. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate, radius-to-thickness ratio, temperature change and mode numbers are investigated.

  3. Molding cork sheets to complex shapes

    Science.gov (United States)

    Sharpe, M. H.; Simpson, W. G.; Walker, H. M.

    1977-01-01

    Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.

  4. Whooping Cough (Pertussis) - Fact Sheet for Parents

    Science.gov (United States)

    ... months 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Tosferina (pertussis) The best ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  5. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  6. The storm time central plasma sheet

    Directory of Open Access Journals (Sweden)

    R. Schödel

    2002-11-01

    Full Text Available The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms

  7. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Science.gov (United States)

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Science.gov (United States)

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  9. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Emilio J Gualda

    2014-08-01

    Full Text Available The development of three dimensional cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex three dimensional matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy is becoming an excellent tool for fast imaging of such three-dimensional biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  10. Australian Government Balance Sheet Management

    OpenAIRE

    Wilson Au-Yeung; Jason McDonald; Amanda Sayegh

    2006-01-01

    Since almost eliminating net debt, the Australian Government%u2019s attention has turned to the financing of broader balance sheet liabilities, such as public sector superannuation. Australia will be developing a significant financial asset portfolio in the %u2018Future Fund%u2019 to smooth the financing of expenses through time. This raises the significant policy question of how best to manage the government balance sheet to reduce risk. This paper provides a framework for optimal balance sh...

  11. Energy information sheets, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  12. Energy information sheets, September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  13. Anesthesia Fact Sheet

    Science.gov (United States)

    ... Education About NIGMS NIGMS Home > Science Education > Anesthesia Anesthesia Tagline (Optional) Middle/Main Content Area En español ... Version (464 KB) Other Fact Sheets What is anesthesia? Anesthesia is a medical treatment that prevents patients ...

  14. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  15. Casimir effects for a flat plasma sheet: II. Fields and stresses

    International Nuclear Information System (INIS)

    Barton, G

    2005-01-01

    We study the self-stresses experienced by the single plasma sheet modelled in the preceding paper, and determine the exact mean-squared Maxwell fields in vacuum around it. These are effects that probe the physics of such systems further than do the ground-state eigenvalues responsible for the cohesive energy β; in particular, unlike β they depend not only on the collective properties but also on the self-fields of the charge carriers. The classical part of the interaction between the sheet and a slowly moving charged particle follows as a byproduct. The main object is to illustrate, in simple closed or almost closed form, the consequences of imperfect (dispersive) reflectivity. The largely artificial limit of perfect reflection reduces all the results to those long familiar outside a half-space taken to reflect perfectly from the outset; but a careful examination of the approach to this limit is needed in order to resolve paradoxes associated with the surface energy, and with the mechanism which, in the limit, disjoins the two flanking half-spaces both electromagnetically and quantally

  16. Self-inhibiting growth of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Solgaard, Anne Munck; Hvidberg, Christine Schøtt

    2012-01-01

    The build-up of the Greenland Ice Sheet (GrIS) from ice-free conditions is studied in an ice sheet model (ISM) driven by fields from an atmospheric general circulation model (GCM) to demonstrate the importance of coupling between the two components. Experiments where the two are coupled off-line...... are augmented by one where an intermediate ice sheet configuration is coupled back to the GCM. Forcing the ISM with GCM fields corresponding to the ice-free state leads to extensive regrowth which, however, is halted when the intermediate recoupling step is included. This inhibition of further growth is due...... to a Föhn effect of moist air parcels being lifted over the intermediate ice sheet and arriving in the low-lying Greenland interior with high temperatures. This demonstrates that two-way coupling between the atmosphere and the ice sheet is essential for understanding the dynamics and that large scale...

  17. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  18. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  19. Nonparaxial Bessel and Bessel-Gauss pincers light-sheets

    Science.gov (United States)

    Mitri, F. G.

    2017-01-01

    Nonparaxial optical Bessel and Bessel-Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  20. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    Science.gov (United States)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  1. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  2. The measurement of magnetic properties of electrical sheet steel - survey on methods and situation of standards

    CERN Document Server

    Sievert, J

    2000-01-01

    A brief review of the different requirements for magnetic measurement techniques for material research, modelling of material properties and grading of the electrical sheet steel for trade purposes is presented. In relation to the main application of laminated electrical steel, this paper deals with AC measurement techniques. Two standard methods, Epstein frame and Single Sheet Tester (SST), producing different results, are used in parallel. This dilemma was analysed in detail. The study leads to a possible solution of the problem, i.e. the possibility of converting the results of one of the two methods into the results of the other in order to satisfy the users of the Epstein method and, at the same time, to improve the acceptance of the more economical SST method.

  3. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    International Nuclear Information System (INIS)

    Alam, Parvez

    2014-01-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths. (paper)

  4. Cerebral Palsy: General Information. Fact Sheet Number 2 = La Paralisis Cerebral: Informacion General. Fact Sheet Number 18.

    Science.gov (United States)

    Interstate Research Associates, McLean, VA.

    This fact sheet on cerebral palsy is offered in both English and Spanish. First, it provides a definition and considers various causes (e.g., an insufficient amount of oxygen reaching the fetal or newborn brain). The fact sheet then offers incidence figures and explains characteristics of the three main types of cerebral palsy: spastic, athetoid,…

  5. Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments

    Directory of Open Access Journals (Sweden)

    Jacques Ninio

    2011-07-01

    Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.

  6. Film sheet cassette

    International Nuclear Information System (INIS)

    1981-01-01

    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  7. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  8. An Adaptive Test Sheet Generation Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan-Yu Lin

    2012-01-01

    Full Text Available For test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the near future.

  9. Simulations of the Scandinavian ice sheet and its subsurface conditions

    International Nuclear Information System (INIS)

    Boulton, G.S.; Caban, P.; Hulton, N.

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite different in extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated

  10. Simulations of the Scandinavian ice sheet and its subsurface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S.; Caban, P.; Hulton, N. [Edinburgh Univ. (United Kingdom). Dept of Geology and Geophysics

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite differentin extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated.

  11. Comparison of Corrosion Behavior of Electrochemically Deposited Nano-Cobalt-Coated Ni Sheet

    Directory of Open Access Journals (Sweden)

    Nasser Al-Aqeeli

    2013-01-01

    Full Text Available Corrosion behavior of nano-coblat-coated Ni sheet was compared with pure Ni and 20% Fe-Ni alloy sheet using potentiodynamic polarization and linear polarization technique in 0.1 M NaCl solution at room temperature. Results showed that corrosion resistance properties of nano-Co-coated Ni sheet were almost same as that of pure Ni sheet, however corrosion resistance of 20% Fe-Ni sheet was decreased significantly. Pitting potential of 20% Fe-Ni sheet was subsequently decreased as compared to pure Ni sheet as well as nano-cobalt-coated Ni sheet. SEM/EDS analysis of the corroded surfaces showed that both pure Ni and nano-coblat-coated Ni sheet did not show any appreciable corrosion however significant corrosion was observed in the case of 20% Fe-Ni sheet.

  12. Effects of RGD immobilization on light-induced cell sheet detachment from TiO{sub 2} nanodots films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kui; Wang, Tiantian [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Yu, Mengliu [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Wan, Hongping [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Lin, Jun [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wang, Huiming, E-mail: hmwang1960@hotmail.com [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China)

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine–glycine–aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO{sub 2} nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO{sub 2} nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO{sub 2} nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest. - Highlights: • RGD immobilization on TiO{sub 2} nanodots film favors light-induced cell sheet detachment. • Physically adsorbed RGD detaches from the film through ultraviolet illumination. • RGD detachment promotes cells and cell sheets detachment.

  13. 14 CFR Section 3 - Chart of Balance Sheet Accounts

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Chart of Balance Sheet Accounts Section 3 Section 3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Balance Sheet Classifications Section 3 Chart of Balance Sheet Accounts [See footnotes at end of table...

  14. 17 CFR 229.1001 - (Item 1001) Summary term sheet.

    Science.gov (United States)

    2010-04-01

    ... sheet that is written in plain English. The summary term sheet must briefly describe in bullet point format the most material terms of the proposed transaction. The summary term sheet must provide security... transaction. The bullet points must cross-reference a more detailed discussion contained in the disclosure...

  15. NTPR Fact Sheets

    Science.gov (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  16. The social balance sheet 2004

    OpenAIRE

    Ph. Delhez; P. Heuse

    2005-01-01

    Each year, in the 4th quarter’s Economic Review, the National Bank examines the provisional results of the social balance sheets. As all the social balance sheets are not yet available for 2004, the study is based on a limited population of enterprises, compiled according to the principle of a constant sample. This population is made up of 38,530 enterprises employing around 1,331,000 workers in 2004. The main results of the analysis, in terms of employment, working hours, labour cost and tra...

  17. Analysis of Financial Position Based on the Balance Sheet

    OpenAIRE

    Spineanu-Georgescu Luciana

    2011-01-01

    Analysis of financial position based on the balance sheet is mainly aimed at assessing the extent to which financial structure chosen by the firm, namely, financial resources, covering the needs reflected in the balance sheet financed. This is done through an analysis known as horizontal analysis balance sheet financial imbalances.

  18. Sense and readability: participant information sheets for research studies.

    Science.gov (United States)

    Ennis, Liam; Wykes, Til

    2016-02-01

    Informed consent in research is partly achieved through the use of information sheets. There is a perception however that these information sheets are long and complex. The recommended reading level for patient information is grade 6, or 11-12 years old. To investigate whether the readability of participant information sheets has changed over time, whether particular study characteristics are related to poorer readability and whether readability and other study characteristics are related to successful study recruitment. Method: We obtained 522 information sheets from the UK National Institute for Health Research Clinical Research Network: Mental Health portfolio database and study principal investigators. Readability was assessed with the Flesch reading index and the Grade level test. Information sheets increased in length over the study period. The mean grade level across all information sheets was 9.8, or 15-16 years old. A high level of patient involvement was associated with more recruitment success and studies involving pharmaceutical or device interventions were the least successful. The complexity of information sheets had little bearing on successful recruitment. Information sheets are far more complex than the recommended reading level of grade 6 for patient information. The disparity may be exacerbated by an increasing focus on legal content. Researchers would benefit from clear guidance from ethics committees on writing succinctly and accessibly and how to balance the competing legal issues with the ability of participants to understand what a study entails. © The Royal College of Psychiatrists 2016.

  19. Advanced friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.

    2012-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  20. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  1. Nonlinear dynamics of thin current sheets

    International Nuclear Information System (INIS)

    Daughton, William

    2002-01-01

    Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode

  2. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    Science.gov (United States)

    Nowicki, Sophie M.J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2018-01-01

    Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change. PMID:29697697

  3. Production (information sheets)

    NARCIS (Netherlands)

    2007-01-01

    Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P

  4. New Applications of Resummation in Non-Abelian Gauge Theories: QED-QCD Exponentiation for LHC Physics, IR-Improved DGLAP Theory and Resummed Quantum Gravity

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    2006-01-01

    We present the elements of three applications of resummation methods in non-Abelian gauge theories: (1), QED-QCD exponentiation and shower/ME matching for LHC physics; (2), IR improvement of DGLAP theory; (3), resummed quantum gravity and the final state of Hawking radiation. In all cases, the extension of the YFS approach, originally introduced for Abelian gauge theory, to non-Abelian gauge theories, QCD and quantum general relativity, leads to new results and solutions which we briefly summarize

  5. Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    Full Text Available In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.

  6. Medication reconciliation in acute care: ensuring an accurate drug regimen on admission and discharge.

    Science.gov (United States)

    Rodehaver, Claire; Fearing, Deb

    2005-07-01

    Several factors contribute to the potential for patient confusion regarding his or her medication regimen, including multiple names for a single drug and formulary variations when the patient receives medications from more than one pharmacy. A 68-year-old woman was discharged from the hospital on a HMG-CoA reductase inhibitor (statin) and resumed her home statin. Eleven days later she returned to the hospital with a diagnosis of severe rhabdomyolysis due to statin overdose. IMPLEMENTING SOLUTIONS: Miami Valley Hospital, Dayton, Ohio, implemented a reconciliation process and order form at admission and discharge to reduce the likelihood that this miscommunication would recur. Initial efforts were trialed on a 44-bed orthopedic unit, with spread of the initiative to the cardiac units and finally to the remaining 22 nursing units. The team successfully implemented initiation of the order sheet, yet audits indicated the need for improvement in reconciling the medications within 24 hours of admission and in reconciling the home medications at the point of discharge. Successful implementation of the order sheet to drive reconciliation takes communication, perseverance, and a multidisciplinary team approach.

  7. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  8. Dipole-sheet multipole magnets for accelerators

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1993-01-01

    The dipole-sheet formalism can be used to describe both cylindrical current-sheet multipole magnets and cylindrical-bore magnets made up of permanent magnet blocks. For current sheets, the formalism provides a natural way of finding a finite set of turns that approximate a continuous distribution. The formalism is especially useful In accelerator applications where large-bore, short, high-field-quality magnets that are dominated by fringe fields are needed. A further advantage of the approach is that in systems with either open or cylindrically symmetric magnetic boundaries, analytical expressions for the three-dimensional fields that are suitable for rapid numerical evaluation can be derived. This development is described in some detail. Also, recent developments in higher-order particle-beam optics codes based on the formalism are described briefly

  9. Influence of temperature fluctuations on equilibrium ice sheet volume

    Science.gov (United States)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2018-01-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  10. Single-port laparoscopic approach of the left liver: initial experience.

    Science.gov (United States)

    Camps Lasa, Judith; Cugat Andorrà, Esteban; Herrero Fonollosa, Eric; García Domingo, María Isabel; Sánchez Martínez, Raquel; Vargas Pierola, Harold; Rodríguez Campos, Aurora

    2014-11-01

    New technological advances have enabled the development of single-port laparoscopic surgery. This approach began with cholecystectomy and subsequently with other abdominal surgeries. However, few publications on laparoscopic liver surgery have described the use of complete single-port access. We present our initial experience of a single-port laparoscopic hepatectomy. Between May 2012 and December 2013, 5 single-port laparoscopic hepatectomies were performed: one for benign disease and four for colorectal liver metastases. The lesions were approached through a 3-5 cm right supraumbilical incision using a single-port access device. All the lesions were located in hepatic segments II or III. Four left lateral sectorectomies and one left hepatectomy were performed. Median operative time was 135 min. No cases were converted to conventional laparoscopic or open surgery. The oral intake began at 18 h. There were no postoperative complications and no patients required blood transfusion. The median hospital stay was 3 days. The degree of satisfaction was very good in 4 cases and good in one. Patients resumed their normal daily activities at 8 days. Single-port laparoscopic hepatectomy is safe and feasible in selected cases and may reduce surgical aggression and offer better cosmetic results. Comparative studies are needed to determine the real advantages of this approach. Copyright © 2014 AEC. Published by Elsevier Espana. All rights reserved.

  11. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  12. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2003-07-01

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  13. Firm Investment and Balance-Sheet Problems in Japan

    OpenAIRE

    Toshitaka Sekine

    1999-01-01

    This paper investigates whether balance-sheet conditions of firms and their main banks matter for firm investment behavior using dynamic corporate panel data in Japan for the period 1985-95. It finds that smaller non-bond issuing firms were facing liquidity constraints; these firms’ balance-sheet conditions (the debt asset ratios) affected their investment from the midst of the bubble era by influencing main banks’ lending to them; and the deterioration of their main banks’ balance-sheet cond...

  14. The quantitative inspection of iron aluminide green sheet using transient thermography

    International Nuclear Information System (INIS)

    Watkins, Michael L.; Hinders, Mark K.; Scorey, Clive; Winfree, William

    1999-01-01

    The recent development of manufacturing techniques for the fabrication of thin iron aluminide, FeAl, sheet requires advanced quantitative methods for on-line inspection. An understanding of the mechanisms responsible for flaws and the development of appropriate flaw detection methods are key elements in an effective quality management system. The first step in the fabrication of thin FeAl alloy sheet is the formation of a green sheet, either by cold rolling or tape casting FeAl powder mixed with organic binding agents. The finished sheet is obtained using a series of process steps involving binder elimination, densification, sintering, and annealing. Non-uniformities within the green sheet are the major contributor to material failure in subsequent sheet processing and the production of non-conforming finished sheet. Previous work has demonstrated the advantages of using active thermography to detect the flaws and heterogeneity within green powder composites (1)(2)(3). The production environment and physical characteristics of these composites provide for unique challenges in developing a rapid nondestructive inspection capability. Thermography is non-contact and minimizes the potential damage to the fragile green sheet. Limited access to the material also demands a one-sided inspection technique. In this paper, we will describe the application of thermography for 100% on-line inspection within an industrial process. This approach is cost competitive with alternative technologies, such as x-ray imaging systems, and provides the required sensitivity to the variations in material composition. The formation of green sheet flaws and their transformation into defects within intermediate and finished sheet products will be described. A green sheet conformance criterion will be presented which would significantly reduce the probability of processing poor quality green sheet which contributes to higher waste and inferior bulk alloy sheet

  15. Antibubbles and fine cylindrical sheets of air

    NARCIS (Netherlands)

    Beilharz, D.; Guyon, A.; Li, E.Q.; Thoraval, Marie-Jean; Thoroddsen, S.T.

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a

  16. Reducing Test Anxiety while Increasing Learning: The Cheat Sheet

    Science.gov (United States)

    Erbe, Brigitte

    2007-01-01

    Student learning is greatly enhanced by studying prior to an exam. Allowing students to prepare a cheat sheet for the exam helps structure this study time and deepens learning. The crib sheet is well defined: one double-sided page of notes. An award for the best and most creative cheat sheet allows the instructor to appreciate the students'…

  17. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  18. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  19. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    Science.gov (United States)

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  20. Revisiting the fundamentals of single point incremental forming by

    DEFF Research Database (Denmark)

    Silva, Beatriz; Skjødt, Martin; Martins, Paulo A.F.

    2008-01-01

    Knowledge of the physics behind the fracture of material at the transition between the inclined wall and the corner radius of the sheet is of great importance for understanding the fundamentals of single point incremental forming (SPIF). How the material fractures, what is the state of strain...

  1. Optimal Design of Sheet Pile Wall Embedded in Clay

    Science.gov (United States)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  2. How might the North American ice sheet influence the northwestern Eurasian climate?

    Science.gov (United States)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the

  3. Breakup characteristics of power-law liquid sheets formed by two impinging jets

    International Nuclear Information System (INIS)

    Bai, Fuqiang; Diao, Hai; Chang, Qing; Wang, Endong; Du, Qing; Zhang, Mengzheng

    2014-01-01

    The breakup characteristics of the shear-thinning power-law liquid sheets formed by two impinging jets have been investigated with the shadowgraph technique. This paper focuses on the effects of spray parameters (jet velocity), physical parameters (viscosity) and geometry parameters (impinging angle and nozzle cross-sectional shape) on the breakup behaviors of liquid sheets. The breakup mode, sheet length and expansion angle of the sheet are extracted from the spray images obtained by a high speed camera. Impinging angle and Weber number play the similar roles in promoting the breakup of liquid sheets. With the increase of jet velocity, five different breakup modes are observed and the expansion angle increases consistently after the closed-rim mode while the sheet length first increases and then decreases. But there exists a concave consisting of a fierce drop and a second rising process on the sheet length curve for the fluid with smaller viscosity. Different nozzle cross-sectional shapes emphasize significant effects on the sheet length and expansion angle of liquid sheets. At a fixed Weber number, the liquid sheet with greater viscosity has a greater sheet length and a smaller expansion angle due to the damping effect of viscosity. (papers)

  4. Fatigue analysis of a PWR steam generator tube sheet

    International Nuclear Information System (INIS)

    Billon, F.; Buchalet, C.; Poudroux, G.

    1985-01-01

    The fatigue analysis of a PWR steam generator (S.G) tube sheet is threefold. First, the flow, pressure and temperature variations during the design transients are defined for both the primary fluid and the normal and auxiliary feedwater. Second, the flow, velocities, pressure and temperature variations of the secondary fluid at the bottom of the downcomer and above the tube sheet are determined for the transients considered. Finally, the corresponding temperatures and stresses in the tube sheet are calculated and the usage factors determined at various locations in the tube sheet. The currently available standard design transients for the primary fluid and the feedwater are too conservative to be utilized as such in the fatigue analysis of the S.G. tube sheets. Thus, a detailed examination and reappraisal of each operating transient was performed. The revised design conditions are used as inputs to the calculation model TEMPTRON. TEMPTRON determines the mixing conditions between the feedwater and the recirculation fluid from the S.G. feedwater nozzles to the center of the tube sheet via the downcomer. The fluid parameters, flow rate and velocity, temperature and pressure variations, as a function of the time during the transients are obtained. Finally, the usage factors at various locations on the tube sheet are derived using the standard ASME section III method

  5. Grounding line transient response in marine ice sheet models

    Directory of Open Access Journals (Sweden)

    A. S. Drouet

    2013-03-01

    Full Text Available Marine ice-sheet stability is mostly controlled by the dynamics of the grounding line, i.e. the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has been investigated within the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project, which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour, executing short-term simulations (200 yr of a steady ice sheet perturbed by the release of the buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding line behaviour of four different flowline ice-sheet models has been compared. The models differ in the physics implemented (full Stokes and shallow shelf approximation, the numerical approach, as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be broadly consistent in terms of grounding line position, rate of surface elevation change and surface velocity. However, still small differences appear for these latter variables, and they can lead to large discrepancies (> 100% observed in terms of ice sheet contribution to sea level when cumulated over time. Despite the recent important improvements of marine ice-sheet models in their ability to compute steady state configurations, our results question the capacity of these models to compute short-term reliable sea-level rise projections.

  6. A laser sheet self-calibration method for scanning PIV

    Science.gov (United States)

    Knutsen, Anna N.; Lawson, John M.; Dawson, James R.; Worth, Nicholas A.

    2017-10-01

    Knowledge of laser sheet position, orientation, and thickness is a fundamental requirement of scanning PIV and other laser-scanning methods. This paper describes the development and evaluation of a new laser sheet self-calibration method for stereoscopic scanning PIV, which allows the measurement of these properties from particle images themselves. The approach is to fit a laser sheet model by treating particles as randomly distributed probes of the laser sheet profile, whose position is obtained via a triangulation procedure enhanced by matching particle images according to their variation in brightness over a scan. Numerical simulations and tests with experimental data were used to quantify the sensitivity of the method to typical experimental error sources and validate its performance in practice. The numerical simulations demonstrate the accurate recovery of the laser sheet parameters over range of different seeding densities and sheet thicknesses. Furthermore, they show that the method is robust to significant image noise and camera misalignment. Tests with experimental data confirm that the laser sheet model can be accurately reconstructed with no impairment to PIV measurement accuracy. The new method is more efficient and robust in comparison with the standard (self-) calibration approach, which requires an involved, separate calibration step that is sensitive to experimental misalignments. The method significantly improves the practicality of making accurate scanning PIV measurements and broadens its potential applicability to scanning systems with significant vibrations.

  7. 16 CFR 460.15 - How installers must handle fact sheets.

    Science.gov (United States)

    2010-01-01

    ... ADVERTISING OF HOME INSULATION § 460.15 How installers must handle fact sheets. If you are an installer, you... from you, you must show them the fact sheet(s) for the type(s) of insulation they want. You can decide...

  8. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  9. Pseudomonas - Fact Sheet

    OpenAIRE

    Public Health Agency

    2012-01-01

    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  10. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments

    DEFF Research Database (Denmark)

    Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.

    2013-01-01

    We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all...

  11. Continuous development of current sheets near and away from magnetic nulls

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Bhattacharyya, R.

    2016-01-01

    The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scaling than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.

  12. From essentialism to another way of doing politics: resuming the transformative potential of the politics of difference

    Directory of Open Access Journals (Sweden)

    Léa Tosold

    2010-12-01

    Full Text Available This article aims at resuming and critically scrutinizing the debate on the politics of difference taken among liberal feminist political theorists. Firstly, I shall provide an overview of theoretical attempts to legitimate the politicization of collective-based subjects taking into account the problem of essentialism. Then I will argue that an exclusive focus on the relationship between essentialism and the conceptualization of collective-based subjects tends to overshadow the relationship between the politicization of differences and a new way of doing politics. I will defend the view that the politicization of differences is transforming rather than undermining the functioning of the polity and the possibility of real social justice. I shall evaluate the works of Anne Phillips and Iris Marion Young as offering new ways of reshaping the political sphere in order to enable proper institutional action against structural inequalities.

  13. Dynamic Antarctic ice sheet during the early to mid-Miocene

    Science.gov (United States)

    Gasson, Edward; DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-03-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability.

  14. Ice Sheet Model Intercomparison Project (ISMIP6) Contribution to CMIP6

    Science.gov (United States)

    Nowicki, Sophie M. J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheetclimate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  15. Microstructural Changes in Brazing Sheet due to Solid-Liquid Interaction

    NARCIS (Netherlands)

    Wittebrood, A.J.

    2009-01-01

    Aluminium brazing sheet is the material of choice to produce automotive heat exchangers. Although in Dutch the official translation of aluminium brazing sheet is “aluminium hardsoldeerplaat” the English name is used in the industry. Aluminium brazing sheet is basically a sandwich material and

  16. Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes.

    Science.gov (United States)

    Kawecki, Marek; Kraut, Małgorzata; Klama-Baryła, Agnieszka; Łabuś, Wojciech; Kitala, Diana; Nowak, Mariusz; Glik, Justyna; Sieroń, Aleksander L; Utrata-Wesołek, Alicja; Trzebicka, Barbara; Dworak, Andrzej; Szweda, Dawid

    2016-06-01

    In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts.

  17. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    Science.gov (United States)

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  18. Applications of a single carbon electrode | Skelskey | SINET ...

    African Journals Online (AJOL)

    Abstract. A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. Key words/phrases: Arc, carbon, dry cell, plasma, welding. SINET: Ethiopian Journal of Science Vol.26(2) 2003: 173-176 ...

  19. Influence of temperature fluctuations on equilibrium ice sheet volume

    Directory of Open Access Journals (Sweden)

    T. B. Mikkelsen

    2018-01-01

    Full Text Available Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB of the Greenland Ice Sheet (GrIS has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr−1 (24–59 Gt yr−1, 95 % credibility for a warming of 3 °C above preindustrial values, or 13 % (10–25, 95 % credibility of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10–0.18 °C, 95 % credibility for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  20. Continuous liquid sheet generator for ion stripping

    International Nuclear Information System (INIS)

    Gavin, B.; Batson, P.; Leemann, B.; Rude, B.

    1984-10-01

    Many of the technical problems of generating a large thin liquid sheet from 0.02 to 0.20 μm thick (3 to 40 μgm/cm 2 ) have been solved. It is shown that this perennial sheet is stable and consonant in dimension. Several ion beam species from the SuperHILAC have been used for evaluation; at 0.11 MeV/n. In one of three modes this sheet serves as an equivalent substitute for a carbon foil. The second mode is characterized by a solid-like charge state distribution but with a varying fraction of unstripped ions. The third mode gives stripping performance akin to a vapor stripping medium. 9 references, 7 figures

  1. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  2. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  3. Simulation spread sheet of Angra-1 secondary circuit

    International Nuclear Information System (INIS)

    Futuro, F.L.; Rucos, J.; Ogando, A.; Maprelian, E.; Bassel, W.S.; Baptista Filho, B.D.

    2000-01-01

    The efficient operation of a Nuclear Power Plant (NPP) requires the continuous identification of derivations in the main operating parameters. The identification and analysis of those derivations allow someone to detect the degradation of instruments or even of any equipment. In order to study this problem the group of thermal generation of Angra 1 NPP, devised the use of a Microsoft Excel spread sheet for the automation of Angra 1 thermal balance. In the set of simulation spread sheets, measured values of the secondary system main parameters were compared with project values for a given reactor power level and condenser pressure. The spread sheets provide the turbines power and efficiency and do the plant thermal balance. This work presents a general description of the spread sheets set and a real case analysis of Angra 1 NPP, showing its precision and use easiness. (author)

  4. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Science.gov (United States)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  5. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Science.gov (United States)

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  6. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  7. Cholera Fact Sheet

    Science.gov (United States)

    ... news-room/fact-sheets/detail/cholera","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... that includes feedback at the local level and information-sharing at the global level. Cholera cases are ...

  8. Magneto-hydrodynamics of coupled fluid–sheet interface with mass suction and blowing

    International Nuclear Information System (INIS)

    Ahmad, R.

    2016-01-01

    There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid–sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses. - Highlights: • The momentum equation is modelled for both the surrounding MHD fluid and the sheet with the effects of mass suction and blowing. • The current study further investigates the heat and mass transfer characteristics between a permeable sheet and the surrounding electrically conducting fluid across the thermal and mass boundary layers. • Both the approximated and analytical techniques have been included for the purpose of comparison, and the perfect numerical agreements have been established with the previous studies. • Dual solutions for the skin friction coefficients are found for various categories of

  9. Effects of electron pressure anisotropy on current sheet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095 (United States); Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  10. Effects of electron pressure anisotropy on current sheet configuration

    International Nuclear Information System (INIS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Vasko, I. Y.

    2016-01-01

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  11. Airy acoustical-sheet spinner tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  12. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  13. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    Science.gov (United States)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  14. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  15. Behavior of protruding lateral plane graphene sheets in liquid dodecane: molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shenghui; Sun, Shuangqing, E-mail: sunshuangqing@upc.edu.cn; Li, Chunling [China University of Petroleum (East China), College of Science (China); Pittman, Charles U. [Mississippi State University, Department of Chemistry (United States); Lacy, Thomas E. [Mississippi State University, Department of Aerospace Engineering (United States); Hu, Songqing, E-mail: songqinghu@upc.edu.cn [China University of Petroleum (East China), College of Science (China); Gwaltney, Steven R. [Mississippi State University, Department of Chemistry (United States)

    2016-11-15

    Molecular dynamics simulations are used to investigate the behavior of two parallel graphene sheets fixed on one edge (lateral plane) in liquid dodecane. The interactions of these sheets and dodecane molecules are studied with different starting inter-sheet distances. The structure of the dodecane solvent is also analyzed. The results show that when the distance between the two graphene sheets is short (less than 6.8 Å), the sheets will expel the dodecane molecules between them and stack together. However, when the distance between two sheets is large (greater than 10.2 Å), the two sheets do not come together, and the dodecane molecules will form ordered layers in the interlayer spacing. The equilibrium distance between the graphene sheets can only take on specific discrete values (3.4, 7.8, and 12.1 Å), because only an integer number of dodecane layers forms between the two sheets. Once the graphene sheets are in contact, they remain in contact; the sheets do not separate to allow dodecane into the interlayer spacing.

  16. Continental Ice Sheets and the Planetary Radiation Budget

    NARCIS (Netherlands)

    Oerlemans, J.

    1980-01-01

    The interaction between continental ice sheets and the planetary radiation budget is potentially important in climate-sensitivity studies. A simple ice-sheet model incorporated in an energybalance climate model provides a tool for studying this interaction in a quantitative way. Experiments in which

  17. Best Management Practice Fact Sheet. 12, Filtering Practices

    OpenAIRE

    Sample, David; Barlow, Stefani

    2013-01-01

    This fact sheet is one of a 15-part series on urban stormwater management practices. This fact sheet discusses filtering practices, what they are, where they are used, how they work, maintenance, limitations, performance, expected costs and includes a glossary of terms.

  18. Best Management Practice Fact Sheet. 10, Dry Swale

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This fact sheet is one of a 15-part series on urban stormwater management practices. This fact sheet discusses dry swales, what they are, where they are used, how they work, maintenance, limitations, performance, expected costs and includes a glossary of terms.

  19. Best Management Practice Fact Sheet. 11, Wet Swale

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This fact sheet is one of a 15-part series on urban stormwater management practices. This fact sheet discusses wet swales, what they are, where they are used, how they work, maintenance, limitations, performance, expected costs and includes a glossary of terms.

  20. Vortices on the string and superstring world sheets

    International Nuclear Information System (INIS)

    Abrikosov, A.A.; Kogan, Ya.I.

    1989-01-01

    The world-sheet dynamics of the first quantized string propagating in non-simply connected space is considered. Presence of the vortices on the world sheet lead to Berezinsky-Kosterlitz-Thouless(BKT) phase transition. Bosonic and superstring cases are discussed. 20 refs.; 2 figs

  1. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2015-09-01

    Full Text Available Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt nanoparticles were deposited on oxidized graphene sheets (cG. The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%. The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA was 88 m2/g (Pt/cG, much higher than that of Pt/C (46 m2/g. The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33% > Pt/cG (7%. The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C.

  2. The Response of Ice Sheets to Climate Variability

    Science.gov (United States)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.

    2017-12-01

    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  3. Hibernia fact sheet

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This fact sheet gives details of the Hibernia oil field including its location, discovery date, oil company's interests in the project, the recoverable reserves of the two reservoirs, the production system used, capital costs of the project, and overall targets for Canadian benefit. Significant dates for the Hibernia project are listed. (UK)

  4. Determination of the strong coupling constant αs(MZ2) under regardment of completely resummed leading and next-to-leading logarithms. Analysis of global event variables measured in hadronic Z decays

    International Nuclear Information System (INIS)

    Wehr, A.

    1994-06-01

    The value of the strong coupling constant α s is determined from a combined analysis of the global event shape variables thrust, heavy jet mass and total and wide jet broadening. The extraction of α s includes the full calculation of O(α s 2 ) terms and leading and next-to-leading logarithms resummed to all orders of α s . The analysis is based on data taken with the DELPHI detector at LEP during 1991 and 1992. The dependence of the result on the detailed matching of the resummed and fixed order terms is studied. The result from the combined theory is compared with values coming from a pure NLLA analysis and as pure O(α s 2 ) analysis, respectively. It is found that the inclusion of the resummed logarithms allows the description of the data in the two jet range and reduces the scale dependence of α s (M Z 2 ) compared to pure O(α s 2 ) theory. The value using the combined NLLA+O(α s 2 ) theory at the scale μ 2 =M Z 2 is α S (M Z 2 )=0.118±0.007. The running of α s is measured from the 1991 data in an energy range from 88.5 to 93.7 GeV. The slope of α s obtained at the Z peak is dα s /dQ/ Q=Mz =-(2.9±2.8)x10 -4 GeV -1 . This value is compatible with QCD and exludes an abelian gluon model with more than two standard deviations. (orig.)

  5. A simple holistic hypothesis for the self-destruction of ice sheets

    Science.gov (United States)

    Hughes, T.

    2011-07-01

    Ice sheets are the only components of Earth's climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets ( Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth's albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.

  6. Balance sheet capacity and endogenous risk

    OpenAIRE

    Jon Danielsson; Hyun Song Shin; Jean-Pierre Zigrand

    2011-01-01

    Banks operating under Value-at-Risk constraints give rise to a well-defined aggregate balance sheet capacity for the banking sector as a whole that depends on total bank capital. Equilibrium risk and market risk premiums can be solved in closed form as functions of aggregate bank capital. We explore the empirical properties of the model in light of recent experience in the financial crisis and highlight the importance of balance sheet capacity as the driver of the financial cycle and market r...

  7. Symmetry breaking bifurcations of a current sheet

    International Nuclear Information System (INIS)

    Parker, R.D.; Dewar, R.L.; Johnson, J.L.

    1990-01-01

    Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths L p , the resistivity gradient drives flows that cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found: a transition to an asymmetric island chain with nonzero, positive, or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior, which involves a competition between secondary current sheet instability and coalescence

  8. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition

    International Nuclear Information System (INIS)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Turner, Kevin T; Bargatin, Igor; Shaygan, Mehrdad

    2016-01-01

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al_2O_3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young’s modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young’s modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed. (paper)

  9. Principles for designing proteins with cavities formed by curved β sheets

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.; Tang, Yuefeng; Oberdorfer, Gustav; Liu, Gaohua; Swapna, G. V. T.; Guan, Rongjin; Silva, Daniel-Adriano; Dou, Jiayi; Pereira, Jose Henrique; Xiao, Rong; Sankaran, Banumathi; Zwart, Peter H.; Montelione, Gaetano T.; Baker, David

    2017-01-12

    Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.

  10. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  11. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    Science.gov (United States)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  12. Silicon Sheet Quality is Improved By Meniscus Control

    Science.gov (United States)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  13. Oscillations of spherical fullerenes interacting with graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  14. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    Science.gov (United States)

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  15. Should Cheat Sheets be Used as Study Aids in Economics Tests?

    OpenAIRE

    Yoav Wachsman

    2002-01-01

    This paper reports an experiment that investigates the effectiveness of cheat sheets as study aids for economics tests. A cheat sheet is a piece of paper that students can write anything they want on and use during a test. I find that both preparing and using a cheat sheet improves students' test performance. Additionally, there is no evidence that students become over dependent on their cheat sheets for answers.

  16. Bamboo Fibre Reinforced Cement Used as a Roofing Sheet | Alade ...

    African Journals Online (AJOL)

    Bamboo fibre roofing sheet was able to withstand an average load of 51Kg, which is above the minimum required strength of 50kg. Comparatively, Asbestos roofing sheets and coconut fibre roofing sheets of similar dimensions had failure loads of 104.65Kg and 79Kg respectively. When immersed in water, bamboo fibre ...

  17. Apparel Manufacturing (Course Outline), Industrial Single Needle Machines and Machine Practice: 9377.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This course includes a study of the industrial single needle machine, its principal parts, general care, threading, and basic skills in machine practice. Instructional materials include films, illustration, information sheets, and other materials. (CK)

  18. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  19. Tearing resistance of some co-polyester sheets

    International Nuclear Information System (INIS)

    Kim, Ho Sung; Karger-Kocsis, Jozsef

    2004-01-01

    A three-zone model consisting of initial, evolutionary and stabilised plastic zones for tearing resistance was proposed for polymer sheets. An analysis with the model, based on the essential work of fracture (EWF) approach, was demonstrated to be capable for predicting specific total work of fracture along the tear path across all the plastic zones although accuracy of specific essential work of fracture is subject to improvement. Photo-elastic images were used for identification of plastic deformation sizes and profiles. Fracture mode change during loading was described in relation with the three zones. Tearing fracture behaviour of extruded mono- and bi-layer sheets of different types of amorphous co-polyesters and different thicknesses was investigated. Thick material exhibited higher specific total work of tear fracture than thin mono-layer sheet in the case of amorphous polyethylene terephthalate (PET). This finding was explained in terms of plastic zone size formed along the tear path, i.e., thick material underwent larger plastic deformation than thin material. When PET and polyethylene terephthalate glycol (PETG) were laminated with each other, specific total work of fracture of the bi-layer sheets was not noticeably improved over that of the constituent materials

  20. Substructuring in the implicit simulation of single point incremental sheet forming

    NARCIS (Netherlands)

    Hadoush, A.; van den Boogaard, Antonius H.

    2009-01-01

    This paper presents a direct substructuring method to reduce the computing time of implicit simulations of single point incremental forming (SPIF). Substructuring is used to divide the finite element (FE) mesh into several non-overlapping parts. Based on the hypothesis that plastic deformation is

  1. Annual Energy Balance Sheets 2001-2002

    International Nuclear Information System (INIS)

    2004-01-01

    During the year 2002 the primary supply of energy reached 629 TWh, which is 7.7 TWh less than 2001. The decrease originates mainly from the reduced electricity production from water power. Also the electricity production in nuclear power plants decreased by 4.5 TWh. If we were to look at the supplied energy for final consumption we will find a slightly rise by 1.8 TWh. The year 2002 was warmer than a 'normal' year and that consequently brings lower energy needs. Compared with 2001, 2002 was not warmer and a net electricity import of 5.4 TWh covered the energy needs. The energy use increased by 3.3 TWh between 2002 and 2001. The industry sector shows the largest rise by 2.9 TWh, nearly 2 per cent. Within that sector, energy from biomass fuel had a rise by 6.7 per cent. The household sector decreases its energy use by 2.7 per cent, and oil and electricity show the largest decrease. The proportionately high electricity price probably had a slowing down effect on the electricity use. The balance sheets of energy sources are showing the total supply and consumption of energy sources expressed in original units, i.e. units recorded in the primary statistics - mainly commercial units. The production of derived energy commodities is recorded on the supply - side of the balance sheets of energy sources, which is not the case in the energy balance sheets. The balance sheets of energy sources also include specifications of input--output and energy consumption in energy conversion industries. The energy balance sheets are based on primary data recorded in the balance sheets of energy sources, here expressed in a common energy unit, TJ. The production of derived energy is recorded in a second flow-step comprising energy turnover in energy conversion and is also specified in complementary input - output tables for energy conversion industries. The following items are shown in the energy balance sheets. 1.1 Inland supply of primary energy; 1.3 Import; 1.4 Export; 1.5 Changes in

  2. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    Science.gov (United States)

    van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent

    2017-06-01

    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  3. Active current sheets near the earth's bow shock

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Kessel, R.L.; Brown, C.C.; Woolliscroft, L.J.C.; Dunlop, M.W.; Farrugia, C.J.; Hall, D.S.

    1988-01-01

    The authors present here an investigation of active current sheets observed by the AMPTE UK spacecraft near the Earth's bow shock, concentrating on their macroscopic features and geometry. Events selected primarily by flow directions which deviate substantially from the Sun-Earth line show similar characteristics, including their association with an underlying macroscopic current sheet and a hot central region whose flow direction is organized, at least in part, by location relative to the inferred initial intersection point between the current sheet and the bow shock. This region is flanked by edges which, according to a Rankine-Hugoniot analysis, are often fast shocks whose orientation is consistent with that expected if a bulge on the bow shock convected past the spacecraft. They have found the magnetosheath manifestations of these events which they study in detail. They suggest that these events are the direct result of the disruption and reformation of the bow shock by the passage of an interplanetary current sheet, most probably a tangential discontinuity

  4. Financing gas plants using off balance sheet structures

    International Nuclear Information System (INIS)

    Best, R.J.; Malcolm, V.

    1999-01-01

    A means by which to finance oil and gas facilities using off balance sheet structures was presented. Off balance sheet facility financing means the sale by an oil and gas producer of a processing and/or transportation facility to a financial intermediary, who under a Management Agreement, appoints the producer as the operator of the facility. The financial intermediary charges a fixed processing fee to the producer and all the benefits and upside of ownership are retained by the producer. This paper deals specifically with a flexible off balance sheet facility financing structure that can be used to make effective use of discretionary capital which is committed to gas processing and to the construction of new gas processing facilities. Off balance sheet financing is an attractive alternative method of ownership that frees up capital that is locked into the facilities while allowing the producer to retain strategic control of the processing facility

  5. Image Analysis of a Negatively Curved Graphitic Sheet Model for Amorphous Carbon

    Science.gov (United States)

    Bursill, L. A.; Bourgeois, Laure N.

    High-resolution electron micrographs are presented which show essentially curved single sheets of graphitic carbon. Image calculations are then presented for the random surface schwarzite-related model of Townsend et al. (Phys. Rev. Lett. 69, 921-924, 1992). Comparison with experimental images does not rule out the contention that such models, containing surfaces of negative curvature, may be useful for predicting some physical properties of specific forms of nanoporous carbon. Some difficulties of the model predictions, when compared with the experimental images, are pointed out. The range of application of this model, as well as competing models, is discussed briefly.

  6. Heat Exchanger Tube to Tube Sheet Joints Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    M. Iancu

    2013-03-01

    Full Text Available Paper presents the studies made by the authors above the tube to tube sheet fittings of heat exchanger with fixed covers from hydrofining oil reforming unit. Tube fittings are critical zones for heat exchangers failures. On a device made from material tube and tube sheet at real joints dimensions were establish axial compression force and traction force at which tube is extracted from expanded joint. Were used two shapes joints with two types of fittings surfaces, one with smooth hole of tube sheet and other in which on boring surface we made a groove. From extracted expanded tube zones were made samples for corrosion tests in order to establish the corrosion rate, corrosion potential and corrosion current in working mediums such as hydrofining oil and industrial water at different temperatures. The corrosion rate values and the temperature influence are important to evaluate joints durability and also the results obtained shows that the boring tube sheet shape with a groove on hole tube shape presents a better corrosion behavior then the shape with smooth hole tube sheet.

  7. Interaction of a charge with a thin plasma sheet

    International Nuclear Information System (INIS)

    Bordag, M.

    2007-01-01

    The interaction of the electromagnetic field with a two-dimensional plasma sheet intended to describe the pi-electrons of a carbon nanotube or a C 60 molecule is investigated. By first integrating out the displacement field of the plasma or the electromagnetic field, different representations for quantities like the Casimir energy are derived which are shown to be consistent with one another. Starting from the covariant gauge for the electromagnetic field, it is shown that the matching conditions to which the presence of the plasma sheet can be reduced are different from the commonly used ones. The difference in the treatments does not show up in the Casimir force between two parallel sheets, but it is present in the Casimir-Polder force between a charge or a neutral atom and a sheet. At once, since the plasma sheet is a regularization of the conductor boundary conditions, this sheds light on the difference in physics found earlier in the realization of conductor boundary conditions as 'thin' or 'thick' boundary conditions in Phys. Rev. D 70, 085010 (2004)

  8. A Case Study and Balance Sheet Approach to Unemployment.

    Science.gov (United States)

    Hesketh, Beryl; And Others

    1987-01-01

    Describes positive and negative aspects of employment and unemployment in a balance sheet framework. Discusses the value of the balance sheet approach in understanding individual differences in reactions to unemployment. (Author/KS)

  9. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2011-09-01

    Full Text Available We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK. The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  10. BRITICE-CHRONO: Constraining rates and style of marine-influenced ice sheet decay to provide a data-rich playground for ice sheet modellers

    Science.gov (United States)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the fate of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information could become a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. BRITICE-CHRONO is a large (>45 researchers) NERC-funded consortium project comprising Quaternary scientists and glaciologists who will search the seafloor around Britain and Ireland and parts of the landmass in order to find and extract samples of sand, rock and organic matter that can be dated (OSL; Cosmogenic; 14C) to reveal the timing and rate of change of the collapsing British-Irish Ice Sheet. The purpose is to produce a high resolution dataset on the demise on an ice sheet - from the continental shelf edge and across the marine to terrestrial transition. Some 800 new date assessments will be added to those that already exist. This poster reports on the hypotheses that underpin the work. Data on retreat will be collected by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be

  11. Mountain building and the initiation of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck; Bonow, Johan; Langen, Peter Lang

    2013-01-01

    The effects of a new hypothesis about mountain building in Greenland on ice sheet initiation are investigated using an ice sheet model in combination with a climate model. According to this hypothesis, low-relief landscapes near sea level characterised Greenland in Miocene times until two phases...... superimposed by cold and warm excursions. The modelling results show that no ice initiates in the case of the low-lying and almost flat topography prior to the uplifts. However, the results demonstrate a significant ice sheet growth in response to the orographically induced increase in precipitation....... Under conditions that are colder than the present, the ice can overcome the Föhn effect, flow into the interior and form a coherent ice sheet. The results thus indicate that the Greenland Ice Sheet of today is a relict formed under colder conditions. The modelling results are consistent...

  12. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    International Nuclear Information System (INIS)

    Lu Li; Liu Zhenxing; Cao Jinbin

    2002-01-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere

  13. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  14. The evolution and geological footprint of the last Eurasian ice-sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob

    2017-04-01

    During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along

  15. Symmetry breaking bifurcations of a current sheet

    International Nuclear Information System (INIS)

    Parker, R.D.; Dewar, R.L.; Johnson, J.L.

    1988-08-01

    Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths, L p , the resistivity gradient drives flows which cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found - a transition to an asymmetric island chain with nonzero, positive or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior which involves a competition between secondary current sheet instability and coalescence. 31 refs., 6 figs

  16. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    Science.gov (United States)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  17. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    International Nuclear Information System (INIS)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal

    2013-01-01

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed “graphene oxide”) are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L −1 ) of graphene oxide (0.5–5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L −1 ), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L −1 ) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione

  18. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A. [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal); Singh, Neetu; Singh, Manoj K. [University of Aveiro, Center for Mechanical Technology and Automation (TEMA) and Department of Mechanical Engineering (Portugal); Shah, Zahoor A. [University of Toledo, Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (United States); Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal, E-mail: ahmadr@ua.pt [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal)

    2013-07-15

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed 'graphene oxide') are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop-faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L{sup -1}) of graphene oxide (0.5-5 {mu}m) and evaluates glutathione ({gamma}-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L{sup -1}), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L{sup -1}) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and

  19. Machine Shop Suggested Job and Task Sheets. Part I. 25 Elementary Jobs.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This volume consists of elementary job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-five simple machine shop job sheets are included. Some or all of this material is provided for each job sheet: an introductory sheet with aim, checking…

  20. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  1. On the structure of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Peroomian, V.; Richard, R.L.; Zelenyi, L.M.

    1993-01-01

    Results from modeling ion distribution functions in a two-dimensional reduction of the Tsyganenko magnetic field model have enabled the authors to calculate the full ion pressure tensor inside the model magnetotail. A thin current sheet is formed in the distant tail and the pressure tensor within this sheet has significant off-diagonal terms. These terms resulting from quasiadiabatic ion trajectories create azimuthally asymmetric distribution functions which are capable of maintaining stress-balance. Outside the current sheet the off-diagonal terms disappear and moderate anisotropy builds up with P perpendicular/P parallel ∼ 0.8. Closer to the Earth rapid isotropization of the distribution occurs

  2. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    Science.gov (United States)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  3. Research Status on the Heterogeneous Sheet Connection Forming Technology

    Directory of Open Access Journals (Sweden)

    SHI Wen-yong

    2017-04-01

    Full Text Available The heterogeneous sheet connection forming is one of the effective ways to realize lightweight in many fields,such as equipment manufacturing and transportation. However, there are obvious differences in the material properties,when using the traditional connection methods,there is a certain technical bottlenecks. In this paper, the technological characteristics and research status of the welding method and mechanical connection method are discussed in detail,such as the TIC welding and the laser welding. The advantages and development potential of the technology are introduced in the field of the heterogeneous sheet connection,in combination with the industry development and the use demand,the development of the heterogeneous sheet connection technology is expected,to provide the technical support for the research and development of new heterogeneous sheet connection technology.

  4. 1998 energy balance sheet of France

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This paper summarizes the results of the energy balance sheet of France for the year 1998 according to the data published by the energy observatory from the general direction of energy and raw materials (DGEMP) and according to the press communication given by C. Pierret, French state secretary of the industry. The following points are commented: the energy balance sheet (national production and energy independence, the energy shares in the consumption), the decay of the energy bill, and the details of the bill by energy type. (J.S.)

  5. Physics of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Chen, J.

    1993-01-01

    The Earth's magnetotail plays an important role in the solar-wind--magnetosphere coupling. At the midplane of the magnetotail is a current sheet where the dominant magnetic field component reverses sign. The charged particle motion in and near the current sheet is collisionless and nonintegrable, exhibiting chaotic scattering. The current understanding of the dynamical properties of the charged particle motion is discussed. In particular, the relationships between particle dynamics and global attributes of the system are elucidated. Geometrical properties of the phase space determine important physical observables on both micro- and macroscales

  6. Periodic folding of viscous sheets

    Science.gov (United States)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  7. No need to grow my resumé? Mentorship and the intersection of learning between emerging and established leaders.

    Science.gov (United States)

    Stevenson, Lynn; Vaulkhard, Kimberley

    2017-09-01

    Active ongoing learning is a foundational expectation of every healthcare leader whether at the beginning or end of their career. In order for leaders to be nimble and responsive to the ongoing changes in the healthcare environment, they must actively engage in a multiplicity of learning activities. One way of ensuring diversity of learning is for emerging and established leaders to learn together through formal or informal mentoring. This article will explore that intersection and the value add of a reciprocal mentoring relationship where mentor and mentee roles become blurred and joint learning becomes the goal. Capabilities from the LEADS in a Caring Environment framework will be drawn upon, and a challenge is suggested for experienced leaders to go beyond resumé building and invest in emerging leaders, as ultimately it is an investment in their own learning and the future.

  8. Modelling of aluminium sheet forming at elevated temperatures

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Huetink, Han

    2004-01-01

    The formability of Al–Mg sheet can be improved considerably, by increasing the temperature. By heating the sheet in areas with large shear strains, but cooling it on places where the risk of necking is high, the limiting drawing ratio can be increased to values above 2.5. At elevated temperatures,

  9. On normal modes of gas sheets and discs

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1980-01-01

    A method is described for calculating the reflection and transmission coefficients characterizing normal modes of the Goldreich-Lynden-Bell gas sheet. Two families of gas discs without self-gravity for which the normal modes can be found analytically are given and used to illustrate the validity of the sheet approximation. (author)

  10. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    Directory of Open Access Journals (Sweden)

    D. van As

    2017-06-01

    Full Text Available Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the  ∼  12 000 km2 ice sheet area feeding the river. For the 2006–2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified  ∼  56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10–20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at  ∼  1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  11. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  12. Window-dressing in German interwar balance sheets

    OpenAIRE

    Mark Spoerer

    1998-01-01

    German accounting rules value assets and liabilities asymmetrically and thus lead to grossly distorted balance sheets. In the interwar debate on a reform of disclosure regulation, financial experts considered the (undisclosed) tax balance sheet, which had to be drawn up separately for the corporate tax assessment, as a paradigm for adequate financial disclosure. However, due to tax secrecy thay were barred from analyzing tax documents. Using archival evidence, we analyz...

  13. Geometry task & drill sheets : grades 6-8

    CERN Document Server

    Rosenberg, Mary

    2011-01-01

    For grades 6-8, our Common Core State Standards-based combined resource meets the geometry concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills.

  14. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties

    Science.gov (United States)

    Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian

    2018-05-01

    Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.

  15. The Fatigue Characteristics of Bolted Lap Joints of 24S-T Alclad Sheet Materials

    Science.gov (United States)

    1946-10-01

    extremely close bolt fits are needed to o%tain maximum life of bolt ~oint~ under repeated etreseeci. -. Szvzral ty~+?+s of bolt patterns hava been tegted...Memorial Institute on spec~meris of 0.102-i.nch sheet. In particular, figure 4 shows, on a load- life diagram, . results of tests Qn single-bolt...results of tests at the Univer- sity of’ il~~nols on single—bolt specimens, Tables 10 and 11 give reeults of tests, made at the U“ uiversity of Illino~8 , on

  16. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, H.A., E-mail: hw@utg.de [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany); Leuning, N.; Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen, D-52062 Germany (Germany); Andorfer, T.; Jenner, S.; Volk, W. [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany)

    2017-01-01

    Mechanical stress occurring during the manufacturing process of electrical machines detrimentally alters the magnetic properties (iron losses and magnetizability). This affects the efficiency and performance of the machine. Improvement of the manufacturing process in terms of reduced magnetic property deterioration enables the full potential of the magnetic materials to be exploited, and as a result, the performance of the machine to be improved. A high quantity of electrical machine components is needed, with shear cutting (punching, blanking) being the most efficient manufacturing technology. The cutting process leads to residual stresses inside the non-oriented electrical sheet metal, resulting in increased iron losses. This paper studies the residual stresses induced by punching with different shear cutting parameters, taking a qualitative approach using finite element analysis. In order to calibrate the finite element analysis, shear cutting experiments are performed. A single sheet tester analysis of the cut blanks allows the correlation between residual stresses, micro hardness measurements, cutting surface parameters and magnetic properties to be studied.

  17. Estimating the future ice sheet hydropower potential in Paakitsoq, Ilulissat, West Greenland

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Mottram, R.H.; Nielsen, C.

    2008-01-01

    sheet has emphasized the risk of sudden changes in catchment supply. In this study, we present a thorough investigation of hydropower feasibility at the Paakitsoq basin, near Ilulissat in West Greenland. The catchment is completely dominated by the Greenland ice sheet which provides large quantities...... of meltwater during the summer season. However, geometrical changes in the ice sheet, for example due to a retreat or an advance of the ice sheet margin, could change the hydrological catchment within the ice sheet. Such a change would have a devastating economical impact as a hydropower plant is a significant...... long-term investment for an Arctic community of modest population. Here we present a new bedrock and surface map of the Paakitsoq/Swiss Camp part of the Greenland ice sheet and a prediction of the future discharge up to 2080 AD using regional climate model output, dynamic ice sheet modelling...

  18. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  19. The Efficacy of a Silicone Sheet in Postoperative Scar Management.

    Science.gov (United States)

    Kim, Jin Sam; Hong, Joon Pio; Choi, Jong Woo; Seo, Dong Kyo; Lee, Eun Sook; Lee, Ho Seong

    2016-09-01

    Silicone gel sheeting has been introduced to prevent scarring, but objective evidence for its usefulness in scar healing is limited. Therefore, the authors' objective was to examine the effectiveness of silicone gel sheeting by randomly applying it to only unilateral scars from a bilateral hallux valgus surgery with symmetrical closure. In a prospective randomized, blinded, intraindividual comparison study, the silicone gel sheeting was applied to 1 foot of a hallux valgus incision scar (an experiment group) for 12 weeks upon removal of the stitches, whereas the symmetrical scar from the other foot was left untreated (a control group). The scars were evaluated at 4 and 12 weeks after the silicon sheet application. The Vancouver Scar Scale was used to measure the vascularity, pigmentation, pliability, height, and length of the scars. Adverse effects were also evaluated, and they included pain, itchiness, rash, erythema, and skin softening. At weeks 4 and 12, the experiment group scored significantly better on the Vancouver Scar Scale in all items, except length (P sheet does not cause adverse effects (P sheet application did show a significant improvement in prevention of postoperative scarring.

  20. 1970-1997 energy balance-sheets

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of this document is to bring together a consistent and harmonized set of statistical data on energy economics in the French territory. The information is based on the global and structural approach of the different energy balance-sheets published between 1970 and 1997. The first chapter gives a general idea of the energy situation of the passed year and outlines the evolution of the main aggregates (production, primary and final consumption etc..) comparatively to those of the general economy. The second chapter is devoted to the history of energy economics. Time series of indicators and diagrams allow to precise the structural modifications that occurred during the last decades. The main transformations in the national energy production and the development of the different energy sources in the industry, the residential and tertiary sectors and in the transportation sector are described too. The third chapter gives numerical data on energy for the last 28 years using the common Mtpe unit (million of tons of petroleum equivalent). These balance sheets are based on new energy keeping methods and use identical equivalence coefficients. The last chapter presents the energy balance sheets for the last three years, using the proper units for coal, petroleum, gas and electricity. (J.S.)

  1. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    International Nuclear Information System (INIS)

    Kheyri, A.; Nourbakhsh, Z.; Darabi, E.

    2016-01-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  2. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kheyri, A. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Nourbakhsh, Z., E-mail: z.nourbakhsh@sci.ui.ac.ir [Physics Department, Faculty of Science, University of Isfahan, Isfahan (Iran, Islamic Republic of); Darabi, E. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-08-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  3. Bracing system of the reflecting sheets making up an insulating pile

    International Nuclear Information System (INIS)

    Carr, R.W.

    1976-01-01

    In order to reduce heat and radiation losses, the body of nuclear reactors and the connected pipe work are encased in reflecting and insulating piles of thin spaced sheets of aluminium or stainless steel. These spaced sheets are then encased in thicker and more solid internal and external shells. The piles and shells are generally shaped to follow the contour of the reactor and connected piping. It is therefore necessary to have available a study bracing system to keep the pile intact during the various handling and assembly operations. The fastening system must also exert an effect on the edge of the pile to prevent the sheets making it up from shifting in relation to each other. The description is given of a fastening system that includes an oblong section to be fitted along the edges of the piles up sheets; bracing substantially perpendicular to the oblong section, to space the sheets of the stack in pairs; and a maintaining system, normally perpendicular to the oblong section, to enable the fastener to be clipped to the edge of the sheets by bending it around the edge of each sheet of the pile [fr

  4. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    Science.gov (United States)

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  5. Bringing Sheet Music to Life: My Experiences with OMR

    Directory of Open Access Journals (Sweden)

    Andrew Bullen

    2008-06-01

    Full Text Available This article describes the process of digitizing sheet music celebrating Pullman porters and rail travel from the 1870s-1920s. The process involves 1 digitizing sheet music, 2 running the digitized sheet music through an Optical Musical Recognition (OMR software package, 3cleaning up the resulting file, 4 converting it into an .mp3/MIDI file, and 5 tweaking it to use the voices/instruments of a music editing software program. The pros and cons of some popular OMR programs are discussed.

  6. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1986-04-20

    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  7. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  8. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun

    2004-01-01

    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  9. Patterns through elastic instabilities, from thin sheets to twisted ribbons

    Science.gov (United States)

    Damman, Pascal

    Sheets embedded in a given shape by external forces store the exerted work in elastic deformations. For pure tensile forces, the work is stored as stretching energy. When the forces are compressive, several ways to store the exerted work, combining stretching and bending deformations can be explored. For large deflections, the ratio of bending, Eh3ζ2 /L4 and stretching, Ehζ4 /L4 energies, suggests that strain-free solutions should be favored for thin sheets, provided ζ2 >>h2 (where E , ζ , Land h are the elastic modulus, the deflection, a characteristic sheet size and its thickness). For uniaxially constrained sheets deriving from the Elastica, strain-free solutions are obvious, i.e., buckles, folds or wrinkles grow to absorb the stress of compression. In contrast, crumpled sheets exhibit ``origami-like'' solutions usually described as an assembly of flat polygonal facets delimitated by ridges focusing strains are observed. This type of solutions is particularly interesting since a faceted morphology is isometric to the undeformed sheet, except at those narrow ridges. In some cases however, the geometric constraints imposed by the external forces do not allow solutions with negligible strain in the deformed state. For instance, considering a circular sheet on a small drop, so thin that bending becomes negligible, i.e., Eh3 / γL2 geometry and a competition between various energy terms, involving stretching and bending modes.

  10. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  11. Research on Computer Integrated Manufacturing of Sheet Metal Parts for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Pan Wei-Min

    2016-01-01

    Full Text Available Lithium battery has been widely used as the main driving force of the new energy vehicle in recent years. Sheet metal parts are formed by means of pressure forming techniques with the characteristics of light weight, small size and high structural strength. The sheet metal forming has higher productivity and material utilization than the mechanical cutting, therefore sheet metal parts are widely used in many fields, such as modern automotive industry, aviation, aerospace, machine tools, instruments and household appliances. In this paper, taking a complex lithium battery box as an example, the integrated manufacturing of sheet metal parts is studied, and the digital integrated design and manufacturing process system is proposed. The technology is studied such as sheet metal design, unfolding, sheet nesting and laser cutting, CNC turret punch stamping programming, CNC bending etc. The feasibility of the method is verified through the examples of products and the integrated manufacturing of sheet metal box is completed.

  12. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    Science.gov (United States)

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  13. 24 CFR 1710.117 - Cost sheet, signature of Senior Executive Officer.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Cost sheet, signature of Senior... REGISTRATION Reporting Requirements § 1710.117 Cost sheet, signature of Senior Executive Officer. (a) Cost... description of our subdivision and development plans. Signature of Senior Executive Officer (2) Cost sheet...

  14. Preparation of multilayer graphene sheets and their applications for particle accelerators

    Science.gov (United States)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  15. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel

    2005-01-01

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study

  16. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  17. Quantifying stretching and rearrangement in epithelial sheet migration

    International Nuclear Information System (INIS)

    Lee, Rachel M; Nordstrom, Kerstin N; Losert, Wolfgang; Kelley, Douglas H; Ouellette, Nicholas T

    2013-01-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a finite-time Lyapunov exponent (FTLE) analysis, we find that—in spite of large fluctuations—the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e. positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D m in 2 , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density. (paper)

  18. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  19. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  20. SiC/C composite sheets produced from polycarbosilane/resin/bonder mixtures. Polycarbosilane/jushi/bonder kongokei kara sakuseishita SiC/C fukugo sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K. (The National Defense Academy, Kanagawa (Japan)); Koga, J.; Iwata, T.; Yamanaka, S.; Ono, M. (Mitsubishi Materials Corp., Saitama (Japan))

    1992-02-01

    In a course of work to improve anti-oxidative property and strength of sheets of carbonic composite materials with resins, and further to produce those sheets in an industrial scale, it was tried to prepare two types of 0.4 {approximately} 0.6 m thickness SiC / C composite sheets by heat treatment of two green sheets polycarbosilane ( PCS ) / fran resin / binder type and PCS / (phenol-formaldehyde resin / binder type ) at temperature of 1200 {approximately} 1400{degree}C in an atmosphere of nitrogen. The sheets thus made were subjected to SEM observation, X-ray diffraction, measurement of density and electric resistance, and to tests on weight loss by heating and on bending. The texture of them were as tight as that of their resin carbon ( glassy carbon ). The structural feature is formation of amorphous SiO{sub 2} as a secondary product, This indicates that Si in PCS reacts with oxygen in resin during pyrolysis. The bending strength and anti-oxidative property depend on the SiC content from PCS and that the mixing effect of SiC on them are feasible when a mixing ratio of PCS / resin is higher than (2/1). 13 ref., 7 figs., 2 tabs.