WorldWideScience

Sample records for single semantic representation

  1. Learning Document Semantic Representation with Hybrid Deep Belief Network

    Directory of Open Access Journals (Sweden)

    Yan Yan

    2015-01-01

    it is also an effective way to remove noise from the different document representation type; the DBN can enhance extract abstract of the document in depth, making the model learn sufficient semantic representation. At the same time, we explore different input strategies for semantic distributed representation. Experimental results show that our model using the word embedding instead of single word has better performance.

  2. The Interaction between Semantic Representation and Episodic Memory.

    Science.gov (United States)

    Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen

    2018-02-01

    The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.

  3. Action representation: crosstalk between semantics and pragmatics.

    Science.gov (United States)

    Prinz, Wolfgang

    2014-03-01

    Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.

  4. Usage of semantic representations in recognition memory.

    Science.gov (United States)

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  5. Temporal Representation in Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  6. The semantic representation of prejudice and stereotypes.

    Science.gov (United States)

    Bhatia, Sudeep

    2017-07-01

    We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Semantic Knowledge Representation (SKR) API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The SKR Project was initiated at NLM in order to develop programs to provide usable semantic representation of biomedical free text by building on resources...

  8. Semantic representations in the temporal pole predict false memories.

    Science.gov (United States)

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  9. Semantic representations in the temporal pole predict false memories

    Science.gov (United States)

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  10. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    Science.gov (United States)

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full

  11. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    Science.gov (United States)

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  12. Perceptual, semantic and affective dimensions of experience of abstract and representational paintings

    Directory of Open Access Journals (Sweden)

    Marković Slobodan

    2011-01-01

    Full Text Available In this study the difference between representational and abstract paintings in judgments on perceptual, semantic and affective dimensions was investigated. Two groups of participants judged the sets of representational and abstract paintings on three groups of dimensions: perceptual (Form, Color, Space and Complexity, semantic (Illusion-Construction of Reality, Expression, Ideology and Decoration, and affective (Hedonic Tone, Arousal, Relaxation and Regularity. The results have shown that representational paintings have higher judgments on the perceptual dimensions of Form and Complexity, the semantic dimension of the Illusion of Reality (the opposite pole of the Construction of Reality, and the affective dimension of Regularity. On the other hand, abstract paintings have higher judgments on the perceptual dimension of Color, the semantic dimensions of Construction of Reality (the opposite pole of the Illusion of Reality and Expression, and the affective dimension Arousal. A discriminant analysis indicated that all three sets of dimensions are relatively good predictors of the classification of representational and abstract paintings (61-100%. The results suggest that the subjective categorization of paintings is generally based on the recognizability of pictorial content (representational vs. abstract, but some formal or stylistic properties play a role in the categorization, as well: some expressionistic representational paintings were classified in an abstract category, and some geometrically abstract paintings were classified as representational.

  13. Linking somatic and symbolic representation in semantic memory: the dynamic multilevel reactivation framework.

    Science.gov (United States)

    Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J

    2016-08-01

    Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate

  14. Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD.

    Science.gov (United States)

    Bullinaria, John A; Levy, Joseph P

    2012-09-01

    In a previous article, we presented a systematic computational study of the extraction of semantic representations from the word-word co-occurrence statistics of large text corpora. The conclusion was that semantic vectors of pointwise mutual information values from very small co-occurrence windows, together with a cosine distance measure, consistently resulted in the best representations across a range of psychologically relevant semantic tasks. This article extends that study by investigating the use of three further factors--namely, the application of stop-lists, word stemming, and dimensionality reduction using singular value decomposition (SVD)--that have been used to provide improved performance elsewhere. It also introduces an additional semantic task and explores the advantages of using a much larger corpus. This leads to the discovery and analysis of improved SVD-based methods for generating semantic representations (that provide new state-of-the-art performance on a standard TOEFL task) and the identification and discussion of problems and misleading results that can arise without a full systematic study.

  15. Preexisting semantic representation improves working memory performance in the visuospatial domain.

    Science.gov (United States)

    Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker

    2016-05-01

    Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.

  16. semantic representation and the translation of poetry

    African Journals Online (AJOL)

    about how to deal with the purpose, thematic structure, and style of the original. It should ... overall semantic representation of the poem, despite the fact that his model makes use of ... examples of itself based on previous experience. ..... return to the metaphor of the original, and even here the metaphor is more explicit,.

  17. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  18. Learning semantic histopathological representation for basal cell carcinoma classification

    Science.gov (United States)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  19. Natural semantic networks in the Social Representations of Responsibility

    Directory of Open Access Journals (Sweden)

    Humberto Emilio Aguilera Arévalo

    2010-07-01

    Full Text Available The study of social representations of responsibility is a fundamental construct of the present democratic societies. Different empirical techniques such as natural semantic networks can significantly improve the approach to the object of study than the traditional associationist techniques. The present study examines natural semantic networks of six stimulus words with respect to responsibility and irresponsibility at the individual, in group and out group level in a sample of Guatemalan students.

  20. The semantic representation of event information depends on the cue modality: an instance of meaning-based retrieval.

    Science.gov (United States)

    Karlsson, Kristina; Sikström, Sverker; Willander, Johan

    2013-01-01

    The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues.

  1. The semantic representation of event information depends on the cue modality: an instance of meaning-based retrieval.

    Directory of Open Access Journals (Sweden)

    Kristina Karlsson

    Full Text Available The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues.

  2. Knowledge Representation from Classification Schema to Semantic Web (I

    Directory of Open Access Journals (Sweden)

    Silvia-Adriana Tomescu

    2014-01-01

    Full Text Available In this essay we aim to investigate knowledge as approach of describing possible worlds through classification schema, taxonomies, ontologies and semantic web. We focus on the historical background and the methods of culture and civilization representation. In this regard, we studied the ancient concern to classify knowledge, from the biblical period when the Tree Metaphor concentrated the essence of knowledge, to the Francis Bacon classification and then Paul Otlet and we analysed the languages used in the scientific fields and then in the information science filed, emphasizing on the improvements of the ICT: hypertext and semantic web. We paid a special attention to the knowledge construction through math language and exchange standards. The reason of the approach comes from the logic and philosophic base of the knowledge representation that underline the idea that only properly structured scientific domains ensure the progress of the society.

  3. Neural overlap of L1 and L2 semantic representations in speech: A decoding approach.

    Science.gov (United States)

    Van de Putte, Eowyn; De Baene, Wouter; Brass, Marcel; Duyck, Wouter

    2017-11-15

    Although research has now converged towards a consensus that both languages of a bilingual are represented in at least partly shared systems for language comprehension, it remains unclear whether both languages are represented in the same neural populations for production. We investigated the neural overlap between L1 and L2 semantic representations of translation equivalents using a production task in which the participants had to name pictures in L1 and L2. Using a decoding approach, we tested whether brain activity during the production of individual nouns in one language allowed predicting the production of the same concepts in the other language. Because both languages only share the underlying semantic representation (sensory and lexical overlap was maximally avoided), this would offer very strong evidence for neural overlap in semantic representations of bilinguals. Based on the brain activation for the individual concepts in one language in the bilateral occipito-temporal cortex and the inferior and the middle temporal gyrus, we could accurately predict the equivalent individual concepts in the other language. This indicates that these regions share semantic representations across L1 and L2 word production. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Semantic Web: From Representation to Realization

    Science.gov (United States)

    Thórisson, Kristinn R.; Spivack, Nova; Wissner, James M.

    A semantically-linked web of electronic information - the Semantic Web - promises numerous benefits including increased precision in automated information sorting, searching, organizing and summarizing. Realizing this requires significantly more reliable meta-information than is readily available today. It also requires a better way to represent information that supports unified management of diverse data and diverse Manipulation methods: from basic keywords to various types of artificial intelligence, to the highest level of intelligent manipulation - the human mind. How this is best done is far from obvious. Relying solely on hand-crafted annotation and ontologies, or solely on artificial intelligence techniques, seems less likely for success than a combination of the two. In this paper describe an integrated, complete solution to these challenges that has already been implemented and tested with hundreds of thousands of users. It is based on an ontological representational level we call SemCards that combines ontological rigour with flexible user interface constructs. SemCards are machine- and human-readable digital entities that allow non-experts to create and use semantic content, while empowering machines to better assist and participate in the process. SemCards enable users to easily create semantically-grounded data that in turn acts as examples for automation processes, creating a positive iterative feedback loop of metadata creation and refinement between user and machine. They provide a holistic solution to the Semantic Web, supporting powerful management of the full lifecycle of data, including its creation, retrieval, classification, sorting and sharing. We have implemented the SemCard technology on the semantic Web site Twine.com, showing that the technology is indeed versatile and scalable. Here we present the key ideas behind SemCards and describe the initial implementation of the technology.

  5. Color perception involves color representations firstly at a semantic level and then at a lexical level.

    Science.gov (United States)

    Heurley, Loïc P; Brouillet, Thibaut; Chesnoy, Gabrielle; Brouillet, Denis

    2013-03-01

    Studies and models have suggested that color perception first involves access to semantic representations of color. This result leads to two questions: (1) is knowledge able to influence the perception of color when associated with a color? and (2) can the perception of color really involve only semantic representations? We developed an experiment where participants have to discriminate the color of a patch (yellow vs. green). The target patch is preceded either by a black-and-white line drawing or by a word representing a natural object associated with the same or a different color (banana vs. frog). We expected a priming effect for pictures because, with a 350-ms SOA, they only involve access to semantic representations of color, whereas words seem only elicit an access to lexical representations. As expected, we found a priming effect for pictures, but also for words. Moreover, we found a general slowdown of response times in the word-prime-condition suggesting the need of an additional processing step to produce priming. In a second experiment, we manipulated the SOA in order to preclude a semantic access in the word-prime-condition that could explain the additional step of processing. We also found a priming effect, suggesting that interaction with perception occurs at a lexical level and the additional step occurs at a color perception level. In the discussion, we develop a new model of color perception assuming that color perception involves access to semantic representations and then access to lexical representations.

  6. Rich Representations with Exposed Semantics for Deep Visual Reasoning

    Science.gov (United States)

    2016-06-01

    of a relationship between visual recognition, associative processing, and episodic memory and provides important clues into the neural mechanism...provides critical evidence of a relationship between visual recognition, associative processing, and episodic memory and provides important clues into...From - To) ;run.- ~01~ Final!Technical 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Rich Representations with Exposed Semantics for Deep Visual

  7. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    Science.gov (United States)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mie; Eshow, Michelle

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  8. An event-related potential investigation of the relationship between semantic and perceptual levels of representation

    NARCIS (Netherlands)

    Van Schie, H.T.; Wijers, A.A.; Kellenbach, M.L; Stowe, L.A.

    The present study was conducted to investigate relationships between semantic and perceptual levels of representation. A picture - word repetition paradigm was used in which we manipulated the semantic relationship between pictures and words. Experiment I involved two types of trials, one with words

  9. A neural network model of semantic memory linking feature-based object representation and words.

    Science.gov (United States)

    Cuppini, C; Magosso, E; Ursino, M

    2009-06-01

    Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).

  10. Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.

    Science.gov (United States)

    Zhu, Min; Mirhaji, Parsa

    2008-11-06

    PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.

  11. SEE: structured representation of scientific evidence in the biomedical domain using Semantic Web techniques.

    Science.gov (United States)

    Bölling, Christian; Weidlich, Michael; Holzhütter, Hermann-Georg

    2014-01-01

    Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats.

  12. A Walk-based Semantically Enriched Tree Kernel Over Distributed Word Representations

    DEFF Research Database (Denmark)

    Srivastava, Shashank; Hovy, Dirk

    2013-01-01

    We propose a walk-based graph kernel that generalizes the notion of tree-kernels to continuous spaces. Our proposed approach subsumes a general framework for word-similarity, and in particular, provides a flexible way to incorporate distributed representations. Using vector representations......, such an approach captures both distributional semantic similarities among words as well as the structural relations between them (encoded as the structure of the parse tree). We show an efficient formulation to compute this kernel using simple matrix multiplication operations. We present our results on three...

  13. Neural Semantic Parsing by Character-based Translation: Experiments with Abstract Meaning Representations

    NARCIS (Netherlands)

    van Noord, Rik; Bos, Johannes

    2017-01-01

    We evaluate the character-level translation method for neural semantic parsing on a large corpus of sentences annotated with Abstract Meaning Representations (AMRs). Using a sequence-to-sequence model, and some trivial preprocessing and postprocessing of AMRs, we obtain a baseline accuracy of 53.1

  14. Learning Semantic Tags from Big Data for Clinical Text Representation.

    Science.gov (United States)

    Li, Yanpeng; Liu, Hongfang

    2015-01-01

    In clinical text mining, it is one of the biggest challenges to represent medical terminologies and n-gram terms in sparse medical reports using either supervised or unsupervised methods. Addressing this issue, we propose a novel method for word and n-gram representation at semantic level. We first represent each word by its distance with a set of reference features calculated by reference distance estimator (RDE) learned from labeled and unlabeled data, and then generate new features using simple techniques of discretization, random sampling and merging. The new features are a set of binary rules that can be interpreted as semantic tags derived from word and n-grams. We show that the new features significantly outperform classical bag-of-words and n-grams in the task of heart disease risk factor extraction in i2b2 2014 challenge. It is promising to see that semantics tags can be used to replace the original text entirely with even better prediction performance as well as derive new rules beyond lexical level.

  15. Semantic Network and Frame Knowledge Representation Formalisms in Artificial Intelligence

    OpenAIRE

    Rashid, Pshtiwan Qader

    2015-01-01

    ABSTRACT: Choosing a suitable method to represent the knowledge concerning the real world is one of the major issues involved in Artificial Intelligence. The purpose of this research is to consider the important beneficial roles of semantic network and frame formalisms for knowledge representation in Artificial Intelligence. The basic properties of the above methods for appropriate structuring and arranging the knowledge are presented. Some types of relationships, the conceptual graph...

  16. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    Science.gov (United States)

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2017-09-01

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Are there mental lexicons? The role of semantics in lexical decision.

    Science.gov (United States)

    Dilkina, Katia; McClelland, James L; Plaut, David C

    2010-12-13

    What is the underlying representation of lexical knowledge? How do we know whether a given string of letters is a word, whereas another string of letters is not? There are two competing models of lexical processing in the literature. The first proposes that we rely on mental lexicons. The second claims there are no mental lexicons; we identify certain items as words based on semantic knowledge. Thus, the former approach - the multiple-systems view - posits that lexical and semantic processing are subserved by separate systems, whereas the latter approach - the single-system view - holds that the two are interdependent. Semantic dementia patients, who have a cross-modal semantic impairment, show an accompanying and related lexical deficit. These findings support the single-system approach. However, a report of an SD patient whose impairment on lexical decision was not related to his semantic deficits in item-specific ways has presented a challenge to this view. If the two types of processing rely on a common system, then shouldn't damage impair the same items on all tasks? We present a single-system model of lexical and semantic processing, where there are no lexicons, and performance on lexical decision involves the activation of semantic representations. We show how, when these representations are damaged, accuracy on semantic and lexical tasks falls off together, but not necessarily on the same set of items. These findings are congruent with the patient data. We provide an explicit explanation of this pattern of results in our model, by defining and measuring the effects of two orthogonal factors - spelling consistency and concept consistency. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Biomedical semantics in the Semantic Web.

    Science.gov (United States)

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  19. Coupling ontology driven semantic representation with multilingual natural language generation for tuning international terminologies.

    Science.gov (United States)

    Rassinoux, Anne-Marie; Baud, Robert H; Rodrigues, Jean-Marie; Lovis, Christian; Geissbühler, Antoine

    2007-01-01

    The importance of clinical communication between providers, consumers and others, as well as the requisite for computer interoperability, strengthens the need for sharing common accepted terminologies. Under the directives of the World Health Organization (WHO), an approach is currently being conducted in Australia to adopt a standardized terminology for medical procedures that is intended to become an international reference. In order to achieve such a standard, a collaborative approach is adopted, in line with the successful experiment conducted for the development of the new French coding system CCAM. Different coding centres are involved in setting up a semantic representation of each term using a formal ontological structure expressed through a logic-based representation language. From this language-independent representation, multilingual natural language generation (NLG) is performed to produce noun phrases in various languages that are further compared for consistency with the original terms. Outcomes are presented for the assessment of the International Classification of Health Interventions (ICHI) and its translation into Portuguese. The initial results clearly emphasize the feasibility and cost-effectiveness of the proposed method for handling both a different classification and an additional language. NLG tools, based on ontology driven semantic representation, facilitate the discovery of ambiguous and inconsistent terms, and, as such, should be promoted for establishing coherent international terminologies.

  20. Apples are not the only fruit: The effects of concept typicality on semantic representation in the anterior temporal lobe

    Directory of Open Access Journals (Sweden)

    Anna M. Woollams

    2012-04-01

    Full Text Available Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, a variable known as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of age of acquisition and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in semantic dementia, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the age of acquisition or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation.

  1. Event-related potentials to event-related words: grammatical class and semantic attributes in the representation of knowledge.

    Science.gov (United States)

    Barber, Horacio A; Kousta, Stavroula-Thaleia; Otten, Leun J; Vigliocco, Gabriella

    2010-05-21

    A number of recent studies have provided contradictory evidence on the question of whether grammatical class plays a role in the neural representation of lexical knowledge. Most of the previous studies comparing the processing of nouns and verbs, however, confounded word meaning and grammatical class by comparing verbs referring to actions with nouns referring to objects. Here, we recorded electrical brain activity from native Italian speakers reading single words all referring to events (e.g., corsa [the run]; correre [to run]), thus avoiding confounding nouns and verbs with objects and actions. We manipulated grammatical class (noun versus verb) as well as semantic attributes (motor versus sensory events). Activity between 300 and 450ms was more negative for nouns than verbs, and for sensory than motor words, over posterior scalp sites. These grammatical class and semantic effects were not dissociable in terms of latency, duration, or scalp distribution. In a later time window (450-110ms) and at frontal regions, grammatical class and semantic effects interacted; motor verbs were more positive than the other three word categories. We suggest that the lack of a temporal and topographical dissociation between grammatical class and semantic effects in the time range of the N400 component is compatible with an account in which both effects reflect the same underlying process related to meaning retrieval, and we link the later effect with working memory operations associated to the experimental task. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Preserved musical semantic memory in semantic dementia.

    Science.gov (United States)

    Weinstein, Jessica; Koenig, Phyllis; Gunawardena, Delani; McMillan, Corey; Bonner, Michael; Grossman, Murray

    2011-02-01

    To understand the scope of semantic impairment in semantic dementia. Case study. Academic medical center. A man with semantic dementia, as demonstrated by clinical, neuropsychological, and imaging studies. Music performance and magnetic resonance imaging results. Despite profoundly impaired semantic memory for words and objects due to left temporal lobe atrophy, this semiprofessional musician was creative and expressive in demonstrating preserved musical knowledge. Long-term representations of words and objects in semantic memory may be dissociated from meaningful knowledge in other domains, such as music.

  3. Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support

    Science.gov (United States)

    Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.

    2007-01-01

    Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…

  4. Doctor, Teacher, and Stethoscope: Neural Representation of Different Types of Semantic Relations.

    Science.gov (United States)

    Xu, Yangwen; Wang, Xiaosha; Wang, Xiaoying; Men, Weiwei; Gao, Jia-Hong; Bi, Yanchao

    2018-03-28

    Concepts can be related in many ways. They can belong to the same taxonomic category (e.g., "doctor" and "teacher," both in the category of people) or be associated with the same event context (e.g., "doctor" and "stethoscope," both associated with medical scenarios). How are these two major types of semantic relations coded in the brain? We constructed stimuli from three taxonomic categories (people, manmade objects, and locations) and three thematic categories (school, medicine, and sports) and investigated the neural representations of these two dimensions using representational similarity analyses in human participants (10 men and nine women). In specific regions of interest, the left anterior temporal lobe (ATL) and the left temporoparietal junction (TPJ), we found that, whereas both areas had significant effects of taxonomic information, the taxonomic relations had stronger effects in the ATL than in the TPJ ("doctor" and "teacher" closer in ATL neural activity), with the reverse being true for thematic relations ("doctor" and "stethoscope" closer in TPJ neural activity). A whole-brain searchlight analysis revealed that widely distributed regions, mainly in the left hemisphere, represented the taxonomic dimension. Interestingly, the significant effects of the thematic relations were only observed after the taxonomic differences were controlled for in the left TPJ, the right superior lateral occipital cortex, and other frontal, temporal, and parietal regions. In summary, taxonomic grouping is a primary organizational dimension across distributed brain regions, with thematic grouping further embedded within such taxonomic structures. SIGNIFICANCE STATEMENT How are concepts organized in the brain? It is well established that concepts belonging to the same taxonomic categories (e.g., "doctor" and "teacher") share neural representations in specific brain regions. How concepts are associated in other manners (e.g., "doctor" and "stethoscope," which are thematically

  5. Word-embeddings Italian semantic spaces: A semantic model for psycholinguistic research

    Directory of Open Access Journals (Sweden)

    Marelli Marco

    2017-01-01

    Full Text Available Distributional semantics has been for long a source of successful models in psycholinguistics, permitting to obtain semantic estimates for a large number of words in an automatic and fast way. However, resources in this respect remain scarce or limitedly accessible for languages different from English. The present paper describes WEISS (Word-Embeddings Italian Semantic Space, a distributional semantic model based on Italian. WEISS includes models of semantic representations that are trained adopting state-of-the-art word-embeddings methods, applying neural networks to induce distributed representations for lexical meanings. The resource is evaluated against two test sets, demonstrating that WEISS obtains a better performance with respect to a baseline encoding word associations. Moreover, an extensive qualitative analysis of the WEISS output provides examples of the model potentialities in capturing several semantic phenomena. Two variants of WEISS are released and made easily accessible via web through the SNAUT graphic interface.

  6. Shared Representations and the Translation Process

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Carl, Michael

    2015-01-01

    The purpose of the present chapter is to investigate automated processing during translation. We provide evidence from a translation priming study which suggests that translation involves activation of shared lexico-semantic and syntactical representations, i.e., the activation of features of both...... source and target language items which share one single cognitive representation. We argue that activation of shared representations facilitates automated processing. The chapter revises the literal translation hypothesis and the monitor model (Ivir 1981; Toury 1995; Tirkkonen-Condit 2005), and re...

  7. Shared Representations and the Translation Process

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Carl, Michael

    2013-01-01

    The purpose of the present paper is to investigate automated processing during translation. We provide evidence from a translation priming study which suggests that translation involves activation of shared lexico-semantic and syntactical representations, i.e., the activation of features of both...... source and target language items which share one single cognitive representation. We argue that activation of shared representations facilitates automated processing. The paper revises the literal translation hypothesis and the monitor model (Ivir 1981; Toury 1995; Tirkkonen-Condit 2005), and re...

  8. Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence

    Directory of Open Access Journals (Sweden)

    Veerle Neyens

    2017-08-01

    Full Text Available According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory.

  9. Amodal Semantic Representations Depend on both Anterior Temporal Lobes: Evidence from Repetitive Transcranial Magnetic Stimulation

    Science.gov (United States)

    Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon

    2010-01-01

    The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…

  10. Semantic representation of reported measurements in radiology.

    Science.gov (United States)

    Oberkampf, Heiner; Zillner, Sonja; Overton, James A; Bauer, Bernhard; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias

    2016-01-22

    In radiology, a vast amount of diverse data is generated, and unstructured reporting is standard. Hence, much useful information is trapped in free-text form, and often lost in translation and transmission. One relevant source of free-text data consists of reports covering the assessment of changes in tumor burden, which are needed for the evaluation of cancer treatment success. Any change of lesion size is a critical factor in follow-up examinations. It is difficult to retrieve specific information from unstructured reports and to compare them over time. Therefore, a prototype was implemented that demonstrates the structured representation of findings, allowing selective review in consecutive examinations and thus more efficient comparison over time. We developed a semantic Model for Clinical Information (MCI) based on existing ontologies from the Open Biological and Biomedical Ontologies (OBO) library. MCI is used for the integrated representation of measured image findings and medical knowledge about the normal size of anatomical entities. An integrated view of the radiology findings is realized by a prototype implementation of a ReportViewer. Further, RECIST (Response Evaluation Criteria In Solid Tumors) guidelines are implemented by SPARQL queries on MCI. The evaluation is based on two data sets of German radiology reports: An oncologic data set consisting of 2584 reports on 377 lymphoma patients and a mixed data set consisting of 6007 reports on diverse medical and surgical patients. All measurement findings were automatically classified as abnormal/normal using formalized medical background knowledge, i.e., knowledge that has been encoded into an ontology. A radiologist evaluated 813 classifications as correct or incorrect. All unclassified findings were evaluated as incorrect. The proposed approach allows the automatic classification of findings with an accuracy of 96.4 % for oncologic reports and 92.9 % for mixed reports. The ReportViewer permits

  11. The construction of semantic memory: grammar based representations learned from relational episodic information

    Directory of Open Access Journals (Sweden)

    Francesco P Battaglia

    2011-08-01

    Full Text Available After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation, collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside-outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of ``sleep replay'' of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata.

  12. The Construction of Semantic Memory: Grammar-Based Representations Learned from Relational Episodic Information

    Science.gov (United States)

    Battaglia, Francesco P.; Pennartz, Cyriel M. A.

    2011-01-01

    After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation), collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside–outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of “sleep replay” of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata. PMID:21887143

  13. Knowledge representation and management: benefits and challenges of the semantic web for the fields of KRM and NLP.

    Science.gov (United States)

    Rassinoux, A-M

    2011-01-01

    To summarize excellent current research in the field of knowledge representation and management (KRM). A synopsis of the articles selected for the IMIA Yearbook 2011 is provided and an attempt to highlight the current trends in the field is sketched. This last decade, with the extension of the text-based web towards a semantic-structured web, NLP techniques have experienced a renewed interest in knowledge extraction. This trend is corroborated through the five papers selected for the KRM section of the Yearbook 2011. They all depict outstanding studies that exploit NLP technologies whenever possible in order to accurately extract meaningful information from various biomedical textual sources. Bringing semantic structure to the meaningful content of textual web pages affords the user with cooperative sharing and intelligent finding of electronic data. As exemplified by the best paper selection, more and more advanced biomedical applications aim at exploiting the meaningful richness of free-text documents in order to generate semantic metadata and recently to learn and populate domain ontologies. These later are becoming a key piece as they allow portraying the semantics of the Semantic Web content. Maintaining their consistency with documents and semantic annotations that refer to them is a crucial challenge of the Semantic Web for the coming years.

  14. Long-term semantic representations moderate the effect of attentional refreshing on episodic memory.

    Science.gov (United States)

    Loaiza, Vanessa M; Duperreault, Kayla A; Rhodes, Matthew G; McCabe, David P

    2015-02-01

    The McCabe effect (McCabe, Journal of Memory and Language 58:480-494, 2008) refers to an advantage in episodic memory (EM) retrieval for memoranda studied in complex span versus simple span tasks, particularly for memoranda presented in earlier serial positions. This finding has been attributed to the necessity to refresh memoranda during complex span tasks that, in turn, promotes content-context binding in working memory (WM). Several frameworks have conceptualized WM as being embedded in long-term memory. Thus, refreshing may be less efficient when memoranda are not well-established in long-term semantic memory (SM). To investigate this, we presented words and nonwords in simple and complex span trials in order to manipulate the long-term semantic representations of the memoranda with the requirement to refresh the memoranda during WM. A recognition test was administered that required participants to make a remember-know decision for each memorandum recognized as old. The results replicated the McCabe effect, but only for words, and the beneficial effect of refreshing opportunities was exclusive to recollection. These results extend previous research by indicating that the predictive relationship between WM refreshing and long-term EM is specific to recollection and, furthermore, moderated by representations in long-term SM. This supports the predictions of WM frameworks that espouse the importance of refreshing in content-context binding, but also those that view WM as being an activated subset of and, therefore, constrained by the contents of long-term memory.

  15. Digital Workflows for a 3d Semantic Representation of AN Ancient Mining Landscape

    Science.gov (United States)

    Hiebel, G.; Hanke, K.

    2017-08-01

    The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework). Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created.

  16. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  17. Semantic Desktop

    Science.gov (United States)

    Sauermann, Leo; Kiesel, Malte; Schumacher, Kinga; Bernardi, Ansgar

    In diesem Beitrag wird gezeigt, wie der Arbeitsplatz der Zukunft aussehen könnte und wo das Semantic Web neue Möglichkeiten eröffnet. Dazu werden Ansätze aus dem Bereich Semantic Web, Knowledge Representation, Desktop-Anwendungen und Visualisierung vorgestellt, die es uns ermöglichen, die bestehenden Daten eines Benutzers neu zu interpretieren und zu verwenden. Dabei bringt die Kombination von Semantic Web und Desktop Computern besondere Vorteile - ein Paradigma, das unter dem Titel Semantic Desktop bekannt ist. Die beschriebenen Möglichkeiten der Applikationsintegration sind aber nicht auf den Desktop beschränkt, sondern können genauso in Web-Anwendungen Verwendung finden.

  18. Semantic framework for mapping object-oriented model to semantic web languages.

    Science.gov (United States)

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.

  19. DIGITAL WORKFLOWS FOR A 3D SEMANTIC REPRESENTATION OF AN ANCIENT MINING LANDSCAPE

    Directory of Open Access Journals (Sweden)

    G. Hiebel

    2017-08-01

    Full Text Available The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework. Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created.

  20. A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data.

    Science.gov (United States)

    Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G

    2013-05-01

    The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data.

  1. Semantic processing of EHR data for clinical research.

    Science.gov (United States)

    Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk

    2015-12-01

    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Newly-acquired words are more phonologically robust in verbal short-term memory when they have associated semantic representations.

    Science.gov (United States)

    Savill, Nicola; Ellis, Andrew W; Jefferies, Elizabeth

    2017-04-01

    Verbal short-term memory (STM) is a crucial cognitive function central to language learning, comprehension and reasoning, yet the processes that underlie this capacity are not fully understood. In particular, although STM primarily draws on a phonological code, interactions between long-term phonological and semantic representations might help to stabilise the phonological trace for words ("semantic binding hypothesis"). This idea was first proposed to explain the frequent phoneme recombination errors made by patients with semantic dementia when recalling words that are no longer fully understood. However, converging evidence in support of semantic binding is scant: it is unusual for studies of healthy participants to examine serial recall at the phoneme level and also it is difficult to separate the contribution of phonological-lexical knowledge from effects of word meaning. We used a new method to disentangle these influences in healthy individuals by training new 'words' with or without associated semantic information. We examined phonological coherence in immediate serial recall (ISR), both immediately and the day after training. Trained items were more likely to be recalled than novel nonwords, confirming the importance of phonological-lexical knowledge, and items with semantic associations were also produced more accurately than those with no meaning, at both time points. For semantically-trained items, there were fewer phoneme ordering and identity errors, and consequently more complete target items were produced in both correct and incorrect list positions. These data show that lexical-semantic knowledge improves the robustness of verbal STM at the sub-item level, even when the effect of phonological familiarity is taken into account. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multimodal semantic quantity representations: further evidence from Korean Sign Language

    Directory of Open Access Journals (Sweden)

    Frank eDomahs

    2012-01-01

    Full Text Available Korean deaf signers performed a number comparison task on pairs of Arabic digits. In their RT profiles, the expected magnitude effect was systematically modified by properties of number signs in Korean Sign Language in a culture-specific way (not observed in hearing and deaf Germans or hearing Chinese. We conclude that finger-based quantity representations are automatically activated even in simple tasks with symbolic input although this may be irrelevant and even detrimental for task performance. These finger-based numerical representations are accessed in addition to another, more basic quantity system which is evidenced by the magnitude effect. In sum, these results are inconsistent with models assuming only one single amodal representation of numerical quantity.

  4. Modulation of the semantic system by word imageability.

    Science.gov (United States)

    Sabsevitz, D S; Medler, D A; Seidenberg, M; Binder, J R

    2005-08-01

    A prevailing neurobiological theory of semantic memory proposes that part of our knowledge about concrete, highly imageable concepts is stored in the form of sensory-motor representations. While this theory predicts differential activation of the semantic system by concrete and abstract words, previous functional imaging studies employing this contrast have provided relatively little supporting evidence. We acquired event-related functional magnetic resonance imaging (fMRI) data while participants performed a semantic similarity judgment task on a large number of concrete and abstract noun triads. Task difficulty was manipulated by varying the degree to which the words in the triad were similar in meaning. Concrete nouns, relative to abstract nouns, produced greater activation in a bilateral network of multimodal and heteromodal association areas, including ventral and medial temporal, posterior-inferior parietal, dorsal prefrontal, and posterior cingulate cortex. In contrast, abstract nouns produced greater activation almost exclusively in the left hemisphere in superior temporal and inferior frontal cortex. Increasing task difficulty modulated activation mainly in attention, working memory, and response monitoring systems, with almost no effect on areas that were modulated by imageability. These data provide critical support for the hypothesis that concrete, imageable concepts activate perceptually based representations not available to abstract concepts. In contrast, processing abstract concepts makes greater demands on left perisylvian phonological and lexical retrieval systems. The findings are compatible with dual coding theory and less consistent with single-code models of conceptual representation. The lack of overlap between imageability and task difficulty effects suggests that once the neural representation of a concept is activated, further maintenance and manipulation of that information in working memory does not further increase neural activation in

  5. Knowledge representation and management: towards an integration of a semantic web in daily health practice.

    Science.gov (United States)

    Griffon, N; Charlet, J; Darmoni, Sj

    2013-01-01

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A synopsis of the four selected articles for the IMIA Yearbook 2013 KRM section is provided, as well as highlights of current KRM trends, in particular, of the semantic web in daily health practice. The manual selection was performed in three stages: first a set of 3,106 articles, then a second set of 86 articles followed by a third set of 15 articles, and finally the last set of four chosen articles. Among the four selected articles (see Table 1), one focuses on knowledge engineering to prevent adverse drug events; the objective of the second is to propose mappings between clinical archetypes and SNOMED CT in the context of clinical practice; the third presents an ontology to create a question-answering system; the fourth describes a biomonitoring network based on semantic web technologies. These four articles clearly indicate that the health semantic web has become a part of daily practice of health professionals since 2012. In the review of the second set of 86 articles, the same topics included in the previous IMIA yearbook remain active research fields: Knowledge extraction, automatic indexing, information retrieval, natural language processing, management of health terminologies and ontologies.

  6. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    Directory of Open Access Journals (Sweden)

    Gabriel Recchia

    2015-01-01

    Full Text Available Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics.

  7. The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction

    OpenAIRE

    Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A.; Barak, Ohr; Lambon Ralph, Matthew; Jefferies, Elizabeth

    2018-01-01

    Semantic cognition, as described by the Controlled Semantic Cognition (CSC) framework (Rogers, Patterson, Jefferies, & Lambon Ralph, 2015), involves two key components: activation of coherent, generalizable concepts within a heteromodal ‘hub’ in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task- appropriate behaviour. Executive-semantic goal representations, largely supported by executive...

  8. Representational constraints on children's suggestibility.

    Science.gov (United States)

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  9. Grasping Ideas with the Motor System: Semantic Somatotopy in Idiom Comprehension

    Science.gov (United States)

    Hauk, Olaf; Pulvermüller, Friedemann

    2009-01-01

    Single words and sentences referring to bodily actions activate the motor cortex. However, this semantic grounding of concrete language does not address the critical question whether the sensory–motor system contributes to the processing of abstract meaning and thought. We examined functional magnetic resonance imaging activation to idioms and literal sentences including arm- and leg-related action words. A common left fronto-temporal network was engaged in sentence reading, with idioms yielding relatively stronger activity in (pre)frontal and middle temporal cortex. Crucially, somatotopic activation along the motor strip, in central and precentral cortex, was elicited by idiomatic and literal sentences, reflecting the body part reference of the words embedded in the sentences. Semantic somatotopy was most pronounced after sentence ending, thus reflecting sentence-level processing rather than that of single words. These results indicate that semantic representations grounded in the sensory–motor system play a role in the composition of sentence-level meaning, even in the case of idioms. PMID:19068489

  10. The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction

    OpenAIRE

    Thompson, Hannah; Almaghyuli, Azizah; Noonan, Krist A.; barak, Ohr; Lambon Ralph, Matthew A.; Jefferies, Elizabeth

    2018-01-01

    Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., 2015, Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal ‘hub’ in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive–semantic goal representations, largely supported by executive regions ...

  11. Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages

    Science.gov (United States)

    Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio

    Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.

  12. Towards Semantic Interpretation of Movement Behavior

    NARCIS (Netherlands)

    Baglioni, M.; Macedo, J.; Renso, C.; Trasarti, R.; Wachowicz, M.

    2009-01-01

    In this paper we aim at providing a model for the conceptual representation and deductive reasoning of trajectory patterns obtained from mining raw trajectories. This has been achieved by means of a semantic enrichment process, where raw trajectories are enhanced with semantic information and

  13. Semantic Tagging with Deep Residual Networks

    NARCIS (Netherlands)

    Bjerva, Johannes; Plank, Barbara; Bos, Johan

    2016-01-01

    We propose a novel semantic tagging task, semtagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate

  14. Electrophysiological difference between the representations of causal judgment and associative judgment in semantic memory.

    Science.gov (United States)

    Chen, Qingfei; Liang, Xiuling; Lei, Yi; Li, Hong

    2015-05-01

    Causally related concepts like "virus" and "epidemic" and general associatively related concepts like "ring" and "emerald" are represented and accessed separately. The Evoked Response Potential (ERP) procedure was used to examine the representations of causal judgment and associative judgment in semantic memory. Participants were required to remember a task cue (causal or associative) presented at the beginning of each trial, and assess whether the relationship between subsequently presented words matched the initial task cue. The ERP data showed that an N400 effect (250-450 ms) was more negative for unrelated words than for all related words. Furthermore, the N400 effect elicited by causal relations was more positive than for associative relations in causal cue condition, whereas no significant difference was found in the associative cue condition. The centrally distributed late ERP component (650-750 ms) elicited by the causal cue condition was more positive than for the associative cue condition. These results suggested that the processing of causal judgment and associative judgment in semantic memory recruited different degrees of attentional and executive resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Symbolic Game Semantics for Model Checking Program Families

    OpenAIRE

    Dimovski, Aleksandar

    2016-01-01

    Program families can produce a (potentially huge) number of related programs from a common code base. Many such programs are safety critical. However, most verification techniques are designed to work on the level of single programs, and thus are too costly to apply to the entire program family. In this paper, we propose an efficient game semantics based approach for verifying open program families, i.e. program families with free (undefined) identifiers. We use symbolic representation of alg...

  16. Semantic Reasoning for Scene Interpretation

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Baseski, Emre; Pugeault, Nicolas

    2008-01-01

    In this paper, we propose a hierarchical architecture for representing scenes, covering 2D and 3D aspects of visual scenes as well as the semantic relations between the different aspects. We argue that labeled graphs are a suitable representational framework for this representation and demonstrat...

  17. Semantic knowledge representation for information retrieval

    CERN Document Server

    Gödert, Winfried; Nagelschmidt, Matthias

    2014-01-01

    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.

  18. Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation

    Science.gov (United States)

    Rogers, Timothy T.; Lambon Ralph, Matthew A.; Garrard, Peter; Bozeat, Sasha; McClelland, James L.; Hodges, John R.; Patterson, Karalyn

    2004-01-01

    Wernicke (1900, as cited in G. H. Eggert, 1977) suggested that semantic knowledge arises from the interaction of perceptual representations of objects and words. The authors present a parallel distributed processing implementation of this theory, in which semantic representations emerge from mechanisms that acquire the mappings between visual…

  19. Program verification using symbolic game semantics

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar

    2014-01-01

    , especially on its second-order recursion-free fragment with infinite data types. We revisit the regular-language representation of game semantics of this language fragment. By using symbolic values instead of concrete ones, we generalize the standard notions of regular-language and automata representations...

  20. "Neural overlap of L1 and L2 semantic representations across visual and auditory modalities: a decoding approach".

    Science.gov (United States)

    Van de Putte, Eowyn; De Baene, Wouter; Price, Cathy J; Duyck, Wouter

    2018-05-01

    This study investigated whether brain activity in Dutch-French bilinguals during semantic access to concepts from one language could be used to predict neural activation during access to the same concepts from another language, in different language modalities/tasks. This was tested using multi-voxel pattern analysis (MVPA), within and across language comprehension (word listening and word reading) and production (picture naming). It was possible to identify the picture or word named, read or heard in one language (e.g. maan, meaning moon) based on the brain activity in a distributed bilateral brain network while, respectively, naming, reading or listening to the picture or word in the other language (e.g. lune). The brain regions identified differed across tasks. During picture naming, brain activation in the occipital and temporal regions allowed concepts to be predicted across languages. During word listening and word reading, across-language predictions were observed in the rolandic operculum and several motor-related areas (pre- and postcentral, the cerebellum). In addition, across-language predictions during reading were identified in regions typically associated with semantic processing (left inferior frontal, middle temporal cortex, right cerebellum and precuneus) and visual processing (inferior and middle occipital regions and calcarine sulcus). Furthermore, across modalities and languages, the left lingual gyrus showed semantic overlap across production and word reading. These findings support the idea of at least partially language- and modality-independent semantic neural representations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Semantic graphs and associative memories

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  2. Semantic Features, Perceptual Expectations, and Frequency as Factors in the Learning of Polar Spatial Adjective Concepts.

    Science.gov (United States)

    Dunckley, Candida J. Lutes; Radtke, Robert C.

    Two semantic theories of word learning, a perceptual complexity hypothesis (H. Clark, 1970) and a quantitative complexity hypothesis (E. Clark, 1972) were tested by teaching 24 preschoolers and 16 college students CVC labels for five polar spatial adjective concepts having single word representations in English, and for three having no direct…

  3. Semantic e-Learning: Next Generation of e-Learning?

    Science.gov (United States)

    Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi

    Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.

  4. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Cells

    Directory of Open Access Journals (Sweden)

    Jonathan C.W. Edwards

    2016-09-01

    Full Text Available It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with meaning, interpretation or significance (semantic content. It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity. The concept of representations-as-input emphasises the need for a ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an

  5. Neural correlates of concreteness in semantic categorization.

    Science.gov (United States)

    Pexman, Penny M; Hargreaves, Ian S; Edwards, Jodi D; Henry, Luke C; Goodyear, Bradley G

    2007-08-01

    In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255-287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223-250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577-660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.

  6. The structure of semantic person memory: evidence from semantic priming in person recognition.

    Science.gov (United States)

    Wiese, Holger

    2011-11-01

    This paper reviews research on the structure of semantic person memory as examined with semantic priming. In this experimental paradigm, a familiarity decision on a target face or written name is usually faster when it is preceded by a related as compared to an unrelated prime. This effect has been shown to be relatively short lived and susceptible to interfering items. Moreover, semantic priming can cross stimulus domains, such that a written name can prime a target face and vice versa. However, it remains controversial whether representations of people are stored in associative networks based on co-occurrence, or in more abstract semantic categories. In line with prominent cognitive models of face recognition, which explain semantic priming by shared semantic information between prime and target, recent research demonstrated that priming could be obtained from purely categorically related, non-associated prime/target pairs. Although strategic processes, such as expectancy and retrospective matching likely contribute, there is also evidence for a non-strategic contribution to priming, presumably related to spreading activation. Finally, a semantic priming effect has been demonstrated in the N400 event-related potential (ERP) component, which may reflect facilitated access to semantic information. It is concluded that categorical relatedness is one organizing principle of semantic person memory. ©2011 The British Psychological Society.

  7. The semantic variant of primary progressive aphasia: clinical and neuroimaging evidence in single subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Iaccarino

    Full Text Available We present a clinical-neuroimaging study in a series of patients with a clinical diagnosis of semantic variant of primary progressive aphasia (svPPA, with the aim to provide clinical-functional correlations of the cognitive and behavioral manifestations at the single-subject level.We performed neuropsychological investigations, 18F-FDG-PET single-subject and group analysis, with an optimized SPM voxel-based approach, and correlation analyses. A measurement of white matter integrity by means of diffusion tensor imaging (DTI was also available for a subgroup of patients.Cognitive assessment confirmed the presence of typical semantic memory deficits in all patients, with a relative sparing of executive, attentional, visuo-constructional, and episodic memory domains. 18F-FDG-PET showed a consistent pattern of cerebral hypometabolism across all patients, which correlated with performance in semantic memory tasks. In addition, a majority of patients also presented with behavioral disturbances associated with metabolic dysfunction in limbic structures. In a subgroup of cases the DTI analysis showed FA abnormalities in the inferior longitudinal and uncinate fasciculi.Each svPPA individual had functional derangement involving an extended, connected system within the left temporal lobe, a crucial part of the verbal semantic network, as well as an involvement of limbic structures. The latter was associated with behavioral manifestations and extended beyond the area of atrophy shown by CT scan.Single-subject 18F-FDG-PET analysis can account for both cognitive and behavioral alterations in svPPA. This provides useful support to the clinical diagnosis.

  8. Argument structure and the representation of abstract semantics.

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez-Ferreiro

    Full Text Available According to the dual coding theory, differences in the ease of retrieval between concrete and abstract words are related to the exclusive dependence of abstract semantics on linguistic information. Argument structure can be considered a measure of the complexity of the linguistic contexts that accompany a verb. If the retrieval of abstract verbs relies more on the linguistic codes they are associated to, we could expect a larger effect of argument structure for the processing of abstract verbs. In this study, sets of length- and frequency-matched verbs including 40 intransitive verbs, 40 transitive verbs taking simple complements, and 40 transitive verbs taking sentential complements were presented in separate lexical and grammatical decision tasks. Half of the verbs were concrete and half were abstract. Similar results were obtained in the two tasks, with significant effects of imageability and transitivity. However, the interaction between these two variables was not significant. These results conflict with hypotheses assuming a stronger reliance of abstract semantics on linguistic codes. In contrast, our data are in line with theories that link the ease of retrieval with availability and robustness of semantic information.

  9. Argument structure and the representation of abstract semantics.

    Science.gov (United States)

    Rodríguez-Ferreiro, Javier; Andreu, Llorenç; Sanz-Torrent, Mònica

    2014-01-01

    According to the dual coding theory, differences in the ease of retrieval between concrete and abstract words are related to the exclusive dependence of abstract semantics on linguistic information. Argument structure can be considered a measure of the complexity of the linguistic contexts that accompany a verb. If the retrieval of abstract verbs relies more on the linguistic codes they are associated to, we could expect a larger effect of argument structure for the processing of abstract verbs. In this study, sets of length- and frequency-matched verbs including 40 intransitive verbs, 40 transitive verbs taking simple complements, and 40 transitive verbs taking sentential complements were presented in separate lexical and grammatical decision tasks. Half of the verbs were concrete and half were abstract. Similar results were obtained in the two tasks, with significant effects of imageability and transitivity. However, the interaction between these two variables was not significant. These results conflict with hypotheses assuming a stronger reliance of abstract semantics on linguistic codes. In contrast, our data are in line with theories that link the ease of retrieval with availability and robustness of semantic information.

  10. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.

    Science.gov (United States)

    Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H

    2012-11-27

    This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Terminology representation guidelines for biomedical ontologies in the semantic web notations.

    Science.gov (United States)

    Tao, Cui; Pathak, Jyotishman; Solbrig, Harold R; Wei, Wei-Qi; Chute, Christopher G

    2013-02-01

    Terminologies and ontologies are increasingly prevalent in healthcare and biomedicine. However they suffer from inconsistent renderings, distribution formats, and syntax that make applications through common terminologies services challenging. To address the problem, one could posit a shared representation syntax, associated schema, and tags. We identified a set of commonly-used elements in biomedical ontologies and terminologies based on our experience with the Common Terminology Services 2 (CTS2) Specification as well as the Lexical Grid (LexGrid) project. We propose guidelines for precisely such a shared terminology model, and recommend tags assembled from SKOS, OWL, Dublin Core, RDF Schema, and DCMI meta-terms. We divide these guidelines into lexical information (e.g. synonyms, and definitions) and semantic information (e.g. hierarchies). The latter we distinguish for use by informal terminologies vs. formal ontologies. We then evaluate the guidelines with a spectrum of widely used terminologies and ontologies to examine how the lexical guidelines are implemented, and whether our proposed guidelines would enhance interoperability. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Ontology-based knowledge representation for resolution of semantic heterogeneity in GIS

    Science.gov (United States)

    Liu, Ying; Xiao, Han; Wang, Limin; Han, Jialing

    2017-07-01

    Lack of semantic interoperability in geographical information systems has been identified as the main obstacle for data sharing and database integration. The new method should be found to overcome the problems of semantic heterogeneity. Ontologies are considered to be one approach to support geographic information sharing. This paper presents an ontology-driven integration approach to help in detecting and possibly resolving semantic conflicts. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its own data. This approach ensures the automation of the integration through regulation of semantic integration algorithm. Finally, land classification in field GIS is described as the example.

  13. Effects of semantic context on access to words of low imageability in deep-phonological dysphasia: a treatment case study.

    Science.gov (United States)

    McCarthy, Laura Mary; Kalinyak-Fliszar, Michelene; Kohen, Francine; Martin, Nadine

    2017-01-01

    Deep dysphasia is a relatively rare subcategory of aphasia, characterised by word repetition impairment and a profound auditory-verbal short-term memory (STM) limitation. Repetition of words is better than nonwords (lexicality effect) and better for high-image than low-image words (imageability effect). Another related language impairment profile is phonological dysphasia, which includes all of the characteristics of deep dysphasia except for the occurrence of semantic errors in single word repetition. The overlap in symptoms of deep and phonological dysphasia has led to the hypothesis that they share the same root cause, impaired maintenance of activated representation of words, but that they differ in severity of that impairment, with deep dysphasia being more severe. We report a single-subject multiple baseline, multiple probe treatment study of a person who presented with a pattern of repetition that was consistent with the continuum of deep-phonological dysphasia: imageability and lexicality effects in repetition of single and multiple words and semantic errors in repetition of multiple-word utterances. The aim of this treatment study was to improve access to and repetition of low-imageability words by embedding them in modifier-noun phrases that enhanced their imageability. The treatment involved repetition of abstract noun pairs. We created modifier-abstract noun phrases that increased the semantic and syntactic cohesiveness of the words in the pair. For example, the phrases "long distance" and "social exclusion" were developed to improve repetition of the abstract pair "distance-exclusion". The goal of this manipulation was to increase the probability of accessing lexical and semantic representations of abstract words in repetition by enriching their semantic -syntactic context. We predicted that this increase in accessibility would be maintained when the words were repeated as pairs, but without the contextual phrase. Treatment outcomes indicated that

  14. Optimizing Semantic Pointer Representations for Symbol-Like Processing in Spiking Neural Networks.

    Science.gov (United States)

    Gosmann, Jan; Eliasmith, Chris

    2016-01-01

    The Semantic Pointer Architecture (SPA) is a proposal of specifying the computations and architectural elements needed to account for cognitive functions. By means of the Neural Engineering Framework (NEF) this proposal can be realized in a spiking neural network. However, in any such network each SPA transformation will accumulate noise. By increasing the accuracy of common SPA operations, the overall network performance can be increased considerably. As well, the representations in such networks present a trade-off between being able to represent all possible values and being only able to represent the most likely values, but with high accuracy. We derive a heuristic to find the near-optimal point in this trade-off. This allows us to improve the accuracy of common SPA operations by up to 25 times. Ultimately, it allows for a reduction of neuron number and a more efficient use of both traditional and neuromorphic hardware, which we demonstrate here.

  15. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    Science.gov (United States)

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  16. Unified double- and single-sided homogeneous Green's function representations

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  17. Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.

    Science.gov (United States)

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2010-01-01

    Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.

  18. Semantics, Conceptual Role

    OpenAIRE

    Block, Ned

    1997-01-01

    According to Conceptual Role Semantics ("CRS"), the meaning of a representation is the role of that representation in the cognitive life of the agent, e.g. in perception, thought and decision-making. It is an extension of the well known "use" theory of meaning, according to which the meaning of a word is its use in communication and more generally, in social interaction. CRS supplements external use by including the role of a symbol inside a computer or a brain. The uses appealed to are not j...

  19. Semantically Enabling Knowledge Representation of Metamorphic Petrology Data

    Science.gov (United States)

    West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.

    2012-12-01

    More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better

  20. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    Science.gov (United States)

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.

    Science.gov (United States)

    Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.

  2. Psycholinguistic measures for German verb pairs: Semantic transparency, semantic relatedness, verb family size, and age of reading acquisition.

    Science.gov (United States)

    Smolka, Eva; Eulitz, Carsten

    2018-06-18

    A central issue in visual and spoken word recognition is the lexical representation of complex words-in particular, whether the lexical representation of complex words depends on semantic transparency: Is a complex verb like understand lexically represented as a whole word or via its base stand, given that its meaning is not transparent from the meanings of its parts? To study this issue, a number of stimulus characteristics are of interest that are not yet available in public databases of German. This article provides semantic association ratings, lexical paraphrases, and vector-based similarity measures for German verbs, measuring (a) the semantic transparency between 1,259 complex verbs and their bases, (b) the semantic relatedness between 1,109 verb pairs with 432 different bases, and (c) the vector-based similarity measures of 846 verb pairs. Additionally, we include the verb regularity of all verbs and two counts of verb family size for 184 base verbs, as well as estimates of age of acquisition and age of reading for 200 verbs. Together with lemma and type frequencies from public lexical databases, all measures can be downloaded along with this article. Statistical analyses indicate that verb family size, morphological complexity, frequency, and verb regularity affect the semantic transparency and relatedness ratings as well as the age of acquisition estimates, indicating that these are relevant variables in psycholinguistic experiments. Although lexical paraphrases, vector-based similarity measures, and semantic association ratings may deliver complementary information, the interrater reliability of the semantic association ratings for each verb pair provides valuable information when selecting stimuli for psycholinguistic experiments.

  3. The Effect of Concurrent Semantic Categorization on Delayed Serial Recall

    Science.gov (United States)

    Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.

    2010-01-01

    The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Subjects engaged in two picture judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line orientation judgments, engaging in semantic categorization judgments increased the proportion of item ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture judgment task manipulations. These results thus demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance. PMID:21058880

  4. Legal Theory, Sources of Law and the Semantic Web

    CERN Document Server

    Boer, A

    2009-01-01

    Attempts to construct an integrated conceptual framework for the application-neutral and problem-neutral representation of sources of law using Semantic Web technology and concepts and some technically straightforward extensions to Semantic Web technology based on established practices found in fielded applications

  5. Enhancing biomedical text summarization using semantic relation extraction.

    Directory of Open Access Journals (Sweden)

    Yue Shang

    Full Text Available Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1 We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2 We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3 For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  6. Enhancing biomedical text summarization using semantic relation extraction.

    Science.gov (United States)

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  7. Extracting Semantic Information from Visual Data: A Survey

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2016-03-01

    Full Text Available The traditional environment maps built by mobile robots include both metric ones and topological ones. These maps are navigation-oriented and not adequate for service robots to interact with or serve human users who normally rely on the conceptual knowledge or semantic contents of the environment. Therefore, the construction of semantic maps becomes necessary for building an effective human-robot interface for service robots. This paper reviews recent research and development in the field of visual-based semantic mapping. The main focus is placed on how to extract semantic information from visual data in terms of feature extraction, object/place recognition and semantic representation methods.

  8. How Chinese Semantics Capability Improves Interpretation in Visual Communication

    Science.gov (United States)

    Cheng, Chu-Yu; Ou, Yang-Kun; Kin, Ching-Lung

    2017-01-01

    A visual representation involves delivering messages through visually communicated images. The study assumed that semantic recognition can affect visual interpretation ability, and the result showed that students graduating from a general high school achieve satisfactory results in semantic recognition and image interpretation tasks than students…

  9. Self-organising Logic of Structures as a Basis for a Dependency-based Dynamic Semantics Model

    Directory of Open Access Journals (Sweden)

    Maciej Piasecki

    2015-06-01

    Full Text Available Self-organising Logic of Structures as a Basis for a Dependency-based Dynamic Semantics Model We present Self-organising Logic of Structures (SLS, a semantic representation language of high expressive power, which was designed for a fully compositional representation of discourse anaphora following the Dynamic Semantics paradigm. The application of SLS to the description of possible meanings of Polish multiple quantifier sentences is discussed. Special attention is paid to the phenomena of: cardinality dependency/independency of Noun Phrase quantifiers and variety of quantification. Semantic representation based on several formal operators is proposed. They can be combined in many different ways, if one takes a purely theoretical perspective. However, in the paper we show that this huge number is practically reduced in the language use and is governed by several constraints motivated by the analysis of Polish language data. The Hypothesis of Local Range of Cardinality Dependency is formulated as an alternative to representations based on quantifier rising technique. SLS provides a multi-layered language description of inter-linked representation of sever antification, reference, presupposition and anaphora.

  10. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  11. Knowledge Representation: A Brief Review.

    Science.gov (United States)

    Vickery, B. C.

    1986-01-01

    Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…

  12. Programming the semantic web

    CERN Document Server

    Segaran, Toby; Taylor, Jamie

    2009-01-01

    With this book, the promise of the Semantic Web -- in which machines can find, share, and combine data on the Web -- is not just a technical possibility, but a practical reality Programming the Semantic Web demonstrates several ways to implement semantic web applications, using current and emerging standards and technologies. You'll learn how to incorporate existing data sources into semantically aware applications and publish rich semantic data. Each chapter walks you through a single piece of semantic technology and explains how you can use it to solve real problems. Whether you're writing

  13. Coordination in Categorical Compositional Distributional Semantics

    Directory of Open Access Journals (Sweden)

    Dimitri Kartsaklis

    2016-08-01

    Full Text Available An open problem with categorical compositional distributional semantics is the representation of words that are considered semantically vacuous from a distributional perspective, such as determiners, prepositions, relative pronouns or coordinators. This paper deals with the topic of coordination between identical syntactic types, which accounts for the majority of coordination cases in language. By exploiting the compact closed structure of the underlying category and Frobenius operators canonically induced over the fixed basis of finite-dimensional vector spaces, we provide a morphism as representation of a coordinator tensor, and we show how it lifts from atomic types to compound types. Linguistic intuitions are provided, and the importance of the Frobenius operators as an addition to the compact closed setting with regard to language is discussed.

  14. Visualizing the semantic content of large text databases using text maps

    Science.gov (United States)

    Combs, Nathan

    1993-01-01

    A methodology for generating text map representations of the semantic content of text databases is presented. Text maps provide a graphical metaphor for conceptualizing and visualizing the contents and data interrelationships of large text databases. Described are a set of experiments conducted against the TIPSTER corpora of Wall Street Journal articles. These experiments provide an introduction to current work in the representation and visualization of documents by way of their semantic content.

  15. Context effects in embodied lexical-semantic processing

    Directory of Open Access Journals (Sweden)

    Wessel O Van Dam

    2010-10-01

    Full Text Available The embodied view of language comprehension proposes that the meaning of words is grounded in perception and action rather than represented in abstract amodal symbols. Support for embodied theories of language processing comes from behavioural studies showing that understanding a sentence about an action can modulate congruent and incongruent physical responses, suggesting motor involvement during comprehension of sentences referring to bodily movement. Additionally, several neuroimaging studies have provided evidence that comprehending single words denoting manipulable objects elicits specific responses in the neural motor system. An interesting question that remains is whether action semantic knowledge is directly activated as motor simulations in the brain, or rather modulated by the semantic context in which action words are encountered. In the current paper we investigated the nature of conceptual representations using a go/no-go lexical decision task. Specifically, target words were either presented in a semantic context that emphasized dominant action features (features related to the functional use of an object or non-dominant action features. The response latencies in a lexical decision task reveal that participants were faster to respond to words denoting objects for which the functional use was congruent with the prepared movement. This facilitation effect, however, was only apparent when the semantic context emphasized corresponding motor properties. These findings suggest that motor involvement during comprehension of sentences is not automatic. Rather, the results suggest that conceptual processing is a context-dependent process that incorporates motor-related knowledge in a flexible manner.

  16. Mediation, Alignment, and Information Services for Semantic interoperability (MAISSI): A Trade Study

    National Research Council Canada - National Science Library

    Barlos, Fotis; Hunter, Dan; Krikeles, Basil; McDonough, James

    2007-01-01

    .... Semantic Interoperability (SI) encompasses a broad range of technologies such as data mediation and schema matching, ontology alignment, and context representation that attempt to enable systems to understand each others semantics...

  17. Unified double- and single-sided homogeneous Green’s function representations

    Science.gov (United States)

    van der Neut, Joost; Slob, Evert

    2016-01-01

    In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983

  18. Two problems from the theory of semiotic control models. I. Representations of semiotic models

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, G S

    1981-11-01

    Two problems from the theory of semiotic control models are being stated, in particular the representation of models and the semantic analysis of themtheory of semiotic control models are being stated, in particular the representation of models and the semantic analysis of them. Algebraic representation of semiotic models, covering of representations, their reduction and equivalence are discussed. The interrelations between functional and structural characteristics of semiotic models are investigated. 20 references.

  19. Person- and place-selective neural substrates for entity-specific semantic access.

    Science.gov (United States)

    Fairhall, Scott L; Anzellotti, Stefano; Ubaldi, Silvia; Caramazza, Alfonso

    2014-07-01

    Object-category has a pronounced effect on the representation of objects in higher level visual cortex. However, the influence of category on semantic/conceptual processes is less well characterized. In the present study, we conduct 2 fMRI experiments to investigate the semantic processing of information specific to individual people and places (entities). First, during picture presentation, we determined which brain regions show category-selective increases during access to entity-specific semantic information (i.e., nationality) in comparison to general-category discrimination (person vs. place). In the second experiment, we presented either words or pictures to assess the independence of entity-specific category-selective semantic representations from the processes used to access those representations. Convergent results from these 2 experiments show that brain regions exhibiting a category-selective increase during entity-specific semantic access are the same as those that show a supramodal (word/picture) category-selective response during the same task. These responses were different from classical "perceptual" category-selective responses and were evident in the medial precuneus for people and in the retrosplenial complex as well as anterior/superior sections of the transverse occipital sulcus and parahippocampal gyrus for places. These results reveal the pervasive influence of object-category in cortical organization, which extends to aspects of semantic knowledge arbitrarily related to physical/perceptual properties. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Hologram representation of design data in an expert system knowledge base

    Science.gov (United States)

    Shiva, S. G.; Klon, Peter F.

    1988-01-01

    A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.

  1. Language networks associated with computerized semantic indices.

    Science.gov (United States)

    Pakhomov, Serguei V S; Jones, David T; Knopman, David S

    2015-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System

    OpenAIRE

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-01-01

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships betwe...

  3. Semantic Representations in 3D Perceptual Space

    Directory of Open Access Journals (Sweden)

    Suncica Zdravkovic

    2011-05-01

    Full Text Available Barsalou's (1999 perceptual theory of knowledge echoes the pre-20th century tradition of conceptualizing all knowledge as inherently perceptual. Hence conceptual space has an infinite number of dimensions and heavily relies on perceptual experience. Osgood's (1952 semantic differential technique was developed as a bridge between perception and semantics. We updated Osgood's methodology in order to investigate current issues in visual cognition by: (1 using a 2D rather than a 1D space to place the concepts, (2 having dimensions that were perceptual while the targets were conceptual, (3 coupling visual experience with another two perceptual domains (audition and touch, (4 analyzing the data using MDS (not factor analysis. In three experiments, subjects (N = 57 judged five concrete and five abstract words on seven bipolar scales in three perceptual modalities. The 2D space led to different patterns of response compared to the classic 1D space. MDS revealed that perceptual modalities are not equally informative for mapping word-meaning distances (Mantel min = −.23; Mantel max = .88. There was no reliable differences due to test administration modality (paper vs. computer, nor scale orientation. The present findings are consistent with multidimensionality of conceptual space, a perceptual basis for knowledge, and dynamic characteristics of concepts discussed in contemporary theories.

  4. Body schematics: on the role of the body schema in embodied lexical-semantic representations.

    Science.gov (United States)

    Rueschemeyer, Shirley-Ann; Pfeiffer, Christian; Bekkering, Harold

    2010-02-01

    Words denoting manipulable objects activate sensorimotor brain areas, likely reflecting action experience with the denoted objects. In particular, these sensorimotor lexical representations have been found to reflect the way in which an object is used. In the current paper we present data from two experiments (one behavioral and one neuroimaging) in which we investigate whether body schema information, putatively necessary for interacting with functional objects, is also recruited during lexical processing. To this end, we presented participants with words denoting objects that are typically brought towards or away from the body (e.g., cup or key, respectively). We hypothesized that objects typically brought to a location on the body (e.g., cup) are relatively more reliant on body schema representations, since the final goal location of the cup (i.e., the mouth) is represented primarily through posture and body co-ordinates. In contrast, objects typically brought to a location away from the body (e.g., key) are relatively more dependent on visuo-spatial representations, since the final goal location of the key (i.e., a keyhole) is perceived visually. The behavioral study showed that prior planning of a movement along an axis towards and away from the body facilitates processing of words with a congruent action semantic feature (i.e., preparation of movement towards the body facilitates processing of cup.). In an fMRI study we showed that words denoting objects brought towards the body engage the resources of brain areas involved in the processing information about human bodies (i.e., the extra-striate body area, middle occipital gyrus and inferior parietal lobe) relatively more than words denoting objects typically brought away from the body. The results provide converging evidence that body schema are implicitly activated in processing lexical information. 2009 Elsevier Ltd. All rights reserved.

  5. Mixing positive and negative valence: Affective-semantic integration of bivalent words.

    Science.gov (United States)

    Kuhlmann, Michael; Hofmann, Markus J; Briesemeister, Benny B; Jacobs, Arthur M

    2016-08-05

    Single words have affective and aesthetic properties that influence their processing. Here we investigated the processing of a special case of word stimuli that are extremely difficult to evaluate, bivalent noun-noun-compounds (NNCs), i.e. novel words that mix a positive and negative noun, e.g. 'Bombensex' (bomb-sex). In a functional magnetic resonance imaging (fMRI) experiment we compared their processing with easier-to-evaluate non-bivalent NNCs in a valence decision task (VDT). Bivalent NNCs produced longer reaction times and elicited greater activation in the left inferior frontal gyrus (LIFG) than non-bivalent words, especially in contrast to words of negative valence. We attribute this effect to a LIFG-grounded process of semantic integration that requires greater effort for processing converse information, supporting the notion of a valence representation based on associations in semantic networks.

  6. WEATHER FORECAST DATA SEMANTIC ANALYSIS IN F-LOGIC

    Directory of Open Access Journals (Sweden)

    Ana Meštrović

    2007-06-01

    Full Text Available This paper addresses the semantic analysis problem in a spoken dialog system developed for the domain of weather forecasts. The main goal of semantic analysis is to extract the meaning from the spoken utterances and to transform it into a domain database format. In this work a semantic database for the domain of weather forecasts is represented using the F-logic formalism. Semantic knowledge is captured through semantic categories a semantic dictionary using phrases and output templates. Procedures for semantic analysis of Croatian weather data combine parsing techniques for Croatian language and slot filling approach. Semantic analysis is conducted in three phases. In the first phase the main semantic category for the input utterance is determined. The lattices are used for hierarchical semantic relation representation and main category derivation. In the second phase semantic units are analyzed and knowledge slots in the database are filled. Since some slot values of input data are missing in the third phase, incomplete data is updated with missing values. All rules for semantic analysis are defined in the F-logic and implemented using the FLORA-2 system. The results of semantic analysis evaluation in terms of frame and slot error rates are presented.

  7. Knowledge representation and natural language processing

    Energy Technology Data Exchange (ETDEWEB)

    Weischedel, R.M.

    1986-07-01

    In principle, natural language and knowledge representation are closely related. This paper investigates this by demonstrating how several natural language phenomena, such as definite reference, ambiguity, ellipsis, ill-formed input, figures of speech, and vagueness, require diverse knowledge sources and reasoning. The breadth of kinds of knowledge needed to represent morphology, syntax, semantics, and pragmatics is surveyed. Furthermore, several current issues in knowledge representation, such as logic versus semantic nets, general-purpose versus special-purpose reasoners, adequacy of first-order logic, wait-and-see strategies, and default reasoning, are illustrated in terms of their relation to natural language processing and how natural language impact the issues.

  8. Comprehensive Analysis of Semantic Web Reasoners and Tools: A Survey

    Science.gov (United States)

    Khamparia, Aditya; Pandey, Babita

    2017-01-01

    Ontologies are emerging as best representation techniques for knowledge based context domains. The continuing need for interoperation, collaboration and effective information retrieval has lead to the creation of semantic web with the help of tools and reasoners which manages personalized information. The future of semantic web lies in an ontology…

  9. Knowledge represented using RDF semantic network in the concept of semantic web

    Energy Technology Data Exchange (ETDEWEB)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz [Department of Informatics and Computers, Faculty of Science, University of Ostrava 30. dubna 22, 701 03 Ostrava, Czech Republic http://prf.osu.eu/kip/ (Czech Republic)

    2016-06-08

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDF to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.

  10. Knowledge represented using RDF semantic network in the concept of semantic web

    International Nuclear Information System (INIS)

    Lukasova, A.; Vajgl, M.; Zacek, M.

    2016-01-01

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDF to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.

  11. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    Science.gov (United States)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  12. A Critical Study of Chador Hijab Metamorphism in TV Representation: a Semantic Study of" the Last Sin" and "Shout Silently" Series

    Directory of Open Access Journals (Sweden)

    Ali Jafari

    2012-06-01

    Full Text Available The changes of women veil in Iran after the Islamic Revolution and examining its cultural, social, political and economic aspects and outcomes is very important and has turned into a hot issue for cultural studies on veil in the Islamic Republic of Iran. "Chador' as an outstanding type of women veil in Iran has been affected b general trends of these changes and considerable parts of public culture and media atmosphere of Iran specially I RIB and cinema have represented these recent transformations. Although a great part of Iranian women actions on Chador take place in its traditional and classical form , considering these kinds of changes in the sign and function of Chador for some parts of social body and media representations of this veil makes this phenomenon very important and sensitive for cultural studies of dress and veil in Iran. This article has studied some degrees of semiotic, functional and semantic changes of chador hijab in I RIB series. Through 4 focus group interviews with 15 academic and seminarian women dressing traditional and classical Chador, this study analyzed the recent IRIB constructions of Chador dressing women and girls" which describes the wide functional and semantic transformations of Chador representation in IRIB dramatic programs. Thus some media and cultural malfunctions are observed in these progI'3rIlS and Chador hijab has degraded to an attractive and flashy "cape".

  13. Transfer Effects of Semantic Networks on Expert Systems: Mindtools at Work.

    Science.gov (United States)

    Marra, Rose M.; Jonassen, David H.

    2002-01-01

    Discussion of computers as mindtools focuses on semantic networks and expert systems that help learners build a representation of what they know by designing their own knowledge bases. Describes a study of undergraduates that examined the effects of building semantic networks on the construction of expert systems. (Author/LRW)

  14. Semantic Keys and Reading

    Directory of Open Access Journals (Sweden)

    Zev bar-Lev

    2016-12-01

    Full Text Available Semantic Keys are elements (word-parts of written language that give an iconic, general representation of the whole word’s meaning. In written Sino-Japanese the “radical” or semantic components play this role. For example, the character meaning ‘woman, female’ is the Semantic Key of the character for Ma ‘Mama’ (alongside the phonetic component Ma, which means ‘horse’ as a separate character. The theory of semantic Keys in both graphic and phonemic aspects is called qTheory or nanosemantics. The most innovative aspect of the present article is the hypothesis that, in languages using alphabetic writing systems, the role of Semantic Key is played by consonants, more specifically the first consonant. Thus, L meaning ‘LIFT’ is the Semantic Key of English Lift, Ladle, Lofty, aLps, eLevator, oLympus; Spanish Leva, Lecantarse, aLto, Lengua; Arabic aLLah, and Hebrew① ªeL-ºaL ‘upto-above’ (the Israeli airline, Polish Lot ‘flight’ (the Polish airline; Hebrew ªeL, ªeLohim ‘God’, and haLLeluyah ‘praise-ye God’ (using Parallels, ‘Lift up God’. Evidence for the universality of the theory is shown by many examples drawn from various languages, including Indo-European Semitic, Chinese and Japanese. The theory reveals hundreds of relationships within and between languages, related and unrelated, that have been “Hiding in Plain Sight”, to mention just one example: the Parallel between Spanish Pan ‘bread’ and Mandarin Fan ‘rice’.

  15. The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction.

    Science.gov (United States)

    Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth

    2018-01-03

    Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect

  16. Only time will tell - why temporal information is essential for our neuroscientific understanding of semantics.

    Science.gov (United States)

    Hauk, Olaf

    2016-08-01

    Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.

  17. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    Science.gov (United States)

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  18. Knowledge representation in a world with vague concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tresp, C. [Aachen Technical Univ. (Germany); Becks, A.; Klinkenberg, R.; Hiltner, J. [Univ. of Dortmund (Germany)

    1996-12-31

    In this paper the foundation of a knowledge representation system is introduced. It deals with fuzzy concepts and uncertain relationships. The problem we finally wish to solve, lays in the fact that on the one hand most actual methods of knowledge representation are not able to deal with vague knowledge. On the other hand, those few methods that care for vagueness lack well-defined semantics and therefore do not have a implementation-independent behavior. The proposed method is designed to model vague knowledge with well-defined semantics. Besides the language definition, basic patterns of reasoning are introduced.

  19. Representation and integration of sociological knowledge using knowledge graphs

    NARCIS (Netherlands)

    Popping, R; Strijker, [No Value

    1997-01-01

    The representation and integration of sociological knowledge using knowledge graphs, a specific kind of semantic network, is discussed. Knowledge it systematically searched this reveals. inconsistencies, reducing superfluous research and knowledge, and showing gaps in a theory. This representation

  20. Cloud based automated framework for semantic rich ontology construction and similarity computation for E-health applications

    Directory of Open Access Journals (Sweden)

    T. MuthamilSelvan

    Full Text Available Ontology structure, a core of semantic web is an excellent tool for knowledge representation and semantic visualization. Moreover, knowledge reuse is made possible through similarity measure estimation between two ontologies, threshold estimation and use of simple if-then rules for checking relevancy and irrelevancy measures. Reduced semantic representations of the ontology provide reduced knowledge visualization which is critical especially for e-health data processing and analysis. This usually occurs due to the presence of implicit knowledge and polymorphic objects and can be made semantically rich through the construction by resolving this implicit knowledge occurring in the form of non-dominant words and conditional dependence actions. This paper presents the working of the automated framework for the construction of semantic rich ontology structures and store in the repository. This construction uses dyadic deontic logic based Graph Derivation Representation in order to construct semantically rich ontologies. Moreover, in order to retrieve a set of relevant documents in response to the cloud user document, the degree of similarity between two ontologies is estimated using the traditional cosine similarity measure and simple if-then rules are used to determine the number of relevant documents and obtain such document's metadata for further processing. These working modules will be extremely beneficial to the authenticated cloud users for document retrieval, information extraction and domain dictionary construction which are especially used for e-health applications. The proposed framework is implemented using diabetes dataset and the effectiveness of the experimental results is high when compared to other Graph Derivation Representation methods. The graphical results shown in the paper is an added visualization for viewing the performance of the proposed framework. Keywords: Ontology, Implicit knowledge, Conditional dependence, Graph

  1. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    Directory of Open Access Journals (Sweden)

    Mengxue eCao

    2014-03-01

    Full Text Available Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic--semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners; a reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1 I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2 clear auditory and semantic boundaries can be found in the network representation; (3 cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4 reinforcing-by-link training leads to well-perceived auditory--semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  2. Open semantic analysis: The case of word level semantics in Danish

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2017-01-01

    The present research is motivated by the need for accessible and efficient tools for automated semantic analysis in Danish. We are interested in tools that are completely open, so they can be used by a critical public, in public administration, non-governmental organizations and businesses. We...... describe data-driven models for Danish semantic relatedness, word intrusion and sentiment prediction. Open Danish corpora were assembled and unsupervised learning implemented for explicit semantic analysis and with Gensim’s Word2vec model. We evaluate the performance of the two models on three different...... annotated word datasets. We test the semantic representations’ alignment with single word sentiment using supervised learning. We find that logistic regression and large random forests perform well with Word2vec features....

  3. Visual Development Environment for Semantically Interoperable Smart Cities Applications

    OpenAIRE

    Roukounaki , Aikaterini; Soldatos , John; Petrolo , Riccardo; Loscri , Valeria; Mitton , Nathalie; Serrano , Martin

    2015-01-01

    International audience; This paper presents an IoT architecture for the semantic interoperability of diverse IoT systems and applications in smart cities. The architecture virtualizes diverse IoT systems and ensures their modelling and representation according to common standards-based IoT ontologies. Furthermore, based on this architecture, the paper introduces a first-of-a-kind visual development environment which eases the development of semantically interoperable applications in smart cit...

  4. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  5. Semantic modeling and structural synthesis of onboard electronics protection means as open information system

    Science.gov (United States)

    Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.

    2018-05-01

    The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.

  6. Practical Experiences for the Development of Educational Systems in the Semantic Web

    Science.gov (United States)

    Sánchez Vera, Ma. del Mar; Tomás Fernández Breis, Jesualdo; Serrano Sánchez, José Luis; Prendes Espinosa, Ma. Paz

    2013-01-01

    Semantic Web technologies have been applied in educational settings for different purposes in recent years, with the type of application being mainly defined by the way in which knowledge is represented and exploited. The basic technology for knowledge representation in Semantic Web settings is the ontology, which represents a common, shareable…

  7. Does semantic impairment explain surface dyslexia? VLSM evidence for a double dissociation between regularization errors in reading and semantic errors in picture naming

    Directory of Open Access Journals (Sweden)

    Sara Pillay

    2014-04-01

    adjacent posterior inferior temporal gyrus (blue in figure 1. In contrast, semantic errors during picture naming (red and pink in figure 1 and impaired performance on the semantic matching task (yellow and pink in figure 1 were correlated with more anterior temporal lobe damage and with inferior frontal gyrus involvement. There was substantial overlap between lesion correlates for the two explicit semantic tasks (pink in figure 1, but none between these areas and those correlated with regularization errors. This double dissociation is difficult to accommodate in terms of a common impairment underlying semantic deficits and regularization errors. Lesions in relatively anterior temporal regions appear to produce semantic deficits but not regularization errors, whereas more posterior temporal lesions produce regularization errors but not explicit semantic errors. One possibility is that this posterior temporal region stores whole word representations that do not include semantic information. Alternatively, these representations may include highly abstract and word-specific semantic information useful for computing phonology but not for more complex semantic tasks.

  8. Semantic Boggle: A Game for Vocabulary Acquisition

    NARCIS (Netherlands)

    Toma, Irina; Alexandru, Cristina-Elena; Dascalu, Mihai; Dessus, Philippe; Trausan-Matu, Stefan

    2017-01-01

    Learning a new language is a difficult endeavor, the main encountered problem being vocabulary acquisition. The learning process can be improved through visual representations of coherent contexts, best represented in serious games. The game described in this paper, Semantic Boggle, is a serious

  9. Type-specific proactive interference in patients with semantic and phonological STM deficits.

    Science.gov (United States)

    Harris, Lara; Olson, Andrew; Humphreys, Glyn

    2014-01-01

    Prior neuropsychological evidence suggests that semantic and phonological components of short-term memory (STM) are functionally and neurologically distinct. The current paper examines proactive interference (PI) from semantic and phonological information in two STM-impaired patients, DS (semantic STM deficit) and AK (phonological STM deficit). In Experiment 1 probe recognition tasks with open and closed sets of stimuli were used. Phonological PI was assessed using nonword items, and semantic and phonological PI was assessed using words. In Experiment 2 phonological and semantic PI was elicited by an item recognition probe test with stimuli that bore phonological and semantic relations to the probes. The data suggested heightened phonological PI for the semantic STM patient, and exaggerated effects of semantic PI in the phonological STM case. The findings are consistent with an account of extremely rapid decay of activated type-specific representations in cases of severely impaired phonological and semantic STM.

  10. The Semantics of Plurals: A Defense of Singularism

    Science.gov (United States)

    Florio, Salvatore

    2010-01-01

    In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…

  11. Fine-grained semantic categorization across the abstract and concrete domains.

    Directory of Open Access Journals (Sweden)

    Marta Ghio

    Full Text Available A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related and abstract (mental state-, emotion-, mathematics-related categories, with respect either to different semantic domain-related scales (rating study 1, or to concreteness, familiarity, and context availability (rating study 2. Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.

  12. Reproducibility and discriminability of brain patterns of semantic categories enhanced by congruent audiovisual stimuli.

    Directory of Open Access Journals (Sweden)

    Yuanqing Li

    Full Text Available One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG. The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.

  13. The use of semantic technologies in cyber defence

    CSIR Research Space (South Africa)

    Leenen, L

    2015-03-01

    Full Text Available Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Semantic technologies is a knowledge representation paradigm...

  14. A Knowledge-Based Representation Scheme for Environmental Science Models

    Science.gov (United States)

    Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.

  15. Long-term interference at the semantic level: Evidence from blocked-cyclic picture matching.

    Science.gov (United States)

    Wei, Tao; Schnur, Tatiana T

    2016-01-01

    Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn) from an array of unrelated pictures. Across trials, probes were either semantically related or unrelated. To test the locus of interference, we presented probes as either words or pictures. If semantic interference occurs at the stage common to both tasks, that is, access to semantic representations, then interference should occur in both probe presentation modalities. Results showed clear semantic interference effects independent of presentation modality and lexical frequency, confirming a semantic locus of interference in comprehension. To test the mechanism of interference, we repeated trials across 4 presentation cycles and manipulated the number of unrelated intervening trials (zero vs. two). We found that semantic interference was additive across cycles and survived 2 intervening trials, demonstrating interference to be long-lasting as opposed to short-lived. However, interference was smaller with zero versus 2 intervening trials, which we interpret to suggest that short-lived facilitation counteracted the long-lived interference. We propose that retrieving meanings associated with words/pictures from the same semantic category yields both interference due to long-lasting changes in connection strength between semantic representations (i.e., incremental learning) and facilitation caused by short-lived residual activation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. The Representation of Abstract Words: Why Emotion Matters

    Science.gov (United States)

    Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P.; Andrews, Mark; Del Campo, Elena

    2011-01-01

    Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing…

  17. Multimedia ontology representation and applications

    CERN Document Server

    Chaudhury, Santanu; Ghosh, Hiranmay

    2015-01-01

    The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled.The book contains information that helps with building semantic, content-based

  18. In defense of abstract conceptual representations.

    Science.gov (United States)

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

  19. Semantic Web Technologies for the Adaptive Web

    DEFF Research Database (Denmark)

    Dolog, Peter; Nejdl, Wolfgang

    2007-01-01

    Ontologies and reasoning are the key terms brought into focus by the semantic web community. Formal representation of ontologies in a common data model on the web can be taken as a foundation for adaptive web technologies as well. This chapter describes how ontologies shared on the semantic web...... provide conceptualization for the links which are a main vehicle to access information on the web. The subject domain ontologies serve as constraints for generating only those links which are relevant for the domain a user is currently interested in. Furthermore, user model ontologies provide additional...... means for deciding which links to show, annotate, hide, generate, and reorder. The semantic web technologies provide means to formalize the domain ontologies and metadata created from them. The formalization enables reasoning for personalization decisions. This chapter describes which components...

  20. Atypical right hemisphere specialization for object representations in an adolescent with specific language impairment

    Directory of Open Access Journals (Sweden)

    Timothy T. Brown

    2014-02-01

    Full Text Available Individuals with a diagnosis of specific language impairment (SLI show abnormal spoken language occurring alongside normal nonverbal abilities. Behaviorally, people with SLI exhibit diverse profiles of impairment involving phonological, grammatical, syntactic, and semantic aspects of language. In this study, we used a multimodal neuroimaging technique called anatomically constrained magnetoencephalography (aMEG to measure the dynamic functional brain organization of an adolescent with SLI. Using single-subject statistical maps of cortical activity, we compared this patient to a sibling and to a cohort of typically developing subjects during the performance of tasks designed to evoke semantic representations of concrete objects. Localized, real-time patterns of brain activity within the language impaired patient showed marked differences from the typical functional organization, with significant engagement of right hemisphere heteromodal cortical regions generally homotopic to the left hemisphere areas that usually show the greatest activity for such tasks. Functional neuroanatomical differences were evident at early sensoriperceptual processing stages and continued through later cognitive stages, observed specifically at latencies typically associated with semantic encoding operations. Our findings show with real-time temporal specificity evidence for an atypical right hemisphere specialization for the representation of concrete entities, independent of verbal motor demands. More broadly, our results demonstrate the feasibility and potential utility of using aMEG to characterize individual patient differences in the dynamic functional organization of the brain.

  1. Flavor unifying schemes with a single fermionic representation

    International Nuclear Information System (INIS)

    Davidson, A.; Wali, K.C.

    1980-05-01

    If quarks and leptons are indeed elementary, it is natural that they belong to a single representation of a unifying group, G. It is shown that such a requirement, which is inconsistent with G = SU(N), can be satisfied within the semi-simple group G = SU(N) x SU(N). Furthermore, N = 7 emerges as the unique solution accompanied by a fermionic set that exhibits a natural generation structure

  2. The special status of verbal knowledge in semantic memory: evidence from performance of semantically impaired subjects on verbalizable and non-verbalizable versions of the object decision task.

    Science.gov (United States)

    Zannino, Gian Daniele; Perri, Roberta; Monaco, Marco; Caltagirone, Carlo; Luzzi, Simona; Carlesimo, Giovanni A

    2014-01-01

    According to the semantic hub hypothesis, a supramodal semantic hub is equally needed to deal with verbal and extraverbal "surface" representations. Damage to the supramodal hub is thought to underlie the crossmodal impairment observed in selective semantic deficits. In the present paper, we provide evidence supporting an alternative view: we hold that semantic impairment is not equal across domains but affects verbal behavior disproportionately. We investigated our hypothesis by manipulating the verbal load in an object decision task. Two pathological groups showing different levels of semantic impairment were enrolled together with their normal controls. The severe group included 10 subjects with semantic dementia and the mild group 10 subjects with Alzheimer's disease. In keeping with our hypothesis, when shifting from the low verbal load to the high verbal load condition, brain-damaged individuals, as compared to controls, showed a disproportionate impairment as a function of the severity of their semantic deficit. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Evolutionary and Swarm computing for the Semantic Web

    NARCIS (Netherlands)

    Guéret, C.; Schlobach, S.; Dentler, K.; Schut, M.; Eiben, G.

    2012-01-01

    The Semantic Web has become a dynamic and enormous network of typed links between data sets stored on different machines. These data sets are machine readable and unambiguously interpretable, thanks to their underlying standard representation languages. The expressiveness and flexibility of the

  4. Evolutionary and Swarm Computing for the Semantic Web

    NARCIS (Netherlands)

    Guéret, Christophe

    2015-01-01

    The Semantic Web has become a dynamic and enormous network of typed links between data sets stored on different machines. These data sets are machine readable and unambiguously interpretable, thanks to their underlying standard representation languages. The expressiveness and flexibility of the

  5. Role of Importance and Distinctiveness of Semantic Features in People with Aphasia: A Replication Study

    Science.gov (United States)

    Mason-Baughman, Mary Beth; Wallace, Sarah E.

    2014-01-01

    Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…

  6. Analysis and visualization of disease courses in a semantically-enabled cancer registry.

    Science.gov (United States)

    Esteban-Gil, Angel; Fernández-Breis, Jesualdo Tomás; Boeker, Martin

    2017-09-29

    Regional and epidemiological cancer registries are important for cancer research and the quality management of cancer treatment. Many technological solutions are available to collect and analyse data for cancer registries nowadays. However, the lack of a well-defined common semantic model is a problem when user-defined analyses and data linking to external resources are required. The objectives of this study are: (1) design of a semantic model for local cancer registries; (2) development of a semantically-enabled cancer registry based on this model; and (3) semantic exploitation of the cancer registry for analysing and visualising disease courses. Our proposal is based on our previous results and experience working with semantic technologies. Data stored in a cancer registry database were transformed into RDF employing a process driven by OWL ontologies. The semantic representation of the data was then processed to extract semantic patient profiles, which were exploited by means of SPARQL queries to identify groups of similar patients and to analyse the disease timelines of patients. Based on the requirements analysis, we have produced a draft of an ontology that models the semantics of a local cancer registry in a pragmatic extensible way. We have implemented a Semantic Web platform that allows transforming and storing data from cancer registries in RDF. This platform also permits users to formulate incremental user-defined queries through a graphical user interface. The query results can be displayed in several customisable ways. The complex disease timelines of individual patients can be clearly represented. Different events, e.g. different therapies and disease courses, are presented according to their temporal and causal relations. The presented platform is an example of the parallel development of ontologies and applications that take advantage of semantic web technologies in the medical field. The semantic structure of the representation renders it easy to

  7. KaBOB: ontology-based semantic integration of biomedical databases.

    Science.gov (United States)

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for

  8. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    Directory of Open Access Journals (Sweden)

    Antje Kohnle

    2017-11-01

    Full Text Available Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them (“representational competence” is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students’ spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  9. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    Science.gov (United States)

    Kohnle, Antje; Passante, Gina

    2017-12-01

    Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  10. Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.

    Science.gov (United States)

    Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray

    2011-06-01

    Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.

  11. Alignment of the UMLS semantic network with BioTop: methodology and assessment.

    Science.gov (United States)

    Schulz, Stefan; Beisswanger, Elena; van den Hoek, László; Bodenreider, Olivier; van Mulligen, Erik M

    2009-06-15

    For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up several design errors that could be fixed. A comparison between a human curator and the ontology yielded only a low agreement. Ontology reasoning was also used to successfully identify 133 inconsistent semantic-type combinations. BioTop, the OWL DL representation of the UMLS SN, and the mapping ontology are available at http://www.purl.org/biotop/.

  12. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  13. Verbal and non-verbal semantic impairment: From fluent primary progressive aphasia to semantic dementia

    Directory of Open Access Journals (Sweden)

    Mirna Lie Hosogi Senaha

    Full Text Available Abstract Selective disturbances of semantic memory have attracted the interest of many investigators and the question of the existence of single or multiple semantic systems remains a very controversial theme in the literature. Objectives: To discuss the question of multiple semantic systems based on a longitudinal study of a patient who presented semantic dementia from fluent primary progressive aphasia. Methods: A 66 year-old woman with selective impairment of semantic memory was examined on two occasions, undergoing neuropsychological and language evaluations, the results of which were compared to those of three paired control individuals. Results: In the first evaluation, physical examination was normal and the score on the Mini-Mental State Examination was 26. Language evaluation revealed fluent speech, anomia, disturbance in word comprehension, preservation of the syntactic and phonological aspects of the language, besides surface dyslexia and dysgraphia. Autobiographical and episodic memories were relatively preserved. In semantic memory tests, the following dissociation was found: disturbance of verbal semantic memory with preservation of non-verbal semantic memory. Magnetic resonance of the brain revealed marked atrophy of the left anterior temporal lobe. After 14 months, the difficulties in verbal semantic memory had become more severe and the semantic disturbance, limited initially to the linguistic sphere, had worsened to involve non-verbal domains. Conclusions: Given the dissociation found in the first examination, we believe there is sufficient clinical evidence to refute the existence of a unitary semantic system.

  14. Learning for Semantic Parsing with Kernels under Various Forms of Supervision

    Science.gov (United States)

    2007-08-01

    natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing computing...sentences are semantically tractable. This indi- cates that Geoquery is more challenging domain for semantic parsing than ATIS. In the past, there have been a...Combining parsers. In Proceedings of the Conference on Em- pirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/ VLC -99), pp. 187–194

  15. Preserving differential privacy under finite-precision semantics.

    Directory of Open Access Journals (Sweden)

    Ivan Gazeau

    2013-06-01

    Full Text Available The approximation introduced by finite-precision representation of continuous data can induce arbitrarily large information leaks even when the computation using exact semantics is secure. Such leakage can thus undermine design efforts aimed at protecting sensitive information. We focus here on differential privacy, an approach to privacy that emerged from the area of statistical databases and is now widely applied also in other domains. In this approach, privacy is protected by the addition of noise to a true (private value. To date, this approach to privacy has been proved correct only in the ideal case in which computations are made using an idealized, infinite-precision semantics. In this paper, we analyze the situation at the implementation level, where the semantics is necessarily finite-precision, i.e. the representation of real numbers and the operations on them, are rounded according to some level of precision. We show that in general there are violations of the differential privacy property, and we study the conditions under which we can still guarantee a limited (but, arguably, totally acceptable variant of the property, under only a minor degradation of the privacy level. Finally, we illustrate our results on two cases of noise-generating distributions: the standard Laplacian mechanism commonly used in differential privacy, and a bivariate version of the Laplacian recently introduced in the setting of privacy-aware geolocation.

  16. Russian nominal semantics and morphology

    DEFF Research Database (Denmark)

    Nørgård-Sørensen, Jens

    The principal idea behind this book is that lexis and grammar make up a single coherent structure. It is shown that the grammatical patterns of the different classes of Russian nominals are closely interconnected. They can be described as reflecting a limited set of semantic distinctions which ar...... or weaker, of Russian. Students will see a pattern in what is traditionally described as disparate subsystems, and linguists may be inspired to consider the theoretical points concerning language as a coherent system, determining usage.......The principal idea behind this book is that lexis and grammar make up a single coherent structure. It is shown that the grammatical patterns of the different classes of Russian nominals are closely interconnected. They can be described as reflecting a limited set of semantic distinctions which...... are also rooted in the lexical-semantic classification of Russian nouns. The presentation focuses on semantics, both lexical and grammatical, and not least the connection between these two levels of content. The principal theoretical impact is the insight that grammar and lexis should not be seen...

  17. Quantifier Scope in Categorical Compositional Distributional Semantics

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Sadrzadeh

    2016-08-01

    Full Text Available In previous work with J. Hedges, we formalised a generalised quantifiers theory of natural language in categorical compositional distributional semantics with the help of bialgebras. In this paper, we show how quantifier scope ambiguity can be represented in that setting and how this representation can be generalised to branching quantifiers.

  18. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies

    Directory of Open Access Journals (Sweden)

    Jerzy J. Karylowski

    2017-04-01

    Full Text Available Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective were faster than trait judgments regarding observable self-aspects (external perspective. Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses nor by its desirability (highly desirable vs. moderately desirable traits. Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.

  19. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies.

    Science.gov (United States)

    Karylowski, Jerzy J; Mrozinski, Blazej

    2017-01-01

    Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.

  20. Semantic Representation of Mutual-Consent Divorce

    Directory of Open Access Journals (Sweden)

    مهری سادات موسوی

    2016-09-01

    Full Text Available This article discussed mutual-consent divorce in the context of thoughts and attitude of female applicants of this type of divorce with an inductive qualitative and ethnographic method. Based on the qualitative purposive sampling, 30 women of those who had referred for divorce to family court of Karaj, were selected and deeply interviewed. The results obtained in six major categories as follows: Rethinking the role of men as families’ breadwinners, inappropriate sexual relationships, emotional conflicts, cultural- social dissensions, normative pressures of family and relatives, and personality and behavioral disorders. The core-oriented category of this study is "Women's attitude towards mutual-consent divorce" that includes other major categories and can semantically alter and redirect women’s opinion about mutual-consent divorce. According to the results, the term of mutual-consent is thought-provoking in this type of divorce; because considering the situations which were leaded to mutual-consent divorce and quantifying them revealed that nearly 32% of mutual-consent divorces were not mutual in fact; since, these women accepted divorce with desperation, coercion and threat.

  1. Dynamic information processing states revealed through neurocognitive models of object semantics

    Science.gov (United States)

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  2. Distinct loci of lexical and semantic access deficits in aphasia: Evidence from voxel-based lesion-symptom mapping and diffusion tensor imaging.

    Science.gov (United States)

    Harvey, Denise Y; Schnur, Tatiana T

    2015-06-01

    Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in

  3. Semantics, contrastive linguistics and parallel corpora

    Directory of Open Access Journals (Sweden)

    Violetta Koseska

    2014-09-01

    Full Text Available Semantics, contrastive linguistics and parallel corpora In view of the ambiguity of the term “semantics”, the author shows the differences between the traditional lexical semantics and the contemporary semantics in the light of various semantic schools. She examines semantics differently in connection with contrastive studies where the description must necessary go from the meaning towards the linguistic form, whereas in traditional contrastive studies the description proceeded from the form towards the meaning. This requirement regarding theoretical contrastive studies necessitates construction of a semantic interlanguage, rather than only singling out universal semantic categories expressed with various language means. Such studies can be strongly supported by parallel corpora. However, in order to make them useful for linguists in manual and computer translations, as well as in the development of dictionaries, including online ones, we need not only formal, often automatic, annotation of texts, but also semantic annotation - which is unfortunately manual. In the article we focus on semantic annotation concerning time, aspect and quantification of names and predicates in the whole semantic structure of the sentence on the example of the “Polish-Bulgarian-Russian parallel corpus”.

  4. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  5. Semantics based approach for analyzing disease-target associations.

    Science.gov (United States)

    Kaalia, Rama; Ghosh, Indira

    2016-08-01

    A complex disease is caused by heterogeneous biological interactions between genes and their products along with the influence of environmental factors. There have been many attempts for understanding the cause of these diseases using experimental, statistical and computational methods. In the present work the objective is to address the challenge of representation and integration of information from heterogeneous biomedical aspects of a complex disease using semantics based approach. Semantic web technology is used to design Disease Association Ontology (DAO-db) for representation and integration of disease associated information with diabetes as the case study. The functional associations of disease genes are integrated using RDF graphs of DAO-db. Three semantic web based scoring algorithms (PageRank, HITS (Hyperlink Induced Topic Search) and HITS with semantic weights) are used to score the gene nodes on the basis of their functional interactions in the graph. Disease Association Ontology for Diabetes (DAO-db) provides a standard ontology-driven platform for describing genes, proteins, pathways involved in diabetes and for integrating functional associations from various interaction levels (gene-disease, gene-pathway, gene-function, gene-cellular component and protein-protein interactions). An automatic instance loader module is also developed in present work that helps in adding instances to DAO-db on a large scale. Our ontology provides a framework for querying and analyzing the disease associated information in the form of RDF graphs. The above developed methodology is used to predict novel potential targets involved in diabetes disease from the long list of loose (statistically associated) gene-disease associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Semantic Memory Redux: An Experimental Test of Hierarchical Category Representation

    Science.gov (United States)

    Murphy, Gregory L.; Hampton, James A.; Milovanovic, Goran S.

    2012-01-01

    Four experiments investigated the classic issue in semantic memory of whether people organize categorical information in hierarchies and use inference to retrieve information from them, as proposed by Collins and Quillian (1969). Past evidence has focused on RT to confirm sentences such as "All birds are animals" or "Canaries breathe." However,…

  7. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    Science.gov (United States)

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID

  8. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    Directory of Open Access Journals (Sweden)

    Philip A. Huebner

    2018-02-01

    Full Text Available Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing

  9. Word maturity indices with latent semantic analysis: why, when, and where is Procrustes rotation applied?

    Science.gov (United States)

    Jorge-Botana, Guillermo; Olmos, Ricardo; Luzón, José M

    2018-01-01

    The aim of this paper is to describe and explain one useful computational methodology to model the semantic development of word representation: Word maturity. In particular, the methodology is based on the longitudinal word monitoring created by Kirylev and Landauer using latent semantic analysis for the representation of lexical units. The paper is divided into two parts. First, the steps required to model the development of the meaning of words are explained in detail. We describe the technical and theoretical aspects of each step. Second, we provide a simple example of application of this methodology with some simple tools that can be used by applied researchers. This paper can serve as a user-friendly guide for researchers interested in modeling changes in the semantic representations of words. Some current aspects of the technique and future directions are also discussed. WIREs Cogn Sci 2018, 9:e1457. doi: 10.1002/wcs.1457 This article is categorized under: Computer Science > Natural Language Processing Linguistics > Language Acquisition Psychology > Development and Aging. © 2017 Wiley Periodicals, Inc.

  10. What can the semantic properties of innate representations explain?

    OpenAIRE

    Jacob , Pierre

    1997-01-01

    Dretske has argued that, unlike the content of beliefs and desires (formed by learning), the contents of innate representations (depending directly on evolution by natural selection) cannot in principle play a role in the causal explanation of an individual's behavior. I examine this "asymmetry" and against it, I argue that the content of innate mental representations too can play a causal role in the explanation of behavior.

  11. Mapping Between Semantic Graphs and Sentences in Grammar Induction System

    Directory of Open Access Journals (Sweden)

    Laszlo Kovacs

    2010-06-01

    Full Text Available The proposed transformation module performs mapping be-
    tween two di®erent knowledge representation forms used in grammar induction systems. The kernel knowledge representation form is a special predicate centered conceptual graph called ECG. The ECG provides a semantic-based, language independent description of the environment. The other base representation form is some kind of language. The sentences of the language should meet the corresponding grammatical rules. The pilot project demonstrates the functionality of a translator module using this transformation engine between the ECG graph and the Hungarian language.

  12. A Denotational Semantics for Logic Programming

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg

    A fully abstract denotational semantics for logic programming has not been constructed yet. In this paper we present a denotational semantics that is almost fully abstract. We take the meaning of a logic program to be an element in a Plotkin power domain of substitutions. In this way our result...... shows that standard domain constructions suffice, when giving a semantics for logic programming. Using the well-known fixpoint semantics of logic programming we have to consider two different fixpoints in order to obtain information about both successful and failed computations. In contrast, our...... semantics is uniform in that the (single) meaning of a logic program contains information about both successful, failed and infinite computations. Finally, based on the full abstractness result, we argue that the detail level of substitutions is needed in any denotational semantics for logic programming....

  13. Complex dynamics of semantic memory access in reading.

    Science.gov (United States)

    Baggio, Giosué; Fonseca, André

    2012-02-07

    Understanding a word in context relies on a cascade of perceptual and conceptual processes, starting with modality-specific input decoding, and leading to the unification of the word's meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into a meaningful linguistic sign, is the access of a semantic representation from memory. Little is known about the changes that activating a word's meaning brings about in cortical dynamics. We recorded the electroencephalogram (EEG) while participants read sentences that could contain a contextually unexpected word, such as 'cold' in 'In July it is very cold outside'. We reconstructed trajectories in phase space from single-trial EEG time series, and we applied three nonlinear measures of predictability and complexity to each side of the semantic access boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative to controls, unexpected words were associated with larger prediction errors preceding the onset of the N400. Accessing the meaning of such words produced a phase transition to lower entropy states, in which cortical processing becomes more predictable and more regular. Our study sheds new light on the dynamics of information flow through interfaces between sensory and memory systems during language processing.

  14. [Electrophysiological bases of semantic processing of objects].

    Science.gov (United States)

    Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële

    2007-02-01

    How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.

  15. Model for Semantically Rich Point Cloud Data

    Science.gov (United States)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  16. MODEL FOR SEMANTICALLY RICH POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    F. Poux

    2017-10-01

    Full Text Available This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  17. Semantic technologies in a decision support system

    Science.gov (United States)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2015-10-01

    The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).

  18. [Artificial intelligence meeting neuropsychology. Semantic memory in normal and pathological aging].

    Science.gov (United States)

    Aimé, Xavier; Charlet, Jean; Maillet, Didier; Belin, Catherine

    2015-03-01

    Artificial intelligence (IA) is the subject of much research, but also many fantasies. It aims to reproduce human intelligence in its learning capacity, knowledge storage and computation. In 2014, the Defense Advanced Research Projects Agency (DARPA) started the restoring active memory (RAM) program that attempt to develop implantable technology to bridge gaps in the injured brain and restore normal memory function to people with memory loss caused by injury or disease. In another IA's field, computational ontologies (a formal and shared conceptualization) try to model knowledge in order to represent a structured and unambiguous meaning of the concepts of a target domain. The aim of these structures is to ensure a consensual understanding of their meaning and a univariant use (the same concept is used by all to categorize the same individuals). The first representations of knowledge in the AI's domain are largely based on model tests of semantic memory. This one, as a component of long-term memory is the memory of words, ideas, concepts. It is the only declarative memory system that resists so remarkably to the effects of age. In contrast, non-specific cognitive changes may decrease the performance of elderly in various events and instead report difficulties of access to semantic representations that affect the semantics stock itself. Some dementias, like semantic dementia and Alzheimer's disease, are linked to alteration of semantic memory. We propose in this paper, using the computational ontologies model, a formal and relatively thin modeling, in the service of neuropsychology: 1) for the practitioner with decision support systems, 2) for the patient as cognitive prosthesis outsourced, and 3) for the researcher to study semantic memory.

  19. Towards a semantic PACS: Using Semantic Web technology to represent imaging data.

    Science.gov (United States)

    Van Soest, Johan; Lustberg, Tim; Grittner, Detlef; Marshall, M Scott; Persoon, Lucas; Nijsten, Bas; Feltens, Peter; Dekker, Andre

    2014-01-01

    The DICOM standard is ubiquitous within medicine. However, improved DICOM semantics would significantly enhance search operations. Furthermore, databases of current PACS systems are not flexible enough for the demands within image analysis research. In this paper, we investigated if we can use Semantic Web technology, to store and represent metadata of DICOM image files, as well as linking additional computational results to image metadata. Therefore, we developed a proof of concept containing two applications: one to store commonly used DICOM metadata in an RDF repository, and one to calculate imaging biomarkers based on DICOM images, and store the biomarker values in an RDF repository. This enabled us to search for all patients with a gross tumor volume calculated to be larger than 50 cc. We have shown that we can successfully store the DICOM metadata in an RDF repository and are refining our proof of concept with regards to volume naming, value representation, and the applications themselves.

  20. The neural substrates of musical memory revealed by fMRI and two semantic tasks.

    Science.gov (United States)

    Groussard, M; Rauchs, G; Landeau, B; Viader, F; Desgranges, B; Eustache, F; Platel, H

    2010-12-01

    Recognizing a musical excerpt without necessarily retrieving its title typically reflects the existence of a memory system dedicated to the retrieval of musical knowledge. The functional distinction between musical and verbal semantic memory has seldom been investigated. In this fMRI study, we directly compared the musical and verbal memory of 20 nonmusicians, using a congruence task involving automatic semantic retrieval and a familiarity task requiring more thorough semantic retrieval. In the former, participants had to access their semantic store to retrieve musical or verbal representations of melodies or expressions they heard, in order to decide whether these were then given the right ending or not. In the latter, they had to judge the level of familiarity of musical excerpts and expressions. Both tasks revealed activation of the left inferior frontal and posterior middle temporal cortices, suggesting that executive and selection processes are common to both verbal and musical retrievals. Distinct patterns of activation were observed within the left temporal cortex, with musical material mainly activating the superior temporal gyrus and verbal material the middle and inferior gyri. This cortical organization of musical and verbal semantic representations could explain clinical dissociations featuring selective disturbances for musical or verbal material. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. SEMANTIC SEGMENTATION OF BUILDING ELEMENTS USING POINT CLOUD HASHING

    Directory of Open Access Journals (Sweden)

    M. Chizhova

    2018-05-01

    Full Text Available For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect into different building types and structural elements (dome, nave, transept etc., including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling.

  2. Recognition during recall failure: Semantic feature matching as a mechanism for recognition of semantic cues when recall fails.

    Science.gov (United States)

    Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R

    2016-01-01

    Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).

  3. Fuzzy Nonnative Phonolexical Representations Lead to Fuzzy Form-to-Meaning Mappings

    Directory of Open Access Journals (Sweden)

    Svetlana V Cook

    2016-09-01

    Full Text Available The present paper explores nonnative (L2 phonological encoding of lexical entries and dissociates the difficulties associated with L2 phonological and phonolexical encoding by focusing on similarly sounding L2 words that are not differentiated by difficult phonological contrasts. We test two main claims of the fuzzy lexicon hypothesis: (1 L2 fuzzy phonolexical representations are not fully specified and lack details at both phonological and phonolexical levels of representation (Experiment 1; and (2 fuzzy phonolexical representations can lead to establishing incorrect form-to-meaning mappings (Experiment 2.The Russian-English Translation Priming task (Experiment 1, TJT explores how the degree of phonolexical similarity between a word and its lexical competitor affects lexical access of Russian words. Words with smaller phonolexical distance (e.g., parent - parrot show longer reaction times and lower accuracy compared to words with a larger phonolexical distance (e.g., parent – parchment in lower-proficiency nonnative speakers, and, to a lesser degree, higher-proficiency speakers. This points to a lack of detail in nonnative phonolexical representations necessary for efficient lexical access. The Russian Pseudo-Semantic Priming task (Experiment 2, PSP addresses the vulnerability of form-to-meaning mappings as a consequence of fuzzy phonolexical representations in L2. We primed the target with a word semantically related to its phonological competitor, or a potentially confusable word. The findings of Experiment 2 extend the results of Experiment 1 that, unlike native speakers, nonnative speakers do not properly encode phonolexical information. As a result, they are prone to access an incorrect lexical representation of a competitor word, as indicated by a slowdown in the judgments to confusable words.The study provides evidence that fuzzy phonolexical representations result in unfaithful form-to-meaning mappings, which lead to retrieval of

  4. Practical experiences for the development of educational sys-tems in the semantic web

    Directory of Open Access Journals (Sweden)

    Mª del Mar Sánchez Vera

    2013-01-01

    Full Text Available Semantic Web technologies have been applied in educational settings for different purposes in recent years, with the type of application being mainly defined by the way in which knowledge is represented and exploited. The basic technology for knowledge representation in Semantic Web settings is the ontology, which represents a common, shareable and reusable view of a particular application domain. Ontologies can support different activities in educational settings such as organizing course contents, classifying learning objects or assessing learning levels. Consequently, ontologies can become a very useful tool from a pedagogical perspective. This paper focuses on two different experiences where Semantic Web technologies are used in educational settings, the difference between them lying in how knowledge is obtained and represented. On the one hand, the OeLE platform uses ontologies as a support for assessment processes. Such ontologies have to be designed and implemented in semantic languages apt to be used by OeLE. On the other hand, the ENSEMBLE project pursues the development of semantic web applications by creating specific knowledge representations drawn from user needs. Our paper is consequently going to offer an in-depth analysis of the role played by ontologies, showing how they can be used in different ways drawing a comparison between model patterns and examining the ways in which they can complement each other as well as their practical implications

  5. Order recall in verbal short-term memory: The role of semantic networks.

    Science.gov (United States)

    Poirier, Marie; Saint-Aubin, Jean; Mair, Ali; Tehan, Gerry; Tolan, Anne

    2015-04-01

    In their recent article, Acheson, MacDonald, and Postle (Journal of Experimental Psychology: Learning, Memory, and Cognition 37:44-59, 2011) made an important but controversial suggestion: They hypothesized that (a) semantic information has an effect on order information in short-term memory (STM) and (b) order recall in STM is based on the level of activation of items within the relevant lexico-semantic long-term memory (LTM) network. However, verbal STM research has typically led to the conclusion that factors such as semantic category have a large effect on the number of correctly recalled items, but little or no impact on order recall (Poirier & Saint-Aubin, Quarterly Journal of Experimental Psychology 48A:384-404, 1995; Saint-Aubin, Ouellette, & Poirier, Psychonomic Bulletin & Review 12:171-177, 2005; Tse, Memory 17:874-891, 2009). Moreover, most formal models of short-term order memory currently suggest a separate mechanism for order coding-that is, one that is separate from item representation and not associated with LTM lexico-semantic networks. Both of the experiments reported here tested the predictions that we derived from Acheson et al. The findings show that, as predicted, manipulations aiming to affect the activation of item representations significantly impacted order memory.

  6. Desiderata for an authoritative Representation of MeSH in RDF.

    Science.gov (United States)

    Winnenburg, Rainer; Bodenreider, Olivier

    2014-01-01

    The Semantic Web provides a framework for the integration of resources on the web, which facilitates information integration and interoperability. RDF is the main representation format for Linked Open Data (LOD). However, datasets are not always made available in RDF by their producers and the Semantic Web community has had to convert some of these datasets to RDF in order for these datasets to participate in the LOD cloud. As a result, the LOD cloud sometimes contains outdated, partial and even inaccurate RDF datasets. We review the LOD landscape for one of these resources, MeSH, and analyze the characteristics of six existing representations in order to identify desirable features for an authoritative version, for which we create a prototype. We illustrate the suitability of this prototype on three common use cases. NLM intends to release an authoritative representation of MeSH in RDF (beta version) in the Fall of 2014.

  7. Semantic Neighborhood Effects for Abstract versus Concrete Words.

    Science.gov (United States)

    Danguecan, Ashley N; Buchanan, Lori

    2016-01-01

    Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words.

  8. Assessing semantic similarity of texts - Methods and algorithms

    Science.gov (United States)

    Rozeva, Anna; Zerkova, Silvia

    2017-12-01

    Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.

  9. Age-related vulnerability in the neural systems supporting semantic processing

    Directory of Open Access Journals (Sweden)

    Jonathan E Peelle

    2013-09-01

    Full Text Available Our ability to form abstract representations of objects in semantic memory is crucial to language and thought. The utility of this information relies both on the representations of sensory-motor feature knowledge stored in long-term memory and the executive processes required to retrieve, manipulate, and evaluate this semantic knowledge in a task-relevant manner. These complementary components of semantic memory can be differentially impacted by aging. We investigated semantic processing in normal aging using functional magnetic resonance imaging (fMRI. Young and older adults were asked to judge whether two printed object names match on a particular feature (for example, whether a tomato and strawberry have the same color. The task thus required both retrieval of relevant visual feature knowledge of object concepts and evaluating this information. Objects were drawn from either natural kinds or manufactured objects, and were queried on either color or shape in a factorial design. Behaviorally, all subjects performed well, but older adults could be divided into those whose performance matched that of young adults (better performers and those whose performance was worse (poorer performers. All subjects activated several cortical regions while performing this task, including bilateral inferior and lateral temporal cortex and left frontal and prefrontal cortex. Better performing older adults showed increased overall activity in bilateral premotor cortex and left lateral occipital cortex compared to young adults, and increased activity in these brain regions relative to poorer performing older adults who also showed gray matter atrophy in premotor cortex. These findings highlight the contribution of domain-general executive processing brain regions to semantic memory, and illustrate differences in how these regions are recruited in healthy older adults.

  10. Latent semantic analysis.

    Science.gov (United States)

    Evangelopoulos, Nicholas E

    2013-11-01

    This article reviews latent semantic analysis (LSA), a theory of meaning as well as a method for extracting that meaning from passages of text, based on statistical computations over a collection of documents. LSA as a theory of meaning defines a latent semantic space where documents and individual words are represented as vectors. LSA as a computational technique uses linear algebra to extract dimensions that represent that space. This representation enables the computation of similarity among terms and documents, categorization of terms and documents, and summarization of large collections of documents using automated procedures that mimic the way humans perform similar cognitive tasks. We present some technical details, various illustrative examples, and discuss a number of applications from linguistics, psychology, cognitive science, education, information science, and analysis of textual data in general. WIREs Cogn Sci 2013, 4:683-692. doi: 10.1002/wcs.1254 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2013 John Wiley & Sons, Ltd.

  11. Cell type discovery using single-cell transcriptomics: implications for ontological representation.

    Science.gov (United States)

    Aevermann, Brian D; Novotny, Mark; Bakken, Trygve; Miller, Jeremy A; Diehl, Alexander D; Osumi-Sutherland, David; Lasken, Roger S; Lein, Ed S; Scheuermann, Richard H

    2018-05-01

    Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing 'big data', enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.

  12. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    McLendon, William C.,; Brost, Randolph

    2016-05-01

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a single road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.

  13. Intelligent query processing for semantic mediation of information systems

    Directory of Open Access Journals (Sweden)

    Saber Benharzallah

    2011-11-01

    Full Text Available We propose an intelligent and an efficient query processing approach for semantic mediation of information systems. We propose also a generic multi agent architecture that supports our approach. Our approach focuses on the exploitation of intelligent agents for query reformulation and the use of a new technology for the semantic representation. The algorithm is self-adapted to the changes of the environment, offers a wide aptitude and solves the various data conflicts in a dynamic way; it also reformulates the query using the schema mediation method for the discovered systems and the context mediation for the other systems.

  14. Naming without knowing and appearance without associations: evidence for constructive processes in semantic memory?

    Science.gov (United States)

    Laws, K R; Evans, J J; Hodges, J R; McCarthy, R A

    1995-01-01

    This study describes a patient (SE) with temporal lobe injury resulting from Herpes Simplex Encephalitis, who displayed a previously unreported impairment in which his knowledge of associative and functional attributes of animals was disproportionately impaired by comparison with his knowledge of their sensory attributes (including their visual properties and characteristic sounds). His knowledge of man-made objects was preserved. A striking aspect of the present case was that the patient remained able to name many animals from their pictures, despite making gross errors in generating associative information about these same animals. This suggests that a semantic representation incorporating stored sensory knowledge may be sufficient for naming (at least for biological categories) and associative information may be unnecessary. Semantic knowledge may normally incorporate more information than is necessary for identification. SE's errors were found to be confabulatory and reconstructive in nature and it is argued that this aspect of his performance challenges passive conceptions of semantic memory couched in terms of a catalogue of stored representations. It is proposed that the patient's disorder affects a dynamic, constructive, and inferential component of his knowledge base, and that this component is sensitive to semantic category.

  15. Semantic Agent-Based Service Middleware and Simulation for Smart Cities.

    Science.gov (United States)

    Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid

    2016-12-21

    With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design.

  16. Semantic Agent-Based Service Middleware and Simulation for Smart Cities

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2016-12-01

    Full Text Available With the development of Machine-to-Machine (M2M technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C, Deployment (D, Resource (R and IOData (IO. Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design.

  17. Semantic Agent-Based Service Middleware and Simulation for Smart Cities

    Science.gov (United States)

    Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid

    2016-01-01

    With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design. PMID:28009818

  18. Towards a formal taxonomy of hybrid uncertainty representations

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C.; Rocha, L.

    1997-02-01

    Recent years have seen a proliferation of methods in addition to probability theory to represent information and uncertainty, including fuzzy sets and systems, fuzzy measures, rough sets, random sets, possibility distributions, imprecise probabilities, etc. We can identify these fields collectively as General Information Theory. The components of GIT represent information according to different axiomatic bases, and are thus capable of capturing different semantic aspects of uncertainty. Traditionally, these semantic criteria include such categories as fuzziness, vagueness, nonspecificity, conflict, and randomness. So it is clear that there is a pressing need for the GIT community to synthesize these methods, searching out larger formal frameworks within which to place these various components with respect to each other. Ideally, syntactic (mathematical) generalization can both aid and be aided by the semantic analysis available in terms of the conceptual categories outlined above. In this paper we present some preliminary ideas about how to formally relate various uncertainty representations together in a taxonomic lattice, capturing both syntactic and semantic generalization. Some partial and provisional results are shown. Assume a simple finite universe of discourse {Omega} = (a, b, c). We want to describe a situation in which we ask a question of the sort {open_quotes}what is the value of a variable x which takes values in {Omega}?{close_quotes}. When there is no uncertainty, we have a single alternative, say x = a. In logical terms, we would say that the proposition p: {open_quotes}the value of x is a{close_quotes} is TRUE. Our approach begins with two primitive concepts which can change our knowledge of x, each of which represents a different form of uncertainty, nonspecificity and fuxxiness.

  19. Efficient Representation of Timed UML 2 Interactions

    DEFF Research Database (Denmark)

    Knapp, Alexander; Störrle, Harald

    2014-01-01

    UML 2 interactions describe system behavior over time in a declarative way. The standard approach to defining their formal semantics enumerates traces of events; other representation formats, like Büchi automata or prime event structures, have been suggested, too. We describe another, more succin...

  20. Discovery and Selection of Semantic Web Services

    CERN Document Server

    Wang, Xia

    2013-01-01

    For advanced web search engines to be able not only to search for semantically related information dispersed over different web pages, but also for semantic services providing certain functionalities, discovering semantic services is the key issue. Addressing four problems of current solution, this book presents the following contributions. A novel service model independent of semantic service description models is proposed, which clearly defines all elements necessary for service discovery and selection. It takes service selection as its gist and improves efficiency. Corresponding selection algorithms and their implementation as components of the extended Semantically Enabled Service-oriented Architecture in the Web Service Modeling Environment are detailed. Many applications of semantic web services, e.g. discovery, composition and mediation, can benefit from a general approach for building application ontologies. With application ontologies thus built, services are discovered in the same way as with single...

  1. Paired structures and bipolar knowledge representation

    DEFF Research Database (Denmark)

    Montero, Javier; Bustince, Humberto; Franco, Camilo

    In this strictly positional paper we propose a general approach to bipolar knowledge representation, where the meaning of concepts can be modelled by examining their decomposition into opposite and neutral categories. In particular, it is the semantic relationship between the opposite categories...... and at the same time the type of neutrality rising in between opposites. Based on this first level of bipolar knowledge representation, paired structures in fact offer the means to characterize a specific bipolar valuation scale depending on the meaning of the concept that has to be verified. In this sense...

  2. Principal semantic components of language and the measurement of meaning.

    Science.gov (United States)

    Samsonovich, Alexei V; Samsonovic, Alexei V; Ascoli, Giorgio A

    2010-06-11

    Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence), "calm/excited" (arousal), and "open/closed" (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a

  3. Principal semantic components of language and the measurement of meaning.

    Directory of Open Access Journals (Sweden)

    Alexei V Samsonovich

    Full Text Available Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence, "calm/excited" (arousal, and "open/closed" (freedom, respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4 of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet, among Western languages (English, French, German, and Spanish, and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step

  4. Writing words from pictures: what representations are activated, and when?

    Science.gov (United States)

    Bonin, P; Fayol, M

    2000-06-01

    In three experiments, the nature of the representations involved in written picture naming and the time course of their activation were investigated. French participants had to produce picture names while hearing distractors. In Experiment 1, distractors semantically related to the picture names yielded a semantic interference effect when a stimulus onset asynchrony (SOA) of--150 msec, but not when a SOA of 0 msec, was used, in both spoken and written picture naming. Experiment 2 showed that the semantic interference effect was not located at the conceptual level. In Experiment 3, participants wrote down picture names while hearing semantically related, phonologically related, both semantically and phonologically related, or unrelated distractors, presented at both SOAs. A semantic interference effect was obtained with phonologically unrelated distractors but was eliminated with phonologically related distractors. Facilitatory effects of phonologically related distractors were found at both SOAs. The implications of the findings for written picture naming are discussed.

  5. Semantic Labeling of Nonspeech Audio Clips

    Directory of Open Access Journals (Sweden)

    Xiaojuan Ma

    2010-01-01

    Full Text Available Human communication about entities and events is primarily linguistic in nature. While visual representations of information are shown to be highly effective as well, relatively little is known about the communicative power of auditory nonlinguistic representations. We created a collection of short nonlinguistic auditory clips encoding familiar human activities, objects, animals, natural phenomena, machinery, and social scenes. We presented these sounds to a broad spectrum of anonymous human workers using Amazon Mechanical Turk and collected verbal sound labels. We analyzed the human labels in terms of their lexical and semantic properties to ascertain that the audio clips do evoke the information suggested by their pre-defined captions. We then measured the agreement with the semantically compatible labels for each sound clip. Finally, we examined which kinds of entities and events, when captured by nonlinguistic acoustic clips, appear to be well-suited to elicit information for communication, and which ones are less discriminable. Our work is set against the broader goal of creating resources that facilitate communication for people with some types of language loss. Furthermore, our data should prove useful for future research in machine analysis/synthesis of audio, such as computational auditory scene analysis, and annotating/querying large collections of sound effects.

  6. A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.

    Science.gov (United States)

    1986-06-01

    example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic

  7. The elephant in the room: inconsistency in scene viewing and representation

    OpenAIRE

    Spotorno, Sara; Tatler, Benjamin W.

    2017-01-01

    We examined the extent to which semantic informativeness, consistency with expectations and perceptual salience contribute to object prioritization in scene viewing and representation. In scene viewing (Experiments 1–2), semantic guidance overshadowed perceptual guidance in determining fixation order, with the greatest prioritization for objects that were diagnostic of the scene’s depicted event. Perceptual properties affected selection of consistent objects (regardless of their informativene...

  8. Automatic semantic encoding in verbal short-term memory: evidence from the concreteness effect.

    Science.gov (United States)

    Campoy, Guillermo; Castellà, Judit; Provencio, Violeta; Hitch, Graham J; Baddeley, Alan D

    2015-01-01

    The concreteness effect in verbal short-term memory (STM) tasks is assumed to be a consequence of semantic encoding in STM, with immediate recall of concrete words benefiting from richer semantic representations. We used the concreteness effect to test the hypothesis that semantic encoding in standard verbal STM tasks is a consequence of controlled, attention-demanding mechanisms of strategic semantic retrieval and encoding. Experiment 1 analysed the effect of presentation rate, with slow presentations being assumed to benefit strategic, time-dependent semantic encoding. Experiments 2 and 3 provided a more direct test of the strategic hypothesis by introducing three different concurrent attention-demanding tasks. Although Experiment 1 showed a larger concreteness effect with slow presentations, the following two experiments yielded strong evidence against the strategic hypothesis. Limiting available attention resources by concurrent tasks reduced global memory performance, but the concreteness effect was equivalent to that found in control conditions. We conclude that semantic effects in STM result from automatic semantic encoding and provide tentative explanations for the interaction between the concreteness effect and the presentation rate.

  9. From 'Virgin Births' to 'Octomom': Representations of Single Motherhood via Sperm Donation in the UK News.

    Science.gov (United States)

    Zadeh, S; Foster, J

    2016-01-01

    The use of sperm donation by single women has provoked public, professional and political debate. Newspapers serve as a critical means of both broadcasting this debate and effecting a representation of this user group within the public sphere. This study uses the theory of social representations to examine how single motherhood by sperm donation has been represented in the UK news over time. The study sampled news coverage on this topic in eight British newspapers during three 4-year periods between the years 1988 and 2012. The dataset of news reports ( n  = 406) was analysed using a qualitative approach. Findings indicated that UK media reports of single women using donor sperm are underpinned by conventional categories of the 'personal', the 'traditional' and the 'natural' that when paired with their corollaries produce a representation of this user group as the social 'other'. The amount of coverage on this topic over time was found to vary according to the political orientation of different media sources. Using key concepts from social representations theory, this article discusses the relationship between themata and anchoring in the maintenance of representations of the social 'other' in mass mediated communication. Findings are explained in relation to theoretical conceptions of the mass media and its position within the public sphere. It is argued that the use of personal narratives in news reports of single mothers by sperm donation may have significant implications for public understandings of this social group. © 2016 The Authors. Journal of Community & Applied Social Psychology published by John Wiley & Sons Ltd.

  10. Quantum-field theories as representations of a single $^\\ast$-algebra

    OpenAIRE

    Raab, Andreas

    2013-01-01

    We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.

  11. Effects of semantic neighborhood density in abstract and concrete words.

    Science.gov (United States)

    Reilly, Megan; Desai, Rutvik H

    2017-12-01

    Concrete and abstract words are thought to differ along several psycholinguistic variables, such as frequency and emotional content. Here, we consider another variable, semantic neighborhood density, which has received much less attention, likely because semantic neighborhoods of abstract words are difficult to measure. Using a corpus-based method that creates representations of words that emphasize featural information, the current investigation explores the relationship between neighborhood density and concreteness in a large set of English nouns. Two important observations emerge. First, semantic neighborhood density is higher for concrete than for abstract words, even when other variables are accounted for, especially for smaller neighborhood sizes. Second, the effects of semantic neighborhood density on behavior are different for concrete and abstract words. Lexical decision reaction times are fastest for words with sparse neighborhoods; however, this effect is stronger for concrete words than for abstract words. These results suggest that semantic neighborhood density plays a role in the cognitive and psycholinguistic differences between concrete and abstract words, and should be taken into account in studies involving lexical semantics. Furthermore, the pattern of results with the current feature-based neighborhood measure is very different from that with associatively defined neighborhoods, suggesting that these two methods should be treated as separate measures rather than two interchangeable measures of semantic neighborhoods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Semantical Markov Logic Network for Distributed Reasoning in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Abdul-Wahid Mohammed

    2017-01-01

    Full Text Available The challenges associated with developing accurate models for cyber-physical systems are attributable to the intrinsic concurrent and heterogeneous computations of these systems. Even though reasoning based on interconnected domain specific ontologies shows promise in enhancing modularity and joint functionality modelling, it has become necessary to build interoperable cyber-physical systems due to the growing pervasiveness of these systems. In this paper, we propose a semantically oriented distributed reasoning architecture for cyber-physical systems. This model accomplishes reasoning through a combination of heterogeneous models of computation. Using the flexibility of semantic agents as a formal representation for heterogeneous computational platforms, we define autonomous and intelligent agent-based reasoning procedure for distributed cyber-physical systems. Sensor networks underpin the semantic capabilities of this architecture, and semantic reasoning based on Markov logic networks is adopted to address uncertainty in modelling. To illustrate feasibility of this approach, we present a Markov logic based semantic event model for cyber-physical systems and discuss a case study of event handling and processing in a smart home.

  13. Graph Mining Meets the Semantic Web

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Lim, Seung-Hwan [ORNL

    2015-01-01

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.

  14. Real-time object detection and semantic segmentation for autonomous driving

    Science.gov (United States)

    Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei

    2018-02-01

    In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.

  15. Verbal Short-Term Memory Deficits in Chinese Children with Dyslexia may not be a Problem with the Activation of Phonological Representations.

    Science.gov (United States)

    Zhao, Jing; Yang, Yang; Song, Yao-Wu; Bi, Hong-Yan

    2015-11-01

    This study explored the underlying mechanism of the verbal short-term memory deficit in Chinese children with developmental dyslexia. Twenty-four children with dyslexia and 28 age-matched normal readers participated in the study. They were required to memorize a visually presented series of six Chinese characters and identify them from a list also including code-specific distracters and non-code-specific distracters. Error rates were recorded and were higher for code-specific distracters in all three conditions, revealing phonological, visual, and semantic similarity effects respectively. Group comparisons showed a stronger phonological similarity effect in dyslexic group, suggesting intact activation of phonological representations of target characters. Children with dyslexia also exhibited a greater semantic similarity effect, revealing stronger activation of semantic representations, while visual similarity effects were equivalent to controls. These results suggest that the verbal short-term memory deficit in Chinese dyslexics might not stem from insufficient activation of phonological information. Based the semantic activation of target characters in dyslexics is greater than in controls, it is possible that the memory deficit of dyslexia is related with deficient inhibition of target semantic representations in short-term memory. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Visuospatial working memory in children with autism: the effect of a semantic global organization.

    Science.gov (United States)

    Mammarella, Irene C; Giofrè, David; Caviola, Sara; Cornoldi, Cesare; Hamilton, Colin

    2014-06-01

    It has been reported that individuals with Autism Spectrum Disorders (ASD) perceive visual scenes as a sparse set of details rather than as a congruent and meaningful unit, failing in the extraction of the global configuration of the scene. In the present study, children with ASD were compared with typically developing (TD) children, in a visuospatial working memory task, the Visual Patterns Test (VPT). The VPT array was manipulated to vary the semantic affordance of the pattern, high semantic (global) vs. low semantic; temporal parameters were also manipulated within the change detection protocol. Overall, there was no main effect associated with Group, however there was a significant effect associated with Semantics, which was further qualified by an interaction between the Group and Semantic factors; there was only a significant effect of semantics in the TD group. The findings are discussed in light of the weak central coherence theory where the ASD group are unable to make use of long term memory semantics in order to construct global representations of the array. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. ONTOLOGIES REPRESENTATION AND MANAGEMENT, AS A SEMANTIC TOOL FOR ORGANIZATIONAL MEMORY CONSOLIDATION

    Directory of Open Access Journals (Sweden)

    Mangiuc Dragos Marian

    2009-05-01

    Full Text Available The present paper is a component of an exploratory research project focused on discovering new ways to build, organize and consolidate organizational memory for an economic entity by means of the new a€śSemantic Weba€ť technologies and also encloses some

  18. Reduced short-term memory capacity in Alzheimer's disease: the role of phonological, lexical, and semantic processing.

    Science.gov (United States)

    Caza, Nicole; Belleville, Sylvie

    2008-05-01

    Individuals with Alzheimer's disease (AD) are often reported to have reduced verbal short-term memory capacity, typically attributed to their attention/executive deficits. However, these individuals also tend to show progressive impairment of semantic, lexical, and phonological processing which may underlie their low short-term memory capacity. The goals of this study were to assess the contribution of each level of representation (phonological, lexical, and semantic) to immediate serial recall performance in 18 individuals with AD, and to examine how these linguistic effects on short-term memory were modulated by their reduced capacity to manipulate information in short-term memory associated with executive dysfunction. Results showed that individuals with AD had difficulty recalling items that relied on phonological representations, which led to increased lexicality effects relative to the control group. This finding suggests that patients have a greater reliance on lexical/semantic information than controls, possibly to make up for deficits in retention and processing of phonological material. This lexical/semantic effect was not found to be significantly correlated with patients' capacity to manipulate verbal material in short-term memory, indicating that language processing and executive deficits may independently contribute to reducing verbal short-term memory capacity in AD.

  19. Quantum aspects of semantic analysis and symbolic artificial intelligence

    International Nuclear Information System (INIS)

    Aerts, Diederik; Czachor, Marek

    2004-01-01

    Modern approaches to semantic analysis if reformulated as Hilbert-space problems reveal formal structures known from quantum mechanics. A similar situation is found in distributed representations of cognitive structures developed for the purpose of neural networks. We take a closer look at similarities and differences between the above two fields and quantum information theory. (letter to the editor)

  20. Quantum aspects of semantic analysis and symbolic artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, Diederik [Centrum Leo Apostel (CLEA) and Foundations of the Exact Sciences (FUND), Vrije Universiteit Brussel, 1050 Brussels (Belgium); Czachor, Marek [Katedra Fizyki Teoretycznej i Metod Matematycznych, Politechnika Gdanska, 80-952 Gdansk (Poland)

    2004-03-26

    Modern approaches to semantic analysis if reformulated as Hilbert-space problems reveal formal structures known from quantum mechanics. A similar situation is found in distributed representations of cognitive structures developed for the purpose of neural networks. We take a closer look at similarities and differences between the above two fields and quantum information theory. (letter to the editor)

  1. Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks.

    Science.gov (United States)

    Harvey, Denise Y; Schnur, Tatiana T

    2016-01-01

    Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system - lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures.

  2. Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks

    OpenAIRE

    Zhelezniak, Vitalii; Busbridge, Dan; Shen, April; Smith, Samuel L.; Hammerla, Nils Y.

    2018-01-01

    Experimental evidence indicates that simple models outperform complex deep networks on many unsupervised similarity tasks. We provide a simple yet rigorous explanation for this behaviour by introducing the concept of an optimal representation space, in which semantically close symbols are mapped to representations that are close under a similarity measure induced by the model's objective function. In addition, we present a straightforward procedure that, without any retraining or architectura...

  3. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  4. A knowledge representation model for the optimisation of electricity generation mixes

    International Nuclear Information System (INIS)

    Chee Tahir, Aidid; Bañares-Alcántara, René

    2012-01-01

    Highlights: ► Prototype energy model which uses semantic representation (ontologies). ► Model accepts both quantitative and qualitative based energy policy goals. ► Uses logic inference to formulate equations for linear optimisation. ► Proposes electricity generation mix based on energy policy goals. -- Abstract: Energy models such as MARKAL, MESSAGE and DNE-21 are optimisation tools which aid in the formulation of energy policies. The strength of these models lie in their solid theoretical foundations built on rigorous mathematical equations designed to process numerical (quantitative) data related to economics and the environment. Nevertheless, a complete consideration of energy policy issues also requires the consideration of the political and social aspects of energy. These political and social issues are often associated with non-numerical (qualitative) information. To enable the evaluation of these aspects in a computer model, we hypothesise that a different approach to energy model optimisation design is required. A prototype energy model that is based on a semantic representation using ontologies and is integrated to engineering models implemented in Java has been developed. The model provides both quantitative and qualitative evaluation capabilities through the use of logical inference. The semantic representation of energy policy goals is used (i) to translate a set of energy policy goals into a set of logic queries which is then used to determine the preferred electricity generation mix and (ii) to assist in the formulation of a set of equations which is then solved in order to obtain a proposed electricity generation mix. Scenario case studies have been developed and tested on the prototype energy model to determine its capabilities. Knowledge queries were made on the semantic representation to determine an electricity generation mix which fulfilled a set of energy policy goals (e.g. CO 2 emissions reduction, water conservation, energy supply

  5. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    International Nuclear Information System (INIS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods. (paper)

  6. Semantic Memory Organization in Japanese Patients With Schizophrenia Examined With Category Fluency

    Directory of Open Access Journals (Sweden)

    Chika Sumiyoshi

    2018-03-01

    Full Text Available BackgroundDisorganization of semantic memory in patients with schizophrenia has been studied by referring to their category fluency performance. Recently, data-mining techniques such as singular value decomposition (SVD analysis have been reported to be effective in elucidating the latent semantic memory structure in patients with schizophrenia. The aim of this study is to investigate semantic memory organization in patients with schizophrenia using a novel method based on data-mining approach.MethodCategory fluency data were collected from 181 patients with schizophrenia and 335 healthy controls at the Department of Psychiatry, Osaka University. The 20 most frequently reported animals were chosen for SVD analysis. In the two-dimensional (2D solution, item vectors (i.e., animal names were plotted in the 2D space of each group. In the six-dimensional (6D solution, inter-item similarities (i.e., cosines were calculated among items. Cosine charts were also created for the six most frequent items to show the similarities to other animal items.ResultsIn the 2D spatial representation, the six most frequent items were grouped in the same clusters (i.e., dog, cat as pet cluster, lion, tiger as wild/carnivorous cluster, and elephant, giraffe as wild/herbivorous cluster for patients and healthy adults. As for 6D spatial cosines, the correlations (Pearson’s r between 17 items commonly generated in the two groups were moderately high. However, cosine charts created for the three pairs from the six most frequent animals (dog–cat, lion–tiger, elephant–giraffe showed that pair-wise similarities between other animals were less salient in patients with schizophrenia.DiscussionSemantic memory organization in patients with schizophrenia, revealed by SVD analysis, did not appear to be seriously impaired in the 2D space representation, maintaining a clustering structure similar to that in healthy controls for common animals. However, the coherence of those

  7. Semantic Blogging : Spreading the Semantic Web Meme

    OpenAIRE

    Cayzer, Steve

    2004-01-01

    This paper is about semantic blogging, an application of the semantic web to blogging. The semantic web promises to make the web more useful by endowing metadata with machine processable semantics. Blogging is a lightweight web publishing paradigm which provides a very low barrier to entry, useful syndication and aggregation behaviour, a simple to understand structure and decentralized construction of a rich information network. Semantic blogging builds upon the success and clear network valu...

  8. Features based approach for indexation and representation of unstructured Arabic documents

    Directory of Open Access Journals (Sweden)

    Mohamed Salim El Bazzi

    2017-06-01

    Full Text Available The increase of textual information published in Arabic language on the internet, public libraries and administrations requires implementing effective techniques for the extraction of relevant information contained in large corpus of texts. The purpose of indexing is to create a document representation that easily find and identify the relevant information in a set of documents. However, mining textual data is becoming a complicated task, especially when taking semantic into consideration. In this paper, we will present an indexation system based on contextual representation that will take the advantage of semantic links given in a document. Our approach is based on the extraction of keyphrases. Then, each document is represented by its relevant keyphrases instead of its simple keywords. The experimental results confirms the effectiveness of our approach.

  9. Semantic mechanisms may be responsible for developing synesthesia

    Directory of Open Access Journals (Sweden)

    Aleksandra eMroczko-Wąsowicz

    2014-08-01

    Full Text Available Currently, little is known about how synesthesia develops and which aspects of synesthesia can be acquired through a learning process. We review the increasing evidence for the role of semantic representations in the induction of synesthesia, and argue for the thesis that synesthetic abilities are developed and modified by semantic mechanisms. That is, in certain people semantic mechanisms associate concepts with perception-like experiences—and this association occurs in an extraordinary way. This phenomenon can be referred to as higher synesthesia or ideasthesia. The present analysis suggests that synesthesia develops during childhood and is being enriched further throughout the synesthetes’ lifetime; for example, the already existing concurrents may be adopted by novel inducers or new concurrents may be formed. For a deeper understanding of the origin and nature of synesthesia we propose to focus future research on two aspects: i the similarities between synesthesia and ordinary phenomenal experiences based on concepts, and ii the tight entanglement of perception, cognition and the conceptualization of the world. Most importantly, an explanation of how biological systems get to generate experiences, synesthetic or not, may have to involve an explanation of how we form semantic networks in general and what their role is in our ability to be aware of the surrounding world.

  10. Exploring and linking biomedical resources through multidimensional semantic spaces.

    Science.gov (United States)

    Berlanga, Rafael; Jiménez-Ruiz, Ernesto; Nebot, Victoria

    2012-01-25

    The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations can be exploited for

  11. Preservation of person-specific knowledge in semantic memory disorder: a longitudinal investigation in two cases of dementia.

    Science.gov (United States)

    Haslam, Catherine; Sabah, Mazen

    2013-03-01

    The double dissociation involving person-specific and general semantic knowledge is supported by numerous patient studies, though cases with preservation of the former are few. In this paper, we report longitudinal data from two cases. Their knowledge in both domains was preserved at the start of the investigation, but progressive deterioration was primarily observed on tests of general semantics. These data strengthen the evidence-base for preservation of person-specific knowledge in semantic memory disorder, and support its separate representation from object knowledge. © 2012 The British Psychological Society.

  12. The effects of associative and semantic priming in the lexical decision task.

    Science.gov (United States)

    Perea, Manuel; Rosa, Eva

    2002-08-01

    Four lexical decision experiments were conducted to examine under which conditions automatic semantic priming effects can be obtained. Experiments 1 and 2 analyzed associative/semantic effects at several very short stimulus-onset asynchronies (SOAs), whereas Experiments 3 and 4 used a single-presentation paradigm at two response-stimulus intervals (RSIs). Experiment 1 tested associatively related pairs from three semantic categories (synonyms, antonyms, and category coordinates). The results showed reliable associative priming effects at all SOAs. In addition, the correlation between associative strength and magnitude of priming was significant only at the shortest SOA (66 ms). When prime-target pairs were semantically but not associatively related (Experiment 2), reliable priming effects were obtained at SOAs of 83 ms and longer. Using the single-presentation paradigm with a short RSI (200 ms, Experiment 3), the priming effect was equal in size for associative + semantic and for semantic-only pairs (a 21-ms effect). When the RSI was set much longer (1,750 ms, Experiment 4), only the associative + semantic pairs showed a reliable priming effect (23 ms). The results are interpreted in the context of models of semantic memory.

  13. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    Science.gov (United States)

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks. Copyright © 2014 the authors 0270-6474/14/3314318-06$15.00/0.

  14. Semantic size of abstract concepts: it gets emotional when you can't see it.

    Science.gov (United States)

    Yao, Bo; Vasiljevic, Milica; Weick, Mario; Sereno, Margaret E; O'Donnell, Patrick J; Sereno, Sara C

    2013-01-01

    Size is an important visuo-spatial characteristic of the physical world. In language processing, previous research has demonstrated a processing advantage for words denoting semantically "big" (e.g., jungle) versus "small" (e.g., needle) concrete objects. We investigated whether semantic size plays a role in the recognition of words expressing abstract concepts (e.g., truth). Semantically "big" and "small" concrete and abstract words were presented in a lexical decision task. Responses to "big" words, regardless of their concreteness, were faster than those to "small" words. Critically, we explored the relationship between semantic size and affective characteristics of words as well as their influence on lexical access. Although a word's semantic size was correlated with its emotional arousal, the temporal locus of arousal effects may depend on the level of concreteness. That is, arousal seemed to have an earlier (lexical) effect on abstract words, but a later (post-lexical) effect on concrete words. Our findings provide novel insights into the semantic representations of size in abstract concepts and highlight that affective attributes of words may not always index lexical access.

  15. Compositional and enumerative designs for medical language representation.

    Science.gov (United States)

    Rassinoux, A M; Miller, R A; Baud, R H; Scherrer, J R

    1997-01-01

    Medical language is in essence highly compositional, allowing complex information to be expressed from more elementary pieces. Embedding the expressive power of medical language into formal systems of representation is recognized in the medical informatics community as a key step towards sharing such information among medical record, decision support, and information retrieval systems. Accordingly, such representation requires managing both the expressiveness of the formalism and its computational tractability, while coping with the level of detail expected by clinical applications. These desiderata can be supported by enumerative as well as compositional approaches, as argued in this paper. These principles have been applied in recasting a frame-based system for general medical findings developed during the 1980s. The new system captures the precise meaning of a subset of over 1500 medical terms for general internal medicine identified from the Quick Medical Reference (QMR) lexicon. In order to evaluate the adequacy of this formal structure in reflecting the deep meaning of the QMR findings, a validation process was implemented. It consists of automatically rebuilding the semantic representation of the QMR findings by analyzing them through the RECIT natural language analyzer, whose semantic components have been adjusted to this frame-based model for the understanding task.

  16. Comprehension of concrete and abstract words in semantic dementia

    Science.gov (United States)

    Jefferies, Elizabeth; Patterson, Karalyn; Jones, Roy W.; Lambon Ralph, Matthew A.

    2009-01-01

    The vast majority of brain-injured patients with semantic impairment have better comprehension of concrete than abstract words. In contrast, several patients with semantic dementia (SD), who show circumscribed atrophy of the anterior temporal lobes bilaterally, have been reported to show reverse imageability effects, i.e., relative preservation of abstract knowledge. Although these reports largely concern individual patients, some researchers have recently proposed that superior comprehension of abstract concepts is a characteristic feature of SD. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are associated with concrete not abstract concepts. However, functional neuroimaging studies of healthy participants do not unequivocally predict reverse imageability effects in SD because the temporal poles sometimes show greater activation for more abstract concepts. We examined a case-series of eleven SD patients on a synonym judgement test that orthogonally varied the frequency and imageability of the items. All patients had higher success rates for more imageable as well as more frequent words, suggesting that (a) the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts, (b) more imageable items – perhaps due to their richer multimodal representations – are typically more robust in the face of global semantic degradation and (c) reverse imageability effects are not a characteristic feature of SD. PMID:19586212

  17. Lack of semantic priming effects in famous person recognition in Mild Cognitive Impairment.

    Science.gov (United States)

    Brambati, Simona M; Peters, Frédéric; Belleville, Sylvie; Joubert, Sven

    2012-04-01

    Growing evidence indicates that individuals with Mild Cognitive Impairment (MCI) manifest semantic deficits that are often more severe for items that are characterized by a unique semantic and lexical association, such as famous people and famous buildings, than common concepts, such as objects. However, it is still controversial whether the semantic deficits observed in MCI are determined by a degradation of semantic information or by a deficit in intentional access to semantic knowledge. Here we used a semantic priming task in order to assess the integrity of the semantic system without requiring explicit access to this system. This paradigm may provide new insights in clarifying the nature of the semantic deficits in MCI. We assessed the semantic and repetition priming effect in 13 individuals with MCI and 13 age-matched controls who engaged in a familiarity judgment task of famous names. In the semantic priming condition, the prime was the name of a member of the same occupation category as the target (Tom Cruise-Brad Pitt), while in the repetition priming condition the prime was the same name as the target (Charlie Chaplin-Charlie Chaplin). The results showed a defective priming effect in MCI in the semantic but not in the repetition priming condition. Specifically, when compared to controls, MCI patients did not show a facilitation effect in responding to the same occupation prime-target pairs, but they showed an equivalent facilitation effect when the target was the same name as the prime. The present results provide support to the hypothesis that the semantic impairments observed in MCI cannot be uniquely ascribed to a deficit in intentional access to semantic information. Instead, these findings point to the semantic nature of these deficits and, in particular, to a degraded representation of semantic information concerning famous people. Copyright © 2011 Elsevier Srl. All rights reserved.

  18. Semantic Labeling of User Location Context Based on Phone Usage Features

    Directory of Open Access Journals (Sweden)

    Helena Leppäkoski

    2017-01-01

    Full Text Available In mobile phones, the awareness of the user’s context allows services better tailored to the user’s needs. We propose a machine learning based method for semantic labeling that utilizes phone usage features to detect the user’s home, work, and other visited places. For place detection, we compare seven different classification methods. We organize the phone usage data based on periods of uninterrupted time that the user has been in a certain place. We consider three approaches to represent this data: visits, places, and cumulative samples. Our main contribution is semantic place labeling using a small set of privacy-preserving features and novel data representations suitable for resource constrained mobile devices. The contributions include (1 introduction of novel data representations including accumulation and averaging of the usage, (2 analysis of the effect of the data accumulation time on the accuracy of the place classification, (3 analysis of the confidence on the classification outcome, and (4 identification of the most relevant features obtained through feature selection methods. With a small set of privacy-preserving features and our data representations, we detect the user’s home and work with probability of 90% or better, and in 3-class problem the overall classification accuracy was 89% or better.

  19. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study

    Directory of Open Access Journals (Sweden)

    Stephan E. Vogel

    2015-04-01

    Full Text Available The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number. Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.

  20. Conceptual representation of verbs in bilinguals: semantic field effects and a second-language performance paradox.

    Science.gov (United States)

    Segalowitz, Norman; de Almeida, Roberto G

    2002-01-01

    It is well known that bilinguals perform better in their first language (L1) than in their second lanaguage (L2) in a wide range of linguistic tasks. In recent studies, however, the authors have found that bilingual participants can demonstrate faster response times to L1 stimuli than to L2 stimuli in one classification task and the reverse in a different classification task. In the current study, they investigated the reasons for this "L2-better-than-L1" effect. English-French bilinguals performed one word relatedness and two categorization tasks with verbs of motion (e.g., run) and psychological verbs (e.g., admire) in both languages. In the word relatedness task, participants judged how closely related pairs of verbs from both categories were. In a speeded semantic categorization task, participants classified the verbs according to their semantic category (psychological or motion). In an arbitrary classification task, participants had to learn how verbs had been assigned to two arbitrary categories. Participants performed better in L1 in the semantic classification task but paradoxically better in L2 in the arbitrary classification task. To account for these effects, the authors used the ratings from the word relatedness task to plot three-dimensional "semantic fields" for the verbs. Cross-language field differences were found to be significantly related to the paradoxical performance and to fluency levels. The results have implications for understanding of how bilinguals represent verbs in the mental lexicon. Copyright 2002 Elsevier Science (USA).

  1. The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing.

    Science.gov (United States)

    Cattaneo, Zaira; Devlin, Joseph T; Salvini, Francesca; Vecchi, Tomaso; Silvanto, Juha

    2010-02-01

    The left ventral premotor cortex (PMv) is preferentially activated by exemplars of tools, suggestive of category specificity in this region. Here we used state-dependent transcranial magnetic stimulation (TMS) to investigate the causal role of such category-specific neuronal representations in the encoding of tool words. Priming to a category name (either "Tool" or "Animal") was used with the objective of modulating the initial activation state of this region prior to application of TMS and the presentation of the target stimulus. When the target word was an exemplar of the "Tool" category, the effects of TMS applied over PMv (but not PMd) interacted with priming history by facilitating reaction times on incongruent trials while not affecting congruent trials. This congruency/TMS interaction implies that the "Tool" and "Animal" primes had a differential effect on the initial activation state of the left PMv and implies that this region is one neural locus of category-specific behavioral priming for the "Tool" category. TMS applied over PMv had no behavioral effect when the target stimulus was an exemplar of the "Animal" category, regardless of whether the target word was congruent or incongruent with the prime. That TMS applied over the left PMv interacted with a priming effect that extended from the category name ("Tool") to exemplars of that category suggests that this region contains neuronal representation associated with a specific semantic category. Our results also demonstrate that the state-dependent effects obtained in the combination of visual priming and TMS are useful in the study of higher-level cognitive functions. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Semantics and pragmatics.

    Science.gov (United States)

    McNally, Louise

    2013-05-01

    The fields of semantics and pragmatics are devoted to the study of conventionalized and context- or use-dependent aspects of natural language meaning, respectively. The complexity of human language as a semiotic system has led to considerable debate about how the semantics/pragmatics distinction should be drawn, if at all. This debate largely reflects contrasting views of meaning as a property of linguistic expressions versus something that speakers do. The fact that both views of meaning are essential to a complete understanding of language has led to a variety of efforts over the last 40 years to develop better integrated and more comprehensive theories of language use and interpretation. The most important advances have included the adaptation of propositional analyses of declarative sentences to interrogative, imperative and exclamative forms; the emergence of dynamic, game theoretic, and multi-dimensional theories of meaning; and the development of various techniques for incorporating context-dependent aspects of content into representations of context-invariant content with the goal of handling phenomena such as vagueness resolution, metaphor, and metonymy. WIREs Cogn Sci 2013, 4:285-297. doi: 10.1002/wcs.1227 For further resources related to this article, please visit the WIREs website. The authors declare no conflict of interest. Copyright © 2013 John Wiley & Sons, Ltd.

  3. A kernel-based multi-feature image representation for histopathology image classification

    International Nuclear Information System (INIS)

    Moreno J; Caicedo J Gonzalez F

    2010-01-01

    This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of latent semantic analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, support vector machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that; the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.

  4. A KERNEL-BASED MULTI-FEATURE IMAGE REPRESENTATION FOR HISTOPATHOLOGY IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    J Carlos Moreno

    2010-09-01

    Full Text Available This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.

  5. Abstraction and generalization in statistical learning: implications for the relationship between semantic types and episodic tokens.

    Science.gov (United States)

    Altmann, Gerry T M

    2017-01-05

    Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions-a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process-the generation, on the basis of semantic memory, of a novel episodic representation-is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  6. The Ghriba pilgrimage in the island of Jerba: the semantics of otherness

    Directory of Open Access Journals (Sweden)

    Dora Carpenter-Latiri

    2010-01-01

    Full Text Available This article examines the Jewish pilgrimage to the Ghriba Synagogue on the island of Jerba (or Djerba in Tunisia, with a focus on the semantics of other­ness as it is condensed in the devotion to the Ghriba, the eponym­ous local saint of the synagogue. The author explores the semantics of the pilgrimage to the Ghriba (the ‘stranger saint’ and in particular, the polysemy of the name and the ambivalence of otherness in the Tunisian context, in particular in representations through discourse in the Tunisian Arabic language as shared by Muslims and Jews. She argues that this complex and ambivalent representation is the central meaning of the ritual of the Ghriba pilgrimage, as the negative connotations of otherness are reversed and amplified into the affirmation of a positive, healing ritual, dedicated to the stranger saint as a symbolic allegory of the otherness of the Jewish community as a whole, or as an allegory of the alienated, exiled, marginalized self.

  7. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  8. Foraging in Semantic Fields: How We Search Through Memory.

    Science.gov (United States)

    Hills, Thomas T; Todd, Peter M; Jones, Michael N

    2015-07-01

    When searching for concepts in memory--as in the verbal fluency task of naming all the animals one can think of--people appear to explore internal mental representations in much the same way that animals forage in physical space: searching locally within patches of information before transitioning globally between patches. However, the definition of the patches being searched in mental space is not well specified. Do we search by activating explicit predefined categories (e.g., pets) and recall items from within that category (categorical search), or do we activate and recall a connected sequence of individual items without using categorical information, with each item recalled leading to the retrieval of an associated item in a stream (associative search), or both? Using semantic representations in a search of associative memory framework and data from the animal fluency task, we tested competing hypotheses based on associative and categorical search models. Associative, but not categorical, patch transitions took longer to make than position-matched productions, suggesting that categorical transitions were not true transitions. There was also clear evidence of associative search even within categorical patch boundaries. Furthermore, most individuals' behavior was best explained by an associative search model without the addition of categorical information. Thus, our results support a search process that does not use categorical information, but for which patch boundaries shift with each recall and local search is well described by a random walk in semantic space, with switches to new regions of the semantic space when the current region is depleted. Copyright © 2015 Cognitive Science Society, Inc.

  9. Natural language acquisition in large scale neural semantic networks

    Science.gov (United States)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  10. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2018-04-01

    Full Text Available This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN and a continuous pairwise Conditional Random Field (CRF model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  11. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    Science.gov (United States)

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  12. Practical solutions to implementing "Born Semantic" data systems

    Science.gov (United States)

    Leadbetter, A.; Buck, J. J. H.; Stacey, P.

    2015-12-01

    .[2] J. Buck & A. Leadbetter, Born semantic: linking data from sensors to users and balancing hardware limitations with data standards, European Geophysical Union General Assembly, 2015.[3] J. Fernandez et al., Binary RDF Representation for Publication and Exchange (HDT), Web Semantics 19:22-41, 2013.

  13. Semantic Advertising

    OpenAIRE

    Zamanzadeh, Ben; Ashish, Naveen; Ramakrishnan, Cartic; Zimmerman, John

    2013-01-01

    We present the concept of Semantic Advertising which we see as the future of online advertising. Semantic Advertising is online advertising powered by semantic technology which essentially enables us to represent and reason with concepts and the meaning of things. This paper aims to 1) Define semantic advertising, 2) Place it in the context of broader and more widely used concepts such as the Semantic Web and Semantic Search, 3) Provide a survey of work in related areas such as context matchi...

  14. Semantic representation of scientific literature: bringing claims, contributions and named entities onto the Linked Open Data cloud

    Directory of Open Access Journals (Sweden)

    Bahar Sateli

    2015-12-01

    Full Text Available Motivation. Finding relevant scientific literature is one of the essential tasks researchers are facing on a daily basis. Digital libraries and web information retrieval techniques provide rapid access to a vast amount of scientific literature. However, no further automated support is available that would enable fine-grained access to the knowledge ‘stored’ in these documents. The emerging domain of Semantic Publishing aims at making scientific knowledge accessible to both humans and machines, by adding semantic annotations to content, such as a publication’s contributions, methods, or application domains. However, despite the promises of better knowledge access, the manual annotation of existing research literature is prohibitively expensive for wide-spread adoption. We argue that a novel combination of three distinct methods can significantly advance this vision in a fully-automated way: (i Natural Language Processing (NLP for Rhetorical Entity (RE detection; (ii Named Entity (NE recognition based on the Linked Open Data (LOD cloud; and (iii automatic knowledge base construction for both NEs and REs using semantic web ontologies that interconnect entities in documents with the machine-readable LOD cloud.Results. We present a complete workflow to transform scientific literature into a semantic knowledge base, based on the W3C standards RDF and RDFS. A text mining pipeline, implemented based on the GATE framework, automatically extracts rhetorical entities of type Claims and Contributions from full-text scientific literature. These REs are further enriched with named entities, represented as URIs to the linked open data cloud, by integrating the DBpedia Spotlight tool into our workflow. Text mining results are stored in a knowledge base through a flexible export process that provides for a dynamic mapping of semantic annotations to LOD vocabularies through rules stored in the knowledge base. We created a gold standard corpus from computer

  15. The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects.

    Science.gov (United States)

    Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-31

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.

  16. A DNA-based semantic fusion model for remote sensing data.

    Directory of Open Access Journals (Sweden)

    Heng Sun

    Full Text Available Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  17. A DNA-based semantic fusion model for remote sensing data.

    Science.gov (United States)

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  18. The Fractal Nature of the Semantic Web

    OpenAIRE

    Berners-Lee, Tim; Kagal, Lalana

    2008-01-01

    In the past, many knowledge representation systems failed because they were too monolithic and didn’t scale well, whereas other systems failed to have an impact because they were small and isolated. Along with this trade-off in size, there is also a constant tension between the cost involved in building a larger community that can interoperate through common terms and the cost of the lack of interoperability. The semantic web offers a good compromise between these approaches as it achieves wi...

  19. An approach to define semantics for BPM systems interoperability

    Science.gov (United States)

    Rico, Mariela; Caliusco, María Laura; Chiotti, Omar; Rosa Galli, María

    2015-04-01

    This article proposes defining semantics for Business Process Management systems interoperability through the ontology of Electronic Business Documents (EBD) used to interchange the information required to perform cross-organizational processes. The semantic model generated allows aligning enterprise's business processes to support cross-organizational processes by matching the business ontology of each business partner with the EBD ontology. The result is a flexible software architecture that allows dynamically defining cross-organizational business processes by reusing the EBD ontology. For developing the semantic model, a method is presented, which is based on a strategy for discovering entity features whose interpretation depends on the context, and representing them for enriching the ontology. The proposed method complements ontology learning techniques that can not infer semantic features not represented in data sources. In order to improve the representation of these entity features, the method proposes using widely accepted ontologies, for representing time entities and relations, physical quantities, measurement units, official country names, and currencies and funds, among others. When the ontologies reuse is not possible, the method proposes identifying whether that feature is simple or complex, and defines a strategy to be followed. An empirical validation of the approach has been performed through a case study.

  20. Automaticity Revisited: When Print Doesn't Activate Semantics

    Directory of Open Access Journals (Sweden)

    Elsa Magdalena Labuschagne

    2015-02-01

    Full Text Available It is widely accepted that the presentation of a printed word automatically triggers processing that ends with full semantic activation. This processing, among other characteristics, is held to occur without intention, and cannot be stopped. The results of the present experiment show that this account is problematic in the context of a variant of the Stroop paradigm. Subjects named the print color of words that were either neutral or semantically related to color. When the letters were all colored, all spatially cued, and the spaces between letters were filled with characters from the top of the keyboard (i.e., 4, #, 5, %, 6, and *, color naming yielded a semantically based Stroop effect and a semantically based negative priming effect. In contrast, the same items yielded neither a semantic Stroop effect nor a negative priming effect when a single target letter was uniquely colored and spatially cued. These findings undermine the widespread view that lexical-semantic activation in word reading is automatic in the sense that it occurs without intention and cannot be derailed.

  1. From ‘Virgin Births’ to ‘Octomom’: Representations of Single Motherhood via Sperm Donation in the UK News

    Science.gov (United States)

    Foster, J.

    2016-01-01

    Abstract The use of sperm donation by single women has provoked public, professional and political debate. Newspapers serve as a critical means of both broadcasting this debate and effecting a representation of this user group within the public sphere. This study uses the theory of social representations to examine how single motherhood by sperm donation has been represented in the UK news over time. The study sampled news coverage on this topic in eight British newspapers during three 4‐year periods between the years 1988 and 2012. The dataset of news reports (n = 406) was analysed using a qualitative approach. Findings indicated that UK media reports of single women using donor sperm are underpinned by conventional categories of the ‘personal’, the ‘traditional’ and the ‘natural’ that when paired with their corollaries produce a representation of this user group as the social ‘other’. The amount of coverage on this topic over time was found to vary according to the political orientation of different media sources. Using key concepts from social representations theory, this article discusses the relationship between themata and anchoring in the maintenance of representations of the social ‘other’ in mass mediated communication. Findings are explained in relation to theoretical conceptions of the mass media and its position within the public sphere. It is argued that the use of personal narratives in news reports of single mothers by sperm donation may have significant implications for public understandings of this social group. © 2016 The Authors. Journal of Community & Applied Social Psychology published by John Wiley & Sons Ltd. PMID:27867283

  2. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Zhenyu Wu

    2017-02-01

    Full Text Available Web of Things (WoT facilitates the discovery and interoperability of Internet of Things (IoT devices in a cyber-physical system (CPS. Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN, it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT framework for CPS (SWoT4CPS. SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  3. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System.

    Science.gov (United States)

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-02-20

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  4. Large scale healthcare data integration and analysis using the semantic web.

    Science.gov (United States)

    Timm, John; Renly, Sondra; Farkash, Ariel

    2011-01-01

    Healthcare data interoperability can only be achieved when the semantics of the content is well defined and consistently implemented across heterogeneous data sources. Achieving these objectives of interoperability requires the collaboration of experts from several domains. This paper describes tooling that integrates Semantic Web technologies with common tools to facilitate cross-domain collaborative development for the purposes of data interoperability. Our approach is divided into stages of data harmonization and representation, model transformation, and instance generation. We applied our approach on Hypergenes, an EU funded project, where we use our method to the Essential Hypertension disease model using a CDA template. Our domain expert partners include clinical providers, clinical domain researchers, healthcare information technology experts, and a variety of clinical data consumers. We show that bringing Semantic Web technologies into the healthcare interoperability toolkit increases opportunities for beneficial collaboration thus improving patient care and clinical research outcomes.

  5. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    Science.gov (United States)

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-01

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216

  6. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    Directory of Open Access Journals (Sweden)

    Minwoo Ryu

    2015-01-01

    Full Text Available The Internet of Things (IoT allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  7. Integrated semantics service platform for the Internet of Things: a case study of a smart office.

    Science.gov (United States)

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-19

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  8. Semantic Size of Abstract Concepts: It Gets Emotional When You Can’t See It

    Science.gov (United States)

    Yao, Bo; Vasiljevic, Milica; Weick, Mario; Sereno, Margaret E.; O’Donnell, Patrick J.; Sereno, Sara C.

    2013-01-01

    Size is an important visuo-spatial characteristic of the physical world. In language processing, previous research has demonstrated a processing advantage for words denoting semantically “big” (e.g., jungle) versus “small” (e.g., needle) concrete objects. We investigated whether semantic size plays a role in the recognition of words expressing abstract concepts (e.g., truth). Semantically “big” and “small” concrete and abstract words were presented in a lexical decision task. Responses to “big” words, regardless of their concreteness, were faster than those to “small” words. Critically, we explored the relationship between semantic size and affective characteristics of words as well as their influence on lexical access. Although a word’s semantic size was correlated with its emotional arousal, the temporal locus of arousal effects may depend on the level of concreteness. That is, arousal seemed to have an earlier (lexical) effect on abstract words, but a later (post-lexical) effect on concrete words. Our findings provide novel insights into the semantic representations of size in abstract concepts and highlight that affective attributes of words may not always index lexical access. PMID:24086421

  9. Genre-adaptive Semantic Computing and Audio-based Modelling for Music Mood Annotation

    DEFF Research Database (Denmark)

    Saari, Pasi; Fazekas, György; Eerola, Tuomas

    2016-01-01

    This study investigates whether taking genre into account is beneficial for automatic music mood annotation in terms of core affects valence, arousal, and tension, as well as several other mood scales. Novel techniques employing genre-adaptive semantic computing and audio-based modelling are prop......This study investigates whether taking genre into account is beneficial for automatic music mood annotation in terms of core affects valence, arousal, and tension, as well as several other mood scales. Novel techniques employing genre-adaptive semantic computing and audio-based modelling...... related to a set of 600 popular music tracks spanning multiple genres. The results show that ACTwg outperforms a semantic computing technique that does not exploit genre information, and ACTwg-SLPwg outperforms conventional techniques and other genre-adaptive alternatives. In particular, improvements......-based genre representation for genre-adaptive music mood analysis....

  10. Semantator: annotating clinical narratives with semantic web ontologies.

    Science.gov (United States)

    Song, Dezhao; Chute, Christopher G; Tao, Cui

    2012-01-01

    To facilitate clinical research, clinical data needs to be stored in a machine processable and understandable way. Manual annotating clinical data is time consuming. Automatic approaches (e.g., Natural Language Processing systems) have been adopted to convert such data into structured formats; however, the quality of such automatically extracted data may not always be satisfying. In this paper, we propose Semantator, a semi-automatic tool for document annotation with Semantic Web ontologies. With a loaded free text document and an ontology, Semantator supports the creation/deletion of ontology instances for any document fragment, linking/disconnecting instances with the properties in the ontology, and also enables automatic annotation by connecting to the NCBO annotator and cTAKES. By representing annotations in Semantic Web standards, Semantator supports reasoning based upon the underlying semantics of the owl:disjointWith and owl:equivalentClass predicates. We present discussions based on user experiences of using Semantator.

  11. Connecting Archaeological Data and Grey Literature via Semantic Cross Search

    Directory of Open Access Journals (Sweden)

    Douglas Tudhope

    2011-07-01

    Full Text Available Differing terminology and database structure hinders meaningful cross search of excavation datasets. Matching free text grey literature reports with datasets poses yet more challenges. Conventional search techniques are unable to cross search between archaeological datasets and Web-based grey literature. Results are reported from two AHRC funded research projects that investigated the use of semantic techniques to link digital archive databases, vocabularies and associated grey literature. STAR (Semantic Technologies for Archaeological Resources was a collaboration between the University of Glamorgan, Hypermedia Research Unit and English Heritage (EH. The main outcome is a research Demonstrator (available online, which cross searches over excavation datasets from different database schemas, including Raunds Roman, Raunds Prehistoric, Museum of London, Silchester Roman and Stanwick sampling. The system additionally cross searches over an extract of excavation reports from the OASIS index of grey literature, operated by the Archaeology Data Service (ADS. A conceptual framework provided by the CIDOC Conceptual Reference Model (CRM integrates the different database structures and the metadata automatically generated from the OASIS reports by natural language processing techniques. The methods employed for extracting semantic RDF representations from the datasets and the information extraction from grey literature are described. The STELLAR project provides freely available tools to reduce the costs of mapping and extracting data to semantic search systems such as the Demonstrator and to linked data representation generally. Detailed use scenarios (and a screen capture video provide a basis for a discussion of key issues, including cost-benefits, ontology modelling, mapping, terminology control, semantic implementation and information extraction issues. The scenarios show that semantic interoperability can be achieved by mapping and extracting

  12. Intuitions and Competence in Formal Semantics

    Directory of Open Access Journals (Sweden)

    Martin Stokhof

    2010-12-01

    Montague Grammar, Mental Representation, and Reality’. In S. Ohman & S. Kanger (eds. ‘Philosophy and Grammar’, 59–78. Dordrecht: Reidel.Partee, Barbara H. 1988. ‘Semantic Facts and Psychological Facts’. Mind and Language 3: 43–52.http://dx.doi.org/10.1111/j.1468-0017.1988.tb00132.xStokhof, Martin. 2007. ‘Hand or Hammer? On Formal and Natural Languages in Semantics’. Journal of Indian Philosophy 35, no. 5: 597–626.http://dx.doi.org/10.1007/s10781-007-9023-7Stokhof, Martin & van Lambalgen, Michiel. 2011a. ‘Abstraction and Idealisation: The Construction of Modern Linguistics’. Theoretical Linguistics 37, no. 1–2: 1–26.http://dx.doi.org/10.1515/THLI.2011.001Stokhof, Martin & van Lambalgen, Michiel. 2011b. ‘Comments–to–Comments’. Theoretical Linguistics 37, no. 1–2: 79–94.http://dx.doi.org/10.1515/THLI.2011.008Thomason, Richmond H. 1974. ‘Introduction’. In Richmond H. Thomason (ed. ‘Formal Philosophy. Selected papers of Richard Montague.’, 1–71. New Haven and London: Yale University Press.Weinberg, Jonathan M., Gonnerman, Chad, Buckner, Cameron & Alexander, Joshua. 2010. ‘Are Philosophers Expert Intuiters?’ Philosophical Psychology 23, no. 3: 331–55.http://dx.doi.org/10.1080/09515089.2010.490944

  13. Socially bold personality in the real communication and Internet communication: the analysis of representations of people of the different age

    Directory of Open Access Journals (Sweden)

    Pogodina A. V.

    2017-03-01

    Full Text Available The article is concerned with the results of the study, subject of which is the submis- sion of the respondents of the different age groups about the social and bold personality. Required property of the respondents was the presence in the Internet environment and participation in various social networks. They assessed social and bold personal- ity in such contexts of communication, as real communication and Internet communication. Analyses were undertaken to determine the structural and content features of emotional and semantic representations of the phenomenon of the social and bold personality, depending on the context of communication, but also the detection of age-sensitive representations of the young respondents (19—35 years, middle-aged respondents (36-55 years and older respondents (from 56 to 70 years. The concept of the “social and bold personality in real communion” is shown to have a high semantic relevance, strongly marked positive emotional coloration and a similar factor structure for respondents of all age groups. The concept of the “social and bold personality in online communication” with a high semantic significance in the perception of the young respondents moves into a zone of moderate and semantic importance in representations of the middle-aged and older respondents. In representations of the respondents of all age groups, the attractiveness of the "social and bold personality in Internet communication" is less than in comparison with the "social and bold personality in the real communication". The age-specific of the social representations about social and bold personality in the real and virtual communication has been analysed in detail.

  14. Towards a Script-Based Representation Language for Educational Films.

    Science.gov (United States)

    Parkes, Alan P.

    1987-01-01

    Discusses aspects of the syntax and semantics of film, and presents a scenario for the use of film by intelligent computer assisted instruction (ICAI) systems. An outline of a representation language for educational films on videodisc is presented, and an appendix provides conceptual graphs that explain notations used in examples. (Author/LRW)

  15. Semantic role labeling for protein transport predicates

    Directory of Open Access Journals (Sweden)

    Martin James H

    2008-06-01

    Full Text Available Abstract Background Automatic semantic role labeling (SRL is a natural language processing (NLP technique that maps sentences to semantic representations. This technique has been widely studied in the recent years, but mostly with data in newswire domains. Here, we report on a SRL model for identifying the semantic roles of biomedical predicates describing protein transport in GeneRIFs – manually curated sentences focusing on gene functions. To avoid the computational cost of syntactic parsing, and because the boundaries of our protein transport roles often did not match up with syntactic phrase boundaries, we approached this problem with a word-chunking paradigm and trained support vector machine classifiers to classify words as being at the beginning, inside or outside of a protein transport role. Results We collected a set of 837 GeneRIFs describing movements of proteins between cellular components, whose predicates were annotated for the semantic roles AGENT, PATIENT, ORIGIN and DESTINATION. We trained these models with the features of previous word-chunking models, features adapted from phrase-chunking models, and features derived from an analysis of our data. Our models were able to label protein transport semantic roles with 87.6% precision and 79.0% recall when using manually annotated protein boundaries, and 87.0% precision and 74.5% recall when using automatically identified ones. Conclusion We successfully adapted the word-chunking classification paradigm to semantic role labeling, applying it to a new domain with predicates completely absent from any previous studies. By combining the traditional word and phrasal role labeling features with biomedical features like protein boundaries and MEDPOST part of speech tags, we were able to address the challenges posed by the new domain data and subsequently build robust models that achieved F-measures as high as 83.1. This system for extracting protein transport information from Gene

  16. Semantic Memory and Verbal Working Memory Correlates of N400 to Subordinate Homographs

    Science.gov (United States)

    Salisbury, Dean F.

    2004-01-01

    N400 is an event-related brain potential that indexes operations in semantic memory conceptual space, whether elicited by language or some other representation (e.g., drawings). Language models typically propose three stages: lexical access or orthographic- and phonological-level analysis; lexical selection or word-level meaning and associate…

  17. A Description Logic Based Knowledge Representation Model for Concept Understanding

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    This research employs Description Logics in order to focus on logical description and analysis of the phenomenon of ‘concept understanding’. The article will deal with a formal-semantic model for figuring out the underlying logical assumptions of ‘concept understanding’ in knowledge representation...... systems. In other words, it attempts to describe a theoretical model for concept understanding and to reflect the phenomenon of ‘concept understanding’ in terminological knowledge representation systems. Finally, it will design an ontology that schemes the structure of concept understanding based...

  18. Semantic memory influences episodic retrieval by increased familiarity.

    Science.gov (United States)

    Wang, Yujuan; Mao, Xinrui; Li, Bingcan; Lu, Baoqing; Guo, Chunyan

    2016-07-06

    The role of familiarity in associative recognition has been investigated in a number of studies, which have indicated that familiarity can facilitate recognition under certain circumstances. The ability of a pre-experimentally existing common representation to boost the contribution of familiarity has rarely been investigated. In addition, although many studies have investigated the interactions between semantic memory and episodic retrieval, the conditions that influence the presence of specific patterns were unclear. This study aimed to address these two questions. We manipulated the degree of overlap between the two representations using synonym and nonsynonym pairs in an associative recognition task. Results indicated that an increased degree of overlap enhanced recognition performance. The analysis of event-related potentials effects in the test phase showed that synonym pairs elicited both types of old/rearranged effects, whereas nonsynonym pairs elicited a late old/rearranged effect. These results confirmed that a common representation, irrespective of source, was necessary for assuring the presence of familiarity, but a common representation could not distinguish associative recognition depending on familiarity alone. Moreover, our expected double dissociation between familiarity and recollection was absent, which indicated that mode selection may be influenced by the degree of distinctness between old and rearranged pairs rather than the degree of overlap between representations.

  19. Semantic and visual determinants of face recognition in a prosopagnosic patient.

    Science.gov (United States)

    Dixon, M J; Bub, D N; Arguin, M

    1998-05-01

    Prosopagnosia is the neuropathological inability to recognize familiar people by their faces. It can occur in isolation or can coincide with recognition deficits for other nonface objects. Often, patients whose prosopagnosia is accompanied by object recognition difficulties have more trouble identifying certain categories of objects relative to others. In previous research, we demonstrated that objects that shared multiple visual features and were semantically close posed severe recognition difficulties for a patient with temporal lobe damage. We now demonstrate that this patient's face recognition is constrained by these same parameters. The prosopagnosic patient ELM had difficulties pairing faces to names when the faces shared visual features and the names were semantically related (e.g., Tonya Harding, Nancy Kerrigan, and Josee Chouinard -three ice skaters). He made tenfold fewer errors when the exact same faces were associated with semantically unrelated people (e.g., singer Celine Dion, actress Betty Grable, and First Lady Hillary Clinton). We conclude that prosopagnosia and co-occurring category-specific recognition problems both stem from difficulties disambiguating the stored representations of objects that share multiple visual features and refer to semantically close identities or concepts.

  20. Semantic content-based recommendations using semantic graphs.

    Science.gov (United States)

    Guo, Weisen; Kraines, Steven B

    2010-01-01

    Recommender systems (RSs) can be useful for suggesting items that might be of interest to specific users. Most existing content-based recommendation (CBR) systems are designed to recommend items based on text content, and the items in these systems are usually described with keywords. However, similarity evaluations based on keywords suffer from the ambiguity of natural languages. We present a semantic CBR method that uses Semantic Web technologies to recommend items that are more similar semantically with the items that the user prefers. We use semantic graphs to represent the items and we calculate the similarity scores for each pair of semantic graphs using an inverse graph frequency algorithm. The items having higher similarity scores to the items that are known to be preferred by the user are recommended.

  1. Dynamic graph system for a semantic database

    Science.gov (United States)

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  2. Audiovisual semantic congruency during encoding enhances memory performance.

    Science.gov (United States)

    Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa

    2015-01-01

    Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.

  3. A Lexical Framework for Semantic Annotation of Positive and Negative Regulation Relations in Biomedical Pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Lassen, Tine

    presented here, we analyze 6 frequently used verbs denoting the regulation relations regulates, positively regulates and negatively regulates through corpus analysis, and propose a formal representation of the acquired knowledge as domain speci¯c semantic frames. The acquired knowledge patterns can thus...

  4. Age-related effects on perceptual and semantic encoding in memory.

    Science.gov (United States)

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Ontology-based Semantic Search Engine for Healthcare Services

    OpenAIRE

    Jotsna Molly Rajan; M. Deepa Lakshmi

    2012-01-01

    With the development of Web Services, the retrieval of relevant services has become a challenge. The keyword-based discovery mechanism using UDDI and WSDL is insufficient due to the retrievalof a large amount of irrelevant information. Also, keywords are insufficient in expressing semantic concepts since a single concept can be referred using syntactically different terms. Hence, service capabilities need to be manually analyzed, which lead to the development of the Semantic Web for automatic...

  6. Is semantic priming due to association strength or feature overlap? A microanalytic review.

    Science.gov (United States)

    Hutchison, Keith A

    2003-12-01

    In a recent meta-analysis, Lucas (2000) concluded that there is strong evidence of an overall pure semantic priming effect but no evidence of priming based purely on association. In the present review, I critically examine the individual studies claiming evidence of featural and associative relations in semantic memory. The most important conclusion is that automatic priming appears to be due to both association strength and feature overlap. Mediated associates provide the strongest evidence of automatic associative priming, whereas functional associates, synonyms, and antonyms instead support priming based on feature overlap. In contrast, automatic priming does not occur for category coordinates or perceptually similar items, at least when presented in the visual modality. The status of other relations, such as collocates, episodic relatives, and script relations, is unclear and requires further experimentation. Implications for current models of semantic representation and priming are discussed.

  7. The role of the left anterior temporal lobe in semantic composition vs. semantic memory.

    Science.gov (United States)

    Westerlund, Masha; Pylkkänen, Liina

    2014-05-01

    The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Semantics of Temporal Models with Multiple Temporal Dimensions

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    ending up with lexical data models. In particular we look upon the representations by sets of normalised tables, by sets of 1NF tables and by sets of N1NF/nested tables. At each translation step we focus on how the temporal semantic is consistently maintained. In this way we recognise the requirements...... for representation of temporal properties in different models and the correspondence between the models. The results rely on the assumptions that the temporal dimensions are interdependent and ordered. Thus for example the valid periods of existences of a property in a mini world are dependent on the transaction...... periods in which the corresponding recordings are valid. This is not the normal way of looking at temporal dimensions and we give arguments supporting our assumption....

  9. Distinct neural substrates of affective and cognitive theory of mind impairment in semantic dementia.

    Science.gov (United States)

    Bejanin, Alexandre; Chételat, Gaël; Laisney, Mickael; Pélerin, Alice; Landeau, Brigitte; Merck, Catherine; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Desgranges, Béatrice

    2017-06-01

    Using structural MRI, we investigated the brain substrates of both affective and cognitive theory of mind (ToM) in 19 patients with semantic dementia. We also ran intrinsic connectivity analyses to identify the networks to which the substrates belong and whether they are functionally disturbed in semantic dementia. In line with previous studies, we observed a ToM impairment in patients with semantic dementia even when semantic memory was regressed out. Our results also highlighted different neural bases according to the nature (affective or cognitive) of the representations being inferred. The affective ToM deficit was associated with atrophy in the amygdala, suggesting the involvement of emotion-processing deficits in this impairment. By contrast, cognitive ToM performances were correlated with the volume of medial prefrontal and parietal regions, as well as the right frontal operculum. Intrinsic connectivity analyses revealed decreased functional connectivity, mainly between midline cortical regions and temporal regions. They also showed that left medial temporal regions were functionally isolated, a further possible hindrance to normal social cognitive functioning in semantic dementia. Overall, this study addressed for the first time the neuroanatomical substrates of both cognitive and affective ToM disruption in semantic dementia, highlighting disturbed connectivity within the networks that sustain these abilities.

  10. EEG source reconstruction evidence for the noun-verb neural dissociation along semantic dimensions.

    Science.gov (United States)

    Zhao, Bin; Dang, Jianwu; Zhang, Gaoyan

    2017-09-17

    One of the long-standing issues in neurolinguistic research is about the neural basis of word representation, concerning whether grammatical classification or semantic difference causes the neural dissociation of brain activity patterns when processing different word categories, especially nouns and verbs. To disentangle this puzzle, four orthogonalized word categories in Chinese: unambiguous nouns (UN), unambiguous verbs (UV), ambiguous words with noun-biased semantics (AN), and ambiguous words with verb-biased semantics (AV) were adopted in an auditory task for recording electroencephalographic (EEG) signals from 128 electrodes on the scalps of twenty-two subjects. With the advanced current density reconstruction (CDR) algorithm and the constraint of standardized low-resolution electromagnetic tomography, the spatiotemporal brain dynamics of word processing were explored with the results that in multiple time periods including P1 (60-90ms), N1 (100-140ms), P200 (150-250ms) and N400 (350-450ms), noun-verb dissociation over the parietal-occipital and frontal-central cortices appeared not only between the UN-UV grammatical classes but also between the grammatically identical but semantically different AN-AV pairs. The apparent semantic dissociation within one grammatical class strongly suggests that the semantic difference rather than grammatical classification could be interpreted as the origin of the noun-verb neural dissociation. Our results also revealed that semantic dissociation occurs from an early stage and repeats in multiple phases, thus supporting a functionally hierarchical word processing mechanism. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Topic structure affects semantic integration: evidence from event-related potentials.

    Science.gov (United States)

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated.

  12. Context-rich semantic framework for effective data-to-decisions in coalition networks

    Science.gov (United States)

    Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien

    2013-05-01

    In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.

  13. A single-column model intercomparison on the stratocumulus representation in present-day and future climate

    NARCIS (Netherlands)

    Dal Gesso, S.; Van der Dussen, J.J.; Siebesma, A.P.; De Roode, S.R.; Boutle, I.A.; Kamae, Y.; Roehrig, R.; Vial, J.

    2015-01-01

    Six Single-Column Model (SCM) versions of climate models are evaluated on the basis of their representation of the dependence of the stratocumulus-topped boundary layer regime on the free tropospheric thermodynamic conditions. The study includes two idealized experiments corresponding to the

  14. Semantic interference from distractor pictures in single-picture naming: evidence for competitive lexical selection.

    Science.gov (United States)

    Jescheniak, Jörg D; Matushanskaya, Asya; Mädebach, Andreas; Müller, Matthias M

    2014-10-01

    Picture-naming studies have demonstrated interference from semantic-categorically related distractor words, but not from corresponding distractor pictures, and the lack of generality of the interference effect has been argued to challenge theories viewing lexical selection in speech production as a competitive process. Here, we demonstrate that semantic interference from context pictures does become visible, if sufficient attention is allocated to them. We combined picture naming with a spatial-cuing procedure. When participants' attention was shifted to the distractor, semantically related distractor pictures interfered with the response, as compared with unrelated distractor pictures. This finding supports models conceiving lexical retrieval as competitive (Levelt, Roelofs, & Meyer, 1999) but is difficult to reconcile with the response exclusion hypothesis (Finkbeiner & Caramazza, 2006b) proposed as an alternative.

  15. Semantic Information Modeling for Emerging Applications in Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Natarajan, Sreedhar; Simmhan, Yogesh; Prasanna, Viktor

    2012-04-16

    Smart Grid modernizes power grid by integrating digital and information technologies. Millions of smart meters, intelligent appliances and communication infrastructures are under deployment allowing advanced IT applications to be developed to secure and manage power grid operations. Demand response (DR) is one such emerging application to optimize electricity demand by curtailing/shifting power load when peak load occurs. Existing DR approaches are mostly based on static plans such as pricing policies and load shedding schedules. However, improvements to power management applications rely on data emanating from existing and new information sources with the growth of Smart Grid information space. In particular, dynamic DR algorithms depend on information from smart meters that report interval-based power consumption measurement, HVAC systems that monitor buildings heat and humidity, and even weather forecast services. In order for emerging Smart Grid applications to take advantage of the diverse data influx, extensible information integration is required. In this paper, we develop an integrated Smart Grid information model using Semantic Web techniques and present case studies of using semantic information for dynamic DR. We show the semantic model facilitates information integration and knowledge representation for developing the next generation Smart Grid applications.

  16. Semantic congruence enhances memory of episodic associations: role of theta oscillations.

    Science.gov (United States)

    Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L

    2011-01-01

    Growing evidence suggests that theta oscillations play a crucial role in episodic encoding. The present study evaluates whether changes in electroencephalographic theta source dynamics mediate the positive influence of semantic congruence on incidental associative learning. Here we show that memory for episodic associations (face-location) is more accurate when studied under semantically congruent contexts. However, only participants showing RT priming effect in a conceptual priming test (priming group) also gave faster responses when recollecting source information of semantically congruent faces as compared with semantically incongruent faces. This improved episodic retrieval was positively correlated with increases in theta power during the study phase mainly in the bilateral parahippocampal gyrus, left superior temporal gyrus, and left lateral posterior parietal lobe. Reconstructed signals from the estimated sources showed higher theta power for congruent than incongruent faces and also for the priming than the nonpriming group. These results are in agreement with the attention to memory model. Besides directing top-down attention to goal-relevant semantic information during encoding, the dorsal parietal lobe may also be involved in redirecting attention to bottom-up-driven memories thanks to connections between the medial-temporal and the left ventral parietal lobe. The latter function can either facilitate or interfere with encoding of face-location associations depending on whether they are preceded by semantically congruent or incongruent contexts, respectively, because only in the former condition retrieved representations related to the cue and the face are both coherent with the person identity and are both associated with the same location.

  17. Presenting results as dynamically generated co-authorship subgraphs in semantic digital library collections

    Directory of Open Access Journals (Sweden)

    James Powell

    2012-02-01

    Full Text Available Semantic web representations of data are by definition graphs, and these graphs can be explored using concepts from graph theory. This paper demonstrates how semantically mapped bibliographic metadata, combined with a lightweight software architecture and Web-based graph visualization tools, can be used to generate dynamic authorship graphs in response to typical user queries, as an alternative to more common text-based results presentations. It also shows how centrality measures and path analysis techniques from social network analysis can be used to enhance the visualization of query results. The resulting graphs require modestly more cognitive engagement from the user but offer insights not available from text.

  18. Shared liking and association valence for representational art but not abstract art.

    Science.gov (United States)

    Schepman, Astrid; Rodway, Paul; Pullen, Sarah J; Kirkham, Julie

    2015-01-01

    We examined the finding that aesthetic evaluations are more similar across observers for representational images than for abstract images. It has been proposed that a difference in convergence of observers' tastes is due to differing levels of shared semantic associations (Vessel & Rubin, 2010). In Experiment 1, student participants rated 20 representational and 20 abstract artworks. We found that their judgments were more similar for representational than abstract artworks. In Experiment 2, we replicated this finding, and also found that valence ratings given to associations and meanings provided in response to the artworks converged more across observers for representational than for abstract art. Our empirical work provides insight into processes that may underlie the observation that taste for representational art is shared across individual observers, while taste for abstract art is more idiosyncratic.

  19. Geospatial semantic web

    CERN Document Server

    Zhang, Chuanrong; Li, Weidong

    2015-01-01

    This book covers key issues related to Geospatial Semantic Web, including geospatial web services for spatial data interoperability; geospatial ontology for semantic interoperability; ontology creation, sharing, and integration; querying knowledge and information from heterogeneous data source; interfaces for Geospatial Semantic Web, VGI (Volunteered Geographic Information) and Geospatial Semantic Web; challenges of Geospatial Semantic Web; and development of Geospatial Semantic Web applications. This book also describes state-of-the-art technologies that attempt to solve these problems such as WFS, WMS, RDF, OWL, and GeoSPARQL, and demonstrates how to use the Geospatial Semantic Web technologies to solve practical real-world problems such as spatial data interoperability.

  20. Spatial Relation Predicates in Topographic Feature Semantics

    Science.gov (United States)

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  1. Density-Based Clustering with Geographical Background Constraints Using a Semantic Expression Model

    Directory of Open Access Journals (Sweden)

    Qingyun Du

    2016-05-01

    Full Text Available A semantics-based method for density-based clustering with constraints imposed by geographical background knowledge is proposed. In this paper, we apply an ontological approach to the DBSCAN (Density-Based Geospatial Clustering of Applications with Noise algorithm in the form of knowledge representation for constraint clustering. When used in the process of clustering geographic information, semantic reasoning based on a defined ontology and its relationships is primarily intended to overcome the lack of knowledge of the relevant geospatial data. Better constraints on the geographical knowledge yield more reasonable clustering results. This article uses an ontology to describe the four types of semantic constraints for geographical backgrounds: “No Constraints”, “Constraints”, “Cannot-Link Constraints”, and “Must-Link Constraints”. This paper also reports the implementation of a prototype clustering program. Based on the proposed approach, DBSCAN can be applied with both obstacle and non-obstacle constraints as a semi-supervised clustering algorithm and the clustering results are displayed on a digital map.

  2. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics

    Directory of Open Access Journals (Sweden)

    Elizabeth Orme

    2017-07-01

    Full Text Available In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms and late posterior negativity (LPN; 500–900 ms, as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms were briefly presented to participants for study (1500 ms, followed by a retention interval (6000 ms and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.

  3. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics.

    Science.gov (United States)

    Orme, Elizabeth; Brown, Louise A; Riby, Leigh M

    2017-01-01

    In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400-800 ms) and late posterior negativity (LPN; 500-900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively 'pure' and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.

  4. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics

    Science.gov (United States)

    Orme, Elizabeth; Brown, Louise A.; Riby, Leigh M.

    2017-01-01

    In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms) and late posterior negativity (LPN; 500–900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively. PMID:28725203

  5. Semantic Multimedia

    NARCIS (Netherlands)

    S. Staab; A. Scherp; R. Arndt; R. Troncy (Raphael); M. Grzegorzek; C. Saathoff; S. Schenk; L. Hardman (Lynda)

    2008-01-01

    htmlabstractMultimedia constitutes an interesting field of application for Semantic Web and Semantic Web reasoning, as the access and management of multimedia content and context depends strongly on the semantic descriptions of both. At the same time, multimedia resources constitute complex objects,

  6. Saving Large Semantic Data in Cloud: A Survey of the Main DBaaS Solutions

    Directory of Open Access Journals (Sweden)

    Bogdan IANCU

    2018-01-01

    Full Text Available In the last decades, the evolution of ICT has been spectacular, having a major impact on all the other sectors of activity. New technologies have emerged, coming up with solutions to existing problems and opening up new opportunities. This article discusses solutions that combine big data, semantic web and cloud computing technologies. The authors analyze various possibilities of storing large volumes of data in triplestore databases, which are currently the matter of choice for storing semantic web data. The paper first presents the existing solutions for installing triplestores on the premises and then focuses on triplestores as DBaaS (in cloud. Comparative analyzes are made between the various identified solutions. This paper provides useful means for choosing the most appropriate database solution for semantic web data representation, both on premises or as DBaaS.

  7. Speed and Accuracy in the Processing of False Statements About Semantic Information.

    Science.gov (United States)

    Ratcliff, Roger

    1982-01-01

    A standard reaction time procedure and a response signal procedure were used on data from eight experiments on semantic verifications. Results suggest that simple models of the semantic verification task that assume a single yes/no dimension on which discrimination is made are not correct. (Author/PN)

  8. The BiSciCol Triplifier: bringing biodiversity data to the Semantic Web.

    Science.gov (United States)

    Stucky, Brian J; Deck, John; Conlin, Tom; Ziemba, Lukasz; Cellinese, Nico; Guralnick, Robert

    2014-07-29

    Recent years have brought great progress in efforts to digitize the world's biodiversity data, but integrating data from many different providers, and across research domains, remains challenging. Semantic Web technologies have been widely recognized by biodiversity scientists for their potential to help solve this problem, yet these technologies have so far seen little use for biodiversity data. Such slow uptake has been due, in part, to the relative complexity of Semantic Web technologies along with a lack of domain-specific software tools to help non-experts publish their data to the Semantic Web. The BiSciCol Triplifier is new software that greatly simplifies the process of converting biodiversity data in standard, tabular formats, such as Darwin Core-Archives, into Semantic Web-ready Resource Description Framework (RDF) representations. The Triplifier uses a vocabulary based on the popular Darwin Core standard, includes both Web-based and command-line interfaces, and is fully open-source software. Unlike most other RDF conversion tools, the Triplifier does not require detailed familiarity with core Semantic Web technologies, and it is tailored to a widely popular biodiversity data format and vocabulary standard. As a result, the Triplifier can often fully automate the conversion of biodiversity data to RDF, thereby making the Semantic Web much more accessible to biodiversity scientists who might otherwise have relatively little knowledge of Semantic Web technologies. Easy availability of biodiversity data as RDF will allow researchers to combine data from disparate sources and analyze them with powerful linked data querying tools. However, before software like the Triplifier, and Semantic Web technologies in general, can reach their full potential for biodiversity science, the biodiversity informatics community must address several critical challenges, such as the widespread failure to use robust, globally unique identifiers for biodiversity data.

  9. Training Of Manual Actions Improves Language Understanding of Semantically-Related Action Sentences

    Directory of Open Access Journals (Sweden)

    Matteo eLocatelli

    2012-12-01

    Full Text Available Conceptual knowledge accessed by language may involve the re-activation of the associated primary sensory-motor processes. Whether these embodied representations are indeed constitutive to conceptual knowledge is hotly debated, particularly since direct evidence that sensory-motor expertise can improve conceptual processing is scarce.In this study, we sought for this crucial piece of evidence, by training naive healthy subjects to perform complex manual actions and by measuring, before and after training, their performance in a semantic language task. 19 participants engaged in 3 weeks of motor training. Each participant was trained in 3 complex manual actions (e.g. origami. Before and after the training period, each subject underwent a series of manual dexterity tests and a semantic language task. The latter consisted of a sentence-picture semantic congruency judgment task, with 6 target congruent sentence-picture pairs (semantically related to the trained manual actions, 6 non-target congruent pairs (semantically unrelated, and 12 filler incongruent pairs.Manual action training induced a significant improvement in all manual dexterity tests, demonstrating the successful acquisition of sensory-motor expertise. In the semantic language task, the reaction times to both target and non-target congruent sentence-image pairs decreased after action training, indicating a more efficient conceptual-semantic processing. Noteworthy, the reaction times for target pairs decreased more than those for non-target pairs, as indicated by the 2x2 interaction. These results were confirmed when controlling for the potential bias of increased frequency of use of target lexical items during manual training.The results of the present study suggest that sensory-motor expertise gained by training of specific manual actions can lead to an improvement of cognitive-linguistic skills related to the specific conceptual-semantic domain associated to the trained actions.

  10. A semantic web ontology for small molecules and their biological targets.

    Science.gov (United States)

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  11. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    Science.gov (United States)

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  12. Modular Knowledge Representation and Reasoning in the Semantic Web

    Science.gov (United States)

    Serafini, Luciano; Homola, Martin

    Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.

  13. Semantic Enhancement for Enterprise Data Management

    Science.gov (United States)

    Ma, Li; Sun, Xingzhi; Cao, Feng; Wang, Chen; Wang, Xiaoyuan; Kanellos, Nick; Wolfson, Dan; Pan, Yue

    Taking customer data as an example, the paper presents an approach to enhance the management of enterprise data by using Semantic Web technologies. Customer data is the most important kind of core business entity a company uses repeatedly across many business processes and systems, and customer data management (CDM) is becoming critical for enterprises because it keeps a single, complete and accurate record of customers across the enterprise. Existing CDM systems focus on integrating customer data from all customer-facing channels and front and back office systems through multiple interfaces, as well as publishing customer data to different applications. To make the effective use of the CDM system, this paper investigates semantic query and analysis over the integrated and centralized customer data, enabling automatic classification and relationship discovery. We have implemented these features over IBM Websphere Customer Center, and shown the prototype to our clients. We believe that our study and experiences are valuable for both Semantic Web community and data management community.

  14. Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge.

    Science.gov (United States)

    van Elk, Michiel; van Schie, Hein; Bekkering, Harold

    2014-06-01

    Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. SCALEUS: Semantic Web Services Integration for Biomedical Applications.

    Science.gov (United States)

    Sernadela, Pedro; González-Castro, Lorena; Oliveira, José Luís

    2017-04-01

    In recent years, we have witnessed an explosion of biological data resulting largely from the demands of life science research. The vast majority of these data are freely available via diverse bioinformatics platforms, including relational databases and conventional keyword search applications. This type of approach has achieved great results in the last few years, but proved to be unfeasible when information needs to be combined or shared among different and scattered sources. During recent years, many of these data distribution challenges have been solved with the adoption of semantic web. Despite the evident benefits of this technology, its adoption introduced new challenges related with the migration process, from existent systems to the semantic level. To facilitate this transition, we have developed Scaleus, a semantic web migration tool that can be deployed on top of traditional systems in order to bring knowledge, inference rules, and query federation to the existent data. Targeted at the biomedical domain, this web-based platform offers, in a single package, straightforward data integration and semantic web services that help developers and researchers in the creation process of new semantically enhanced information systems. SCALEUS is available as open source at http://bioinformatics-ua.github.io/scaleus/ .

  16. Insights from child development on the relationship between episodic and semantic memory.

    Science.gov (United States)

    Robertson, Erin K; Köhler, Stefan

    2007-11-05

    The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.

  17. Varieties of semantic 'access' deficit in Wernicke's aphasia and semantic aphasia.

    Science.gov (United States)

    Thompson, Hannah E; Robson, Holly; Lambon Ralph, Matthew A; Jefferies, Elizabeth

    2015-12-01

    Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke's aphasia, associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic 'access' deficit, as opposed to the 'storage' deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of 'access' impairment-related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke's aphasia). We used a case series design to compare patients with Wernicke's aphasia and those with semantic aphasia on Warrington's paradigmatic assessment of semantic 'access' deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic 'blocking' effects). Patients with Wernicke's aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability-one that mapped onto classical 'syndromes' and one that did not-predicted aspects of the semantic 'access' deficit. Both semantic aphasia and Wernicke's aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke's aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially 'beneficial' effects of stimulus repetition: cases with

  18. The elephant in the room: Inconsistency in scene viewing and representation.

    Science.gov (United States)

    Spotorno, Sara; Tatler, Benjamin W

    2017-10-01

    We examined the extent to which semantic informativeness, consistency with expectations and perceptual salience contribute to object prioritization in scene viewing and representation. In scene viewing (Experiments 1-2), semantic guidance overshadowed perceptual guidance in determining fixation order, with the greatest prioritization for objects that were diagnostic of the scene's depicted event. Perceptual properties affected selection of consistent objects (regardless of their informativeness) but not of inconsistent objects. Semantic and perceptual properties also interacted in influencing foveal inspection, as inconsistent objects were fixated longer than low but not high salience diagnostic objects. While not studied in direct competition with each other (each studied in competition with diagnostic objects), we found that inconsistent objects were fixated earlier and for longer than consistent but marginally informative objects. In change detection (Experiment 3), perceptual guidance overshadowed semantic guidance, promoting detection of highly salient changes. A residual advantage for diagnosticity over inconsistency emerged only when selection prioritization could not be based on low-level features. Overall these findings show that semantic inconsistency is not prioritized within a scene when competing with other relevant information that is essential to scene understanding and respects observers' expectations. Moreover, they reveal that the relative dominance of semantic or perceptual properties during selection depends on ongoing task requirements. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Generative Semantics.

    Science.gov (United States)

    King, Margaret

    The first section of this paper deals with the attempts within the framework of transformational grammar to make semantics a systematic part of linguistic description, and outlines the characteristics of the generative semantics position. The second section takes a critical look at generative semantics in its later manifestations, and makes a case…

  20. An fMRI study of semantic processing in men with schizophrenia

    Science.gov (United States)

    Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.

    2009-01-01

    overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance. PMID:14683698

  1. An fMRI study of semantic processing in men with schizophrenia.

    Science.gov (United States)

    Kubicki, M; McCarley, R W; Nestor, P G; Huh, T; Kikinis, R; Shenton, M E; Wible, C G

    2003-12-01

    overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance.

  2. Semantic aspects of the International Classification of Functioning, Disability and Health: towards sharing knowledge and unifying information.

    Science.gov (United States)

    Andronache, Adrian Stefan; Simoncello, Andrea; Della Mea, Vincenzo; Daffara, Carlo; Francescutti, Carlo

    2012-02-01

    During the last decade, under the World Health Organization's direction, the International Classification of Functioning, Disability and Health (ICF) has become a reference tool for monitoring and developing various policies addressing people with disability. This article presents three steps to increase the semantic interoperability of ICF: first, the representation of ICF using ontology tools; second, the alignment to upper-level ontologies; and third, the use of these tools to implement semantic mappings between ICF and other tools, such as disability assessment instruments, health classifications, and at least partially formalized terminologies.

  3. Representations in learning new faces: evidence from prosopagnosia.

    Science.gov (United States)

    Polster, M R; Rapcsak, S Z

    1996-05-01

    We report the performance of a prosopagnosic patient on face learning tasks under different encoding instructions (i.e., levels of processing manipulations). R.J. performs at chance when given no encoding instructions or when given "shallow" encoding instruction to focus on facial features. By contrast, he performs relatively well with "deep" encoding instructions to rate faces in terms of personality traits or when provided with semantic and name information during the study phase. We propose that the improvement associated with deep encoding instructions may be related to the establishment of distinct visually derived and identity-specific semantic codes. The benefit associated with deep encoding in R.J., however, was found to be restricted to the specific view of the face presented at study and did not generalize to other views of the same face. These observations suggest that deep encoding instructions may enhance memory for concrete or pictorial representations of faces in patients with prosopagnosia, but that these patients cannot compensate for the inability to construct abstract structural codes that normally allow faces to be recognized from different orientations. We postulate further that R.J.'s poor performance on face learning tasks may be attributable to excessive reliance on a feature-based left hemisphere face processing system that operates primarily on view-specific representations.

  4. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    Science.gov (United States)

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  5. Relationship Structures and Semantic Type Assignments of the UMLS Enriched Semantic Network

    Science.gov (United States)

    Zhang, Li; Halper, Michael; Perl, Yehoshua; Geller, James; Cimino, James J.

    2005-01-01

    Objective: The Enriched Semantic Network (ESN) was introduced as an extension of the Unified Medical Language System (UMLS) Semantic Network (SN). Its multiple subsumption configuration and concomitant multiple inheritance make the ESN's relationship structures and semantic type assignments different from those of the SN. A technique for deriving the relationship structures of the ESN's semantic types and an automated technique for deriving the ESN's semantic type assignments from those of the SN are presented. Design: The technique to derive the ESN's relationship structures finds all newly inherited relationships in the ESN. All such relationships are audited for semantic validity, and the blocking mechanism is used to block invalid relationships. The mapping technique to derive the ESN's semantic type assignments uses current SN semantic type assignments and preserves nonredundant categorizations, while preventing new redundant categorizations. Results: Among the 426 newly inherited relationships, 326 are deemed valid. Seven blockings are applied to avoid inheritance of the 100 invalid relationships. Sixteen semantic types have different relationship structures in the ESN as compared to those in the SN. The mapping of semantic type assignments from the SN to the ESN avoids the generation of 26,950 redundant categorizations. The resulting ESN contains 138 semantic types, 149 IS-A links, 7,303 relationships, and 1,013,876 semantic type assignments. Conclusion: The ESN's multiple inheritance provides more complete relationship structures than in the SN. The ESN's semantic type assignments avoid the existing redundant categorizations appearing in the SN and prevent new ones that might arise due to multiple parents. Compared to the SN, the ESN provides a more accurate unifying semantic abstraction of the UMLS Metathesaurus. PMID:16049233

  6. Relating UMLS semantic types and task-based ontology to computer-interpretable clinical practice guidelines.

    Science.gov (United States)

    Kumar, Anand; Ciccarese, Paolo; Quaglini, Silvana; Stefanelli, Mario; Caffi, Ezio; Boiocchi, Lorenzo

    2003-01-01

    Medical knowledge in clinical practice guideline (GL) texts is the source of task-based computer-interpretable clinical guideline models (CIGMs). We have used Unified Medical Language System (UMLS) semantic types (STs) to understand the percentage of GL text which belongs to a particular ST. We also use UMLS semantic network together with the CIGM-specific ontology to derive a semantic meaning behind the GL text. In order to achieve this objective, we took nine GL texts from the National Guideline Clearinghouse (NGC) and marked up the text dealing with a particular ST. The STs we took into consideration were restricted taking into account the requirements of a task-based CIGM. We used DARPA Agent Markup Language and Ontology Inference Layer (DAML + OIL) to create the UMLS and CIGM specific semantic network. For the latter, as a bench test, we used the 1999 WHO-International Society of Hypertension Guidelines for the Management of Hypertension. We took into consideration the UMLS STs closest to the clinical tasks. The percentage of the GL text dealing with the ST "Health Care Activity" and subtypes "Laboratory Procedure", "Diagnostic Procedure" and "Therapeutic or Preventive Procedure" were measured. The parts of text belonging to other STs or comments were separated. A mapping of terms belonging to other STs was done to the STs under "HCA" for representation in DAML + OIL. As a result, we found that the three STs under "HCA" were the predominant STs present in the GL text. In cases where the terms of related STs existed, they were mapped into one of the three STs. The DAML + OIL representation was able to describe the hierarchy in task-based CIGMs. To conclude, we understood that the three STs could be used to represent the semantic network of the task-bases CIGMs. We identified some mapping operators which could be used for the mapping of other STs into these.

  7. SOCIAL REPRESENTATIONS OF RUSSIAN AND BYELORUSSIANS ABOUT MAN’S ROLES DEPENDING ON COMMUNICATION WITH PSYCHOLOGICAL MEASUREMENTS OF CULTURE

    OpenAIRE

    Brazhnik Julia Vladimirovna; Gritsenko Valentina Vasilevna

    2012-01-01

    Given article is devoted the analysis of social representations of young men about man's roles. On sample of Russian and Byelorussians (334 persons) by means of a scale of cultural values (G.Hofstede) and the modified variant of a technique «Semantic differential» directed on studying of representations of young men about traditional man's roles (the getter, the defender, the professional figure, the head of the family, the husband, the father), social representations about man's roles depend...

  8. Multi-Label Classification Based on Low Rank Representation for Image Annotation

    Directory of Open Access Journals (Sweden)

    Qiaoyu Tan

    2017-01-01

    Full Text Available Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels. To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR. MLC-LRR firstly utilizes low rank representation in the feature space of images to compute the low rank constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph and to capture the global relationships between images. Next, it utilizes low rank representation in the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other related graph-based multi-label methods in annotating images, we conduct experiments on a public available multi-label remote sensing images (Land Cover. We perform additional experiments on five real-world multi-label image datasets to further investigate the performance of MLC-LRR. Empirical study demonstrates that MLC-LRR achieves better performance on annotating images than these comparing methods across various evaluation criteria; it also can effectively exploit global structure and label correlations of multi-label images.

  9. Trust estimation of the semantic web using semantic web clustering

    Science.gov (United States)

    Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid

    2017-05-01

    Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.

  10. Knowledge Representation from Classification Schema to Semantic Web (II

    Directory of Open Access Journals (Sweden)

    Silvia-Adriana Tomescu

    2015-01-01

    Full Text Available We aim to approach in this essay the technical paths used to represent hibrid documents in online environment using specific standars. The multimedia contents increase and the diverse storage formats need refined instruments for the search and retrieval process. Dedicated applications require a high level of interperability therefore the necesity of standardization. This study tries to argument theoretically the need to set and reflect logically the media objects properties in metadata schema and to illustrate the importance of ontologies and taxonomies in online environment representation.

  11. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    Science.gov (United States)

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  12. Ontology-based data integration from heterogeneous urban systems : A knowledge representation framework for smart cities

    NARCIS (Netherlands)

    Psyllidis, A.

    2015-01-01

    This paper presents a novel knowledge representation framework for smart city planning and management that enables the semantic integration of heterogeneous urban data from diverse sources. Currently, the combination of information across city agencies is cumbersome, as the increasingly available

  13. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval

    Science.gov (United States)

    Bonnici, Heidi M.; Richter, Franziska R.; Yazar, Yasemin

    2016-01-01

    G) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. PMID:27194327

  14. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval.

    Science.gov (United States)

    Bonnici, Heidi M; Richter, Franziska R; Yazar, Yasemin; Simons, Jon S

    2016-05-18

    episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. Copyright © 2016 Bonnici, Richter, et al.

  15. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  16. Semantic ambiguity effects on traditional Chinese character naming: A corpus-based approach.

    Science.gov (United States)

    Chang, Ya-Ning; Lee, Chia-Ying

    2017-11-09

    Words are considered semantically ambiguous if they have more than one meaning and can be used in multiple contexts. A number of recent studies have provided objective ambiguity measures by using a corpus-based approach and have demonstrated ambiguity advantages in both naming and lexical decision tasks. Although the predictive power of objective ambiguity measures has been examined in several alphabetic language systems, the effects in logographic languages remain unclear. Moreover, most ambiguity measures do not explicitly address how the various contexts associated with a given word relate to each other. To explore these issues, we computed the contextual diversity (Adelman, Brown, & Quesada, Psychological Science, 17; 814-823, 2006) and semantic ambiguity (Hoffman, Lambon Ralph, & Rogers, Behavior Research Methods, 45; 718-730, 2013) of traditional Chinese single-character words based on the Academia Sinica Balanced Corpus, where contextual diversity was used to evaluate the present semantic space. We then derived a novel ambiguity measure, namely semantic variability, by computing the distance properties of the distinct clusters grouped by the contexts that contained a given word. We demonstrated that semantic variability was superior to semantic diversity in accounting for the variance in naming response times, suggesting that considering the substructure of the various contexts associated with a given word can provide a relatively fine scale of ambiguity information for a word. All of the context and ambiguity measures for 2,418 Chinese single-character words are provided as supplementary materials.

  17. Phonological learning in semantic dementia.

    Science.gov (United States)

    Jefferies, Elizabeth; Bott, Samantha; Ehsan, Sheeba; Lambon Ralph, Matthew A

    2011-04-01

    Patients with semantic dementia (SD) have anterior temporal lobe (ATL) atrophy that gives rise to a highly selective deterioration of semantic knowledge. Despite pronounced anomia and poor comprehension of words and pictures, SD patients have well-formed, fluent speech and normal digit span. Given the intimate connection between phonological STM and word learning revealed by both neuropsychological and developmental studies, SD patients might be expected to show good acquisition of new phonological forms, even though their ability to map these onto meanings is impaired. In contradiction of these predictions, a limited amount of previous research has found poor learning of new phonological forms in SD. In a series of experiments, we examined whether SD patient, GE, could learn novel phonological sequences and, if so, under which circumstances. GE showed normal benefits of phonological knowledge in STM (i.e., normal phonotactic frequency and phonological similarity effects) but reduced support from semantic memory (i.e., poor immediate serial recall for semantically degraded words, characterised by frequent item errors). Next, we demonstrated normal learning of serial order information for repeated lists of single-digit number words using the Hebb paradigm: these items were well-understood allowing them to be repeated without frequent item errors. In contrast, patient GE showed little learning of nonsense syllable sequences using the same Hebb paradigm. Detailed analysis revealed that both GE and the controls showed a tendency to learn their own errors as opposed to the target items. Finally, we showed normal learning of phonological sequences for GE when he was prevented from repeating his errors. These findings confirm that the ATL atrophy in SD disrupts phonological processing for semantically degraded words but leaves the phonological architecture intact. Consequently, when item errors are minimised, phonological STM can support the acquisition of new phoneme

  18. Semantic heterogeneity: comparing new semantic web approaches with those of digital libraries

    OpenAIRE

    Krause, Jürgen

    2008-01-01

    To demonstrate that newer developments in the semantic web community, particularly those based on ontologies (simple knowledge organization system and others) mitigate common arguments from the digital library (DL) community against participation in the Semantic web. The approach is a semantic web discussion focusing on the weak structure of the Web and the lack of consideration given to the semantic content during indexing. The points criticised by the semantic web and ontology approaches ar...

  19. Semantic Models for Scalable Search in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Dennis Pfisterer

    2013-03-01

    Full Text Available The Internet of Things is anticipated to connect billions of embedded devices equipped with sensors to perceive their surroundings. Thereby, the state of the real world will be available online and in real-time and can be combined with other data and services in the Internet to realize novel applications such as Smart Cities, Smart Grids, or Smart Healthcare. This requires an open representation of sensor data and scalable search over data from diverse sources including sensors. In this paper we show how the Semantic Web technologies RDF (an open semantic data format and SPARQL (a query language for RDF-encoded data can be used to address those challenges. In particular, we describe how prediction models can be employed for scalable sensor search, how these prediction models can be encoded as RDF, and how the models can be queried by means of SPARQL.

  20. Semantic priming increases word frequency judgments: Evidence for the role of memory strength in frequency estimation.

    Science.gov (United States)

    Woltz, Dan J; Gardner, Michael K

    2015-09-01

    Previous research has demonstrated a systematic, nonlinear relationship between word frequency judgments and values from word frequency norms. This relationship could reflect a perceptual process similar to that found in the psychophysics literature for a variety of sensory phenomena. Alternatively, it could reflect memory strength differences that are expected for words of varying levels of prior exposure. Two experiments tested the memory strength explanation by semantically priming words prior to frequency judgments. Exposure to related word meanings produced a small but measurable increase in target word frequency ratings. Repetition but not semantic priming had a greater impact on low compared to high frequency words. These findings are consistent with a memory strength view of frequency judgments that assumes a distributed network with lexical and semantic levels of representation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The Influence of Label Co-occurrence and Semantic Similarity on Children’s Inductive Generalization

    Directory of Open Access Journals (Sweden)

    Bryan J Matlen

    2015-08-01

    Full Text Available Semantically-similar labels that co-occur in child-directed speech (e.g., bunny-rabbit are more likely to promote inductive generalization in preschoolers than non-co-occurring labels (e.g., lamb-sheep. However, it remains unclear whether this effect stems from co-occurrence or other factors, and how co-occurrence contributes to generalization. To address these issues, preschoolers were exposed to a stream of semantically-similar labels that don’t co-occur in natural language, but were arranged to co-occur in the experimental setting. In Experiment 1, children exposed to the co-occurring stream were more likely to make category-consistent inferences than children in two control conditions. Experiment 2 replicated this effect and provided evidence that co-occurrence training influenced generalization only when the trained labels were categorically-similar. These findings suggest that both co-occurrence information and semantic representations contribute to preschool-age children’s inductive generalization. The findings are discussed in relation to the developmental accounts of inductive generalization.

  2. Semantic validation of standard-based electronic health record documents with W3C XML schema.

    Science.gov (United States)

    Rinner, C; Janzek-Hawlat, S; Sibinovic, S; Duftschmid, G

    2010-01-01

    The goal of this article is to examine whether W3C XML Schema provides a practicable solution for the semantic validation of standard-based electronic health record (EHR) documents. With semantic validation we mean that the EHR documents are checked for conformance with the underlying archetypes and reference model. We describe an approach that allows XML Schemas to be derived from archetypes based on a specific naming convention. The archetype constraints are augmented with additional components of the reference model within the XML Schema representation. A copy of the EHR document that is transformed according to the before-mentioned naming convention is used for the actual validation against the XML Schema. We tested our approach by semantically validating EHR documents conformant to three different ISO/EN 13606 archetypes respective to three sections of the CDA implementation guide "Continuity of Care Document (CCD)" and an implementation guide for diabetes therapy data. We further developed a tool to automate the different steps of our semantic validation approach. For two particular kinds of archetype prescriptions, individual transformations are required for the corresponding EHR documents. Otherwise, a fully generic validation is possible. In general, we consider W3C XML Schema as a practicable solution for the semantic validation of standard-based EHR documents.

  3. Semantic elaboration in auditory and visual spatial memory.

    Science.gov (United States)

    Taevs, Meghan; Dahmani, Louisa; Zatorre, Robert J; Bohbot, Véronique D

    2010-01-01

    The aim of this study was to investigate the hypothesis that semantic information facilitates auditory and visual spatial learning and memory. An auditory spatial task was administered, whereby healthy participants were placed in the center of a semi-circle that contained an array of speakers where the locations of nameable and non-nameable sounds were learned. In the visual spatial task, locations of pictures of abstract art intermixed with nameable objects were learned by presenting these items in specific locations on a computer screen. Participants took part in both the auditory and visual spatial tasks, which were counterbalanced for order and were learned at the same rate. Results showed that learning and memory for the spatial locations of nameable sounds and pictures was significantly better than for non-nameable stimuli. Interestingly, there was a cross-modal learning effect such that the auditory task facilitated learning of the visual task and vice versa. In conclusion, our results support the hypotheses that the semantic representation of items, as well as the presentation of items in different modalities, facilitate spatial learning and memory.

  4. The Mental Representation of Polysemy across Word Classes

    Directory of Open Access Journals (Sweden)

    Anastasiya Lopukhina

    2018-02-01

    Full Text Available Experimental studies on polysemy have come to contradictory conclusions on whether words with multiple senses are stored as separate or shared mental representations. The present study examined the semantic relatedness and semantic similarity of literal and non-literal (metonymic and metaphorical senses of three word classes: nouns, verbs, and adjectives. Two methods were used: a psycholinguistic experiment and a distributional analysis of corpus data. In the experiment, participants were presented with 6–12 short phrases containing a polysemous word in literal, metonymic, or metaphorical senses and were asked to classify them so that phrases with the same perceived sense were grouped together. To investigate the impact of professional background on their decisions, participants were controlled for linguistic vs. non-linguistic education. For nouns and verbs, all participants preferred to group together phrases with literal and metonymic senses, but not any other pairs of senses. For adjectives, two pairs of senses were often grouped together: literal with metonymic, and metonymic with metaphorical. Participants with a linguistic background were more accurate than participants with non-linguistic backgrounds, although both groups shared principal patterns of sense classification. For the distributional analysis of corpus data, we used a semantic vector approach to quantify the similarity of phrases with literal, metonymic, and metaphorical senses in the corpora. We found that phrases with literal and metonymic senses had the highest degree of similarity for the three word classes, and that metonymic and metaphorical senses of adjectives had the highest degree of similarity among all word classes. These findings are in line with the experimental results. Overall, the results suggest that the mental representation of a polysemous word depends on its word class. In nouns and verbs, literal and metonymic senses are stored together, while

  5. The Mental Representation of Polysemy across Word Classes

    Science.gov (United States)

    Lopukhina, Anastasiya; Laurinavichyute, Anna; Lopukhin, Konstantin; Dragoy, Olga

    2018-01-01

    Experimental studies on polysemy have come to contradictory conclusions on whether words with multiple senses are stored as separate or shared mental representations. The present study examined the semantic relatedness and semantic similarity of literal and non-literal (metonymic and metaphorical) senses of three word classes: nouns, verbs, and adjectives. Two methods were used: a psycholinguistic experiment and a distributional analysis of corpus data. In the experiment, participants were presented with 6–12 short phrases containing a polysemous word in literal, metonymic, or metaphorical senses and were asked to classify them so that phrases with the same perceived sense were grouped together. To investigate the impact of professional background on their decisions, participants were controlled for linguistic vs. non-linguistic education. For nouns and verbs, all participants preferred to group together phrases with literal and metonymic senses, but not any other pairs of senses. For adjectives, two pairs of senses were often grouped together: literal with metonymic, and metonymic with metaphorical. Participants with a linguistic background were more accurate than participants with non-linguistic backgrounds, although both groups shared principal patterns of sense classification. For the distributional analysis of corpus data, we used a semantic vector approach to quantify the similarity of phrases with literal, metonymic, and metaphorical senses in the corpora. We found that phrases with literal and metonymic senses had the highest degree of similarity for the three word classes, and that metonymic and metaphorical senses of adjectives had the highest degree of similarity among all word classes. These findings are in line with the experimental results. Overall, the results suggest that the mental representation of a polysemous word depends on its word class. In nouns and verbs, literal and metonymic senses are stored together, while metaphorical senses are

  6. The Mental Representation of Polysemy across Word Classes.

    Science.gov (United States)

    Lopukhina, Anastasiya; Laurinavichyute, Anna; Lopukhin, Konstantin; Dragoy, Olga

    2018-01-01

    Experimental studies on polysemy have come to contradictory conclusions on whether words with multiple senses are stored as separate or shared mental representations. The present study examined the semantic relatedness and semantic similarity of literal and non-literal (metonymic and metaphorical) senses of three word classes: nouns, verbs, and adjectives. Two methods were used: a psycholinguistic experiment and a distributional analysis of corpus data. In the experiment, participants were presented with 6-12 short phrases containing a polysemous word in literal, metonymic, or metaphorical senses and were asked to classify them so that phrases with the same perceived sense were grouped together. To investigate the impact of professional background on their decisions, participants were controlled for linguistic vs. non-linguistic education. For nouns and verbs, all participants preferred to group together phrases with literal and metonymic senses, but not any other pairs of senses. For adjectives, two pairs of senses were often grouped together: literal with metonymic, and metonymic with metaphorical. Participants with a linguistic background were more accurate than participants with non-linguistic backgrounds, although both groups shared principal patterns of sense classification. For the distributional analysis of corpus data, we used a semantic vector approach to quantify the similarity of phrases with literal, metonymic, and metaphorical senses in the corpora. We found that phrases with literal and metonymic senses had the highest degree of similarity for the three word classes, and that metonymic and metaphorical senses of adjectives had the highest degree of similarity among all word classes. These findings are in line with the experimental results. Overall, the results suggest that the mental representation of a polysemous word depends on its word class. In nouns and verbs, literal and metonymic senses are stored together, while metaphorical senses are stored

  7. The semantic structure of gratitude

    Directory of Open Access Journals (Sweden)

    Smirnov, Alexander V.

    2016-06-01

    Full Text Available In the modern social and economic environment of Russia, gratitude might be considered an ambiguous phenomenon. It can have different meaning for a person in different contexts and can manifest itself differently as well (that is, as an expression of sincere feelings or as an element of corruption. In this respect it is topical to investigate the system of meanings and relationships that define the semantic space of gratitude. The goal of the study was the investigation and description of the content and structure of the semantic space of the gratitude phenomenon as well as the determination of male, female, age, and ethnic peculiarities of the expression of gratitude. The objective was achieved by using the semantic differential designed by the authors to investigate attitudes toward gratitude. This investigation was carried out with the participation of 184 respondents (Russians, Tatars, Ukrainians, Jews living in the Russian Federation, Belarus, Kazakhstan, Tajikistan, Israel, Australia, Canada, and the United Kingdom and identifying themselves as representatives of one of these nationalities. The structural components of gratitude were singled out by means of exploratory factor analysis of the empirical data from the designed semantic differential. Gender, age, and ethnic differences were differentiated by means of Student’s t-test. Gratitude can be represented by material and nonmaterial forms as well as by actions in response to help given. The empirical data allowed us to design the ethnically nonspecified semantic structure of gratitude. During the elaboration of the differential, semantic universals of gratitude, which constitute its psychosemantic content, were distinguished. Peculiarities of attitudes toward gratitude by those in different age and gender groups were revealed. Differences in the degree of manifestation of components of the psychosemantic structure of gratitude related to ethnic characteristics were not discovered

  8. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.

    Science.gov (United States)

    Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin

    2017-05-01

    Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the

  9. Semantic metrics

    OpenAIRE

    Hu, Bo; Kalfoglou, Yannis; Dupplaw, David; Alani, Harith; Lewis, Paul; Shadbolt, Nigel

    2006-01-01

    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and/or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a...

  10. COEUS: "semantic web in a box" for biomedical applications.

    Science.gov (United States)

    Lopes, Pedro; Oliveira, José Luís

    2012-12-17

    As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  11. Inquisitive semantics and pragmatics

    NARCIS (Netherlands)

    Groenendijk, J.; Roelofsen, F.; Larrazabal, J.M.; Zubeldia, L.

    2009-01-01

    This paper starts with an informal introduction to inquisitive semantics. After that, we present a formal definition of the semantics, and introduce the basic semantic notions of inquisitiveness and informativeness, in terms of wich we define the semantic categories of questions, assertions, and

  12. Personal semantics: at the crossroads of semantic and episodic memory.

    Science.gov (United States)

    Renoult, Louis; Davidson, Patrick S R; Palombo, Daniela J; Moscovitch, Morris; Levine, Brian

    2012-11-01

    Declarative memory is usually described as consisting of two systems: semantic and episodic memory. Between these two poles, however, may lie a third entity: personal semantics (PS). PS concerns knowledge of one's past. Although typically assumed to be an aspect of semantic memory, it is essentially absent from existing models of knowledge. Furthermore, like episodic memory (EM), PS is idiosyncratically personal (i.e., not culturally-shared). We show that, depending on how it is operationalized, the neural correlates of PS can look more similar to semantic memory, more similar to EM, or dissimilar to both. We consider three different perspectives to better integrate PS into existing models of declarative memory and suggest experimental strategies for disentangling PS from semantic and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  14. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.

    Science.gov (United States)

    Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-09-23

    SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the

  15. Action simulation: time course and representational mechanisms

    Science.gov (United States)

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  16. Being Moved: Linguistic Representation and Conceptual Structure

    Directory of Open Access Journals (Sweden)

    Milena eKuehnast

    2014-11-01

    Full Text Available This study explored the organisation of the semantic field and the conceptual structure of moving experiences by investigating German-language expressions referring to the emotional state of being moved. We used present and past participles of eight psychological verbs as primes in a free word-association task, as these grammatical forms place their conceptual focus on the eliciting situation and on the felt emotional state, respectively. By applying a taxonomy of basic knowledge types and computing the Cognitive Salience Index, we identified joy and sadness as key emotional ingredients of being moved, and significant life events and art experiences as main elicitors of this emotional state. Metric multidimensional scaling analyses of the semantic field revealed that the core terms designate a cluster of emotional states characterised by low degrees of arousal and slightly positive valence, the latter due to a nearly balanced representation of positive and negative elements in the conceptual structure of being moved.

  17. A predictive framework for evaluating models of semantic organization in free recall

    Science.gov (United States)

    Morton, Neal W; Polyn, Sean M.

    2016-01-01

    Research in free recall has demonstrated that semantic associations reliably influence the organization of search through episodic memory. However, the specific structure of these associations and the mechanisms by which they influence memory search remain unclear. We introduce a likelihood-based model-comparison technique, which embeds a model of semantic structure within the context maintenance and retrieval (CMR) model of human memory search. Within this framework, model variants are evaluated in terms of their ability to predict the specific sequence in which items are recalled. We compare three models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find that models using WAS have the greatest predictive power. Furthermore, we find evidence that semantic and temporal organization is driven by distinct item and context cues, rather than a single context cue. This finding provides important constraint for theories of memory search. PMID:28331243

  18. Evidence for the contribution of a threshold retrieval process to semantic memory.

    Science.gov (United States)

    Kempnich, Maria; Urquhart, Josephine A; O'Connor, Akira R; Moulin, Chris J A

    2017-10-01

    It is widely held that episodic retrieval can recruit two processes: a threshold context retrieval process (recollection) and a continuous signal strength process (familiarity). Conversely the processes recruited during semantic retrieval are less well specified. We developed a semantic task analogous to single-item episodic recognition to interrogate semantic recognition receiver-operating characteristics (ROCs) for a marker of a threshold retrieval process. We fitted observed ROC points to three signal detection models: two models typically used in episodic recognition (unequal variance and dual-process signal detection models) and a novel dual-process recollect-to-reject (DP-RR) signal detection model that allows a threshold recollection process to aid both target identification and lure rejection. Given the nature of most semantic questions, we anticipated the DP-RR model would best fit the semantic task data. Experiment 1 (506 participants) provided evidence for a threshold retrieval process in semantic memory, with overall best fits to the DP-RR model. Experiment 2 (316 participants) found within-subjects estimates of episodic and semantic threshold retrieval to be uncorrelated. Our findings add weight to the proposal that semantic and episodic memory are served by similar dual-process retrieval systems, though the relationship between the two threshold processes needs to be more fully elucidated.

  19. Varieties of semantic ‘access’ deficit in Wernicke’s aphasia and semantic aphasia

    Science.gov (United States)

    Robson, Holly; Lambon Ralph, Matthew A.; Jefferies, Elizabeth

    2015-01-01

    Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke’s aphasia, associated with poor auditory–verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic ‘access’ deficit, as opposed to the ‘storage’ deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of ‘access’ impairment—related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke’s aphasia). We used a case series design to compare patients with Wernicke’s aphasia and those with semantic aphasia on Warrington’s paradigmatic assessment of semantic ‘access’ deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic ‘blocking’ effects). Patients with Wernicke’s aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability—one that mapped onto classical ‘syndromes’ and one that did not—predicted aspects of the semantic ‘access’ deficit. Both semantic aphasia and Wernicke’s aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke’s aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially

  20. The Boy Factor: Can Single-Gender Classes Reduce the Over-Representation of Boys in Special Education?

    Science.gov (United States)

    Piechura-Couture, Kathy; Heins, Elizabeth; Tichenor, Mercedes

    2013-01-01

    Since the early 1990s numerous studies have concluded that there is an over-representation of males and minorities in special education. This paper examines the question if a different educational format, such as single-gender education, can help boys' behavior and thus reduce the number of special education referrals? The rationale for…

  1. Constituent order and semantic parallelism in online comprehension: eye-tracking evidence from German.

    Science.gov (United States)

    Knoeferle, Pia; Crocker, Matthew W

    2009-12-01

    Reading times for the second conjunct of and-coordinated clauses are faster when the second conjunct parallels the first conjunct in its syntactic or semantic (animacy) structure than when its structure differs (Frazier, Munn, & Clifton, 2000; Frazier, Taft, Roeper, & Clifton, 1984). What remains unclear, however, is the time course of parallelism effects, their scope, and the kinds of linguistic information to which they are sensitive. Findings from the first two eye-tracking experiments revealed incremental constituent order parallelism across the board-both during structural disambiguation (Experiment 1) and in sentences with unambiguously case-marked constituent order (Experiment 2), as well as for both marked and unmarked constituent orders (Experiments 1 and 2). Findings from Experiment 3 revealed effects of both constituent order and subtle semantic (noun phrase similarity) parallelism. Together our findings provide evidence for an across-the-board account of parallelism for processing and-coordinated clauses, in which both constituent order and semantic aspects of representations contribute towards incremental parallelism effects. We discuss our findings in the context of existing findings on parallelism and priming, as well as mechanisms of sentence processing.

  2. SM4MQ: A Semantic Model for Multidimensional Queries

    DEFF Research Database (Denmark)

    Varga, Jovan; Dobrokhotova, Ekaterina; Romero, Oscar

    2017-01-01

    metadata artifacts (e.g., queries) to assist users with the analysis. However, modeling and sharing of most of these artifacts are typically overlooked. Thus, in this paper we focus on the query metadata artifact in the Exploratory OLAP context and propose an RDF-based vocabulary for its representation......, sharing, and reuse on the SW. As OLAP is based on the underlying multidimensional (MD) data model we denote such queries as MD queries and define SM4MQ: A Semantic Model for Multidimensional Queries. Furthermore, we propose a method to automate the exploitation of queries by means of SPARQL. We apply...... the method to a use case of transforming queries from SM4MQ to a vector representation. For the use case, we developed the prototype and performed an evaluation that shows how our approach can significantly ease and support user assistance such as query recommendation....

  3. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    Science.gov (United States)

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

  4. An Approach to Measuring Semantic Relatedness of Geographic Terminologies Using a Thesaurus and Lexical Database Sources

    Directory of Open Access Journals (Sweden)

    Zugang Chen

    2018-03-01

    Full Text Available In geographic information science, semantic relatedness is important for Geographic Information Retrieval (GIR, Linked Geospatial Data, geoparsing, and geo-semantics. But computing the semantic similarity/relatedness of geographic terminology is still an urgent issue to tackle. The thesaurus is a ubiquitous and sophisticated knowledge representation tool existing in various domains. In this article, we combined the generic lexical database (WordNet or HowNet with the Thesaurus for Geographic Science and proposed a thesaurus–lexical relatedness measure (TLRM to compute the semantic relatedness of geographic terminology. This measure quantified the relationship between terminologies, interlinked the discrete term trees by using the generic lexical database, and realized the semantic relatedness computation of any two terminologies in the thesaurus. The TLRM was evaluated on a new relatedness baseline, namely, the Geo-Terminology Relatedness Dataset (GTRD which was built by us, and the TLRM obtained a relatively high cognitive plausibility. Finally, we applied the TLRM on a geospatial data sharing portal to support data retrieval. The application results of the 30 most frequently used queries of the portal demonstrated that using TLRM could improve the recall of geospatial data retrieval in most situations and rank the retrieval results by the matching scores between the query of users and the geospatial dataset.

  5. Semantic Legal Policies for Data Exchange and Protection across Super-Peer Domains in the Cloud

    Directory of Open Access Journals (Sweden)

    Kua-Ping Cheng

    2012-10-01

    Full Text Available In semantic policy infrastructure, a Trusted Legal Domain (TLD, designated as a Super-Peer Domain (SPD, is a legal cage model used to circumscribe the legal virtual boundary of data disclosure and usage in the cloud. Semantic legal policies in compliance with the law are enforced at the super-peer within an SPD to enable Law-as-a-Service (LaaS for cloud service providers. In addition, cloud users could query fragmented but protected outsourcing cloud data from a law-aware super-peer, where each query is also compliant with the law. Semantic legal policies are logic-based formal policies, which are shown to be a combination of OWL-DL ontologies and stratified Datalog rules with negation, i.e., so-called non-monotonic cq-programs, for policy representation and enforcement. An agent at the super-peer is a unique law-aware guardian that provides protected data integration services for its peers within an SPD. Furthermore, agents at the super-peers specify how law-compliant legal policies are unified with each other to provide protected data exchange services across SPDs in the semantic data cloud.

  6. Semantically Interoperable XML Data.

    Science.gov (United States)

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-09-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups.

  7. Semantically Interoperable XML Data

    Science.gov (United States)

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  8. Semantics of Kinship Terms in Tamil from the Semantic Typology Point of View

    Directory of Open Access Journals (Sweden)

    Анна Александровна Смирнитская

    2016-12-01

    Full Text Available In this article the author examines the lexical-semantic group “kinship terms” in Tamil, applying the attainments of modern semantic typology and the theory of semantic derivation. The kinship terms describing nuclear and extended family are explored. The “semantic shift” relation between two different meanings is established if such relation is realized by synchronous polysemy in one lexeme, semantic derivation, diachronic semantic change, cognates or some other means. The starting point of the study is the typological data from the DatSemShift catalogue of semantic shifts in languages of the world developed by a group of researchers under the guidance of Anna A. Zalizniak in the Institute of Linguistics, RAS. We verify the presence of semantic shifts described in the Database in Tamil. Also, we propose new semantic shifts specific only for this language. We confirm the presence of semantic relation of the studied type among the meanings with English “labels”: father - parents, girl - daughter, to deliver (a child - parents, - child, old woman - wife, owner - wife and others. The data also allows the assumption that the same relation exists between the meanings: old - grandfather, earth - mother, son - courage, unripe - son and others. The meanings of this field are the sources of semantic movements to abstract notions, lexicon of posession, forms of address and others; in addition many inner semantic relations inside this field are revealed. The meanings covering the nuclear part of the kinship system participate in universal semantic shifts described in the DatSemShift catalogue, while the meanings from collateral branches of this bifurcative kinship system (uncle, aunt turn out to be incomparable with kinship terms from indo-european lineal systems. Their meanings can be included in the DatSemShift catalogue only with an indication of system specifics. The information about semantic shifts can be useful for

  9. Semantic Role Labeling

    CERN Document Server

    Palmer, Martha; Xue, Nianwen

    2011-01-01

    This book is aimed at providing an overview of several aspects of semantic role labeling. Chapter 1 begins with linguistic background on the definition of semantic roles and the controversies surrounding them. Chapter 2 describes how the theories have led to structured lexicons such as FrameNet, VerbNet and the PropBank Frame Files that in turn provide the basis for large scale semantic annotation of corpora. This data has facilitated the development of automatic semantic role labeling systems based on supervised machine learning techniques. Chapter 3 presents the general principles of applyin

  10. Interaction between High-Level and Low-Level Image Analysis for Semantic Video Object Extraction

    Directory of Open Access Journals (Sweden)

    Andrea Cavallaro

    2004-06-01

    Full Text Available The task of extracting a semantic video object is split into two subproblems, namely, object segmentation and region segmentation. Object segmentation relies on a priori assumptions, whereas region segmentation is data-driven and can be solved in an automatic manner. These two subproblems are not mutually independent, and they can benefit from interactions with each other. In this paper, a framework for such interaction is formulated. This representation scheme based on region segmentation and semantic segmentation is compatible with the view that image analysis and scene understanding problems can be decomposed into low-level and high-level tasks. Low-level tasks pertain to region-oriented processing, whereas the high-level tasks are closely related to object-level processing. This approach emulates the human visual system: what one “sees” in a scene depends on the scene itself (region segmentation as well as on the cognitive task (semantic segmentation at hand. The higher-level segmentation results in a partition corresponding to semantic video objects. Semantic video objects do not usually have invariant physical properties and the definition depends on the application. Hence, the definition incorporates complex domain-specific knowledge and is not easy to generalize. For the specific implementation used in this paper, motion is used as a clue to semantic information. In this framework, an automatic algorithm is presented for computing the semantic partition based on color change detection. The change detection strategy is designed to be immune to the sensor noise and local illumination variations. The lower-level segmentation identifies the partition corresponding to perceptually uniform regions. These regions are derived by clustering in an N-dimensional feature space, composed of static as well as dynamic image attributes. We propose an interaction mechanism between the semantic and the region partitions which allows to

  11. Universal Dimensions of Meaning Derived from Semantic Relations among Words and Senses: Mereological Completeness vs. Ontological Generality

    Directory of Open Access Journals (Sweden)

    Alexei V. Samsonovich

    2014-07-01

    Full Text Available A key to semantic analysis is a precise and practically useful definition of meaning that is general for all domains of knowledge. We previously introduced the notion of weak semantic map: a metric space allocating concepts along their most general (universal semantic characteristics while at the same time ignoring other, domain-specific aspects of their meanings. Here we address questions of the number, quality, and mutual independence of the weak semantic dimensions. Specifically, we employ semantic relationships not previously used for weak semantic mapping, such as holonymy/meronymy (“is-part/member-of”, and we compare maps constructed from word senses to those constructed from words. We show that the “completeness” dimension derived from the holonym/meronym relation is independent of, and practically orthogonal to, the “abstractness” dimension derived from the hypernym-hyponym (“is-a” relation, while both dimensions are orthogonal to the maps derived from synonymy and antonymy. Interestingly, the choice of using relations among words vs. senses implies a non-trivial trade-off between rich and unambiguous information due to homonymy and polysemy. The practical utility of the new and prior dimensions is illustrated by the automated evaluation of different kinds of documents. Residual analysis of available linguistic resources, such as WordNet, suggests that the number of universal semantic dimensions representable in natural language may be finite. Their complete characterization, as well as the extension of results to non-linguistic materials, remains an open challenge.

  12. UML 2 Semantics and Applications

    CERN Document Server

    Lano, Kevin

    2009-01-01

    A coherent and integrated account of the leading UML 2 semantics work and the practical applications of UML semantics development With contributions from leading experts in the field, the book begins with an introduction to UML and goes on to offer in-depth and up-to-date coverage of: The role of semantics Considerations and rationale for a UML system model Definition of the UML system model UML descriptive semantics Axiomatic semantics of UML class diagrams The object constraint language Axiomatic semantics of state machines A coalgebraic semantic framework for reasoning about interaction des

  13. The power and limits of a rule-based morpho-semantic parser.

    Science.gov (United States)

    Baud, R H; Rassinoux, A M; Ruch, P; Lovis, C; Scherrer, J R

    1999-01-01

    The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors.

  14. Content relatedness in the social web based on social explicit semantic analysis

    Science.gov (United States)

    Ntalianis, Klimis; Otterbacher, Jahna; Mastorakis, Nikolaos

    2017-06-01

    In this paper a novel content relatedness algorithm for social media content is proposed, based on the Explicit Semantic Analysis (ESA) technique. The proposed scheme takes into consideration social interactions. In particular starting from the vector space representation model, similarity is expressed by a summation of term weight products. In this paper, term weights are estimated by a social computing method, where the strength of each term is calculated by the attention the terms receives. For this reason each post is split into two parts, title and comments area, while attention is defined by the number of social interactions such as likes and shares. The overall approach is named Social Explicit Semantic Analysis. Experimental results on real data show the advantages and limitations of the proposed approach, while an initial comparison between ESA and S-ESA is very promising.

  15. A Process for the Representation of openEHR ADL Archetypes in OWL Ontologies.

    Science.gov (United States)

    Porn, Alex Mateus; Peres, Leticia Mara; Didonet Del Fabro, Marcos

    2015-01-01

    ADL is a formal language to express archetypes, independent of standards or domain. However, its specification is not precise enough in relation to the specialization and semantic of archetypes, presenting difficulties in implementation and a few available tools. Archetypes may be implemented using other languages such as XML or OWL, increasing integration with Semantic Web tools. Exchanging and transforming data can be better implemented with semantics oriented models, for example using OWL which is a language to define and instantiate Web ontologies defined by W3C. OWL permits defining significant, detailed, precise and consistent distinctions among classes, properties and relations by the user, ensuring the consistency of knowledge than using ADL techniques. This paper presents a process of an openEHR ADL archetypes representation in OWL ontologies. This process consists of ADL archetypes conversion in OWL ontologies and validation of OWL resultant ontologies using the mutation test.

  16. Knowledge Representation and Management. From Ontology to Annotation. Findings from the Yearbook 2015 Section on Knowledge Representation and Management.

    Science.gov (United States)

    Charlet, J; Darmoni, S J

    2015-08-13

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A comprehensive review of medical informatics literature was performed to select some of the most interesting papers of KRM published in 2014. Four articles were selected, two focused on annotation and information retrieval using an ontology. The two others focused mainly on ontologies, one dealing with the usage of a temporal ontology in order to analyze the content of narrative document, one describing a methodology for building multilingual ontologies. Semantic models began to show their efficiency, coupled with annotation tools.

  17. Semantic memory in object use.

    Science.gov (United States)

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  18. Taxonomy, Ontology and Semantics at Johnson Space Center

    Science.gov (United States)

    Berndt, Sarah Ann

    2011-01-01

    At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  19. From linear possibility distributions to a non-infinitesimal probabilistic semantics of conditional knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Benferhat, S.; Dubois, D.; Prade, H. [Universite Paul Sabatier, Toulouse (France)

    1996-12-31

    The authors have proposed in their previous works to view a set of default information of the form, {open_quotes}generally, from {alpha}{sub i} deduce {beta}{sub i}{close_quotes}, as the family of possibility distributions satisfying constraints expressing that the situations where {alpha}{sub 1} {beta}{sub i} is true are more possible than the situations where {alpha}{sub i} {beta}{sub i} is true. This provides a representation theorem for default reasoning obeying the System P of postulates proposed by Lehmann et al., and for which it also exists a semantics in terms of infinitesimal probabilities. This paper offers a detailed analysis of the structure of this family of possibility distributions by making use of two different orderings between them: the specificity ordering and the refinement ordering. It is shown that from a representation point of view, it is sufficient to consider the subset of linear possibility distributions which corresponds to all the possible completions of the default knowledge in agreement with the constraints. Surprisingly, it is also shown that a standard probabilistic semantics can be equivalently given to System P, without referring to infinitesimals, by using a special family of probability measures, here called acceptance functions, and that has been also recently considered by Snow in that perspective.

  20. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

    KAUST Repository

    AlShahrani, Mona; Hoehndorf, Robert

    2018-01-01

    In the past years, several methods have been developed to incorporate information about phenotypes into computational disease gene prioritization methods. These methods commonly compute the similarity between a disease's (or patient's) phenotypes and a database of gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of these methods is their reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in humans as well as in many model organisms such as the mouse. Results: We developed SmuDGE, a method that uses feature learning to generate vector-based representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representations for entities that are only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE exploits background knowledge in interaction networks comprising of multiple types of interactions. We demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes in a connected interaction network.

  1. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes

    KAUST Repository

    Alshahrani, Mona

    2018-04-30

    In the past years, several methods have been developed to incorporate information about phenotypes into computational disease gene prioritization methods. These methods commonly compute the similarity between a disease\\'s (or patient\\'s) phenotypes and a database of gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of these methods is their reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in humans as well as in many model organisms such as the mouse. Results: We developed SmuDGE, a method that uses feature learning to generate vector-based representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representations for entities that are only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE exploits background knowledge in interaction networks comprising of multiple types of interactions. We demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes in a connected interaction network.

  2. Meinongian Semantics and Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    William J. Rapaport

    2013-12-01

    Full Text Available This essay describes computational semantic networks for a philosophical audience and surveys several approaches to semantic-network semantics. In particular, propositional semantic networks (exemplified by SNePS are discussed; it is argued that only a fully intensional, Meinongian semantics is appropriate for them; and several Meinongian systems are presented.

  3. Geospatial Semantics and the Semantic Web

    CERN Document Server

    Ashish, Naveen

    2011-01-01

    The availability of geographic and geospatial information and services, especially on the open Web has become abundant in the last several years with the proliferation of online maps, geo-coding services, geospatial Web services and geospatially enabled applications. The need for geospatial reasoning has significantly increased in many everyday applications including personal digital assistants, Web search applications, local aware mobile services, specialized systems for emergency response, medical triaging, intelligence analysis and more. Geospatial Semantics and the Semantic Web: Foundation

  4. Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

    Science.gov (United States)

    Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M.

    2018-05-01

    In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.

  5. Wissensstrukturierung im Unterricht: Neuere Forschung zur Wissensreprasentation und ihre Anwendung in der Didaktik (Knowledge Structuring in Instruction: Recent Research on Knowledge Representation and Its Application in the Classroom).

    Science.gov (United States)

    Einsiedler, Wolfgang

    1996-01-01

    Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…

  6. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    Science.gov (United States)

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  7. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    Directory of Open Access Journals (Sweden)

    Andra Waagmeester

    2016-06-01

    Full Text Available The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  8. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources

    Science.gov (United States)

    Waagmeester, Andra; Pico, Alexander R.

    2016-01-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  9. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  10. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  11. Montague semantics

    NARCIS (Netherlands)

    Janssen, T.M.V.

    2012-01-01

    Montague semantics is a theory of natural language semantics and of its relation with syntax. It was originally developed by the logician Richard Montague (1930-1971) and subsequently modified and extended by linguists, philosophers, and logicians. The most important features of the theory are its

  12. From Data to Semantic Information

    Directory of Open Access Journals (Sweden)

    Luciano Floridi

    2003-06-01

    Full Text Available Abstract: There is no consensus yet on the definition of semantic information. This paper contributes to the current debate by criticising and revising the Standard Definition of semantic Information (SDI as meaningful data, in favour of the Dretske-Grice approach: meaningful and well-formed data constitute semantic information only if they also qualify as contingently truthful. After a brief introduction, SDI is criticised for providing necessary but insufficient conditions for the definition of semantic information. SDI is incorrect because truth-values do not supervene on semantic information, and misinformation (that is, false semantic information is not a type of semantic information, but pseudo-information, that is not semantic information at all. This is shown by arguing that none of the reasons for interpreting misinformation as a type of semantic information is convincing, whilst there are compelling reasons to treat it as pseudo-information. As a consequence, SDI is revised to include a necessary truth-condition. The last section summarises the main results of the paper and indicates the important implications of the revised definition for the analysis of the deflationary theories of truth, the standard definition of knowledge and the classic, quantitative theory of semantic information.

  13. ONTOLOGY BASED MEANINGFUL SEARCH USING SEMANTIC WEB AND NATURAL LANGUAGE PROCESSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    K. Palaniammal

    2013-10-01

    Full Text Available The semantic web extends the current World Wide Web by adding facilities for the machine understood description of meaning. The ontology based search model is used to enhance efficiency and accuracy of information retrieval. Ontology is the core technology for the semantic web and this mechanism for representing formal and shared domain descriptions. In this paper, we proposed ontology based meaningful search using semantic web and Natural Language Processing (NLP techniques in the educational domain. First we build the educational ontology then we present the semantic search system. The search model consisting three parts which are embedding spell-check, finding synonyms using WordNet API and querying ontology using SPARQL language. The results are both sensitive to spell check and synonymous context. This paper provides more accurate results and the complete details for the selected field in a single page.

  14. Disease representation in children and its mediating role in the therapeutic work with patient children

    Directory of Open Access Journals (Sweden)

    Arkady N. Kharkovskiy

    2015-09-01

    Full Text Available In the course of treating a serious illness, a person is faced with questions related not only to the medical side of treatment, but also with the realizing the sense of the events. This is equally true for both oncology adults and for children. The paper researches the disease representation in children who suffer from severe diseases. General psychological aspects of the disease situation and the understanding of patient children and the ability to use these concepts in practical psychological help are considered. The study hypothesizes, first of all, the semantic structure of representation in this group of children having specific characteristics that distinguish them from healthy children. Secondly, data representation having a therapeutic potential can be used as a psychological tool. Mediating function of the psychological tools mentioned is justified in this paper from the perspective of cultural historical approach and the concept of mental health levels. The experimental study was conducted in the specialized pediatric clinics in Moscow, Russia. Control group include students of one of Moscow schools. The study included organization of the experimental situation, criteria for obtaining data, comparative analysis and evaluation. The hypothesis is confirmed. The characteristic structure of disease representations in patient children reflecting some vector of the disease course is outlined. This makes the study an important practical value as the results may provide a solution to practical issues of medical psychology in assisting patient children. The research offers further studying the semantic sphere of patient children.

  15. Elearning Systems Based on the Semantic Web

    Directory of Open Access Journals (Sweden)

    George Nicola Sammour

    2006-06-01

    Full Text Available ELearning has been identified as a strategic resource that can be utilized as an increasing variety of venues such as homes, workplaces, and traditional institutions of learning, education, and training. ELearning systems are becoming technologically sophisticated and complicated, with regard to training management or course management. Their use does not always match well with traditional modes of teaching and learning and much care needs to be taken when considering the use of ELearning in educational institutions. The use of semantic web in eLearning has been explored with regard to two application areas: 1 software that supports teachers in performing their tasks in flexible online educational settings, and 2 software that interpret the structure of distributed, self organized, and self-directed ELearning and web-based learning. The resulting system will be used by learners to perform the tasks they are asked to do more effectively in the context of gaining knowledge out of the material presented by teachers. These two application areas and related tasks require a semantic representation of educational entities and pedagogical material, specifically the structure and the techniques of the teaching-learning process. In most eLearning systems users are able to manage and reuse learning contents according to their needs without any access problems. However the quality of learning is not guaranteed. This paper emphasizes the integration of the semantic web technologies with Elearning systems, taking into consideration the standards and reusable Learning Objects LO. The advantage to improve the descriptions of content, context and structure of the learning materials and the benefits of providing access to the learning materials are also presented.

  16. Foundations of semantic web technologies

    CERN Document Server

    Hitzler, Pascal; Rudolph, Sebastian

    2009-01-01

    The Quest for Semantics Building Models Calculating with Knowledge Exchanging Information Semanic Web Technologies RESOURCE DESCRIPTION LANGUAGE (RDF)Simple Ontologies in RDF and RDF SchemaIntroduction to RDF Syntax for RDF Advanced Features Simple Ontologies in RDF Schema Encoding of Special Data Structures An ExampleRDF Formal Semantics Why Semantics? Model-Theoretic Semantics for RDF(S) Syntactic Reasoning with Deduction Rules The Semantic Limits of RDF(S)WEB ONTOLOGY LANGUAGE (OWL) Ontologies in OWL OWL Syntax and Intuitive Semantics OWL Species The Forthcoming OWL 2 StandardOWL Formal Sem

  17. CityGML - Interoperable semantic 3D city models

    Science.gov (United States)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  18. Basic semantics of product sounds

    NARCIS (Netherlands)

    Özcan Vieira, E.; Van Egmond, R.

    2012-01-01

    Product experience is a result of sensory and semantic experiences with product properties. In this paper, we focus on the semantic attributes of product sounds and explore the basic components for product sound related semantics using a semantic differential paradigmand factor analysis. With two

  19. Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words.

    Science.gov (United States)

    Bakker, Iske; Takashima, Atsuko; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2015-12-01

    Novel words can be recalled immediately and after little exposure, but require a post-learning consolidation period to show word-like behaviour such as lexical competition. This pattern is thought to reflect a qualitative shift from episodic to lexical representations. However, several studies have reported immediate effects of meaningful novel words on semantic processing, suggesting that integration of novel word meanings may not require consolidation. The current study synthesises and extends these findings by showing a dissociation between lexical and semantic effects on the electrophysiological (N400, LPC) response to novel words. The difference in N400 amplitude between novel and existing words (a lexical effect) decreased significantly after a 24-h consolidation period, providing novel support for the hypothesis that offline consolidation aids lexicalisation. In contrast, novel words preceded by semantically related primes elicited a more positive LPC response (a semantic-priming effect) both before and after consolidation, indicating that certain semantic effects can be observed even when words have not been fully lexicalised. We propose that novel meanings immediately start to contribute to semantic processing, but that the underlying neural processes may shift from strategic to more automatic with consolidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A fusion network for semantic segmentation using RGB-D data

    Science.gov (United States)

    Yuan, Jiahui; Zhang, Kun; Xia, Yifan; Qi, Lin; Dong, Junyu

    2018-04-01

    Semantic scene parsing is considerable in many intelligent field, including perceptual robotics. For the past few years, pixel-wise prediction tasks like semantic segmentation with RGB images has been extensively studied and has reached very remarkable parsing levels, thanks to convolutional neural networks (CNNs) and large scene datasets. With the development of stereo cameras and RGBD sensors, it is expected that additional depth information will help improving accuracy. In this paper, we propose a semantic segmentation framework incorporating RGB and complementary depth information. Motivated by the success of fully convolutional networks (FCN) in semantic segmentation field, we design a fully convolutional networks consists of two branches which extract features from both RGB and depth data simultaneously and fuse them as the network goes deeper. Instead of aggregating multiple model, our goal is to utilize RGB data and depth data more effectively in a single model. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and achieve competitive results with the state-of-the-art methods.

  1. Retrieval from semantic memory.

    NARCIS (Netherlands)

    Noordman-Vonk, Wietske

    1977-01-01

    The present study has been concerned with the retrieval of semantic information. Retrieving semantic information is a fundamental process in almost any kind of cognitive behavior. The introduction presented the main experimental paradigms and results found in the literature on semantic memory as

  2. Towards Universal Semantic Tagging

    NARCIS (Netherlands)

    Abzianidze, Lasha; Bos, Johan

    2017-01-01

    The paper proposes the task of universal semantic tagging---tagging word tokens with language-neutral, semantically informative tags. We argue that the task, with its independent nature, contributes to better semantic analysis for wide-coverage multilingual text. We present the initial version of

  3. Process-oriented semantic web search

    CERN Document Server

    Tran, DT

    2011-01-01

    The book is composed of two main parts. The first part is a general study of Semantic Web Search. The second part specifically focuses on the use of semantics throughout the search process, compiling a big picture of Process-oriented Semantic Web Search from different pieces of work that target specific aspects of the process.In particular, this book provides a rigorous account of the concepts and technologies proposed for searching resources and semantic data on the Semantic Web. To collate the various approaches and to better understand what the notion of Semantic Web Search entails, this bo

  4. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    Science.gov (United States)

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  5. Testing for a cultural influence on reading for meaning in the developing brain: the neural basis of semantic processing in Chinese children

    Directory of Open Access Journals (Sweden)

    Tai-Li Chou

    2009-11-01

    Full Text Available Functional magnetic resonance imaging (fMRI was used to explore the neural correlates of semantic judgments in a group of 8- to 15-year-old Chinese children. Participants were asked to indicate if pairs of Chinese characters presented visually were related in meaning. The related pairs were arranged in a continuous variable according to association strength. Pairs of characters with weaker semantic association elicited greater activation in the mid ventral region (BA 45 of left inferior frontal gyrus, suggesting increased demands on the process of selecting appropriate semantic features. By contrast, characters with stronger semantic association elicited greater activation in left inferior parietal lobule (BA 39, suggesting stronger integration of highly related features. In addition, there was a developmental increase, similar to previously reported findings in English, in left posterior middle temporal gyrus (BA 21, suggesting that older children have more elaborated semantic representations. There were additional age-related increases in the posterior region of left inferior parietal lobule and in the ventral regions of left inferior frontal gyrus, suggesting that reading acquisition relies more on the mapping from orthography to semantics in Chinese children as compared to previously reported findings in English.

  6. Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia.

    Science.gov (United States)

    Irish, Muireann; Addis, Donna Rose; Hodges, John R; Piguet, Olivier

    2012-07-01

    Semantic dementia is a progressive neurodegenerative condition characterized by the profound and amodal loss of semantic memory in the context of relatively preserved episodic memory. In contrast, patients with Alzheimer's disease typically display impairments in episodic memory, but with semantic deficits of a much lesser magnitude than in semantic dementia. Our understanding of episodic memory retrieval in these cohorts has greatly increased over the last decade, however, we know relatively little regarding the ability of these patients to imagine and describe possible future events, and whether episodic future thinking is mediated by divergent neural substrates contingent on dementia subtype. Here, we explored episodic future thinking in patients with semantic dementia (n=11) and Alzheimer's disease (n=11), in comparison with healthy control participants (n=10). Participants completed a battery of tests designed to probe episodic and semantic thinking across past and future conditions, as well as standardized tests of episodic and semantic memory. Further, all participants underwent magnetic resonance imaging. Despite their relatively intact episodic retrieval for recent past events, the semantic dementia cohort showed significant impairments for episodic future thinking. In contrast, the group with Alzheimer's disease showed parallel deficits across past and future episodic conditions. Voxel-based morphometry analyses confirmed that atrophy in the left inferior temporal gyrus and bilateral temporal poles, regions strongly implicated in semantic memory, correlated significantly with deficits in episodic future thinking in semantic dementia. Conversely, episodic future thinking performance in Alzheimer's disease correlated with atrophy in regions associated with episodic memory, namely the posterior cingulate, parahippocampal gyrus and frontal pole. These distinct neuroanatomical substrates contingent on dementia group were further qualified by correlational

  7. High Performance Descriptive Semantic Analysis of Semantic Graph Databases

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Adolf, Robert D.; al-Saffar, Sinan; Feo, John T.; Haglin, David J.; Mackey, Greg E.; Mizell, David W.

    2011-06-02

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths such for the Billion Triple Challenge 2010 dataset.

  8. Supporting open collaboration in science through explicit and linked semantic description of processes

    Science.gov (United States)

    Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary

    2015-01-01

    The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.

  9. A novel software architecture for the provision of context-aware semantic transport information.

    Science.gov (United States)

    Moreno, Asier; Perallos, Asier; López-de-Ipiña, Diego; Onieva, Enrique; Salaberria, Itziar; Masegosa, Antonio D

    2015-05-26

    The effectiveness of Intelligent Transportation Systems depends largely on the ability to integrate information from diverse sources and the suitability of this information for the specific user. This paper describes a new approach for the management and exchange of this information, related to multimodal transportation. A novel software architecture is presented, with particular emphasis on the design of the data model and the enablement of services for information retrieval, thereby obtaining a semantic model for the representation of transport information. The publication of transport data as semantic information is established through the development of a Multimodal Transport Ontology (MTO) and the design of a distributed architecture allowing dynamic integration of transport data. The advantages afforded by the proposed system due to the use of Linked Open Data and a distributed architecture are stated, comparing it with other existing solutions. The adequacy of the information generated in regard to the specific user's context is also addressed. Finally, a working solution of a semantic trip planner using actual transport data and running on the proposed architecture is presented, as a demonstration and validation of the system.

  10. A Novel Software Architecture for the Provision of Context-Aware Semantic Transport Information

    Directory of Open Access Journals (Sweden)

    Asier Moreno

    2015-05-01

    Full Text Available The effectiveness of Intelligent Transportation Systems depends largely on the ability to integrate information from diverse sources and the suitability of this information for the specific user. This paper describes a new approach for the management and exchange of this information, related to multimodal transportation. A novel software architecture is presented, with particular emphasis on the design of the data model and the enablement of services for information retrieval, thereby obtaining a semantic model for the representation of transport information. The publication of transport data as semantic information is established through the development of a Multimodal Transport Ontology (MTO and the design of a distributed architecture allowing dynamic integration of transport data. The advantages afforded by the proposed system due to the use of Linked Open Data and a distributed architecture are stated, comparing it with other existing solutions. The adequacy of the information generated in regard to the specific user’s context is also addressed. Finally, a working solution of a semantic trip planner using actual transport data and running on the proposed architecture is presented, as a demonstration and validation of the system.

  11. The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text.

    Science.gov (United States)

    Altszyler, Edgar; Ribeiro, Sidarta; Sigman, Mariano; Fernández Slezak, Diego

    2017-11-01

    Computer-based dreams content analysis relies on word frequencies within predefined categories in order to identify different elements in text. As a complementary approach, we explored the capabilities and limitations of word-embedding techniques to identify word usage patterns among dream reports. These tools allow us to quantify words associations in text and to identify the meaning of target words. Word-embeddings have been extensively studied in large datasets, but only a few studies analyze semantic representations in small corpora. To fill this gap, we compared Skip-gram and Latent Semantic Analysis (LSA) capabilities to extract semantic associations from dream reports. LSA showed better performance than Skip-gram in small size corpora in two tests. Furthermore, LSA captured relevant word associations in dream collection, even in cases with low-frequency words or small numbers of dreams. Word associations in dreams reports can thus be quantified by LSA, which opens new avenues for dream interpretation and decoding. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The development of shared liking of representational but not abstract art in primary school children and their justifications for liking

    Directory of Open Access Journals (Sweden)

    Paul eRodway

    2016-02-01

    Full Text Available Understanding how aesthetic preferences are shared among individuals, and its developmental time course, is a fundamental question in aesthetics. It has been shown that semantic associations, in response to representational artworks, overlap more strongly among individuals than those generated by abstract artworks and that the emotional valence of the associations also overlaps more for representational artworks. This valence response may be a key driver in aesthetic appreciation. The current study tested predictions derived from the semantic association account in a developmental context. Twenty 4-, 6-, 8- and 10-year-old children (n=80 were shown 20 artworks (10 representational, 10 abstract and were asked to rate each artwork and to explain their decision. Cross-observer agreement in aesthetic preferences increased with age from 4 to 8 years for both abstract and representational art. However, after age 6 the level of shared appreciation for representational and abstract artworks diverged, with significantly higher levels of agreement for representational than abstract artworks at age 8 and 10. The most common justifications for representational artworks involved subject matter, while for abstract artworks formal artistic properties and color were the most commonly used justifications. Representational artwork also showed a significantly higher proportion of associations and emotional responses than abstract artworks. In line with predictions from developmental cognitive neuroscience, references to the artist as an agent increased between ages 4 and 6 and again between ages 6 and 8, following the development of Theory of Mind. The findings support the view that increased experience with representational content during the life span reduces inter-individual variation in aesthetic appreciation and increases shared preferences. In addition, brain and cognitive development appear to impact on art appreciation at milestone ages.

  13. The Development of Shared Liking of Representational but not Abstract Art in Primary School Children and Their Justifications for Liking.

    Science.gov (United States)

    Rodway, Paul; Kirkham, Julie; Schepman, Astrid; Lambert, Jordana; Locke, Anastasia

    2016-01-01

    Understanding how aesthetic preferences are shared among individuals, and its developmental time course, is a fundamental question in aesthetics. It has been shown that semantic associations, in response to representational artworks, overlap more strongly among individuals than those generated by abstract artworks and that the emotional valence of the associations also overlaps more for representational artworks. This valence response may be a key driver in aesthetic appreciation. The current study tested predictions derived from the semantic association account in a developmental context. Twenty 4-, 6-, 8- and 10-year-old children (n = 80) were shown 20 artworks (10 representational, 10 abstract) and were asked to rate each artwork and to explain their decision. Cross-observer agreement in aesthetic preferences increased with age from 4-8 years for both abstract and representational art. However, after age 6 the level of shared appreciation for representational and abstract artworks diverged, with significantly higher levels of agreement for representational than abstract artworks at age 8 and 10. The most common justifications for representational artworks involved subject matter, while for abstract artworks formal artistic properties and color were the most commonly used justifications. Representational artwork also showed a significantly higher proportion of associations and emotional responses than abstract artworks. In line with predictions from developmental cognitive neuroscience, references to the artist as an agent increased between ages 4 and 6 and again between ages 6 and 8, following the development of Theory of Mind. The findings support the view that increased experience with representational content during the life span reduces inter-individual variation in aesthetic appreciation and increases shared preferences. In addition, brain and cognitive development appear to impact on art appreciation at milestone ages.

  14. Standardized Semantic Markup for Reference Terminologies, Thesauri and Coding Systems: Benefits for distributed E-Health Applications.

    Science.gov (United States)

    Hoelzer, Simon; Schweiger, Ralf K; Liu, Raymond; Rudolf, Dirk; Rieger, Joerg; Dudeck, Joachim

    2005-01-01

    With the introduction of the ICD-10 as the standard for diagnosis, the development of an electronic representation of its complete content, inherent semantics and coding rules is necessary. Our concept refers to current efforts of the CEN/TC 251 to establish a European standard for hierarchical classification systems in healthcare. We have developed an electronic representation of the ICD-10 with the extensible Markup Language (XML) that facilitates the integration in current information systems or coding software taking into account different languages and versions. In this context, XML offers a complete framework of related technologies and standard tools for processing that helps to develop interoperable applications.

  15. Trust Levels Definition On Virtual Learning Platforms Through Semantic Languages

    Directory of Open Access Journals (Sweden)

    Carlos E. Montenegro-Marin

    2010-12-01

    Full Text Available Trust level concept is a topic that has opened a knowledge area about the profile evaluation and the people participation in Social Networks. These have presented a high knowledge profit, but at the same time it is necessary to analyze a group of variables to determine the trust participants’ degree.In addition, this is a topic that from some years ago has been presenting a big expectation to settle some alternatives to generate confidence in an activer community on internet. To establish these parameters it is important to define a model to abstract some variables that are involved in this process. For this, it is relevant to take into account the semantic languages as one of the alternatives that allow these kinds of activities. The purpose of this article is to analyze the Trust Levels definition in the contents that are shared on Open Source Virtual learning Platforms through the use of a model of representation of semantic languages. The last ones allow determining the trust in the use of learning objects that are shared in this kind of platforms

  16. A Defense of Semantic Minimalism

    Science.gov (United States)

    Kim, Su

    2012-01-01

    Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…

  17. Subliminal semantic priming in speech.

    Directory of Open Access Journals (Sweden)

    Jérôme Daltrozzo

    Full Text Available Numerous studies have reported subliminal repetition and semantic priming in the visual modality. We transferred this paradigm to the auditory modality. Prime awareness was manipulated by a reduction of sound intensity level. Uncategorized prime words (according to a post-test were followed by semantically related, unrelated, or repeated target words (presented without intensity reduction and participants performed a lexical decision task (LDT. Participants with slower reaction times in the LDT showed semantic priming (faster reaction times for semantically related compared to unrelated targets and negative repetition priming (slower reaction times for repeated compared to semantically related targets. This is the first report of semantic priming in the auditory modality without conscious categorization of the prime.

  18. Applied Semantic Web Technologies

    CERN Document Server

    Sugumaran, Vijayan

    2011-01-01

    The rapid advancement of semantic web technologies, along with the fact that they are at various levels of maturity, has left many practitioners confused about the current state of these technologies. Focusing on the most mature technologies, Applied Semantic Web Technologies integrates theory with case studies to illustrate the history, current state, and future direction of the semantic web. It maintains an emphasis on real-world applications and examines the technical and practical issues related to the use of semantic technologies in intelligent information management. The book starts with

  19. Semantic activation by Japanese kanji: evidence from event-related potentials.

    Science.gov (United States)

    Hayashi, M; Kayamoto, Y; Tanaka, H; Yamada, J

    1998-04-01

    In a character-judgment paradigm, the subject quickly pressed a key when a hiragana (Japanese syllabary) appeared on a display and did nothing when a kanji (Japanese logograph) appeared. The amplitude of the N400 component was compared when four types of visual stimuli were used: (Type 1) single kanji--Grade 1- to 3-level words, (Type 2) single kanji--Grade 1- to 3-level bound morphemes, (Type 3) single kanji--high school- and college-level bound morphemes, and (Type 4) obsolete kanji. Analysis showed that N400 was largest in the temporal-occipital areas for the Type 1 stimuli and larger in the right parietal area for Type 2 than Type 3 stimuli. The analyses of N400 to semantic stimulations have been conducted and discussed in terms of their meaningfulness, age when writing of these kanji was mastered, and linguistic status (kanji versus nonkanji). Most interestingly, the Types 3 and 4 kanji did not activate semantic responses, showing that they did not function as linguistic units, i.e., kanji, in the mental lexicon.

  20. Influence of semantic consistency and perceptual features on visual attention during scene viewing in toddlers.

    Science.gov (United States)

    Helo, Andrea; van Ommen, Sandrien; Pannasch, Sebastian; Danteny-Dordoigne, Lucile; Rämä, Pia

    2017-11-01

    Conceptual representations of everyday scenes are built in interaction with visual environment and these representations guide our visual attention. Perceptual features and object-scene semantic consistency have been found to attract our attention during scene exploration. The present study examined how visual attention in 24-month-old toddlers is attracted by semantic violations and how perceptual features (i. e. saliency, centre distance, clutter and object size) and linguistic properties (i. e. object label frequency and label length) affect gaze distribution. We compared eye movements of 24-month-old toddlers and adults while exploring everyday scenes which either contained an inconsistent (e.g., soap on a breakfast table) or consistent (e.g., soap in a bathroom) object. Perceptual features such as saliency, centre distance and clutter of the scene affected looking times in the toddler group during the whole viewing time whereas looking times in adults were affected only by centre distance during the early viewing time. Adults looked longer to inconsistent than consistent objects either if the objects had a high or a low saliency. In contrast, toddlers presented semantic consistency effect only when objects were highly salient. Additionally, toddlers with lower vocabulary skills looked longer to inconsistent objects while toddlers with higher vocabulary skills look equally long to both consistent and inconsistent objects. Our results indicate that 24-month-old children use scene context to guide visual attention when exploring the visual environment. However, perceptual features have a stronger influence in eye movement guidance in toddlers than in adults. Our results also indicate that language skills influence cognitive but not perceptual guidance of eye movements during scene perception in toddlers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Adventures in semantic publishing: exemplar semantic enhancements of a research article.

    Directory of Open Access Journals (Sweden)

    David Shotton

    2009-04-01

    Full Text Available Scientific innovation depends on finding, integrating, and re-using the products of previous research. Here we explore how recent developments in Web technology, particularly those related to the publication of data and metadata, might assist that process by providing semantic enhancements to journal articles within the mainstream process of scholarly journal publishing. We exemplify this by describing semantic enhancements we have made to a recent biomedical research article taken from PLoS Neglected Tropical Diseases, providing enrichment to its content and increased access to datasets within it. These semantic enhancements include provision of live DOIs and hyperlinks; semantic markup of textual terms, with links to relevant third-party information resources; interactive figures; a re-orderable reference list; a document summary containing a study summary, a tag cloud, and a citation analysis; and two novel types of semantic enrichment: the first, a Supporting Claims Tooltip to permit "Citations in Context", and the second, Tag Trees that bring together semantically related terms. In addition, we have published downloadable spreadsheets containing data from within tables and figures, have enriched these with provenance information, and have demonstrated various types of data fusion (mashups with results from other research articles and with Google Maps. We have also published machine-readable RDF metadata both about the article and about the references it cites, for which we developed a Citation Typing Ontology, CiTO (http://purl.org/net/cito/. The enhanced article, which is available at http://dx.doi.org/10.1371/journal.pntd.0000228.x001, presents a compelling existence proof of the possibilities of semantic publication. We hope the showcase of examples and ideas it contains, described in this paper, will excite the imaginations of researchers and publishers, stimulating them to explore the possibilities of semantic publishing for their own

  2. Pascal Semantics by a Combination of Denotational Semantics and High-level Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Schmidt, Erik Meineche

    1986-01-01

    This paper describes the formal semantics of a subset of PASCAL, by means of a semantic model based on a combination of denotational semantics and high-level Petri nets. It is our intention that the paper can be used as part of the written material for an introductory course in computer science....

  3. Abstraction and generalization in statistical learning: implications for the relationship between semantic types and episodic tokens

    Science.gov (United States)

    2017-01-01

    Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions—a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process—the generation, on the basis of semantic memory, of a novel episodic representation—is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872378

  4. Model-based object classification using unification grammars and abstract representations

    Science.gov (United States)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  5. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  6. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.

    Science.gov (United States)

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2017-11-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.

  7. The Representation of Abstract Words: What Matters? Reply to Paivio's (2013) Comment on Kousta et al. (2011)

    Science.gov (United States)

    Vigliocco, Gabriella; Kousta, Stavroula; Vinson, David; Andrews, Mark; Del Campo, Elena

    2013-01-01

    In Kousta, Vigliocco, Vinson, Andrews, and Del Campo (2011), we presented an embodied theory of semantic representation, which crucially included abstract concepts as internally embodied via affective states. Paivio (2013) took issue with our treatment of dual coding theory, our reliance on data from lexical decision, and our theoretical proposal.…

  8. Knowledge Representation and Management: a Linked Data Perspective.

    Science.gov (United States)

    Barros, M; Couto, F M

    2016-11-10

    Biomedical research is increasingly becoming a data-intensive science in several areas, where prodigious amounts of data is being generated that has to be stored, integrated, shared and analyzed. In an effort to improve the accessibility of data and knowledge, the Linked Data initiative proposed a well-defined set of recommendations for exposing, sharing and integrating data, information and knowledge, using semantic web technologies. The main goal of this paper is to identify the current status and future trends of knowledge representation and management in Life and Health Sciences, mostly with regard to linked data technologies. We selected three prominent linked data studies, namely Bio2RDF, Open PHACTS and EBI RDF platform, and selected 14 studies published after 2014 (inclusive) that cited any of the three studies. We manually analyzed these 14 papers in relation to how they use linked data techniques. The analyses show a tendency to use linked data techniques in Life and Health Sciences, and even if some studies do not follow all of the recommendations, many of them already represent and manage their knowledge using RDF and biomedical ontologies. These insights from RDF and biomedical ontologies are having a strong impact on how knowledge is generated from biomedical data, by making data elements increasingly connected and by providing a better description of their semantics. As health institutes become more data centric, we believe that the adoption of linked data techniques will continue to grow and be an effective solution to knowledge representation and management.

  9. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  10. SAS- Semantic Annotation Service for Geoscience resources on the web

    Science.gov (United States)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  11. Logical knowledge representation of regulatory relations in biomedical pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Hansen, Jens Ulrik

    2010-01-01

    Knowledge on regulatory relations, in for example regulatory pathways in biology, is used widely in experiment design by biomedical researchers and in systems biology. The knowledge has typically either been represented through simple graphs or through very expressive differential equation...... simulations of smaller parts of a pathway. In this work we suggest a knowledge representation of the most basic relations in regulatory processes regulates, positively regulates and negatively regulates in logics based on a semantic analysis. We discuss the usage of these relations in biology and in articial...... intelligence for hypothesis development in drug discovery....

  12. Single-Word Predictions of Upcoming Language During Comprehension: Evidence from the Cumulative Semantic Interference Task

    Science.gov (United States)

    Kleinman, Daniel; Runnqvist, Elin; Ferreira, Victor S.

    2015-01-01

    Comprehenders predict upcoming speech and text on the basis of linguistic input. How many predictions do comprehenders make for an upcoming word? If a listener strongly expects to hear the word “sock”, is the word “shirt” partially expected as well, is it actively inhibited, or is it ignored? The present research addressed these questions by measuring the “downstream” effects of prediction on the processing of subsequently presented stimuli using the cumulative semantic interference paradigm. In three experiments, subjects named pictures (sock) that were presented either in isolation or after strongly constraining sentence frames (“After doing his laundry, Mark always seemed to be missing one…”). Naming sock slowed the subsequent naming of the picture shirt – the standard cumulative semantic interference effect. However, although picture naming was much faster after sentence frames, the interference effect was not modulated by the context (bare vs. sentence) in which either picture was presented. According to the only model of cumulative semantic interference that can account for such a pattern of data, this indicates that comprehenders pre-activated and maintained the pre-activation of best sentence completions (sock) but did not maintain the pre-activation of less likely completions (shirt). Thus, comprehenders predicted only the most probable completion for each sentence. PMID:25917550

  13. Semantic web for dummies

    CERN Document Server

    Pollock, Jeffrey T

    2009-01-01

    Semantic Web technology is already changing how we interact with data on the Web. By connecting random information on the Internet in new ways, Web 3.0, as it is sometimes called, represents an exciting online evolution. Whether you're a consumer doing research online, a business owner who wants to offer your customers the most useful Web site, or an IT manager eager to understand Semantic Web solutions, Semantic Web For Dummies is the place to start! It will help you:Know how the typical Internet user will recognize the effects of the Semantic WebExplore all the benefits the data Web offers t

  14. Neural overlap of L1 and L2 semantic representations across visual and auditory modalities : A decoding approach

    NARCIS (Netherlands)

    Van De Putte, Eowyn; De Baene, W.; Price, Cathy J; Duyck, Wouter

    2018-01-01

    This study investigated whether brain activity in Dutch-French bilinguals during semantic access to concepts from one language could be used to predict neural activation during access to the same concepts from another language, in different language modalities/tasks. This was tested using

  15. A top-down manner-based DCNN architecture for semantic image segmentation.

    Directory of Open Access Journals (Sweden)

    Kai Qiao

    Full Text Available Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN and FCN with conditional random field (DeepLab-CRF as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  16. Analysis of the Ballot Shuffling Attack on Irish ballot counting for Proportional Representation by Single Transferable Vote (PR-STV)

    DEFF Research Database (Denmark)

    Cochran, Dermot Robert

    2015-01-01

    The current Irish legislation for counting of ballots does not fully comply with the true meaning of proportional representation by single transferable vote. This is due to the way in which second and subsequent transfers are handled, the legislative requirement to only count the last set of ball...

  17. Putting semantics into the semantic web: how well can it capture biology?

    Science.gov (United States)

    Kazic, Toni

    2006-01-01

    Could the Semantic Web work for computations of biological interest in the way it's intended to work for movie reviews and commercial transactions? It would be wonderful if it could, so it's worth looking to see if its infrastructure is adequate to the job. The technologies of the Semantic Web make several crucial assumptions. I examine those assumptions; argue that they create significant problems; and suggest some alternative ways of achieving the Semantic Web's goals for biology.

  18. BioSWR--semantic web services registry for bioinformatics.

    Directory of Open Access Journals (Sweden)

    Dmitry Repchevsky

    Full Text Available Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL. Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL. BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.

  19. BioSWR--semantic web services registry for bioinformatics.

    Science.gov (United States)

    Repchevsky, Dmitry; Gelpi, Josep Ll

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.

  20. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  1. Towards Compatible and Interderivable Semantic Specifications for the Scheme Programming Language, Part I: Denotational Semantics, Natural Semantics, and Abstract Machines

    DEFF Research Database (Denmark)

    Danvy, Olivier

    2008-01-01

    We derive two big-step abstract machines, a natural semantics, and the valuation function of a denotational semantics based on the small-step abstract machine for Core Scheme presented by Clinger at PLDI'98. Starting from a functional implementation of this small-step abstract machine, (1) we fuse...... its transition function with its driver loop, obtaining the functional implementation of a big-step abstract machine; (2) we adjust this big-step abstract machine so that it is in defunctionalized form, obtaining the functional implementation of a second big-step abstract machine; (3) we...... refunctionalize this adjusted abstract machine, obtaining the functional implementation of a natural semantics in continuation style; and (4) we closure-unconvert this natural semantics, obtaining a compositional continuation-passing evaluation function which we identify as the functional implementation...

  2. A MULTI-RESOLUTION FUSION MODEL INCORPORATING COLOR AND ELEVATION FOR SEMANTIC SEGMENTATION

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2017-05-01

    Full Text Available In recent years, the developments for Fully Convolutional Networks (FCN have led to great improvements for semantic segmentation in various applications including fused remote sensing data. There is, however, a lack of an in-depth study inside FCN models which would lead to an understanding of the contribution of individual layers to specific classes and their sensitivity to different types of input data. In this paper, we address this problem and propose a fusion model incorporating infrared imagery and Digital Surface Models (DSM for semantic segmentation. The goal is to utilize heterogeneous data more accurately and effectively in a single model instead of to assemble multiple models. First, the contribution and sensitivity of layers concerning the given classes are quantified by means of their recall in FCN. The contribution of different modalities on the pixel-wise prediction is then analyzed based on visualization. Finally, an optimized scheme for the fusion of layers with color and elevation information into a single FCN model is derived based on the analysis. Experiments are performed on the ISPRS Vaihingen 2D Semantic Labeling dataset. Comprehensive evaluations demonstrate the potential of the proposed approach.

  3. Gazetteer Brokering through Semantic Mediation

    Science.gov (United States)

    Hobona, G.; Bermudez, L. E.; Brackin, R.

    2013-12-01

    A gazetteer is a geographical directory containing some information regarding places. It provides names, location and other attributes for places which may include points of interest (e.g. buildings, oilfields and boreholes), and other features. These features can be published via web services conforming to the Gazetteer Application Profile of the Web Feature Service (WFS) standard of the Open Geospatial Consortium (OGC). Against the backdrop of advances in geophysical surveys, there has been a significant increase in the amount of data referenced to locations. Gazetteers services have played a significant role in facilitating access to such data, including through provision of specialized queries such as text, spatial and fuzzy search. Recent developments in the OGC have led to advances in gazetteers such as support for multilingualism, diacritics, and querying via advanced spatial constraints (e.g. search by radial search and nearest neighbor). A challenge remaining however, is that gazetteers produced by different organizations have typically been modeled differently. Inconsistencies from gazetteers produced by different organizations may include naming the same feature in a different way, naming the attributes differently, locating the feature in a different location, and providing fewer or more attributes than the other services. The Gazetteer application profile of the WFS is a starting point to address such inconsistencies by providing a standardized interface based on rules specified in ISO 19112, the international standard for spatial referencing by geographic identifiers. The profile, however, does not provide rules to deal with semantic inconsistencies. The USGS and NGA commissioned research into the potential for a Single Point of Entry Global Gazetteer (SPEGG). The research was conducted by the Cross Community Interoperability thread of the OGC testbed, referenced OWS-9. The testbed prototyped approaches for brokering gazetteers through use of semantic

  4. Flow Logics and Operational Semantics

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    1998-01-01

    Flow logic is a “fast prototyping” approach to program analysis that shows great promise of being able to deal with a wide variety of languages and calculi for computation. However, seemingly innocent choices in the flow logic as well as in the operational semantics may inhibit proving the analys...... correct. Our main conclusion is that environment based semantics is more flexible than either substitution based semantics or semantics making use of structural congruences (like alpha-renaming)....

  5. Semantic Versus Syntactic Cutting Planes

    OpenAIRE

    Filmus, Yuval; Hrubeš, Pavel; Lauria, Massimo

    2016-01-01

    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for whic...

  6. The role of social relationships and culture in the cognitive representation of emotions.

    Science.gov (United States)

    Koh, Sharon; Napa Scollon, Christie; Wirtz, Derrick

    2014-04-01

    There are individual and cultural differences in how memories of our emotions are cognitively represented. This article examines the cognitive representation of emotions in different cultures, as a result of emotional (in)consistency in different cultures. Using a continuous semantic priming task, we showed in two studies that individuals who were less emotionally consistent across relationships have stronger associations of their emotions within those relationships. Further, we found (in Study 2) that in a culture characterised by higher levels of emotional inconsistency across relationships (Singapore), stronger associations between emotions within relationships were found than in a culture characterised by emotional consistency (USA). This cultural difference in cognitive representation was fully mediated by individual differences in cross-situational consistency levels.

  7. Synesthesia, sensory-motor contingency and semantic emulation: How swimming style-color synesthesia challenges the traditional view of synesthesia

    Directory of Open Access Journals (Sweden)

    Aleksandra eMroczko-Wąsowicz

    2012-08-01

    Full Text Available Synesthesia is a phenomenon in which an additional nonstandard perceptual experience occurs consistently in response to ordinary stimulation applied to the same or another modality. Recent studies suggest an important role of semantic representations in the induction of synesthesia. In the present proposal we try to link the empirically grounded theory of sensory-motor contingency and mirror system based embodied simulation to newly discovered cases of swimming-style color synesthesia. In the latter color experiences are evoked only by showing the synesthetes a picture of a swimming person or asking them to think about a given swimming style. Neural mechanisms of mirror systems seem to be involved here. It has been shown that for mirror-sensory synesthesia, such as mirror-touch or mirror-pain synesthesia, concurrent experiences are caused by the overactivity in the mirror neuron system responding to the specific observation. The comparison of different forms of synesthesia has the potential of challenging conventional thinking on this phenomenon and providing a more general, sensory-motor account of synesthesia encompassing cases driven by semantic or emulational rather than pure sensory or motor representations.

  8. Semantic word category processing in semantic dementia and posterior cortical atrophy.

    Science.gov (United States)

    Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann

    2017-08-01

    There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory

    Science.gov (United States)

    Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.

    2013-12-01

    The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.

  10. On the universal structure of human lexical semantics.

    Science.gov (United States)

    Youn, Hyejin; Sutton, Logan; Smith, Eric; Moore, Cristopher; Wilkins, Jon F; Maddieson, Ian; Croft, William; Bhattacharya, Tanmoy

    2016-02-16

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single "polysemous" word to express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. The methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.

  11. SemantEco: a semantically powered modular architecture for integrating distributed environmental and ecological data

    Science.gov (United States)

    Patton, Evan W.; Seyed, Patrice; Wang, Ping; Fu, Linyun; Dein, F. Joshua; Bristol, R. Sky; McGuinness, Deborah L.

    2014-01-01

    We aim to inform the development of decision support tools for resource managers who need to examine large complex ecosystems and make recommendations in the face of many tradeoffs and conflicting drivers. We take a semantic technology approach, leveraging background ontologies and the growing body of linked open data. In previous work, we designed and implemented a semantically enabled environmental monitoring framework called SemantEco and used it to build a water quality portal named SemantAqua. Our previous system included foundational ontologies to support environmental regulation violations and relevant human health effects. In this work, we discuss SemantEco’s new architecture that supports modular extensions and makes it easier to support additional domains. Our enhanced framework includes foundational ontologies to support modeling of wildlife observation and wildlife health impacts, thereby enabling deeper and broader support for more holistically examining the effects of environmental pollution on ecosystems. We conclude with a discussion of how, through the application of semantic technologies, modular designs will make it easier for resource managers to bring in new sources of data to support more complex use cases.

  12. Semantic Web Primer

    NARCIS (Netherlands)

    Antoniou, Grigoris; Harmelen, Frank van

    2004-01-01

    The development of the Semantic Web, with machine-readable content, has the potential to revolutionize the World Wide Web and its use. A Semantic Web Primer provides an introduction and guide to this still emerging field, describing its key ideas, languages, and technologies. Suitable for use as a

  13. Wernicke's Aphasia Reflects a Combination of Acoustic-Phonological and Semantic Control Deficits: A Case-Series Comparison of Wernicke's Aphasia, Semantic Dementia and Semantic Aphasia

    Science.gov (United States)

    Robson, Holly; Sage, Karen; Lambon Ralph, Matthew A.

    2012-01-01

    Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and…

  14. COTARD SYNDROME IN SEMANTIC DEMENTIA

    Science.gov (United States)

    Mendez, Mario F.; Ramírez-Bermúdez, Jesús

    2011-01-01

    Background Semantic dementia is a neurodegenerative disorder characterized by the loss of meaning of words or concepts. semantic dementia can offer potential insights into the mechanisms of content-specific delusions. Objective The authors present a rare case of semantic dementia with Cotard syndrome, a delusion characterized by nihilism or self-negation. Method The semantic deficits and other features of semantic dementia were evaluated in relation to the patient's Cotard syndrome. Results Mrs. A developed the delusional belief that she was wasting and dying. This occurred after she lost knowledge for her somatic discomforts and sensations and for the organs that were the source of these sensations. Her nihilistic beliefs appeared to emerge from her misunderstanding of her somatic sensations. Conclusion This unique patient suggests that a mechanism for Cotard syndrome is difficulty interpreting the nature and source of internal pains and sensations. We propose that loss of semantic knowledge about one's own body may lead to the delusion of nihilism or death. PMID:22054629

  15. Mapping the Structure of Semantic Memory

    Science.gov (United States)

    Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.

    2013-01-01

    Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…

  16. Causality in the semantics of Esterel : revisited

    NARCIS (Netherlands)

    Mousavi, M.R.; Klin, B.; Sobocinski, P.

    2010-01-01

    We re-examine the challenges concerning causality in the semantics of Esterel and show that they pertain to the known issues in the semantics of Structured Operational Semantics with negative premises. We show that the solutions offered for the semantics of SOS also provide answers to the semantic

  17. Women and political representation.

    Science.gov (United States)

    Rathod, P B

    1999-01-01

    A remarkable progress in women's participation in politics throughout the world was witnessed in the final decade of the 20th century. According to the Inter-Parliamentary Union report, there were only eight countries with no women in their legislatures in 1998. The number of women ministers at the cabinet level worldwide doubled in a decade, and the number of countries without any women ministers dropped from 93 to 48 during 1987-96. However, this progress is far from satisfactory. Political representation of women, minorities, and other social groups is still inadequate. This may be due to a complex combination of socioeconomic, cultural, and institutional factors. The view that women's political participation increases with social and economic development is supported by data from the Nordic countries, where there are higher proportions of women legislators than in less developed countries. While better levels of socioeconomic development, having a women-friendly political culture, and higher literacy are considered favorable factors for women's increased political representation, adopting one of the proportional representation systems (such as a party-list system, a single transferable vote system, or a mixed proportional system with multi-member constituencies) is the single factor most responsible for the higher representation of women.

  18. Semantic Oriented Agent based Approach towards Engineering Data Management, Web Information Retrieval and User System Communication Problems

    OpenAIRE

    Ahmed, Zeeshan; Gerhard, Detlef

    2010-01-01

    The four intensive problems to the software rose by the software industry .i.e., User System Communication / Human Machine Interface, Meta Data extraction, Information processing & management and Data representation are discussed in this research paper. To contribute in the field we have proposed and described an intelligent semantic oriented agent based search engine including the concepts of intelligent graphical user interface, natural language based information processing, data management...

  19. SEMANTIC3D.NET: a New Large-Scale Point Cloud Classification Benchmark

    Science.gov (United States)

    Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.; Schindler, K.; Pollefeys, M.

    2017-05-01

    This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.

  20. Semantic Representatives of the Concept

    Directory of Open Access Journals (Sweden)

    Elena N. Tsay

    2013-01-01

    Full Text Available In the article concept as one of the principle notions of cognitive linguistics is investigated. Considering concept as culture phenomenon, having language realization and ethnocultural peculiarities, the description of the concept “happiness” is presented. Lexical and semantic paradigm of the concept of happiness correlates with a great number of lexical and semantic variants. In the work semantic representatives of the concept of happiness, covering supreme spiritual values are revealed and semantic interpretation of their functioning in the Biblical discourse is given.

  1. System semantics of explanatory dictionaries

    Directory of Open Access Journals (Sweden)

    Volodymyr Shyrokov

    2015-11-01

    Full Text Available System semantics of explanatory dictionaries Some semantic properties of the language to be followed from the structure of lexicographical systems of big explanatory dictionaries are considered. The hyperchains and hypercycles are determined as the definite kind of automorphisms of the lexicographical system of explanatory dictionary. Some semantic consequencies following from the principles of lexicographic closure and lexicographic completeness are investigated using the hyperchains and hypercycles formalism. The connection between the hypercyle properties of the lexicographical system semantics and Goedel’s incompleteness theorem is discussed.

  2. Roles of frontal and temporal regions in reinterpreting semantically ambiguous sentences

    Directory of Open Access Journals (Sweden)

    Sylvia eVitello

    2014-07-01

    Full Text Available Semantic ambiguity resolution is an essential and frequent part of speech comprehension because many words map onto multiple meanings (e.g., bark, bank. Neuroimaging research highlights the importance of the left inferior frontal gyrus (LIFG and the left posterior temporal cortex in this process but the roles they serve in ambiguity resolution are uncertain. One possibility is that both regions are engaged in the processes of semantic reinterpretation that follows incorrect interpretation of an ambiguous word. Here we used fMRI to investigate this hypothesis. 20 native British English monolinguals were scanned whilst listening to sentences that contained an ambiguous word. To induce semantic reinterpretation, the disambiguating information was presented after the ambiguous word and delayed until the end of the sentence (e.g., the teacher explained that the BARK was going to be very damp. These sentences were compared to well-matched unambiguous sentences. Supporting the reinterpretation hypothesis, these ambiguous sentences produced more activation in both the LIFG and the left posterior inferior temporal cortex. Importantly, all but one subject showed ambiguity-related peaks within both regions, demonstrating that the group-level results were driven by high inter-subject consistency. Further support came from the finding that activation in both regions was modulated by meaning dominance. Specifically, sentences containing biased ambiguous words, which have one more dominant meaning, produced greater activation than those with balanced ambiguous words, which have two equally frequent meanings. Because the context always supported the less frequent meaning, the biased words require reinterpretation more often than balanced words. This is the first evidence of dominance effects in the spoken modality and provides strong support that frontal and temporal regions support the updating of semantic representations during speech comprehension.

  3. Single-trial multisensory memories affect later auditory and visual object discrimination.

    Science.gov (United States)

    Thelen, Antonia; Talsma, Durk; Murray, Micah M

    2015-05-01

    Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand. Copyright

  4. Cross border semantic interoperability for clinical research: the EHR4CR semantic resources and services

    Science.gov (United States)

    Daniel, Christel; Ouagne, David; Sadou, Eric; Forsberg, Kerstin; Gilchrist, Mark Mc; Zapletal, Eric; Paris, Nicolas; Hussain, Sajjad; Jaulent, Marie-Christine; MD, Dipka Kalra

    2016-01-01

    With the development of platforms enabling the use of routinely collected clinical data in the context of international clinical research, scalable solutions for cross border semantic interoperability need to be developed. Within the context of the IMI EHR4CR project, we first defined the requirements and evaluation criteria of the EHR4CR semantic interoperability platform and then developed the semantic resources and supportive services and tooling to assist hospital sites in standardizing their data for allowing the execution of the project use cases. The experience gained from the evaluation of the EHR4CR platform accessing to semantically equivalent data elements across 11 European participating EHR systems from 5 countries demonstrated how far the mediation model and mapping efforts met the expected requirements of the project. Developers of semantic interoperability platforms are beginning to address a core set of requirements in order to reach the goal of developing cross border semantic integration of data. PMID:27570649

  5. The Semantic Web Revisited

    OpenAIRE

    Shadbolt, Nigel; Berners-Lee, Tim; Hall, Wendy

    2006-01-01

    The original Scientific American article on the Semantic Web appeared in 2001. It described the evolution of a Web that consisted largely of documents for humans to read to one that included data and information for computers to manipulate. The Semantic Web is a Web of actionable information--information derived from data through a semantic theory for interpreting the symbols.This simple idea, however, remains largely unrealized. Shopbots and auction bots abound on the Web, but these are esse...

  6. Semantic Search of Web Services

    Science.gov (United States)

    Hao, Ke

    2013-01-01

    This dissertation addresses semantic search of Web services using natural language processing. We first survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a vector space model based service…

  7. Semantic Models of Sentences with Verbs of Motion in Standard Language and in Scientific Language Used in Biology

    Directory of Open Access Journals (Sweden)

    Vita Banionytė

    2016-06-01

    Full Text Available The semantic models of sentences with verbs of motion in German standard language and in scientific language used in biology are analyzed in the article. In its theoretic part it is affirmed that the article is based on the semantic theory of the sentence. This theory, in its turn, is grounded on the correlation of semantic predicative classes and semantic roles. The combination of semantic predicative classes and semantic roles is expressed by the main semantic formula – proposition. In its practical part the differences between the semantic models of standard and scientific language used in biology are explained. While modelling sentences with verbs of motion, two groups of semantic models of sentences are singled out: that of action (Handlung and process (Vorgang. The analysis shows that the semantic models of sentences with semantic action predicatives dominate in the text of standard language while the semantic models of sentences with semantic process predicatives dominate in the texts of scientific language used in biology. The differences how the doer and direction are expressed in standard and in scientific language are clearly seen and the semantic cases (Agens, Patiens, Direktiv1 help to determine that. It is observed that in scientific texts of high level of specialization (biology science in contrast to popular scientific literature models of sentences with moving verbs are usually seldom found. They are substituted by denominative constructions. In conclusions it is shown that this analysis can be important in methodics, especially planning material for teaching professional-scientific language.

  8. Verbal Description of Concrete Objects: A Method for Assessing Semantic Circumlocution in Persons With Aphasia.

    Science.gov (United States)

    Antonucci, Sharon M; MacWilliam, Colleen

    2015-11-01

    We investigated from a theoretically motivated perspective what information differentiated sufficient from insufficient descriptions of objects provided by persons with aphasia. Twenty-one adults with aphasia consequent to single left-hemisphere stroke verbally described 9 living and 9 nonliving objects. Responses were scored for accuracy (i.e., sufficiency) and tallied for type and quantity of semantic feature information provided. Main effects and interactions were identified using repeated measures analyses of variance, with significant findings followed up with planned comparisons. Differences between correct and incorrect descriptions were identified with respect to both feature type and feature distinctiveness for living and nonliving items, in particular highlighting the importance of distinctive features in descriptions of both domains. These findings add to the relatively small body of literature investigating semantic feature processing in adults with aphasia. This is a critical gap to close when considered in light of the preponderance of semantically based treatments for word-retrieval impairment in stroke-aphasia. Our findings provide preliminary support for the notion that semantically guided treatments for word-retrieval impairment in stroke-aphasia may be geared toward increasing specificity of semantic circumlocution to increase semantic self-cueing and to improve communication of information to conversation partners.

  9. The interplay between mood and language comprehension: evidence from P600 to semantic reversal anomalies.

    Science.gov (United States)

    Vissers, Constance Th W M; Chwilla, Uli G; Egger, Jos I M; Chwilla, Dorothee J

    2013-05-01

    Little is known about the relationship between language and emotion. Vissers et al. (2010) investigated the effects of mood on the processing of syntactic violations, as indexed by P600. An interaction was observed between mood and syntactic correctness for which three explanations were offered: one in terms of syntactic processing, one in terms of heuristic processing, and one in terms of more general factors like attention and/or motivation. In this experiment, we further determined the locus of the effects of emotional state on language comprehension by investigating the effects of mood on the processing of semantic reversal anomalies (e.g., "the cat that fled from the mice"), in which heuristics play a key role. The main findings were as follows. The mood induction was effective: participants were happier after watching happy film clips and sadder after watching sad film clips compared to baseline. For P600, a mood by semantic plausibility interaction was obtained reflecting a broadly distributed P600 effect for the happy mood vs. absence of a P600 for the sad mood condition. Correlation analyses confirmed that changes in P600 in happy mood were accompanied by changes in emotional state. Given that semantic reversal anomalies are syntactically unambiguous, the P600 modulation by mood cannot be explained by syntactic factors. The semantic plausibility by mood interaction can be accounted for in terms of (1) heuristic processing (stronger reliance on a good enough representation of the input in happy mood than sad mood), and/or (2) more general factors like attention (e.g., more attention to semantic reversals in happy mood than sad mood). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The concepts of representation and information in explanatory theories of human behavior

    Directory of Open Access Journals (Sweden)

    Renato T. Ramos

    2014-09-01

    Full Text Available Focusing in experimental study of human behavior, this article discusses the concepts of information and mental representation aiming the integration of their biological, computational, and semantic aspects. Assuming that the objective of any communication process is ultimately to modify the receiver’s state, the term correlational information is proposed as a measure of how changes occurring in external world correlate with changes occurring inside an individual. Mental representations are conceptualized as a special case of information processing in which correlational information is received, recorded, but also modified by a complex emergent process of associating new elements. In humans, the acquisition of information and creation of mental representations occurs in a two-step process. First, a sufficiently complex brain structure is necessary to establishing internal states capable to co-vary with external events. Second, the validity or meaning of these representations must be gradually achieved by confronting them with the environment. This contextualization can be considered as part of the process of ascribing meaning to information and representations. The hypothesis introduced here is that the sophisticated psychological constructs classically associated with the concept of mental representation are essentially of the same nature of simple interactive behaviors. The capacity of generating elaborated mental phenomena like beliefs and desires emerges gradually during evolution and, in a given individual, by learning and social interaction.

  11. Human object-similarity judgments reflect and transcend the primate-IT object representation

    Directory of Open Access Journals (Sweden)

    Marieke eMur

    2013-03-01

    Full Text Available Primate inferior temporal (IT cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and nonhuman animals and between man-made and natural objects. Human IT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions.

  12. When Wine and Apple Both Help the Production of Grapes: ERP Evidence for Post-lexical Semantic Facilitation in Picture Naming.

    Science.gov (United States)

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-01-01

    Background : Producing a word in referential naming requires to select the right word in our mental lexicon among co-activated semantically related words. The mechanisms underlying semantic context effects during speech planning are still controversial, particularly for semantic facilitation which investigation remains under-represented in contrast to the plethora of studies dealing with interference. Our aim is to study the time-course of semantic facilitation in picture naming, using a picture-word "interference" paradigm and event-related potentials (ERPs). Methods : We compared two different types of semantic relationships, associative and categorical, in a single word priming and a double word priming paradigm. The primes were presented visually with a long negative Stimulus Onset Asynchrony (SOA), which is expected to cause facilitation. Results : Shorter naming latencies were observed after both associative and categorical primes, as compared to unrelated primes, and even shorter latencies after two primes. Electrophysiological results showed relatively late modulations of waveform amplitudes for both types of primes (beginning ~330 ms post picture onset with a single prime and ~275 ms post picture onset with two primes), corresponding to a shift in latency of similar topographic maps across conditions. Conclusion : The present results are in favor of a post-lexical locus of semantic facilitation for associative and categorical priming in picture naming and confirm that semantic facilitation is as relevant as semantic interference to inform on word production. The post-lexical locus argued here might be related to self-monitoting or/and to modulations at the level of word-form planning, without excluding the participation of strategic processes.

  13. NoGOA: predicting noisy GO annotations using evidences and sparse representation.

    Science.gov (United States)

    Yu, Guoxian; Lu, Chang; Wang, Jun

    2017-07-21

    Gene Ontology (GO) is a community effort to represent functional features of gene products. GO annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation, only a small portion of annotations are manually checked by curators, and the others are electronically inferred. Although quality control techniques have been applied to ensure the quality of annotations, the community consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem. We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene. Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H. sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly better results than other related methods and removing noisy annotations improves the performance of gene function prediction. The comparative study justifies the effectiveness of integrating evidence codes with sparse representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NoGOA .

  14. Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.

    Science.gov (United States)

    Zhan, Huijing; Shi, Boxin; Kot, Alex C

    2017-08-04

    Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.

  15. User Adaptive and Context-Aware Smart Home Using Pervasive and Semantic Technologies

    Directory of Open Access Journals (Sweden)

    Aggeliki Vlachostergiou

    2016-01-01

    Full Text Available Ubiquitous Computing is moving the interaction away from the human-computer paradigm and towards the creation of smart environments that users and things, from the IoT perspective, interact with. User modeling and adaptation is consistently present having the human user as a constant but pervasive interaction introduces the need for context incorporation towards context-aware smart environments. The current article discusses both aspects of the user modeling and adaptation as well as context awareness and incorporation into the smart home domain. Users are modeled as fuzzy personas and these models are semantically related. Context information is collected via sensors and corresponds to various aspects of the pervasive interaction such as temperature and humidity, but also smart city sensors and services. This context information enhances the smart home environment via the incorporation of user defined home rules. Semantic Web technologies support the knowledge representation of this ecosystem while the overall architecture has been experimentally verified using input from the SmartSantander smart city and applying it to the SandS smart home within FIRE and FIWARE frameworks.

  16. LAIR: A Language for Automated Semantics-Aware Text Sanitization based on Frame Semantics

    DEFF Research Database (Denmark)

    Hedegaard, Steffen; Houen, Søren; Simonsen, Jakob Grue

    2009-01-01

    We present \\lair{}: A domain-specific language that enables users to specify actions to be taken upon meeting specific semantic frames in a text, in particular to rephrase and redact the textual content. While \\lair{} presupposes superficial knowledge of frames and frame semantics, it requires on...... with automated redaction of web pages for subjectively undesirable content; initial experiments suggest that using a small language based on semantic recognition of undesirable terms can be highly useful as a supplement to traditional methods of text sanitization.......We present \\lair{}: A domain-specific language that enables users to specify actions to be taken upon meeting specific semantic frames in a text, in particular to rephrase and redact the textual content. While \\lair{} presupposes superficial knowledge of frames and frame semantics, it requires only...... limited prior programming experience. It neither contain scripting or I/O primitives, nor does it contain general loop constructions and is not Turing-complete. We have implemented a \\lair{} compiler and integrated it in a pipeline for automated redaction of web pages. We detail our experience...

  17. ScholarLens: extracting competences from research publications for the automatic generation of semantic user profiles

    Directory of Open Access Journals (Sweden)

    Bahar Sateli

    2017-07-01

    Full Text Available Motivation Scientists increasingly rely on intelligent information systems to help them in their daily tasks, in particular for managing research objects, like publications or datasets. The relatively young research field of Semantic Publishing has been addressing the question how scientific applications can be improved through semantically rich representations of research objects, in order to facilitate their discovery and re-use. To complement the efforts in this area, we propose an automatic workflow to construct semantic user profiles of scholars, so that scholarly applications, like digital libraries or data repositories, can better understand their users’ interests, tasks, and competences, by incorporating these user profiles in their design. To make the user profiles sharable across applications, we propose to build them based on standard semantic web technologies, in particular the Resource Description Framework (RDF for representing user profiles and Linked Open Data (LOD sources for representing competence topics. To avoid the cold start problem, we suggest to automatically populate these profiles by analyzing the publications (co-authored by users, which we hypothesize reflect their research competences. Results We developed a novel approach, ScholarLens, which can automatically generate semantic user profiles for authors of scholarly literature. For modeling the competences of scholarly users and groups, we surveyed a number of existing linked open data vocabularies. In accordance with the LOD best practices, we propose an RDF Schema (RDFS based model for competence records that reuses existing vocabularies where appropriate. To automate the creation of semantic user profiles, we developed a complete, automated workflow that can generate semantic user profiles by analyzing full-text research articles through various natural language processing (NLP techniques. In our method, we start by processing a set of research articles for a

  18. Semantic dementia without surface dyslexia in Spanish: unimpaired reading with impaired semantics.

    Science.gov (United States)

    Wilson, Maximiliano A; Martínez-Cuitiño, Macarena

    2012-01-01

    Surface dyslexia has been attributed to an overreliance on the sub-lexical route for reading. Typically, surface dyslexic patients commit regularisation errors when reading irregular words. Also, semantic dementia has often been associated with surface dyslexia, leading to some explanations of the reading impairment that stress the role of semantics in irregular word reading. Nevertheless, some patients have been reported with unimpaired ability to read irregular words, even though they show severe comprehension impairment. We present the case of M.B., the first Spanish-speaking semantic dementia patient to be reported who shows unimpaired reading of non-words, regular words, and - most strikingly - irregular loan words. M.B. has severely impaired comprehension of the same words he reads correctly (whether regular or irregular). We argue that M.B.'s pattern of performance shows that irregular words can be correctly read even with impaired semantic knowledge corresponding to those words.

  19. A generalized notion of semantic independence

    DEFF Research Database (Denmark)

    Fränzle, Martin; Stengel, Bernhard von; Wittmüss, Arne

    1995-01-01

    For programs represented semantically as relations, a concept of semantic independence is defined that is more general than previously stated notions. It allows for shared input variables and irrelevant interference due to nondeterminism.......For programs represented semantically as relations, a concept of semantic independence is defined that is more general than previously stated notions. It allows for shared input variables and irrelevant interference due to nondeterminism....

  20. Comparing Refinements for Failure and Bisimulation Semantics

    NARCIS (Netherlands)

    Eshuis, H.; Fokkinga, M.M.

    2002-01-01

    Refinement in bisimulation semantics is defined differently from refinement in failure semantics: in bisimulation semantics refinement is based on simulations between labelled transition systems, whereas in failure semantics refinement is based on inclusions between failure systems. There exist