WorldWideScience

Sample records for single scattering method

  1. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods.

    Science.gov (United States)

    Ma, Shufen; Liu, Haiguang

    2016-04-01

    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  2. Determining Complex Structures using Docking Method with Single Particle Scattering Data

    Directory of Open Access Journals (Sweden)

    Haiguang Liu

    2017-04-01

    Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  3. Determining Complex Structures using Docking Method with Single Particle Scattering Data.

    Science.gov (United States)

    Wang, Hongxiao; Liu, Haiguang

    2017-01-01

    Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs), it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  4. Accurate single-scattering simulation of ice cloud using the invariant-imbedding T-matrix method and the physical-geometric optics method

    Science.gov (United States)

    Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.

    2017-12-01

    The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.

  5. Dust optical properties in antarctic ice cores: application of the Single Particle Extinction and Scattering (SPES) method

    Science.gov (United States)

    Potenza, Marco; Villa, Stefano; Sanvito, Tiziano; Albani, Samuel; Delmonte, Barbara; Maggi, Valter

    2015-04-01

    From the point of view of light scattering each particle is characterized by several parameters, the size being by far the most important in determining the amount of radiated power. Nevertheless, composition, internal structure, shape do slightly affect the way light is scattered, and in turn also prevent the possibility to extract the correct size. Recovering the whole information is of paramount difficulty, if not impossibile for single particles. A trade off can be obtained by introducing the optical thickness, i.e. the product of the size and the refractive index, which determines the optical properties. Here we focus at studying the optical thickness of dust particles from the EPICA Dome C ice core. We provide for the first time a direct measurement of dust optical parameters that is the most direct information needed by climate models, and highlight important differences among samples. The SPES method is named after its capability to access both the extinction cross section and the forward scattered field amplitude for each particle. This method is well working with extremely dilute suspensions, such as Antarctic ice core samples. The SPES method is based upon combined and simultaneous measurements of the power reduction of a laser beam in presence of the particle (extinction by definition) and the interference between the intense transmitted beam and the much fainter forward scattered wave (scattering). In such a way it is possible to access both the amplitude and phase of the scattered wave, which means both the real and imaginary parts of the complex field amplitude. This makes the difference with traditional approaches. We show some preliminary results from glacial and interglacial samples from the EPICA ice core and suggest a method to extract information which is important for the light scattering properties of the ensemble of dust particles contained in each sample.

  6. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  7. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  8. Single scattering properties of hydrosols

    Science.gov (United States)

    Mukherjee, L.; Zhai, P.; Hu, Y.

    2017-12-01

    The single scattering or inherent optical properties (IOPs) of hydrosols play an important role in the complete study of ocean optics, ocean color remote sensing, and ocean biogeochemistry research. Measurements show that hydrosols can be of various sizes and shapes, which suggests that general non-spherical models should be considered for the study of IOPs of hydrosols. In this work, the IOPs of randomly oriented non-spherical hydrosols of both absorbing and non-absorbing types are modeled using the Amsterdam Discrete Dipole Approximation (ADDA). We have defined the degree of optical non-sphericity (DONS) and investigated the dependence of DONS on refractive indices, sizes, and aspect ratios. For particles with non-unit aspect ratios, the magnitude of DONS increases with an increase of refractive index and aspect ratio. In general, the value of DONS increases with increase in particle size. The variation of DONS with respect to refractive indices and aspect ratios of the hydrosols makes it an important parameter in the study of ocean optics. Dependence of backscattering fraction on non-sphericity, size, and aspect ratio of the hydrosols is also demonstrated. The modeling of single scattering properties of hydrosols with different microphysical parameters would help to interpret the ocean radiation field measured by in situ or remote sensing sensors. Understanding the IOPs of hydrosols would lead to better radiative transfer models in ocean waters and new remote sensing technologies of hydrosol compositions.

  9. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  10. Equivalence of internal and external mixture schemes of single scattering properties in vector radiative transfer.

    Science.gov (United States)

    Mukherjee, Lipi; Zhai, Peng-Wang; Hu, Yongxiang; Winker, David M

    2017-05-10

    Polarized radiation fields in a turbid medium are influenced by single-scattering properties of scatterers. It is common that media contain two or more types of scatterers, which makes it essential to properly mix single-scattering properties of different types of scatterers in the vector radiative transfer theory. The vector radiative transfer solvers can be divided into two basic categories: the stochastic and deterministic methods. The stochastic method is basically the Monte Carlo method, which can handle scatterers with different scattering properties explicitly. This mixture scheme is called the external mixture scheme in this paper. The deterministic methods, however, can only deal with a single set of scattering properties in the smallest discretized spatial volume. The single-scattering properties of different types of scatterers have to be averaged before they are input to deterministic solvers. This second scheme is called the internal mixture scheme. The equivalence of these two different mixture schemes of scattering properties has not been demonstrated so far. In this paper, polarized radiation fields for several scattering media are solved using the Monte Carlo and successive order of scattering (SOS) methods and scattering media contain two types of scatterers: Rayleigh scatterers (molecules) and Mie scatterers (aerosols). The Monte Carlo and SOS methods employ external and internal mixture schemes of scatterers, respectively. It is found that the percentage differences between radiances solved by these two methods with different mixture schemes are of the order of 0.1%. The differences of Q/I, U/I, and V/I are of the order of 10 -5 ∼10 -4 , where I, Q, U, and V are the Stokes parameters. Therefore, the equivalence between these two mixture schemes is confirmed to the accuracy level of the radiative transfer numerical benchmarks. This result provides important guidelines for many radiative transfer applications that involve the mixture of

  11. Transient Rayleigh scattering from single semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 (United States); Yarrison-Rice, Jan M. [Department of Physics, Miami University, Oxford, OH 45056 (United States); Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-12-04

    Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

  12. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    Science.gov (United States)

    Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.

    2018-02-01

    We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

  13. SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry

    International Nuclear Information System (INIS)

    Disney, R.K.; Vogtman, S.E.

    1987-01-01

    1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total

  14. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    DEFF Research Database (Denmark)

    Kazantsev, I.G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2018-01-01

    scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations...... are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented....

  15. Lectures on the inverse scattering method

    International Nuclear Information System (INIS)

    Zakharov, V.E.

    1983-06-01

    In a series of six lectures an elementary introduction to the theory of inverse scattering is given. The first four lectures contain a detailed theory of solitons in the framework of the KdV equation, together with the inverse scattering theory of the one-dimensional Schroedinger equation. In the fifth lecture the dressing method is described, while the sixth lecture gives a brief review of the equations soluble by the inverse scattering method. (author)

  16. Expressive Single Scattering for Light Shaft Stylization

    NARCIS (Netherlands)

    Kol, T.R.; Klehm, O.; Seidel, Hans-Peter; Eisemann, E.

    2017-01-01

    Light scattering in participating media is a natural phenomenon that is increasingly featured in movies and games, as it is visually pleasing and lends realism to a scene. In art, it may further be used to express a certain mood or emphasize objects. Here, artists often rely on stylization when

  17. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    International Nuclear Information System (INIS)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E.; Kauppinen, T.; Patomaeki, L.

    1999-01-01

    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p [de

  18. Single and Multiple Scattering in UWB Bicone Arrays

    Directory of Open Access Journals (Sweden)

    Raffaele D'Errico

    2008-01-01

    Full Text Available An analysis of interactions between radiators in a UWB biconical array, drawing attention to single and multiple scatterings, is carried out. The complementarity between electrical coupling and radiation scattering is argued. The point source approximation is discussed and shown to be insufficient. An approximation of radiation scattering based on angular averaging of the scattering coefficient is proposed. This approach yields a reduction of the problem complexity, which is especially interesting in UWB multiple antenna systems, because of the large bandwidth. Multiple scattering between radiators is shown to be a second-order effect. Finally, a time domain approach is used in order to investigate pulse distortion and quantify the exactness of the proposed scattering model.

  19. A multi-dimensional sampling method for locating small scatterers

    International Nuclear Information System (INIS)

    Song, Rencheng; Zhong, Yu; Chen, Xudong

    2012-01-01

    A multiple signal classification (MUSIC)-like multi-dimensional sampling method (MDSM) is introduced to locate small three-dimensional scatterers using electromagnetic waves. The indicator is built with the most stable part of signal subspace of the multi-static response matrix on a set of combinatorial sampling nodes inside the domain of interest. It has two main advantages compared to the conventional MUSIC methods. First, the MDSM is more robust against noise. Second, it can work with a single incidence even for multi-scatterers. Numerical simulations are presented to show the good performance of the proposed method. (paper)

  20. Integrated Raman and angular scattering of single biological cells

    Science.gov (United States)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the

  1. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1985-01-01

    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...

  2. Multi-frequency direct sampling method in inverse scattering problem

    Science.gov (United States)

    Kang, Sangwoo; Lambert, Marc; Park, Won-Kwang

    2017-10-01

    We consider the direct sampling method (DSM) for the two-dimensional inverse scattering problem. Although DSM is fast, stable, and effective, some phenomena remain unexplained by the existing results. We show that the imaging function of the direct sampling method can be expressed by a Bessel function of order zero. We also clarify the previously unexplained imaging phenomena and suggest multi-frequency DSM to overcome traditional DSM. Our method is evaluated in simulation studies using both single and multiple frequencies.

  3. Mie scatter corrections in single cell infrared microspectroscopy.

    Science.gov (United States)

    Konevskikh, Tatiana; Lukacs, Rozalia; Blümel, Reinhold; Ponossov, Arkadi; Kohler, Achim

    2016-06-23

    Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of the infrared microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we critically reviewed existing algorithms for the correction of Mie scattering and suggest improvements. We developed an iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the retrieval of pure absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm uses the van de Hulst approximation formula for the extinction efficiency employing a complex refractive index. The iterative algorithm involves the establishment of an EMSC meta-model. While existing iterative algorithms for the correction of resonant Mie scattering employ three independent parameters for establishing a meta-model, we could decrease the number of parameters from three to two independent parameters, which reduced the calculation time for the Mie scattering curves for the iterative EMSC meta-model by a factor of 10. Moreover, by employing the Hilbert transform for evaluating the Kramers-Kronig relations based on a FFT algorithm in Matlab, we further improved the speed of the algorithm by a factor of 100. For testing the algorithm we simulate distorted apparent absorbance spectra by utilizing the exact theory for the scattering of infrared light at absorbing spheres, taking into account the high numerical aperture of infrared microscopes employed for the analysis of single cells and tissues. In addition, the algorithm was applied to measured absorbance spectra of single lung cancer cells.

  4. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  5. Black hole scattering via pseudospectral methods

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Paula C.M.; Oliveira, Henrique P. de; Rodrigues, Eduardo L. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2012-07-01

    Full text: We have considered the problem which refers to scattering and absorption of perturbations from a black hole. These perturbations can be scalar, electromagnetic or gravitational waves and satisfy a Schrodinger-type equation, where the potential is specified by the black hole under consideration. Unfortunately, this problem can not be solved by a standard pseudospectral method, the reason is that does not exist a infinite interval basis set, capable of modelling the ingoing and outgoing waves. By using the rational Chebyshev functions and, adding to it, special functions called 'radiation functions' we are able to compute with high precision the transmission and reflection coefficients. These difficulties emerge, because the rational Chebyshev functions can not correctly represent the asymptotic sine waves present in the work. In order to introduce the various concepts involved in the study of wave scattering by black holes, we have assumed in this work, the easiest relativistic case, where scalar waves are scattered by a potential generated by a static and spherically symmetric Schwarzschild black hole. We have adapted and modified the pseudospectral method devised by Boyd, (Computer in Physics, 83 (1990)) which consists in a potential barrier problem in one dimension, the concept of numerical implementation remains the same. The extension of the code for the wave scattering by other black holes is, also, discussed. (author)

  6. Effective single scattering albedo estimation using regional climate model

    CSIR Research Space (South Africa)

    Tesfaye, M

    2011-09-01

    Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...

  7. A new scattering method that combines roughness and diffraction effects

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Most of today's room acoustics programs make use of scattering coefficients which are used in order to describe surface scattering (roughness of material) and scattering of reflected sound caused by limited surface size (diffraction). A method which combines scattering caused by diffraction due...

  8. Strong paramagnon scattering in single atom Pd contacts

    DEFF Research Database (Denmark)

    Schendel, V.; Barreteau, Cyrille; Brandbyge, Mads

    2017-01-01

    Among all transition metals, palladium (Pd) has the highest density of states at the Fermi energy at low temperatures yet does not fulfill the Stoner criterion for ferromagnetism. However, close proximity to magnetism renders it a nearly ferromagnetic metal, which hosts paramagnons, strongly damp...... adatoms locally induce magnetic order, and transport through single cobalt atoms remains unaffected by paramagnon scattering, consistent with theory....... spin fluctuations. Here we compare the total and the differential conductance of monoatomic contacts consisting of single Pd and cobalt (Co) atoms between Pd electrodes. Transport measurements reveal a conductance for Co of 1G(0), while for Pd we obtain 2G(0). The differential conductance of monoatomic...

  9. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements

    Science.gov (United States)

    Kwon Ho Lee; Zhanqing Li; Man Sing Wong; Jinyuan Xin; Wang Yuesi; Wei Min Hao; Fengsheng Zhao

    2007-01-01

    Single scattering albedo (SSA) governs the strength of aerosols in absorbing solar radiation, but few methods are available to directly measure this important quantity. There currently exist many ground-based measurements of spectral transmittance from which aerosol optical thickness (AOT) are retrieved under clear sky conditions. Reflected radiances at the top of the...

  10. Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    Science.gov (United States)

    Wiscombe, W. J.; Mugnai, A.

    1986-01-01

    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.

  11. Single Scattering Detection in Turbin Media Using Single-Phase Structured Illumination Filtering

    Science.gov (United States)

    Berrocal, E.; Johnsson, J.; Kristensson, E.; Alden, M.

    2012-05-01

    This work shows a unique possibility of visualizing the exponential intensity decay due to light extinction, when laser adiation propagates through a homogeneous scattering edium. This observation implies that the extracted intensity mostly riginates from single scattering events. The filtering of this single light scattering intensity is performed by means of a single-phase structured illumination filtering approach. Results from numerical Monte Carlo simulation confirm the experimental findings for an extinction coefficient of μ_e = 0.36 mm^-1. This article demonstrates an original and reliable way of measuring the extinction coefficient of particulate turbid media based on sidescattering imaging. Such an approach has capabilities to replace the commonly used transmission measurement within the intermediate single-to multiple scattering regime where the optical depth ranges between 1 procedure and set-up. Applications of the technique has potential in probing challenging homogeneous scattering media, such as biomedical tissues, turbid emulsions, etc, in situations where dilution cannot be applied and where conventional transmission measurements fail.

  12. Single-scattering properties of Platonic solids in geometrical-optics regime

    International Nuclear Information System (INIS)

    Zhang Zhibo; Yang Ping; Kattawar, George W.; Wiscombe, Warren J.

    2007-01-01

    We investigate the single-scattering properties of the Platonic solids with size parameters in the geometrical-optics regime at wavelengths 0.66 and 11 μm using the geometrical-optics method. The comparisons between the results for the Platonic solids and four types of spherical equivalence show that the equal-surface-area spherical equivalence has the smallest errors in terms of the extinction cross section at both wavelengths. At a wavelength of 0.66 μm, all the spherical equivalences substantially overestimate the asymmetry factors of the Platonic solids; and in the case of strong absorption, they underestimate the single-scattering albedo. The comparisons also show that the spherical equivalences cannot be used to describe the spatial distribution of scattered intensity associated with a prismatic polyhedron

  13. Elastic wave scattering methods: assessments and suggestions

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  14. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  15. Acoustic scattering by multiple elliptical cylinders using collocation multipole method

    International Nuclear Information System (INIS)

    Lee, Wei-Ming

    2012-01-01

    This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.

  16. A comparison of different energy window subtraction methods to correct for scatter and downscatter in I-123 SPECT imaging

    DEFF Research Database (Denmark)

    Lagerburg, Vera; de Nijs, Robin; Holm, Søren

    2012-01-01

    One of the main problems in quantification of single photon emission computer tomography imaging is scatter. In iodine-123 (I-123) imaging, both the primary 159 keV photons and photons of higher energies are scattered. In this experimental study, different scatter correction methods, based...... on energy window subtraction, have been compared with each other....

  17. The single-angle neutron scattering facility at Pelindaba

    International Nuclear Information System (INIS)

    Hofmeyr, C.; Mayer, R.M.; Tillwick, D.L.; Starkey, J.R.

    1978-05-01

    The small-angle neutron scattering facility at the SAFARI-1 reactor is described in detail, and with reference to theoretical and practical design considerations. Inexpensive copper microwave guides used as a guide-pipe for slow neutrons provided the basis for a useful though comparatively simple facility. The neutron-spectrum characteristics of the final facility in different configurations of the guide-pipe (both S and single-curved) agree wel with expected values based on results obtained with a test facility. The design, construction, installation and alignment of various components of the facility are outlined, as well as intensity optimisation. A general description is given of experimental procedures and data-aquisition electronics for the four-position sample holder and counter array of up to 18 3 He detectors and a beam monitor [af

  18. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  19. Scattering measurement of single particle for highly sensitive homogeneous detection of DNA in serum.

    Science.gov (United States)

    Zhu, Liang; Li, Guohua; He, Yonghong; Tan, Hui; Sun, Shuqing

    2018-02-01

    A highly sensitive homogeneous method for DNA detection has been developed. The system relies on two kinds of gold nanorod (AuNR) probes with complementary DNA sequences to the target DNA. In the presence of the target DNA, two kinds of AuNR probes are assembling into dimers or small aggregates. The target-induced AuNR aggregate has higher scattering intensity than that of a single AuNR because of the plasmonic coupling effect. Dark field microscopy was utilized to image the single particle and measure its scattering intensity. We wrote our own Matlab code and used it to extract the scattering signal of all particles. Difference in distribution of scattering intensity between the single AuNR and its aggregate provides a quantitative basis for the detection of target DNA. A linear dynamic range spanning from 0.1pM to 1nM and a detection limit of ~ 30fM were achieved for the detection of DNA in serum sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mie Scattering by a Conducting Sphere Coated Uniaxial Single-Negative Medium

    Directory of Open Access Journals (Sweden)

    You-Lin Geng

    2012-01-01

    Full Text Available We propose an accurate analytical method to compute the electromagnetic scattering from three-dimensional (3D conducting sphere coated uniaxial anisotropic single-negative (SNG medium. Based on the spherical vector wave functions (SVWFs in uniaxial anisotropic medium, the electromagnetic field in homogeneous uniaxial SNG medium and free space can be expressed by the SVWFs in uniaxial SNG medium and free space. The continued boundary conditions of electromagnetic fields between the uniaxial SNG medium and free space are applied, and the tangential electrical field is vanished in the surface of conducting sphere, the coefficients of scattering fields in free space can be derived, and then the character of scattering of conducting sphere coated homogeneous uniaxial SNG medium can be obtained. Some numericals are given in the end.

  1. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology and Nuclear Medicine; Kauppinen, T.; Patomaeki, L. [Kuopio Univ. (Finland). Dept. of Applied Physics

    1999-05-01

    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p<0.0001) after scatter correction and the slope was 0.954. Pairwise correlation indicated the agreement between nonscatter corrected and scatter corrected images. Reconstructed slices before and after scatter correction demonstrate a good correlation in the quantitative accuracy of radionuclide concentration. G/C values have significant correlation coefficients between original and corrected data. Conclusion: The transaxial images of human brain studies show that the scatter correction using single isotope in simultaneous transmission and emission tomography provides a good scatter compensation. The contrasts were increased on all 12 ROIs. The scatter compensation enhanced details of physiological lesions. (orig.) [Deutsch] Die Photonenstreuung gehoert zu den wichtigsten Faktoren, die die quantitative Genauigkeit von SPECT-Bildern vermindern. Es wurde eine ganze Reihe von Methoden zur Streuungskorrektur vorgeschlagen. Von uns wurde die Einzelisotopen-Methode empfohlen. Ziel: Wir untersuchten die Streuungskorrektur-Methode zur Verbesserung der Bildqualitaet durch simultane Gewinnung von Emissions

  2. Comparison of using distribution-specific versus effective radius methods for hydrometeor single-scattering properties for all-sky microwave satellite radiance simulations with different microphysics parameterization schemes

    Science.gov (United States)

    Sieron, Scott B.; Clothiaux, Eugene E.; Zhang, Fuqing; Lu, Yinghui; Otkin, Jason A.

    2017-07-01

    The Community Radiative Transfer Model (CRTM) presently uses one look-up table (LUT) of cloud and precipitation single-scattering properties at microwave frequencies, with which any particle size distribution may interface via effective radius. This may produce scattering properties insufficiently representative of the model output if the microphysics parameterization scheme particle size distribution mismatches that assumed in constructing the LUT, such as one being exponential and the other monodisperse, or assuming different particle bulk densities. The CRTM also assigns a 5 μm effective radius to all nonprecipitating clouds, an additional inconsistency. Brightness temperatures are calculated from 3 h convection-permitting simulations of Hurricane Karl (2010) by the Weather Research and Forecasting model; each simulation uses one of three different microphysics schemes. For each microphysics scheme, a consistent cloud scattering LUT is constructed; the use of these LUTs produces differences in brightness temperature fields that would be better for analyzing and constraining microphysics schemes than using the CRTM LUT as-released. Other LUTs are constructed which contain one of the known microphysics inconsistencies with the CRTM LUT as-released, such as the bulk density of graupel, but are otherwise microphysics-consistent; differences in brightness temperature to using an entirely microphysics-consistent LUT further indicate the significance of that inconsistency. The CRTM LUT as-released produces higher brightness temperature than using microphysics-consistent LUTs. None of the LUTs can produce brightness temperatures that can match well to observations at all frequencies, which is likely due in part to the use of spherical particle scattering.

  3. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...

  4. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  5. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  6. The isomonodromy method for black hole scattering

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro da Cunha, Bruno, E-mail: bcunha@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio, E-mail: fabio.nsantos@gmail.com [International Institute of Physics, Federal University of Rio Grande do Norte, Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)

    2015-12-17

    We summarize recent results by the authors [7, 8, 35] on the extraction of scattering amplitudes for scalar fields in Kerr/Kerr-de Sitter backgrounds. Analytical, closed forms are found in terms of the Painlevé V and VI transcendents for generic values of the physical parameters.

  7. On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths

    Science.gov (United States)

    Marshak, Alexander

    2012-01-01

    The single scattering albedo omega (sub 0 lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength A and droplet size r. In this presentation we will show that for water droplets at weakly absorbing wavelengths, the ratio omega (sub 0 lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega (sub 0 lambda) via one known spectrum omega (sub 0 lambda)(r(sub o)). We will provide a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals. The single scattering albedo $\\omega _ {0\\lambda }$ in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, and thus the single scattering albedo, are functions of wavelength $\\lambda $ and droplet size $r$. We show that for water droplets at weakly absorbing wavelengths, the ratio $\\omega _ {0\\lambda } (r)$/$\\omega _ {0\\lambda } (r_{0})$ of two single scattering albedo spectra for two different droplet sizes is a linear function of $\\omega _{0\\lambda }(r)$. The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo $\\omega_{0\\lambda }(r)$ via one known spectrum $\\omega_{0\\lambda }(r_{0})$. We provide a simple physical explanation of the discovered relationship. Similar linear relationships characterize the single scattering albedo of non-spherical ice crystals.

  8. Methods and instruments for ensemble particle sizing by light scattering

    International Nuclear Information System (INIS)

    Bayvel, L.P.

    1986-01-01

    The instruments for ensemble analysis are based on two methods. The first method involves the approximation of the relationship between intensity scattered or transmitted by a particle and its size. This method enables one to compute the number or volume particle size distributions by finding a solution to a Fredholm integral if the scattering patern is measured. An alternative method is by expressing the angle dependent intensity of scattered light, the particle size distribution and the scattering coefficients for individual particles in a matrix equation. This method exploits the Mie scattering theory. All the instruments are based on the Fraunhofer diffraction theory. The solid particle is normally illuminated by a beam from a low-power helium-neon laser. A variation of detector assemblies is used to detect the scattered light. Instruments which are used for particle size measurements measure the extinction coefficients for different wavelenghts and scattering at 90 degrees by recording light intensity in two orthogonal planes of polarisation for each of three wavelenghts. Correction factors to take multiple scattering in account are also discussed

  9. A Study of Multiple Scattering in BGO and LYSO Single Crystal Scintillators

    Directory of Open Access Journals (Sweden)

    Kittipong Seingsanoh

    2016-08-01

    Full Text Available The angular distribution of multiple Compton scatterings from BGO and LYSO single crystal scintillators was studied at various scattering angles. Gamma photons with 662 keV energy, acquired from a 137Cs source, were used. The scattered photons were detected by a 51mm × 51mm NaI(Tl scintillation detector. The overall energy correlated to the total number of scattered incidents was analytically reconstructed. The research found that the multiply scattered incidents had the same energy as received from the singly scattered distribution, as the attribution of multiply scattered incidents near the 90° scattering angle revealed. The research results were in agreement with the theoretical calculations.

  10. A direct sampling method for inverse electromagnetic medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-09-01

    In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and the behavior of the fundamental solution. It is applicable to a few incident fields and needs only to compute inner products of the measured scattered field with the fundamental solutions located at sampling points. Hence, it is strictly direct, computationally very efficient and highly robust to the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can provide reliable support estimates for multiple scatterers in the case of both exact and highly noisy data. © 2013 IOP Publishing Ltd.

  11. A gradient method for anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jemian, P.R. [Argonne National Lab., IL (United States); Weertman, J.R. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Long, G.G. [National Institute of Standards and Technology, Gaithersburg, MD (United States). Ceramics Div.

    1992-09-15

    A new method of general applicability for analyzing data from anomalous dispersion small-angle X-ray scattering (ASAXS) measurements is described. ASAXS is used as a contrast variation method to label the scattering from a single element in a complex material containing several types of scatterers. The contrast variation is achieved through the anomalous dispersion of X-rays. Thus only one sample is required for a complete analysis. To label a scatterer by ASAXS, the atomic scattering factor of an element in the sample is varied by the selection of photon energies near the absorption edge of the element. Careful selection of the photon energies allows the contrast of only the labeled scatterer to change. Data from several small-angle scattering measurements, each conducted at a fixed energy, are combined in a single analysis. The gradient method, used as an extension to a standard SAXS data analysis method, is demonstrated by isolating the volume fraction size distribution of Cr{sub 23}C{sub 6} in 9Cr-1 MoVNb steel.

  12. Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX

    Science.gov (United States)

    Ohta, K.; Yoshikawa, M.; Yasuhara, R.; Chikatsu, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakasima, Y.; Imai, T.; Ichimura, M.; Yamada, I.; Funaba, H.; Minami, T.

    2016-11-01

    We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system. Because the interval between the MPTS signals is very short, it is difficult to separately analyze each Thomson scattering signal intensity by using the raw signals. We used the fitting method to obtain the original TS scattering signals from the measured raw MPTS signals to obtain the electron temperatures in each pass.

  13. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  14. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  15. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-03-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  16. Coherent Anti-Stokes and Coherent Stokes in Raman Scattering by Superconducting Nanowire Single-Photon Detector for Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Annepu Venkata Naga Vamsi

    2016-01-01

    Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.

  17. A direct sampling method to an inverse medium scattering problem

    KAUST Repository

    Ito, Kazufumi

    2012-01-10

    In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when the measured data are only available for one or two incident directions. A mathematical derivation is provided for its validation. Two- and three-dimensional numerical simulations are presented, which show that the method is accurate even with a few sets of scattered field data, computationally efficient, and very robust with respect to noises in the data. © 2012 IOP Publishing Ltd.

  18. Method for measuring multiple scattering corrections between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Glenn, A.M., E-mail: glenn22@llnl.gov; Keefer, G.J., E-mail: keefer1@llnl.gov; Wurtz, R.E., E-mail: wurtz1@llnl.gov

    2016-07-21

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  19. Scattering theory in quantum mechanics. Physical principles and mathematical methods

    International Nuclear Information System (INIS)

    Amrein, W.O.; Jauch, J.M.; Sinha, K.B.

    1977-01-01

    A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods

  20. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    Science.gov (United States)

    Ávila-Carrera, R.; Rodríguez-Castellanos, A.; Sánchez-Sesma, F. J.; Ortiz-Alemán, C.

    2009-09-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks.

  1. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  2. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens

    2016-02-01

    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  3. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi

    2012-08-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  4. Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering

    International Nuclear Information System (INIS)

    Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2011-01-01

    We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.

  5. Single perturbative splitting diagrams in double parton scattering

    Science.gov (United States)

    Gaunt, Jonathan R.

    2013-01-01

    We present a detailed study of a specific class of graph that can potentially contribute to the proton-proton double parton scattering (DPS) cross section. These are the `2v1' or `single perturbative splitting' graphs, in which two `nonperturbatively generated' ladders interact with two ladders that have been generated via a perturbative 1 → 2 branching process. Using a detailed calculation, we confirm the result written down originally by Ryskin and Snigirev — namely, that the 2v1 graphs in which the two nonperturbatively generated ladders do not interact with one another do contribute to the leading order proton-proton DPS cross section, albeit with a different geometrical prefactor to the one that applies to the `2v2'/`zero perturbative splitting' graphs. We then show that 2v1 graphs in which the `nonperturbatively generated' ladders exchange partons with one another also contribute to the leading order proton-proton DPS cross section, provided that this `crosstalk' occurs at a lower scale than the 1 → 2 branching on the other side of the graph. Due to the preference in the 2v1 graphs for the x value at which the branching occurs, and crosstalk ceases, to be very much larger than the x values at the hard scale, the effect of crosstalk interactions is likely to be a decrease in the 2v1 cross section except at exceedingly small x values (≲ 10-6). At moderate x values ≃ 10-3 -10-2, the x value at the splitting is in the region ≃ 10-1 where PDFs do not change much with scale, and the effect of crosstalk interactions is likely to be small. We give an explicit formula for the contribution from the 2v1 graphs to the DPS cross section, and combine this with a suggestion that we made in a previous publication, that the `double perturbative splitting'/`1v1' graphs should be completely removed from the DPS cross section, to obtain a formula for the DPS cross section. It is pointed out that there are two potentially concerning features in this equation, that

  6. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  7. The boundary sources method with arbitrary order anisotropic scattering

    International Nuclear Information System (INIS)

    Gert Van den, Eynde; Beauwens, R.; Mund, E.

    2005-01-01

    The Boundary Sources Method (BSM) is an integral method for solving the one-speed neutron transport equation that makes capital out of the exact knowledge of a transport kernel for the classical geometries: planar, spherical and cylindrical. We have developed a slab (multi-region) BSM code that allows for arbitrary order anisotropic scattering. The basic ingredient of our method is the calculation of (angular moments of) infinite medium Green's functions. We have used the singular Eigen-expansion (SEE) method developed for anisotropic scattering by Mika and Case and have developed a robust and accurate method to calculate its two parts: the discrete and continuum spectrum. We use several one-dimensional neutron transport benchmarks to show its high accuracy. We have treated 3 types of problems: 2-cell (U-H 2 O) disadvantage factors, the Reed problem and an extreme scattering problem

  8. Estimation of Single-Crystal Elastic Constants of Polycrystalline Materials from Back-Scattered Grain Noise

    International Nuclear Information System (INIS)

    Haldipur, P.; Margetan, F. J.; Thompson, R. B.

    2006-01-01

    Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented

  9. Reflectance of Biological Turbid Tissues under Wide Area Illumination: Single Backward Scattering Approach

    Directory of Open Access Journals (Sweden)

    Guennadi Saiko

    2014-01-01

    Full Text Available Various scenarios of light propagation paths in turbid media (single backward scattering, multiple backward scattering, banana shape are discussed and their contributions to reflectance spectra are estimated. It has been found that a single backward or multiple forward scattering quasi-1D paths can be the major contributors to reflected spectra in wide area illumination scenario. Such a single backward scattering (SBS approximation allows developing of an analytical approach which can take into account refractive index mismatched boundary conditions and multilayer geometry and can be used for real-time spectral processing. The SBS approach can be potentially applied for the distances between the transport and reduced scattering domains. Its validation versus the Kubelka-Munk model, path integrals, and diffusion approximation of the radiation transport theory is discussed.

  10. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where

  11. Evaluation of a scattering correction method for high energy tomography

    Directory of Open Access Journals (Sweden)

    Tisseur David

    2018-01-01

    Full Text Available One of the main drawbacks of Cone Beam Computed Tomography (CBCT is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique. The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR. Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS. The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those

  12. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2016-01-15

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  13. Methods of Information Processing for Neutron Scattering Data

    Science.gov (United States)

    Nave, Patrick; Jiao, Lin; Mourigal, Martin; Stone, Matthew

    Inferring complex dispersion relations from resolution-limited neutron scattering measurements is a task which has been approached from a variety of perspectives from Monte Carlo (MC) scattering simulations to resolution function methods which convolve an approximate resolution function with a theoretical model dispersion. However, detailed MC simulations require a highly-accurate framework such as MCViNE, which is not available for all neutron scattering facilities and is also time consuming, while resolution function methods are faster yet more dependent on accurate analytical models of the instrument to construct a valid approximation. Our research investigates two methods for analyzing neutron scattering data in a more general context. The first is a numerical covariance method designed to be fast while retaining high enough accuracy to be useful and enough generality to be applicable to any time-of-flight direct geometry neutron spectrometer. The second is a theoretical method based in topological data analysis concepts. In particular, we explore the computation of invariant topological features which may be useful in algorithmically learning from large databases of scattering data and identifying resolution correlations across sets of instrument parameters.

  14. An algorithm to determine backscattering ratio and single scattering albedo

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.

    and backscattering coefficients and the remote sensing reflectance are used to obtain a relationship for the backscattering ratio, which is defined as the ratio of the total backscattering to the total scattering in terms of the remote sensing reflectance of two...

  15. π π scattering by pole extrapolation methods

    International Nuclear Information System (INIS)

    Lott, F.W. III.

    1977-01-01

    A 25-inch hydrogen bubble chamber was used at the Lawrence Berkeley Laboratory Bevatron to produce 300,000 pictures of π + p interactions at an incident momentum of the π + of 2.67 GeV/c. The 2-prong events were processed using the FSD and the FOG-CLOUDY-FAIR data reduction system. Events of the nature π + p → π + pπ 0 and π + p → π + π + n with values of momentum transfer to the proton of -t less than or equal to 0.238 GeV 2 were selected. These events were used to extrapolate to the pion pole (t = m/sub π/ 2 ) in order to investigate the π π interaction with isospins of both T = 1 and T = 2. Two methods were used to do the extrapolation: the original Chew-Low method developed in 1959 and the Durr-Pilkuhn method developed in 1965 which takes into account centrifugal barrier penetration factors. At first it seemed that, while the Durr-Pilkuhn method gave better values for the total π π cross section, the Chew-Low method gave better values for the angular distribution. Further analysis, however, showed that if the requirement of total OPE (one-pion-exchange) were dropped, then the Durr-Pilkuhn method gave more reasonable values of the angular distribution as well as for the total π π cross section

  16. Scattering theory methods for bound state problems

    International Nuclear Information System (INIS)

    Raphael, R.B.; Tobocman, W.

    1978-01-01

    For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)

  17. Inverse scattering solution for the spatially heterogeneous compliance of a single fracture

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2013-01-01

    Characterizing the spatially heterogeneous fracture compliance through use of elastic waves has the potential to illuminate the hydraulic and mechanical properties along a fracture. We formulate the inverse scattering problem to estimate the heterogeneous compliance distribution along a single

  18. Persistent Scatterer Aided Facade Lattice Extraction in Single Airborne Optical Oblique Images

    Science.gov (United States)

    Schack, L.; Soergel, U.; Heipke, C.

    2015-03-01

    We present a new method to extract patterns of regular facade structures from single optical oblique images. To overcome the missing three-dimensional information we incorporate structural information derived from Persistent Scatter (PS) point cloud data into our method. Single oblique images and PS point clouds have never been combined before and offer promising insights into the compatibility of remotely sensed data of different kinds. Even though the appearance of facades is significantly different, many characteristics of the prominent patterns can be seen in both types of data and can be transferred across the sensor domains. To justify the extraction based on regular facade patterns we show that regular facades appear rather often in typical airborne oblique imagery of urban scenes. The extraction of regular patterns is based on well established tools like cross correlation and is extended by incorporating a module for estimating a window lattice model using a genetic algorithm. Among others the results of our approach can be used to derive a deeper understanding of the emergence of Persistent Scatterers and their fusion with optical imagery. To demonstrate the applicability of the approach we present a concept for data fusion aiming at facade lattices extraction in PS and optical data.

  19. Numerical solution of the relativistic single-site scattering problem for the Coulomb and the Mathieu potential

    Science.gov (United States)

    Geilhufe, Matthias; Achilles, Steven; Köbis, Markus Arthur; Arnold, Martin; Mertig, Ingrid; Hergert, Wolfram; Ernst, Arthur

    2015-11-01

    For a reliable fully-relativistic Korringa-Kohn-Rostoker Green function method, an accurate solution of the underlying single-site scattering problem is necessary. We present an extensive discussion on numerical solutions of the related differential equations by means of standard methods for a direct solution and by means of integral equations. Our implementation is tested and exemplarily demonstrated for a spherically symmetric treatment of a Coulomb potential and for a Mathieu potential to cover the full-potential implementation. For the Coulomb potential we include an analytic discussion of the asymptotic behaviour of irregular scattering solutions close to the origin (r\\ll 1 ).

  20. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  1. Observation of Ortho-III correlations by neutron and hard x-ray scattering in an untwinned YBa2Cu3O6.77 single crystal

    DEFF Research Database (Denmark)

    Schleger, P.; Casalta, H.; Hadfield, R.

    1995-01-01

    We present measurements of Ortho-III phase correlations in an untwinned single crystal of YBa2Cu3O6.77 by neutron scattering and the novel method of hard (95 keV) X-ray scattering. The Ortho-III ordering is essentially two-dimensional, exhibiting Lorentzian peak shapes in the a-b plane. At room...

  2. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    Science.gov (United States)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  3. Phase-function method for Coulomb-distorted nuclear scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sett, G.C.; Laha, U.; Talukdar, B.

    1988-09-21

    The phase-function method is very effective in treating quantum mechanical scattering problems for short-range local potentials. We adapt the phase method to deal with Coulomb plus Graz non-local separable potentials and derive a closed-form expression for the scattering phase shift. Our approach to the problem circumvents in a rather natural way the typical difficulties of incorporating the Coulomb interaction in a nuclear phase-shift calculation. We demonstrate the usefulness of our constructed expression by means of a model calculation.

  4. Single-site Green function of the Dirac equation for full-potential electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kordt, Pascal

    2012-05-30

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  5. Fast calculation technique for scattering in T-matrix method

    International Nuclear Information System (INIS)

    Yan Shaohui; Yao Baoli

    2008-01-01

    In scattering calculations using the T-matrix method, the calculation of the T-matrix involves multiplication and inversion of matrices. These two types of matrix operations are time-consuming, especially for the matrices with large size. Petrov et al. [D. Petrov, Y. Shkuratov, G. Videen, Opt. Lett. 32 (2007) 1168] proposed an optimized matrix inversion technique, which suggests the inversion of two matrices, each of which contains half the number of rows. This technique reduces time-consumption significantly. On the basis of this approach, we propose another fast calculation technique for scattering in the T-matrix method, which obtains the scattered fields through carrying out only the operations between matrices and the incident field coefficient. Numerical results show that this technique can decrease time-consumption by more than half that of the optimized matrix inversion technique by Petrov et al

  6. Numerical methods for analyzing electromagnetic scattering

    Science.gov (United States)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide.

  7. Variational methods in electron-atom scattering theory

    CERN Document Server

    Nesbet, Robert K

    1980-01-01

    The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low­ energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...

  8. Direct sampling methods for inverse elastic scattering problems

    Science.gov (United States)

    Ji, Xia; Liu, Xiaodong; Xi, Yingxia

    2018-03-01

    We consider the inverse elastic scattering of incident plane compressional and shear waves from the knowledge of the far field patterns. Specifically, three direct sampling methods for location and shape reconstruction are proposed using the different component of the far field patterns. Only inner products are involved in the computation, thus the novel sampling methods are very simple and fast to be implemented. With the help of the factorization of the far field operator, we give a lower bound of the proposed indicator functionals for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functionals decay like the Bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functionals continuously dependent on the far field patterns, which further implies that the novel sampling methods are extremely stable with respect to data error. For the case when the observation directions are restricted into the limited aperture, we firstly introduce some data retrieval techniques to obtain those data that can not be measured directly and then use the proposed direct sampling methods for location and shape reconstructions. Finally, some numerical simulations in two dimensions are conducted with noisy data, and the results further verify the effectiveness and robustness of the proposed sampling methods, even for multiple multiscale cases and limited-aperture problems.

  9. Direct determination of scattering time delays using the R-matrix propagation method

    International Nuclear Information System (INIS)

    Walker, R.B.; Hayes, E.F.

    1989-01-01

    A direct method for determining time delays for scattering processes is developed using the R-matrix propagation method. The procedure involves the simultaneous generation of the global R matrix and its energy derivative. The necessary expressions to obtain the energy derivative of the S matrix are relatively simple and involve many of the same matrix elements required for the R-matrix propagation method. This method is applied to a simple model for a chemical reaction that displays sharp resonance features. The test results of the direct method are shown to be in excellent agreement with the traditional numerical differentiation method for scattering energies near the resonance energy. However, for sharp resonances the numerical differentiation method requires calculation of the S-matrix elements at many closely spaced energies. Since the direct method presented here involves calculations at only a single energy, one is able to generate accurate energy derivatives and time delays much more efficiently and reliably

  10. Halo-independent methods for inelastic dark matter scattering

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure

    2013-01-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo

  11. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  12. Parallel decomposition methods for the solution of electromagnetic scattering problems

    Science.gov (United States)

    Cwik, Tom

    1992-01-01

    This paper contains a overview of the methods used in decomposing solutions to scattering problems onto coarse-grained parallel processors. Initially, a short summary of relevant computer architecture is presented as background to the subsequent discussion. After the introduction of a programming model for problem decomposition, specific decompositions of finite difference time domain, finite element, and integral equation solutions to Maxwell's equations are presented. The paper concludes with an outline of possible software-assisted decomposition methods and a summary.

  13. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction.

    Science.gov (United States)

    Min, Jonghwan; Pua, Rizza; Kim, Insoo; Han, Bumsoo; Cho, Seungryong

    2015-11-01

    A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. The authors have successfully demonstrated that the proposed scanning method and image

  14. Modeling Snow Aggregates and their Single Scattering Properties: Implications to Snowfall Remote Sensing

    Science.gov (United States)

    Nowell, H.; Liu, G.

    2012-12-01

    With the advent of satellites, we can now observe areas of the globe that have sparse to no ground data coverage. Both active and passive satellite sensors aboard satellites including CloudSat's Cloud Profiling Radar (CPR), Aqua's Advanced Microwave Scanning Radiometer (AMSR-E) and the upcoming Global Precipitation Measurement's (GPM) Dual-Frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) study ice and snow particles. A good retrieval algorithm for these satellite sensors can only be developed when the single scattering properties of the snowflakes are accurately calculated in radiative transfer models. This becomes crucial at frequencies at and above the W-band when aggregate ice crystals become detectable by satellite radiometers. Snowflakes are often modeled as spheres or oblate spheroids to ease the complexity of calculations, despite the fact that they are typically aggregates of crystals. For improved accuracy in satellite remote sensing, it is important to model snowflakes as close to nature as possible. Several recent studies model flakes as pristine crystal types [Liu, 2008], generate aggregate flakes as fractals [Ishimoto, 2008] or via the Monte Carlo method [Maruyama and Fujioshi, 2005]. Modeling snowflakes as pristine crystals, however, has the drawback of not accurately reflecting snowflakes as most tend to be aggregates of different crystal types. Other studies where aggregates are generated tend to overlook size-density relationships of aggregate flakes or other studied statistical parameters such as aspect ratio. In an effort to improve available single-scattering properties of aggregate flakes, we developed a new method of generating flakes. Starting out with a six-bullet rosette crystal of accurate size and density, aggregate flakes are generated with two different bullet rosette crystal sizes of 200 and/or 400 microns in maximum dimension. The flakes similarly follow size-density relationships of aggregate as determined from

  15. Absorption line profiles in a moving atmosphere - A single scattering linear perturbation theory

    Science.gov (United States)

    Hays, P. B.; Abreu, V. J.

    1989-01-01

    An integral equation is derived which linearly relates Doppler perturbations in the spectrum of atmospheric absorption features to the wind system which creates them. The perturbation theory is developed using a single scattering model, which is validated against a multiple scattering calculation. The nature and basic properties of the kernels in the integral equation are examined. It is concluded that the kernels are well behaved and that wind velocity profiles can be recovered using standard inversion techniques.

  16. Methods of contrast variation by nuclear polarisation in small-angle neutron scattering: Observation of domains of nuclear polarisation by neutron scattering

    International Nuclear Information System (INIS)

    Leymarie, E.

    2002-11-01

    In this thesis we study the theoretical and experimental aspects of Contrast Variation by Nuclear Polarization (CVNP) applied to small-angle neutron scattering. The basics of neutron scattering theory is developed by highlighting the origin of the CVNP method: the strong spin dependence of thermal neutron scattering, especially on protons. We also present the principles of NMR with a special attention on the method of dynamic nuclear polarization by the solid effect which makes it possible to control the proton polarization and therefore the contrast for neutron scattering. We present a theoretical study of the CVNP method called static which supposes that the nuclear polarization is homogeneous in the sample and constant during the experiment. We show that it allows one to obtain partial structure functions of systems with multiple components, by carrying out several acquisitions with different polarizations on a single sample. For this purpose, we tested a simple device to stabilize the nuclear polarization. We describe finally a new application of the CVNP method called dynamic. In a solution of deuterated glycerol-water containing a small concentration of paramagnetic centres, we showed the existence of domains of polarized protons at the onset of dynamic polarization. This reinforces considerably the coherent scattering of paramagnetic centres. We describe the theoretical reasons explaining the appearance of these domains of polarization, as well as the various techniques used to observe them by neutron scattering. (author)

  17. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects

    International Nuclear Information System (INIS)

    Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute

    2015-01-01

    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe 2 resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects

  18. A general framework and review of scatter correction methods in cone beam CT. Part 2: Scatter estimation approaches

    International Nuclear Information System (INIS)

    Ruehrnschopf and, Ernst-Peter; Klingenbeck, Klaus

    2011-01-01

    The main components of scatter correction procedures are scatter estimation and a scatter compensation algorithm. This paper completes a previous paper where a general framework for scatter compensation was presented under the prerequisite that a scatter estimation method is already available. In the current paper, the authors give a systematic review of the variety of scatter estimation approaches. Scatter estimation methods are based on measurements, mathematical-physical models, or combinations of both. For completeness they present an overview of measurement-based methods, but the main topic is the theoretically more demanding models, as analytical, Monte-Carlo, and hybrid models. Further classifications are 3D image-based and 2D projection-based approaches. The authors present a system-theoretic framework, which allows to proceed top-down from a general 3D formulation, by successive approximations, to efficient 2D approaches. A widely useful method is the beam-scatter-kernel superposition approach. Together with the review of standard methods, the authors discuss their limitations and how to take into account the issues of object dependency, spatial variance, deformation of scatter kernels, external and internal absorbers. Open questions for further investigations are indicated. Finally, the authors refer on some special issues and applications, such as bow-tie filter, offset detector, truncated data, and dual-source CT.

  19. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    Science.gov (United States)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  20. Single particle analysis with a 360/sup 0/ light scattering photometer

    Energy Technology Data Exchange (ETDEWEB)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 ..mu..m and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360/sup 0/ light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5/sup 0/ to 177.5/sup 0/ at phi = 0/sup 0/ and 180/sup 0/ is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3/sup 0/ in scattering angle on 6/sup 0/ centers around 360/sup 0/. 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells.

  1. Canonical transformations method in the potential scattering problem

    International Nuclear Information System (INIS)

    Pavlenko, Yu.G.

    1984-01-01

    Canonical formalism of the first order is used in the present paper to solve the problem of scattering and other problems of quantum mechanics. The theory of canonical transformations (CT) being the basis of hamiltonian approach permits to develop several methods of integration being beyond the scope of the standard theory of perturbations. In this case it is essential for numerical counting that the theory permits to obtain algorithm for plotting highest approximations

  2. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  3. Quantum method of the inverse scattering problem. Pt. 1

    International Nuclear Information System (INIS)

    Sklyamin, E.K.; Takhtadzhyan, L.A.; Faddeev, L.D.

    1978-12-01

    In this work the authors use a formulation for the method of the inverse scattering problem for quantum-mechanical models of the field theory, that can be found in a quantization of these fully integrable systems. As the most important example serves the system (sinγ) 2 with the movement equation: γtt -γxx + m 2 /β sinβγ = 0 that is known under the specification Sine-Gordon-equation. (orig.) [de

  4. Electromagnetic sunscreen model: implementation and comparison between several methods: step-film model, differential method, Mie scattering, and scattering by a set of parallel cylinders.

    Science.gov (United States)

    Lécureux, Marie; Enoch, Stefan; Deumié, Carole; Tayeb, Gérard

    2014-10-01

    Sunscreens protect from UV radiation, a carcinogen also responsible for sunburns and age-associated dryness. In order to anticipate the transmission of light through UV protection containing scattering particles, we implement electromagnetic models, using numerical methods for solving Maxwell's equations. After having our models validated, we compare several calculation methods: differential method, scattering by a set of parallel cylinders, or Mie scattering. The field of application and benefits of each method are studied and examples using the appropriate method are described.

  5. Modifications Of Discrete Ordinate Method For Computations With High Scattering Anisotropy: Comparative Analysis

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2012-01-01

    A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.

  6. Diffuse neutron scattering from an in situ grown α-AgI single crystal

    International Nuclear Information System (INIS)

    Keen, D.A.; Nield, V.M.; McGreevy, R.L.

    1994-01-01

    A large single crystal of α-AgI was grown in situ from the melt on the SXD single-crystal neutron time-of-flight Laue diffractometer using a specially designed furnace. A wide range of reciprocal space was accessed with minimal rotation of the arbitrarily aligned sample. Weak rings of diffuse scattering were observed together with strong scattering around some Bragg peaks. The results are discussed with reference to earlier powder diffraction data and indicate significant correlations between the motion of the silver ions and the vibrations of the iodide ions. (orig.)

  7. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  8. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  9. Comparison of scatter doses from a multislice and a single slice CT scanner

    International Nuclear Information System (INIS)

    Burrage, J. W.; Causer, D. A.

    2006-01-01

    During shielding calculations for a new multislice CT (MSCT) scanner it was found that the manufacturer's data indicated significantly higher external scatter doses than would be generated for a single slice CT (SSCT). Even allowing for increased beam width, the manufacturer's data indicated that the scatter dose per scan was higher by a factor of about 3 to 4. The magnitude of the discrepancy was contrary to expectations and also contrary to a statement by the UK ImPACT group, which indicated that when beam width is taken into account, the scatter doses should be similar. The matter was investigated by comparing scatter doses from an SSCT and an MSCT. Scatter measurements were performed at three points using a standard perspex CTDI phantom, and CT dose indices were also measured to compare scanner output. MSCT measurements were performed with a 40 mm wide beam, SSCT measurements with a 10 mm wide beam. A film badge survey was also performed after the installation of the MSCT scanner to assess the adequacy of lead shielding in the room. It was found that the scatter doses from the MSCT were lower than indicated by the manufacturer's data. MSCT scatter doses were approximately 4 times higher than those from the SSCT, consistent with expectations due to beam width differences. The CT dose indices were similar, and the film badge survey indicated that the existing shielding, which had been adequate for the SSCT, was also adequate for the MSCT

  10. Development of new methods for studying nanostructures using neutron scattering

    International Nuclear Information System (INIS)

    Pynn, Roger

    2016-01-01

    The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons' ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron's magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation's technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.

  11. Development of new methods for studying nanostructures using neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger [Indiana Univ., Bloomington, IN (United States)

    2016-03-18

    The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons’ ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron’s magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation’s technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.

  12. Scattering of surface waves modelled by the integral equation method

    Science.gov (United States)

    Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng

    2008-09-01

    The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.

  13. Mimicking multichannel scattering with single-channel approaches

    Science.gov (United States)

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2010-02-01

    The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold Li6 and Rb87 atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.

  14. Mimicking multichannel scattering with single-channel approaches

    International Nuclear Information System (INIS)

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2010-01-01

    The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6 Li and 87 Rb atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.

  15. A Hilbert–Huang transform method for scattering identification in LIGO

    Science.gov (United States)

    Valdes, Guillermo; O’Reilly, Brian; Diaz, Mario

    2017-12-01

    Noise produced by light being scattered from objects limited the sensitivity of the laser interferometer gravitational-wave observatory (LIGO) during the observation period O1. This scattering noise followed a defined model relative to the object’s motion from which light is being scattered. A method based on the Hilbert–Huang transform was developed to identify the scattering surfaces. In this document, we present the efficiency of our method identifying scattering objects in LIGO.

  16. Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography.

    Science.gov (United States)

    Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo

    2011-04-11

    We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America

  17. Retrieval method of aerosol extinction coefficient profile based on backscattering, side-scattering and Raman-scattering lidar

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Tao, Zongming; Wang, Shenhao; Ma, Xiaomin; Zhou, Pucheng; Yao, Ling; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. It is difficult to get higher signal to noise ratio (SNR) of backscattering lidar from the ground to the tropopause especially in near range. Higher SNR problem can be solved by combining side-scattering and backscattering lidar. Using Raman-scattering lidar, aerosol extinction to backscatter ratio (lidar ratio) can be got. Based on side-scattering, backscattering and Raman-scattering lidar system, aerosol extinction coefficient is retrieved precisely from the earth's surface to the tropopause. Case studies show this method is reasonable and feasible.

  18. Time relative single-photon (photoelectron) method

    International Nuclear Information System (INIS)

    Luo Binqiao

    1988-01-01

    A single-photon (photoelectron) measuring system is designed. It researches various problems in single-photon (photoelectron) method. The electronic resolving time is less than 25 ps. The resolving time of single-photon (photoelectron) measuring system is 25 to 65 ps

  19. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  20. Comparison of the auxiliary function method and the discrete-ordinate method for solving the radiative transfer equation for light scattering.

    Science.gov (United States)

    da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques

    2003-12-01

    Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.

  1. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.

    Science.gov (United States)

    Truong, Phuoc Long; Ma, Xingyi; Sim, Sang Jun

    2014-02-21

    Scientific interest in nanotechnology is driven by the unique and novel properties of nanometer-sized metallic materials such as the strong interaction between the conductive electrons of the nanoparticles and the incident light, caused by localized surface plasmon resonances (LSPRs). In this article, we analysed the relationship of the Rayleigh scattering properties of a single Au nanoparticle with its size, shape, and local dielectric environment. We also provided a detailed study on the refractive index sensitivity of three types of differently shaped Au nanoparticles, which were nanospheres, oval-shaped nanoparticles and nanorods. This study helps one to differentiate the Rayleigh light scattering from individual nanoparticles of different sizes and/or shapes and precisely obtain quantitative data as well as the correlated optical spectra of single gold nanoparticles from the inherently inhomogeneous solution of nanoparticles. These results suggest that the shape, size and aspect ratio of Au nanoparticles are important structural factors in determining the resonant Rayleigh light scattering properties of a single Au nanoparticle such as its spectral peak position, scattering-cross-section and refractive index sensitivity, which gives a handle for the choice of gold nanoparticles for the design and fabrication of single nanosensors.

  2. Lattice and Molecular Vibrations in Single Crystal I2 at 77 K by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Smith, H. G.; Nielsen, Mourits; Clark, C. B.

    1975-01-01

    Phonon dispersion curves of single crystal iodine at 77 K have been measured by one-phonon coherent inelastic neutron scattering techniques. The data are analysed in terms of two Buckingham-six intermolecular potentials; one to represent the shortest intermolecular interaction (3.5 Å) and the other...

  3. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  4. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    Science.gov (United States)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  5. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  6. Ultra-small-angle x-ray scattering by single-crystal Al deformed in situ

    Science.gov (United States)

    Long, Gabrielle; Levine, Lyle

    1997-03-01

    Among the earliest small-angle x-ray scattering and small-angle neutron scattering experiments were attempts to study dislocation structures. These structures have proven to be very difficult to measure because of the intrinsically low contrast of the microstructure, and the requirement that multiple Bragg diffraction be strictly avoided. Thus, many attempts to measure dislocation structures have been compromised by these difficulties. We present results from ultra-small-angle x-ray scattering measurements on single-crystal Al, deformed in situ on beam line X23A3 at the National Synchrotron Light Source. Radiographic images, which are in the O-beam position for diffraction, were taken of the scattering volume. The Al crystal was also rotated to ensure that the scattering data would be accumulated in a region sufficiently distant from accidental Bragg diffractions. Stress-strain data were obtained simultaneously with the x-ray scattering data. We report on the evolution of dislocation structures from 0% strain to 18% strain.

  7. Analytical Method and Semianalytical Method for Analysis of Scattering by Anisotropic Sphere: A Review

    Directory of Open Access Journals (Sweden)

    Chao Wan

    2012-01-01

    Full Text Available The history of methods for the electromagnetic scattering by an anisotropic sphere has been reviewed. Two main methods, angular expansion method and T-matrix method, which are widely used for the anisotropic sphere, are expressed in Cartesian coordinate firstly. The comparison of those and the further exploration on the scattering field are illustrated afterwards. Based on the most general form concluded by variable separation method, the coupled electric field and magnetic field of radial anisotropic sphere can be derived. By simplifying the condition, simpler case of uniaxial anisotropic media is expressed with confirmed coefficients for the internal and external field. Details of significant phenomenon are presented.

  8. Azimuthal and single spin asymmetry in deep-inelasticlepton-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zuo-tang; Wang, Xin-Nian

    2006-09-21

    The collinear expansion technique is generalized to thefactorization of unintegrated parton distributions and other higher twistparton correlations from the corresponding collinear hard parts thatinvolve multiple parton final state interaction. Such a generalizedfactorization provides a consistent approach to the calculation ofinclusive and semi-inclusive cross sections of deep-inelasticlepton-nucleon scattering. As an example, the azimuthal asymmetry iscalculated to the order of 1/Q in semi-inclusive deeply inelasticlepton-nucleon scattering with transversely polarized target. Anon-vanishing single-spin asymmetry in the "triggered inclusive process"is predicted to be 1/Q suppressed with a part of the coefficient relatedto a moment of the Sivers function.

  9. Nonlinear Spectral Signatures and Spatiotemporal Behavior of Stimulated Raman Scattering from Single Laser Speckles

    International Nuclear Information System (INIS)

    Vu, H.X.; Yin, L.; DuBois, D.F.; Bezzerides, B.; Dodd, E.S.

    2005-01-01

    Simulations are reported of the Thomson scatter spectrum of electrostatic waves (ESWs) excited in single laser hot spots by backward stimulated Raman scattering (BSRS). Under conditions similar those in the recent experiments of Kline et al. [Phys. Rev. Lett. 94, 175003 (2005)], a spectral streak, resulting from the trapping-induced frequency shift of the ESW, is found for high wave-number ESWs, similar to the observations. This shift and parametric frequency matching lead to isolated BSRS pulses. Modes with acoustic dispersion, resulting from the trapping-modified electron velocity distribution, can enhance the frequency range of the streak

  10. Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region

    Science.gov (United States)

    Son, Taehwang; Kim, Donghyun

    2015-03-01

    We present a theoretical approach to single nanoparticle detection using surface plasmon scattering microscopy. Through rigorous coupled wave analysis assuming light incidence on a gold coated BK7 glass substrate under total internal reflection condition for a 200-nm polystyrene as targets attached to the gold film, it was found that surface plasmon polariton induced by incident light on the gold thin film is perturbed. As a result, parabolic waves were observed in the reflection plane. By varying angles of incidence and wavelengths, optimum incident conditions for surface plasmon scattering microscopy were obtained.

  11. [Principle and application of scattering power function method in X-ray fluorescence analysis. III. Continuous scattering radiation].

    Science.gov (United States)

    Bao, S; Wang, Z; Rong, L

    1999-04-01

    The study in this paper shows that the relationship between mass attenuation coefficient and continuous scattering radiation at wavelength 0.081 nm is not an inverse proportion supposed as the scattering internal standard method but a power function in a wide range of matix composition. Experimental results are in good agreement with that of theoretical prediction. A new method is recommended for matrix absorption correction using the 1.22 power function of continuous scattering radiation at wavelength 0.081 nm and used for microelement Sr determination in geological samples as an application example. The accuracy of the results by this method is nearly 4 times better than that from the traditional scattering internal method in a wide range of matrix composition.

  12. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  13. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    Directory of Open Access Journals (Sweden)

    Y. Sakai

    2017-06-01

    Full Text Available Inverse Compton scattering (ICS is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K-edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  14. Imaging through scattering media by Fourier filtering and single-pixel detection

    Science.gov (United States)

    Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.

  15. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  16. Small-angle neutron-scattering studies on oriented single-crystal superalloys

    Science.gov (United States)

    Gilles, R.; Mukherji, D.; Strunz, P.; Wiedenmann, A.; Wahi, R. P.

    A single-crystal nickel-base superalloy SC16, recently developed for blade applications in land-based gas turbines, was investigated using the SANS instrument (V4) at the BERII reactor in HMI Berlin. The two-dimensional scattering patterns were measured as a function of the crystallographic orientation and analysed by comparing with iso-intensity profiles simulated on the base of a microstructural model of the SC16. Sizes, interparticle distances, volume fraction and morphology of precipitates were determined. Depending on the heat treatment conditions different scattering patterns were observed corresponding to different morphologies of γ‧ precipitates. Additionally some samples showed streaks in the two-dimensional scattering patterns, indicating the presence of precipitates other than γ‧. This was also confirmed by TEM, SEM and X-ray diffraction studies.

  17. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Directory of Open Access Journals (Sweden)

    J. Pokorný

    2015-06-01

    Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  18. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  19. Microwave single-scattering properties of randomly oriented soft-ice hydrometeors

    Directory of Open Access Journals (Sweden)

    D. Casella

    2008-11-01

    Full Text Available Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters.

    In this study, we use the discrete dipole approximation (DDA to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a effective-medium equivalent spheres, b solid-ice equivalent spheres, and c randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders.

  20. Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis

    Directory of Open Access Journals (Sweden)

    M. Collaud Coen

    2004-01-01

    Full Text Available Scattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580ma.s.l.. From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo usually increases with wavelength, it decreases with wavelength during Saharan dust events (SDE due to the greater size of the mineral aerosol particles and their different chemical composition. This change in the sign of the single scattering exponent turns out to be a sensitive means for detecting Saharan dust events. The occurrence of SDE detected by this new method was confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22-month period shows that SDE are more frequent during the March-June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5h, with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48-h total suspended particulate matter (TSP concentration at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the Jungfraujoch is 16µg/m3, which corresponds to an annual mean of 0.8µg/m3 or 24% of TSP.

  1. Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering.

    Science.gov (United States)

    Huang, Bin; Yan, Shuai; Xiao, Lin; Ji, Rong; Yang, Liuyan; Miao, Ai-Jun; Wang, Ping

    2018-03-01

    Imaging and quantification of nanoparticles in single cells in their most natural condition are expected to facilitate the biotechnological applications of nanoparticles and allow for better assessment of their biosafety risks. However, current imaging modalities either require tedious sample preparation or only apply to nanoparticles with specific physicochemical characteristics. Here, the emerging hyperspectral stimulated Raman scattering (SRS) microscopy, as a label-free and nondestructive imaging method, is used for the first time to investigate the subcellular distribution of nanoparticles in the protozoan Tetrahymena thermophila. The two frequently studied nanoparticles, polyacrylate-coated α-Fe 2 O 3 and TiO 2 , are found to have different subcellular distribution pattern as a result of their dissimilar uptake routes. Significant uptake competition between these two types of nanoparticles is further discovered, which should be paid attention to in future bioapplications of nanoparticles. Overall, this study illustrates the great promise of hyperspectral SRS as an analytical imaging tool in nanobiotechnology and nanotoxicology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A critical comparison of electron scattering cross sections measured by single collision and swarm techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, S.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Brunger, M.J. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences

    1996-07-01

    Electron scattering cross sections (elastic, rotational and vibrational excitation) for a number of atomic and (relatively) single molecular systems are examined. Particular reference is made to the level of agreement which is obtained from the application of the completely different measurement philosophies embodied in `beam` and `swarm` techniques. The range of energies considered is generally restricted to the region below 5 eV. 142 refs., 1 tab., 12 figs.

  3. Small angle neutron scattering study of isolated single wall carbon nano tubes in water

    International Nuclear Information System (INIS)

    Doe, Chang-Woo; Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    As an effort to provide more practical approaches to a wide range of potential applications of carbon nano tubes, we report a new type of noncovalently functionalized isolated single-walled carbon nano tube(SWNT) which is easily dispersible in water by only ten minutes of mild vortex mixing. The structure and quality of dispersion have been investigated using small angle neutron scattering (SANS) technique

  4. An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering.

    Science.gov (United States)

    Xiao, Yongchuan; Guo, Jing; Wu, Kui; Qu, Pengfei; Qi, Huajuan; Liu, Caixia; Ruan, Shengping; Chen, Weiyou; Dong, Wei

    2013-02-11

    A single passband microwave photonic filter with ultrawide tunable range based on stimulated Brillouin scattering is theoretically analyzed. Combining the gain and loss spectrums, tuning range with 44GHz is obtained without crosstalk by introducing two pumps. Adding more pumps, Tuning range multiplying with the multiplication factor equaling to the total quantity of pump can be achieved, which has potential application in microwave and millimeter wave wireless communication systems.

  5. A critical comparison of electron scattering cross sections measured by single collision and swarm techniques

    International Nuclear Information System (INIS)

    Buckman, S.J.; Brunger, M.J.

    1996-07-01

    Electron scattering cross sections (elastic, rotational and vibrational excitation) for a number of atomic and (relatively) single molecular systems are examined. Particular reference is made to the level of agreement which is obtained from the application of the completely different measurement philosophies embodied in 'beam' and 'swarm' techniques. The range of energies considered is generally restricted to the region below 5 eV. 142 refs., 1 tab., 12 figs

  6. Seasonal Variability of Aerosol Single Scattering Albedo at Biomass Burning Sites in Southern Africa and Amazonia

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Mukelabai, M. M.; Dubovik, O.; Smirnov, A.; Schafer, J. S.; Slutsker, I.

    2002-05-01

    Monitoring of the optical properties of primarily biomass burning aerosols in Mongu, Zambia was initiated in 1995, when an AERONET sun/sky radiometer site was established at the Mongu airport. For the biomass burning season months (July-November), we present monthly means of aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals utilizing the algorithm of Dubovik and King (2000). The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from July (0.845) to October (0.93). The slope of the spectral dependence of aerosol single scattering albedo with wavelength decreased as SSA increased from July to October. However, there was no significant change in particle size in either the dominant accumulation or secondary coarse modes during these months. Similarly, seasonal SSA retrievals for Etosha Pan, Namibia also show increasing values through the burning season in 2000. We also analyze the seasonality of SSA for sites in biomass burning regions of Amazonia. We show maps of satellite detected fire counts which indicate that the regions of primary biomass burning shift significantly from July to October. Possible reasons for the seasonal changes in observed SSA include differences in aging to due transport speed and distance from source regions, differences in biomass fuel types in different regions (fraction of woody biomass versus grasses), and differences in fuel moisture content (October is the beginning of the rainy season on both continents).

  7. Pitch-angle scattering driven by a single wave in Tokamak plasma

    International Nuclear Information System (INIS)

    Qiu Yunqing; Xia Mengfen

    1988-01-01

    The interaction of particles with a single wave in a Tokamak plasma is investigated. It is pointed out that the stochastic pitch-angle scattering across the trapped/passing boundary may be driven by a single wave. The characteristics of such separatrix crossings are discussed. It is also found that the wave-driven separatrix crossings are accompanied by a radial flow of particles, which is composed of a directional flow and a diffusional flow. The resultant pitch-angle and radial fluxes are calculated. (author)

  8. FROM THE ISR TO RHIC - MEASUREMENTS OF HARD-SCATTERING AND JETS USING INCLUSIVE SINGLE PARTICLE PRODUCTION AND 2-PARTICLE CORRELATIONS

    International Nuclear Information System (INIS)

    TANNENBAUM, M.J.

    2005-01-01

    Hard scattering in p-p collisions, discovered at the CERN ISR in 1972 by the method of leading particles, proved that the partons of Deeply Inelastic Scattering strongly interacted with each other. Further ISR measurements utilizing inclusive single or pairs of hadrons established that high p T particles are produced from states with two roughly back-to-back jets which are the result of scattering of constituents of the nucleons as described by Quantum Chromodynamics (QCD), which was developed during the course of these measurements. These techniques, which are the only practical method to study hard-scattering and jet phenomena in Au+Au central collisions at RHIC energies, are reviewed, as an introduction to present RHIC measurements

  9. A method of precise profile analysis of diffuse scattering for the KENS pulsed neutrons

    International Nuclear Information System (INIS)

    Todate, Y.; Fukumura, T.; Fukazawa, H.

    2001-01-01

    An outline of our profile analysis method, which is now of practical use for the asymmetric KENS pulsed thermal neutrons, are presented. The analysis of the diffuse scattering from a single crystal of D 2 O is shown as an example. The pulse shape function is based on the Ikeda-Carpenter function adjusted for the KENS neutron pulses. The convoluted intensity is calculated by a Monte-Carlo method and the precision of the calculation is controlled. Fitting parameters in the model cross section can be determined by the built-in nonlinear least square fitting procedure. Because this method is the natural extension of the procedure conventionally used for the triple-axis data, it is easy to apply with generality and versatility. Most importantly, furthermore, this method has capability of precise correction of the time shift of the observed peak position which is inevitably caused in the case of highly asymmetric pulses and broad scattering function. It will be pointed out that the accurate determination of true time-of-flight is important especially in the single crystal inelastic experiments. (author)

  10. Practical methods to define scattering coefficients in a room acoustics computer model

    DEFF Research Database (Denmark)

    Zeng, Xiangyang; Christensen, Claus Lynge; Rindel, Jens Holger

    2006-01-01

    of obtaining the data becomes quite time consuming thus increasing the cost of design. In this paper, practical methods to define scattering coefficients, which is based on an approach of modeling surface scattering and scattering caused by limited size of surface as well as edge diffraction are presented...

  11. Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal

    Science.gov (United States)

    Johns, Maureen; Liu, Hanli

    2003-07-01

    When light interacts with tissue, it can be absorbed, scattered or reflected. Such quantitative information can be used to characterize the optical properties of tissue, differentiate tissue types in vivo, and identify normal versus diseased tissue. The purpose of this research is to develop an algorithm that determines the reduced scattering coefficient (μs") of tissues from a single optical reflectance spectrum with a small source-detector separation. The basic relationship between μs" and optical reflectance was developed using Monte Carlo simulations. This produced an analytical equation containing μs" as a function of reflectance. To experimentally validate this relationship, a 1.3-mm diameter fiber optic probe containing two 400-micron diameter fibers was used to deliver light to and collect light from Intralipid solutions of various concentrations. Simultaneous measurements from optical reflectance and an ISS oximeter were performed to validate the calculated μs" values determined by the reflectance measurement against the 'gold standard" ISS readings. The calculated μs" values deviate from the expected values by approximately -/+ 5% with Intralipid concentrations between 0.5 - 2.5%. The scattering properties within this concentration range are similar to those of in vivo tissues. Additional calculations are performed to determine the scattering properties of rat brain tissues and to discuss accuracy of the algorithm for measured samples with a broad range of the absorption coefficient (μa).

  12. [Principle and application of scattering power function method in X-ray fluorescence analysis. II. Incoherent scattering radiation].

    Science.gov (United States)

    Bao, S

    1999-02-01

    It was discovered that the relationship between mass attenuation coefficient and incoherent scattering is not an inverse proportion but a power function in a wide range of matrix compositon. Experimental results are in good agreement with this theoretical predition. A new method is recommended for matrix absorption correction according to the discovery and used for the determination of microelement Sr in geological samples as an application example. The accuracy of the results of heavy absorption samples obtained by this method is much better than those obtained by the traditional scattering internal method.

  13. New method for imaging epicardial motion with scattered radiation

    International Nuclear Information System (INIS)

    Tilley, D.G.

    1976-01-01

    A new method for monitoring cardiac motion is described which employs the secondary radiation emerging from the thorax during fluoroscopic x-ray examination of the heart. The motion of selected points on the heart's epicardial surface can be investigated by detecting the intensity variations of radiation scattered in the local vicinity of the heart-lung border. Also discussed are the radiation detectors and signal processing electronics used to produce a voltage analog depicting the periodic displacements of the heart surface. Digital data processing methods are described which are used to accomplish a transformation from a time scale for representing surface motion, to a frequency scale that is better suited for the quantitative analysis of the heart's myocardial dynamics. The dynamic radiographic technique is compared to other methods such as electrocardiography, phonocardiography, radarkymography, and echocardiography; which are also used to sense the dynamic state of the heart. A three-dimensional Monte Carlo computer code is used to investigate the transport of x-radiation in the canine thorax. The Monte Carlo computer studies are used to explore the capabilities and limitations of the dynamic radiograph as it is used to sense motions of the canine heart. Animal studies were conducted with the dynamic radiograph to determine the reproducibility of the examination procedure. Canine case studies are reported showing the effects of increased myocardial contractility resulting from intervention with these inotropic agents

  14. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    International Nuclear Information System (INIS)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo; Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro; Kato, Rikio

    2005-01-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99m Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I AC μb with Chang's attenuation correction factor. The scatter component image is estimated by convolving I AC μb with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99m Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  15. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  16. The effect of scattering on single photon transmission of optical angular momentum

    International Nuclear Information System (INIS)

    Andrews, D L

    2011-01-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle

  17. The effect of scattering on single photon transmission of optical angular momentum

    Science.gov (United States)

    Andrews, D. L.

    2011-06-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.

  18. Robust organelle size extractions from elastic scattering measurements of single cells (Conference Presentation)

    Science.gov (United States)

    Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.

    2016-04-01

    The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.

  19. Unitarity methods and on-shell particles in scattering amplitudes

    NARCIS (Netherlands)

    Rietkerk, R.J.

    2016-01-01

    The Standard Model of particle physics describes all known elementary particles and their interactions. Important tests of this theory are performed with high-energy particle scattering experiments, for instance at the Large Hadron Collider. Such scattering processes are impressively well described

  20. A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Lee, Seo Il

    2000-01-01

    Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated

  1. Methods and apparatus for transparent display using scattering nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  2. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  3. The finite-element method for multigroup neutron transport: anisotropic scattering in 1-D slab geometry

    International Nuclear Information System (INIS)

    Riyait, N.S.; Ackroyd, R.T.

    1987-01-01

    Proof-tests on 1-D multigroup neutron transport problems are reported for strong anisotropic scattering. These tests have been undertaken as part of the validation of the 3-D multigroup finite-element transport code FELTRAN for anisotropic scattering media. To illustrate the treatment of within-group and intergroup anisotropic scattering in the finite-element method the relevant theory is outlined. Ingroup scattering is checked using the backward-forward-isotropic (BFI) scattering law for source and eigenvalue problems. With this law anisotropic scattering problems can be transformed into equivalent isotropic scattering problems. In this way the well-validated isotropic scattering version of FELTRAN is used to validate the anisotropic version. Intergroup scattering effects are checked by solving few-group source problems for P 1 and P 3 scattering and the BFI scattering law. For P 1 and P 3 scattering checks are made with the discrete-ordinate finite-difference code ANISN and the spherical harmonics finite-difference code MARC/PN. For the BFI scattering law comparison is made with two-group exact solutions of Williams (1985) for 1-D systems. (author)

  4. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  5. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography

    International Nuclear Information System (INIS)

    Kamphuis, C.; Beekman, F.J.; Van Rijk, P.P.; Viergever, M.A.

    1998-01-01

    Three-dimensional (3D) iterative maximum likelihood expectation maximization (ML-EM) algorithms for single-photon emission tomography (SPET) are capable of correcting image-degrading effects of non-uniform attenuation, distance-dependent camera response and patient shape-dependent scatter. However, the resulting improvements in quantitation, resolution and signal-to-noise ratio (SNR) are obtained at the cost of a huge computational burden. This paper presents a new acceleration method for ML-EM: dual matrix ordered subsets (DM-OS). DM-OS combines two acceleration methods: (a) different matrices for projection and back-projection and (b) ordered subsets of projections. DM-OS was compared with ML-EM on simulated data and on physical thorax phantom data, for both 180 and 360 orbits. Contrast, normalized standard deviation and mean squared error were calculated for the digital phantom experiment. DM-OS resulted in similar image quality to ML-EM, even for speed-up factors of 200 compared to ML-EM in the case of 120 projections. The thorax phantom data could be reconstructed 50 times faster (60 projections) using DM-OS with preservation of image quality. ML-EM and DM-OS with scatter compensation showed significant improvement of SNR compared to ML-EM without scatter compensation. Furthermore, inclusion of complex image formation models in the computer code is simplified in the case of DM-OS. It is thus shown that DM-OS is a fast and relatively simple algorithm for 3D iterative scatter compensation, with similar results to conventional ML-EM, for both 180 and 360 acquired data. (orig.)

  6. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    Science.gov (United States)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  7. Aerosol single-scattering albedo retrieval over North Africa using critical reflectance

    Science.gov (United States)

    Wells, Kelley C.

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate top-of-atmosphere (TOA) reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol are similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from Moderate Resolution Spectroradiometer (MODIS) Level 1B reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the Santa Barbara DISORT Radiative Transfer (SBDART) model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as to measurements of the TOA albedo and surface fluxes from the

  8. Measurement of fluorophore concentration in scattering media by a single optical fiber

    Science.gov (United States)

    Stepp, Herbert; Beck, Tobias; Beyer, Wolfgang; Pfaller, Christian; Sroka, Ronald; Baumgartner, Reinhold

    2006-02-01

    Motivation: Photodynamic Therapy (PDT) with interstitial light delivery by multiple fibers for the treatment of large tissue volumes requires measurement of sensitizer distribution for dosimetric considerations. For stereotactic interstitial PDT of malignant glioma, for instance, a pre-irradiation comparison of the contrast enhancing tissue volume in MR-imaging with the photosensitized volume as assessed by fluorescence detection is desirable. For PDT of prostate cancer, the quantitative measurement of the selectivity of sensitizer uptake in cancer versus normal prostate parenchyma is important. Methods: It has previously been shown by others that the fluorescence intensity measured by a thin single optical fiber for excitation and detection is largely independent on optical parameters of the tissue that contains the fluorochrome. However, the investigators assumed similar values for excitation and emission wavelengths. This study concerned liquid phantom measurements (absorber: ink or hemoglobin, fluorochrome: Na-fluorescein) and Monte Carlo calculations, with extended conditions, where the absorption differs by a factor of 10 between excitation (426 nm) and emission (530 nm) wavelengths. The absorption coefficient (μ a') was varied between 0.01 - 0.3 mm-1 (@ 426 nm), the effective scattering coefficient (μ s') between 0.6 - 2.5 mm-1. A 200 μm and a 1000 μm core fiber were used. Results: Fluorescence intensity measured at 530 nm via a thin optical fiber (core diameter small compared to light penetration depth) depends minimally on optical tissue parameters. This result is valid for ink as absorber (μa identical at excitation and emission) as well as for hemoglobin (μa different). Fluorochrome concentration measurements seem possible with a 200 μm core fiber, but not with the 1000 μm core fiber.

  9. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  10. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  11. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  12. Effect of multiple scattering on lidar measurements

    International Nuclear Information System (INIS)

    Cohen, A.

    1977-01-01

    The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed

  13. Seasonal Trend of Aerosol Single Scattering Albedo at Biomass Burning Sites in Southern Africa

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Ward, D.; Mukelabai, M. M.; Piketh, S.; Hyer, E. J.; Dubovik, O.; Sinyuk, A.; Schafer, J. S.; Giles, D. M.; Smirnov, A.; Slutsker, I.

    2011-12-01

    A database of the optical properties of primarily biomass burning aerosols in Mongu, Zambia from multi-year monitoring at an AERONET sun-sky radiometer site was examined. For the biomass burning season months (July-November), we investigate the aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals utilizing the algorithm of Dubovik and King (2000). The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from ~0.84 in July to ~0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Angstrom Exponent (440-870 nm; r2=0.02). A significant downward seasonal trend in imaginary refractive index (r2=0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, seasonal SSA retrievals for both the Etosha Pan, Namibia and Skukuza, South Africa AERONET sites also show increasing single scattering albedo values through the burning season. We show maps of satellite detected fire counts, which indicate that the regions of primary biomass burning in southern Africa shift significantly from July to October. Possible reasons for the seasonal changes in observed SSA include differences in biomass fuel types in different regions and seasons (fraction of woody biomass versus grasses), agricultural practices (Chitemene: in which woody fuels are burned at the end of the dry season), differences in fuel moisture content (as mid-October is the typical beginning of the rainy season) and differences in aging due to transport speed and distance from varying source regions. We also analyze the seasonality of SSA for sites in biomass burning regions of southern Amazonia, where no significant seasonal trend in SSA was detected.

  14. An Efficient Method for Electron-Atom Scattering Using Ab-initio Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang [Shanxi University, Taiyuan (China)

    2017-02-15

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  15. Determination of the nuclear scattering amplitude of uranium-235 isotope by neutron diffraction method

    International Nuclear Information System (INIS)

    Bayvas, F.

    1980-05-01

    The nuclear scattering amplitude of uranium-235 isotope has been determined by the neutron diffraction method. Although the scattering cross section for slow neutrons of uranium-235 is very small (16.33 barns), the coherent scattering can be observed. The scattering amplitude of this isotope has been calculated from the measured diffraction intensities of the enriched metallic uranium as b=(1.05+-0.05)x10 -12 cm. It may possibly give some more idea about the neutron-nucleus interactions of uranium-235 and some other elements which show the same scattering length for slow neutrons. (author)

  16. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...

  17. Development of a scattering probability method for accurate vapor fraction measurements by neutron radiography

    CERN Document Server

    Joo, H

    1999-01-01

    Recent test results indicated drawbacks associated with the simple exponential attenuation method (SEAM) as currently applied to neutron radiography measurements to determine vapor fractions in a hydrogenous two-phase flow in a metallic conduit. The scattering component of the neutron beam intensity exiting the flow system is not adequately accounted for by SEAM, and this leads to inaccurate results. To properly account for the scattering effect, a neutron scattering probability method (SPM) is developed. The method applies a neutron-hydrogen scattering kernel to scattered thermal neutrons that leave the incident beam in narrow conduits but eventually show up elsewhere in the measurements. The SPM has been tested with known vapor (void) distributions within an acrylic disk and a water/vapor channel. The vapor (void) fractions deduced by SPM are in good agreement with the known exact values. Details of the scattering correction method and the test results are discussed.

  18. Switching of transmission resonances in a two-channels coupler: A Boundary Wall Method scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, A. [Instituto de Física, Universidade Federal de Alagoas, 57072-970, Maceió-AL (Brazil); Zanetti, F.M. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba-PR (Brazil); Lyra, M.L., E-mail: marcelo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970, Maceió-AL (Brazil)

    2016-10-15

    In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations. - Highlights: • The switching performance of a coupled waveguide device is studied via the boundary wall method. • The method efficiently identifies all resonant transmission modes. • Energy switching is controlled and optimized as a function of the device geometry.

  19. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    Science.gov (United States)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  20. SKIN RESEARCH BY SCATTERING ELLIPSOMETRY METHOD A.B.

    Directory of Open Access Journals (Sweden)

    Anastasiya B. Bulykina

    2017-09-01

    Full Text Available Application possibility of quantitative ellipsometry method for studies of optical anisotropy and structural heterogeneity of the skin in vivo is shown. To describe the polarization properties of the depolarizing optically-active biotissue medium, the Mueller matrix algebra is used. Based on comparative analysis of the technical options and their application in experiments with biotissue, a setup for recording of the polarization state of the backscattered radiation was developed. It is proposed tо use the emitting channel of the LEF-3 ellipsometer in the optical scheme of the stand to have a uniform intensity distribution along the cross section of the input radiation beam, and also to form the polarization states necessary for the study. Radiation source wavelength selection in the spectral range (He-Ne laser, 632 nm is justified, when scattering of radiation in turbid biological media predominates over absorption that makes it possible to estimate the structural parameters of the sample by the change of the output radiation polarization state. The receiving channel of the output polarization state analyzer was developed; it contains a video information block based on a color matrix sensor with a unified analysis field providing the possibility of further multispectral studying of the skin surface structure. The method of ellipsometric examination of the skin is proposed based on the distribution visualization of the polarization state parameters along the cross section of the output radiation beam and on its following analysis. An algorithm and software are developed with a Python language for image processing and calculation of the polarization characteristics of the sample. The distributions of the polarization

  1. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  2. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    International Nuclear Information System (INIS)

    Amos, K.; Allen, L.J.; Steward, C.; Hodgson, P.E.; Sofianos, S.A.

    1995-01-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs

  3. A model-based radiography restoration method based on simple scatter-degradation scheme for improving image visibility

    Science.gov (United States)

    Kim, K.; Kang, S.; Cho, H.; Kang, W.; Seo, C.; Park, C.; Lee, D.; Lim, H.; Lee, H.; Kim, G.; Park, S.; Park, J.; Kim, W.; Jeon, D.; Woo, T.; Oh, J.

    2018-02-01

    In conventional planar radiography, image visibility is often limited mainly due to the superimposition of the object structure under investigation and the artifacts caused by scattered x-rays and noise. Several methods, including computed tomography (CT) as a multiplanar imaging modality, air-gap and grid techniques for the reduction of scatters, phase-contrast imaging as another image-contrast modality, etc., have extensively been investigated in attempt to overcome these difficulties. However, those methods typically require higher x-ray doses or special equipment. In this work, as another approach, we propose a new model-based radiography restoration method based on simple scatter-degradation scheme where the intensity of scattered x-rays and the transmission function of a given object are estimated from a single x-ray image to restore the original degraded image. We implemented the proposed algorithm and performed an experiment to demonstrate its viability. Our results indicate that the degradation of image characteristics by scattered x-rays and noise was effectively recovered by using the proposed method, which improves the image visibility in radiography considerably.

  4. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    Directory of Open Access Journals (Sweden)

    Sang In Kim

    2015-12-01

    Full Text Available The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea, and the calibration neutron fields were constructed using a 252Californium (252Cf neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1–9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections. This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

  5. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    International Nuclear Information System (INIS)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il

    2015-01-01

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a 252 Californium ( 252 Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered

  6. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il [Health Physics Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a {sup 252}Californium ({sup 252}Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

  7. A novel phantom design for emission tomography enabling scatter- and attenuation-''free'' single-photon emission tomography imaging

    International Nuclear Information System (INIS)

    Larsson, S.A.; Johansson, L.; Jonsson, C.; Pagani, M.; Jacobsson, H.

    2000-01-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99m TcO 4 - depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with

  8. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach.

    Science.gov (United States)

    Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S

    2018-02-27

    Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

  9. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    2001-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surface has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen Isotopic defined beams from Pd (111) surface in the 40-400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one to the 5% D/(D+H) ratio - and for different incident energies. The beam was directed onto a single-crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to it. (authors)

  10. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    1999-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surfaces has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen isotopic defined beams from Pd (111) surfaces in the 40 - 400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one until 5% D/(D + H) and different incident energies and directed onto a single - crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to them. (authors)

  11. Analyses of the energy-dependent single separable potential models for the NN scattering

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Beghi, L.

    1981-08-01

    Starting from a systematic study of the salient features regarding the quantum-mechanical two-particle scattering off an energy-dependent (ED) single separable potential and its connection with the rank-2 energy-independent (EI) separable potential in the T-(K-) amplitude formulation, the present status of the ED single separable potential models due to Tabakin (M1), Garcilazo (M2) and Ahmad (M3) has been discussed. It turned out that the incorporation of a self-consistent optimization procedure improves considerably the results of the 1 S 0 and 3 S 1 scattering phase shifts for the models (M2) and (M3) up to the CM wave number q=2.5 fm -1 , although the extrapolation of the results up to q=10 fm -1 reveals that the two models follow the typical behaviour of the well-known super-soft core potentials. It has been found that a variant of (M3) - i.e. (M4) involving one more parameter - gives the phase shifts results which are generally in excellent agreement with the data up to q=2.5 fm -1 and the extrapolation of the results for the 1 S 0 case in the higher wave number range not only follows the corresponding data qualitatively but also reflects a behaviour similar to the Reid soft core and Hamada-Johnston potentials together with a good agreement with the recent [4/3] Pade fits. A brief discussion regarding the features resulting from the variations in the ED parts of all the four models under consideration and their correlations with the inverse scattering theory methodology concludes the paper. (author)

  12. Investigation of snow single scattering properties based on first order Legendre phase function

    Science.gov (United States)

    Eppanapelli, Lavan Kumar; Casselgren, Johan; Wåhlin, Johan; Sjödahl, Mikael

    2017-04-01

    Angularly resolved bidirectional reflectance measurements were modelled by approximating a first order Legendre expanded phase function to retrieve single scattering properties of snow. The measurements from 10 different snow types with known density and specific surface area (SSA) were investigated. A near infrared (NIR) spectrometer was used to measure reflected light above the snow surface over the hemisphere in the wavelength region of 900-1650 nm. A solver based on discrete ordinate radiative transfer (DISORT) model was used to retrieve the estimated Legendre coefficients of the phase function and a correlation between the coefficients and physical properties of different snow types is investigated. Results of this study suggest that the first two coefficients of the first order Legendre phase function provide sufficient information about the physical properties of snow where the latter captures the anisotropic behaviour of snow and the former provides a relative estimate of the single scattering albedo of snow. The coefficients of the first order phase function were compared with the experimental data and observed that both the coefficients are in good agreement with the experimental data. These findings suggest that our approach can be applied as a qualitative tool to investigate physical properties of snow and also to classify different snow types.

  13. Interstellar scattering effect on pulsar mean pulse shape and apparent angular size: stochastic ray trajectory method

    International Nuclear Information System (INIS)

    Bocharov, A.A.

    1988-01-01

    The extension of stochastic ray-trajectory method - a specific approach to the analysis of radio wave scattering in the interstellar medium - is presented. This method enables one to obtain different characteristics of scattered radiation, connected with mean pulse shape. It allows one to complete very simple and efficient programs for numerical calculation of these characteristics

  14. Application of numerical methods to planetary radiowave scattering

    Science.gov (United States)

    Simpson, Richard A.; Tyler, G. Leonard

    1987-01-01

    Existing numerical techniques for the solution of scattering problems were investigated to determine those which might be applicable to planetary surface studies, with the goal of improving the interpretation of radar data from Venus, Mars, the Moon, and icy satellites. The general characteristics of the models are described along with computational concerns. In particular, the Numerical Electrogmatics Code (NEC) developed at the Lawrence Livermore Laboratory is discussed. Though not developed for random rough surfaces, the NEC contains elements which may be generalized and which could be valuable in the study of scattering by planetary surfaces.

  15. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G. Z.; Yin, J. G., E-mail: gzhchen@siom.ac.cn, E-mail: yjg@siom.ac.cn; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C. [Chinese Academy of Sciences, Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics (China); Zhang, C. L. [Guilin Research Institute of Geology for Mineral Resources (China); Gu, S. L. [Nanjing University, Department of Physics (China); Hang, Y., E-mail: yhang@siom.ac.cn [Chinese Academy of Sciences, Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics (China)

    2015-12-15

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  16. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-01-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6 Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the (n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6 Li-glass neutron detector and γ detector configurations

  17. Comparing methods for single paragraph similarity analysis.

    Science.gov (United States)

    Stone, Benjamin; Dennis, Simon; Kwantes, Peter J

    2011-01-01

    The focus of this paper is two-fold. First, similarities generated from six semantic models were compared to human ratings of paragraph similarity on two datasets-23 World Entertainment News Network paragraphs and 50 ABC newswire paragraphs. Contrary to findings on smaller textual units such as word associations (Griffiths, Tenenbaum, & Steyvers, 2007), our results suggest that when single paragraphs are compared, simple nonreductive models (word overlap and vector space) can provide better similarity estimates than more complex models (LSA, Topic Model, SpNMF, and CSM). Second, various methods of corpus creation were explored to facilitate the semantic models' similarity estimates. Removing numeric and single characters, and also truncating document length improved performance. Automated construction of smaller Wikipedia-based corpora proved to be very effective, even improving upon the performance of corpora that had been chosen for the domain. Model performance was further improved by augmenting corpora with dataset paragraphs. Copyright © 2010 Cognitive Science Society, Inc.

  18. Single-Fiber Reflectance Spectroscopy of Isotropic-Scattering Medium: An Analytic Perspective to the Ratio-of-Remission in Steady-State Measurements

    Directory of Open Access Journals (Sweden)

    Daqing Piao

    2014-12-01

    Full Text Available Recent focused Monte Carlo and experimental studies on steady-state single-fiber reflectance spectroscopy (SfRS from a biologically relevant scattering medium have revealed that, as the dimensionless reduced scattering of the medium increases, the SfRS intensity increases monotonically until reaching a plateau. The SfRS signal is semi-empirically decomposed to the product of three contributing factors, including a ratio-of-remission (RoR term that refers to the ratio of photons remitting from the medium and crossing the fiber-medium interface over the total number of photons launched into the medium. The RoR is expressed with respect to the dimensionless reduced scattering parameter , where  is the reduced scattering coefficient of the medium and  is the diameter of the probing fiber. We develop in this work, under the assumption of an isotropic-scattering medium, a method of analytical treatment that will indicate the pattern of RoR as a function of the dimensionless reduced scattering of the medium. The RoR is derived in four cases, corresponding to in-medium (applied to interstitial probing of biological tissue or surface-based (applied to contact-probing of biological tissue SfRS measurements using straight-polished or angle-polished fiber. The analytically arrived surface-probing RoR corresponding to single-fiber probing using a 15° angle-polished fiber over the range of  agrees with previously reported similarly configured experimental measurement from a scattering medium that has a Henyey–Greenstein scattering phase function with an anisotropy factor of 0.8. In cases of a medium scattering light anisotropically, we propose how the treatment may be furthered to account for the scattering anisotropy using the result of a study of light scattering close to the point-of-entry by Vitkin et al. (Nat. Commun. 2011, doi:10.1038/ncomms1599.

  19. Time-reversed optical focusing through scattering media by digital full phase and amplitude recovery using a single phase-only SLM

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2015-03-01

    Full Text Available Focusing light though scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging. This challenge can be overcome by wavefront shaping technique, in which a time-reversed (TR wavefront of scattered light is generated to suppress the scattering. In previous TR optical focusing experiments, a phase-only spatial light modulator (SLM has been typically used to control the wavefront of incident light. Unfortunately, although the phase information is reconstructed by the phase-only SLM, the amplitude information is lost, resulting in decreased peak-to-background ratio (PBR of optical focusing in the TR wavefront reconstruction. A new method of TR optical focusing through scattering media is proposed here, which numerically reconstructs the full phase and amplitude of a simulated scattered light field by using a single phase-only SLM. Simulation results and the proposed optical setup show that the time-reversal of a fully developed speckle field can be digitally implemented with both phase and amplitude recovery, affording a way to improve the performance of light focusing through scattering media.

  20. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  1. Photon scattering by isolated isotopic impurities in single crystals of helium

    International Nuclear Information System (INIS)

    Lawson, D.T.

    1972-01-01

    Thermal conductivity measurements of oriented single crystals of hexagonal close-packed 4 He have been made in order to study the scattering of phonons by isotopic impurities. The samples, all grown at a constant pressure of 85.1 atmospheres, contained 3 He concentrations ranging from less than 10 - 6 to 2 x 10 - 5 . Apparatus and techniques have been developed which allow the growth of crystals at preferred orientations: c-axis orientations of 0 and 90 0 with respect to the direction of heat flow were chosen for this study. Quality and orientation of the sample crystals were determined from the thermal conductivity measurements themselves. In the 90 0 crystals an isotopic concentration of 2 x 10 - 5 reduces the thermal conductivity peak by a factor of 2.8. A model using the dominant phonon approximation to define an average isotope cross section for phonon scattering fits these data well. The cross section thus obtained is larger than can be explained by scattering from the mass defect alone, and provides a measure of the lattice distortion accompanying an isotopic substitution. Relevant theories are examined in the light of these results. The data for 0 0 crystals are consistent with the same cross section if samples displaying the same effective phonon mean free path in the low temperature limit are compared. Variations in this limiting mean free path are attributed to specular reflection of phonons at the sample chamber walls. At the lowest 3 He concentrations Poiseuille flow of phonons causes a peak in the effective mean free path a factor of 4.6 higher than the low temperature limit

  2. Resonant anti-Stokes Raman scattering in single-walled carbon nanotubes

    Science.gov (United States)

    Gordeev, Georgy; Jorio, Ado; Kusch, Patryk; Vieira, Bruno G. M.; Flavel, Benjamin; Krupke, Ralph; Barros, Eduardo B.; Reich, Stephanie

    2017-12-01

    The dependence of the anti-Stokes Raman intensity on the excitation laser energy in carbon nanotubes is studied by resonant Raman spectroscopy. The complete resonant anti-Stokes and Stokes Raman profiles of the high-energy longitudinal phonon (G+) are obtained for (8,3), (7,5), (6,4), and (6,5) single chirality enriched samples. A high asymmetry between the intensity of the incoming and outgoing resonance is observed in the resonant Raman profiles. In contrast to Stokes scattering, anti-Stokes scattering is more intense at the outgoing resonance then at the incoming resonance. The resonance profiles are explained by a Raman process that includes the phonon-mediated interactions with the dark excitonic state. The chirality dependence of the Raman profiles is due to the variation in the exciton-phonon matrix elements, in agreement with tight-binding calculations. Based on the asymmetric Raman profiles we present the resonance factors for the Stokes/anti-Stokes ratios in carbon nanotubes.

  3. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    Science.gov (United States)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  4. Four-jet production in single- and double-parton scattering within high-energy factorization

    Energy Technology Data Exchange (ETDEWEB)

    Kutak, Krzysztof; Maciula, Rafal; Serino, Mirko [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,Radzikowskiego 152, 31-342 Kraków (Poland); Szczurek, Antoni [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,Radzikowskiego 152, 31-342 Kraków (Poland); Faculty of Mathematics and Natural Sciences, University of Rzeszów,ul. Pigonia 1, 35-310 Rzeszów (Poland); Hameren, Andreas van [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,Radzikowskiego 152, 31-342 Kraków (Poland)

    2016-04-28

    We perform a first study of 4-jet production in a complete high-energy factorization (HEF) framework. We include and discuss contributions from both single-parton scattering (SPS) and double-parton scattering (DPS). The calculations are performed for kinematical situations relevant for two experimental measurements (ATLAS and CMS) at the LHC. We compare our results to those reported by the ATLAS and CMS collaborations for different sets of kinematical cuts. The results of the HEF approach are compared with their counterparts for collinear factorization. For symmetric cuts the DPS HEF result is considerably smaller than the one obtained with collinear factorization. The mechanism leading to this difference is of kinematical nature. We conclude that an analysis of inclusive 4-jet production with asymmetric p{sub T}-cuts below 50 GeV would be useful to enhance the DPS contribution relative to the SPS contribution. In contrast to the collinear approach, the HEF approach nicely describes the distribution of the ΔS variable, which involves all four jets and their angular correlations.

  5. A comparative investigation of scatter correction in 3D PET

    International Nuclear Information System (INIS)

    Polycarpou, I; Marsden, P K; Tsoumpas, C

    2011-01-01

    In 3D PET scatter degrades image quality and quantification. The currently most popular scatter estimation method is the single scatter simulation (SSS) which accommodates for multiple scattering by scaling the single scatter estimation. However, it has not been clear yet how accurate this approximation is for cases where multiple scatter is significant, raising the specific questions: 'How important double scatter correction is, and how accurately do we simulate the total scatter events by appropriate scaling?' This project aims to clarify the improvements in terms of quantification due to scatter correction, using: (i) single scatter events only, (ii) single and double scatter events, (iii) total scatter events, or (iv) scaled single scatter, and evaluate the analytic scatter estimation algorithm as implemented in the open source reconstruction software STIR. The analytic SSS scatter estimation implemented in STIR is compared with the SimSET Monte Carlo package. Scatter correction accuracy is examined for different levels of scattering and scaling approaches. A large anthropomorphic phantom was reconstructed with FBP. The images have been compared quantitatively: Areas with high scatter fraction are compared with single scatter corrected images and show a 50% bias reduction after performing single and double scatter correction. Scaled single scatter correction results are in good agreement with SimSET true events, less than 10% difference. Total-fit and tail-fit scaled single scatter results in approximately equal mean values. SSS correction with tail-fit scaling in STIR is very close with SimSET true events, 10% difference. The results show that multiple scatter correction improves accuracy and scaling single scatter is an efficient method to compensate for multiple scattering for standard PET scanning acquisitions.

  6. A Workshop on Methods for Neutron Scattering Instrument Design. Introduction and Summary

    International Nuclear Information System (INIS)

    Hjelm, Rex P.

    1996-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop on ''Methods for Neutron Scattering Instrument Design'' September 23-25 at the E.O. Lawrence Berkeley National Laboratory. These proceedings are a collection of a portion of the invited and contributed presentations

  7. Implicit numerical method for Compton scattering energy exchange between electrons and non-Planckian radiation

    International Nuclear Information System (INIS)

    Winslow, A.M.

    1975-01-01

    The multi-frequency grey method is extended to include Compton scattering. In this way one arrives at an expression for the total Compton scattering energy exchange rate, which, for a Planckian radiation field, reduces to a well known formula. 15 references, 5 graphs

  8. Slab albedo for linearly and quadratically anisotropic scattering kernel with modified F{sub N} method

    Energy Technology Data Exchange (ETDEWEB)

    Tuereci, R. Goekhan [Kirikkale Univ. (Turkey). Kirikkale Vocational School; Tuereci, D. [Ministry of Education, Ankara (Turkey). 75th year Anatolia High School

    2017-11-15

    One speed, time independent and homogeneous medium neutron transport equation is solved with the anisotropic scattering which includes both the linearly and the quadratically anisotropic scattering kernel. Having written Case's eigenfunctions and the orthogonality relations among of these eigenfunctions, slab albedo problem is investigated as numerically by using Modified F{sub N} method. Selected numerical results are presented in tables.

  9. Application of the Method of Auxiliary Sources for the Analysis of Electromagnetic Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  10. Characterization of Compton-scatter imaging with an analytical simulation method

    Science.gov (United States)

    Jones, Kevin C.; Redler, Gage; Templeton, Alistair; Bernard, Damian; Turian, Julius V.; Chu, James C. H.

    2018-01-01

    By collimating the photons scattered when a megavoltage therapy beam interacts with the patient, a Compton-scatter image may be formed without the delivery of an extra dose. To characterize and assess the potential of the technique, an analytical model for simulating scatter images was developed and validated against Monte Carlo (MC). For three phantoms, the scatter images collected during irradiation with a 6 MV flattening-filter-free therapy beam were simulated. Images, profiles, and spectra were compared for different phantoms and different irradiation angles. The proposed analytical method simulates accurate scatter images up to 1000 times faster than MC. Minor differences between MC and analytical simulated images are attributed to limitations in the isotropic superposition/convolution algorithm used to analytically model multiple-order scattering. For a detector placed at 90° relative to the treatment beam, the simulated scattered photon energy spectrum peaks at 140-220 keV, and 40-50% of the photons are the result of multiple scattering. The high energy photons originate at the beam entrance. Increasing the angle between source and detector increases the average energy of the collected photons and decreases the relative contribution of multiple scattered photons. Multiple scattered photons cause blurring in the image. For an ideal 5 mm diameter pinhole collimator placed 18.5 cm from the isocenter, 10 cGy of deposited dose (2 Hz imaging rate for 1200 MU min-1 treatment delivery) is expected to generate an average 1000 photons per mm2 at the detector. For the considered lung tumor CT phantom, the contrast is high enough to clearly identify the lung tumor in the scatter image. Increasing the treatment beam size perpendicular to the detector plane decreases the contrast, although the scatter subject contrast is expected to be greater than the megavoltage transmission image contrast. With the analytical method, real-time tumor tracking may be possible

  11. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  12. Detecting the shape of anisotropic gold nanoparticles in dispersion with single particle extinction and scattering.

    Science.gov (United States)

    Potenza, M A C; Krpetić, Ž; Sanvito, T; Cai, Q; Monopoli, M; de Araújo, J M; Cella, C; Boselli, L; Castagnola, V; Milani, P; Dawson, K A

    2017-02-23

    The shape and size of nanoparticles are important parameters affecting their biodistribution, bioactivity, and toxicity. The high-throughput characterisation of the nanoparticle shape in dispersion is a fundamental prerequisite for realistic in vitro and in vivo evaluation, however, with routinely available bench-top optical characterisation techniques, it remains a challenging task. Herein, we demonstrate the efficacy of a single particle extinction and scattering (SPES) technique for the in situ detection of the shape of nanoparticles in dispersion, applied to a small library of anisotropic gold particles, with a potential development for in-line detection. The use of SPES paves the way to the routine quantitative analysis of nanoparticles dispersed in biologically relevant fluids, which is of importance for the nanosafety assessment and any in vitro and in vivo administration of nanomaterials.

  13. Proton resonance elastic scattering of $^{30}$Mg for single particle structure of $^{31}$Mg

    CERN Multimedia

    The single particle structure of $^{31}$Mg, which is located in the so-called “island of inversion”, will be studied through measuring Isobaric Analog Resonances (IARs) of bound states of $^{31}$Mg. They are located in the high excitation energy of $^{31}$Al. We are going to determine the spectroscopic factors and angular momenta of the parent states by measuring the excitation function of the proton resonance elastic scattering around 0 degrees in the laboratory frame with around 3 MeV/nucleon $^{30}$Mg beam. The present study will reveal the shell evolution around $^{32}$Mg. In addition, the spectroscopic factor of the (7/2)$^{−}$ state which was not yet determined experimentally, may allow one to study the shape coexistence in this nucleus.

  14. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    Science.gov (United States)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  15. Large-scale single-crystal growth of (CH3)2NH2CuCl3 for neutron scattering experiments

    Science.gov (United States)

    Park, Garam; Oh, In-Hwan; Park, J. M. Sungil; Park, Seong-Hun; Hong, Chang Seop; Lee, Kwang-Sei

    2016-05-01

    Neutron scattering studies on low-dimensional quantum spin systems require large-size single-crystals. Single-crystals of (CH3)2NH2CuCl3 showing low-dimensional magnetic behaviors were grown by a slow solvent evaporation method in a two-solvent system at different temperature settings. The best results were obtained for the bilayer solution of methanol and isopropanol with a molar ratio of 2:1 at 35 °C. The quality of the obtained single-crystals was tested by powder and single-crystal X-ray diffraction and single-crystal neutron diffraction. In addition, to confirm structural phase transitions (SPTs), thermal analysis and single-crystal X-ray diffraction at 300 K and 175 K, respectively, were conducted, confirming the presence of a SPT at Tup=288 K on heating and Tdown=285 K on cooling.

  16. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2013-03-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.

  17. A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency

    Science.gov (United States)

    Liu, Xiaodong

    2017-08-01

    A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.

  18. Chemical Characterization and Single Scattering Albedo of Atmospheric Aerosols Measured at Amami-Oshima, Southwest Japan, During Spring Seasons

    Science.gov (United States)

    Tsuruta, H.; Yabuki, M.; Takamura, T.; Sudo, S.; Yonemura, S.; Shirasuna, Y.; Hirano, K.; Sera, K.; Maeda, T.; Hayasaka, T.; Nakajima, T.

    2008-12-01

    An intensive field program was performed to measure atmospheric aerosols at Amami-Oshima, a small island located at southwest Japan, in the spring season of 2001, 2003, and 2005 under the ACE-Asia, APEX and ABC-EAREX2005 projects. Chemical analysis of the fine and coarse aerosols was made for elemental carbon (EC) and organic carbon, water soluble ions, and trace elements. Single scattering albedo (SSA) of aerosols was independently estimated by two methods. The one (SSAc) is by chemical compositions assuming a half internal mixture between EC and non sea-salt sulfate, and the other (SSAo) is by optical measurements of scattering coefficient and absorption coefficient. The backward trajectory analysis showed that the aerosol concentrations in the air masses arrived at Amami, were much higher from the Asian Continent than from other regions, and two types of aerosol enhancement were observed. The one was caused by polluted air masses from the urban-industrial area of east-coast China, the other was by high mineral dusts due to large- scale dust storms in the desert regions of northwest China. The SSAc was in a range of 0.87-0.98, and in good agreement with the SSAo after some corrections for original scattering and absorption coefficients. The SSAc showed no significant difference between the air masses from the polluted area and the desert regions. The negative correlation between the SSAc and EC was divided into two groups depending on the concentration of non sea-salt sulfate, while the increase in mineral dusts did not show any correlation with the SSAc.

  19. Angular-domain scattering interferometry.

    Science.gov (United States)

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J

    2013-11-15

    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  20. Absolute determination of zero-energy phase shifts for multiparticle single-channel scattering: Generalized Levinson theorem

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1996-01-01

    Levinson close-quote s theorem relates the zero-energy phase shift δ for potential scattering in a given partial wave l, by a spherically symmetric potential that falls off sufficiently rapidly, to the number of bound states of that l supported by the potential. An extension of this theorem is presented that applies to single-channel scattering by a compound system initially in its ground state. As suggested by Swan [Proc. R. Soc. London Ser. A 228, 10 (1955)], the extended theorem differs from that derived for potential scattering; even in the absence of composite bound states δ may differ from zero as a consequence of the Pauli principle. The derivation given here is based on the introduction of a continuous auxiliary open-quote open-quote length phase close-quote close-quote η, defined modulo π for l=0 by expressing the scattering length as A=acotη, where a is a characteristic length of the target. Application of the minimum principle for the scattering length determines the branch of the cotangent curve on which η lies and, by relating η to δ, an absolute determination of δ is made. The theorem is applicable, in principle, to single-channel scattering in any partial wave for e ± -atom and nucleon-nucleus systems. In addition to a knowledge of the number of composite bound states, information (which can be rather incomplete) concerning the structure of the target ground-state wave function is required for an explicit, absolute, determination of the phase shift δ. As for Levinson close-quote s original theorem for potential scattering, no additional information concerning the scattering wave function or scattering dynamics is required. copyright 1996 The American Physical Society

  1. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  2. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  3. Assessment of the scatter correction procedures in single photon emission computed tomography imaging using simulation and clinical study

    Directory of Open Access Journals (Sweden)

    Mehravar Rafati

    2017-01-01

    Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.

  4. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-04-01

    Full Text Available Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES membranes (10, 30, 100 and 300 kDa and new 100 kDa hollow fibers (PVDF. Scanning Electron Microscopy (SEM with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI and Atomic Force Microscopy (AFM using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512 showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  5. Interpolation methods for creating a scatter radiation exposure map

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Gomes, Celio S.; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F. [Universidade do Estado do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Física

    2017-07-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  6. Interpolation methods for creating a scatter radiation exposure map

    International Nuclear Information System (INIS)

    Gonçalves, Elicardo A. de S.; Gomes, Celio S.; Lopes, Ricardo T.; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F.

    2017-01-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  7. Measuring method to impulse neutron scattering background in complicated ambient condition

    International Nuclear Information System (INIS)

    Tang Zhangkui; Peng Taiping; Tang Zhengyuan; Liu Hangang; Hu Mengchun; Fan Juan

    2004-01-01

    This paper introduced a measuring method and calculative formula about impulse neutron scattering background in complicated ambient condition. The experiment had been done in the lab, and the factors to affect measurement conclusion were analysised. (authors)

  8. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  9. Fast, accurate and stable scattering calculation method with application to finite sized photonic crystal waveguides

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper

    2009-01-01

    We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide.......We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide....

  10. Electric light scattering from single-stranded DNA in linear polyacrylamide solutions.

    Science.gov (United States)

    Todorov, R; Starchev, K; Stoylov, S P

    2001-01-01

    The electric light scattering (ELS) of ssDNA (calf thymus, 10 kbp, 55 micrograms/mL) in denaturing polyacrylamide (PAA) solutions was studied as a function of applied sinusoidal electric field and polymer concentration. Electric fields of strengths up to 300 V/cm and of frequencies between 100 and 5000 Hz were applied. It was found that the ELS effect increases with the field strength and decreases at high frequencies. The dependence of the ELS effect of ssDNA on polymer concentration passes through a maximum at 1% PAA. The relaxation times of decay of the ELS effect increase with increasing polymer concentrations. It was demonstrated that ELS is a useful method for investigation of ssDNA behavior in the course of pulse-field electrophoresis in polymer solutions.

  11. Alignment characterization of single-wall carbon nanotubes by Raman scattering

    International Nuclear Information System (INIS)

    Liu Pijun; Liu Liyue; Zhang Yafei

    2003-01-01

    A novel method for identifying the Raman modes of single-wall carbon nanotubes (SWNT) based on the symmetry of the vibration modes has been studied. The Raman intensity of each vibration mode varies with polarization direction, and the relationship can be expressed as analytical functions. This method avoids troublesome numerical calculation and easily gives clear relations between Raman intensity and polarization direction. In this way, one can distinguish each Raman-active mode of SWNT through the polarized Raman spectrum

  12. A novel array processing method for precise depth detection of ultrasound point scatter

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2016-01-01

    simulation software. A 7 MHz linear transducer is used to scan a single point scatterer phantom that can move in the axial direction. Individual beamformer outputs from 3 different foci are post-processed using the highly-dependent on focusing errors, metric of sharpness to estimate the position of the point...

  13. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  14. Scattering Cross Section of Sound Waves by the Modal Element Method

    Science.gov (United States)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  15. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution

    Science.gov (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun

    2010-10-01

    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  16. Investigation of a phase transition in a single optically levitated microdroplet by Raman-Mie scattering.

    Science.gov (United States)

    Trunk, M; Lübben, J F; Popp, J; Schrader, B; Kiefer, W

    1997-05-20

    Light-scattering measurements of optically levitated microdroplets containing three components, glycerin, water, and ammonium sulfate, are presented. Evaporation of the microdroplet is studied by means of morphology-dependent resonances observed in both Raman spectra as well as elastically scattered light and by the simultaneous measurement of the laser power. The phase transition from the liquid to the solid state of ammonium sulfate inside the microdroplet is observed by means of morphology-dependent resonances and Raman scattering.

  17. Nonlinear inverse scattering methods for thermal- wave slice tomography: a wavelet domain approach

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.L. [Department of Electrical and Computer Engineering, Northeastern University, 235 Forsyth Building, Boston, Massachusetts02115 (United States); Nicolaides, L.; Mandelis, A. [Photothermal and Optoelectronic Diagnostics Laboratory, Department of Mechanical Engineering, University of Toronto, 5 Kings College Road, Toronto M5S3G8, Ontario (Canada)

    1998-06-01

    A wavelet domain, nonlinear inverse scattering approach is presented for imaging subsurface defects in a material sample, given observations of scattered thermal waves. Unlike methods using the Born linearization, our inversion scheme is based on the full wave-field model describing the propagation of thermal waves. Multiresolution techniques are employed to regularize and to lower the computational burden of this ill-posed imaging problem. We use newly developed wavelet-based regularization methods to resolve better the edge structures of defects relative to reconstructions obtained with smoothness-type regularizers. A nonlinear approximation to the exact forward-scattering model is introduced to simplify the inversion with little loss in accuracy. We demonstrate this approach on cross-section imaging problems by using synthetically generated scattering data from transmission and backprojection geometries. {copyright} 1998 Optical Society of America

  18. A Baecklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation

    CERN Document Server

    Vakhnenko, V O; Morrison, A J

    2003-01-01

    A Baecklund transformation both in bilinear and in ordinary form for the transformed generalised Vakhnenko equation (GVE) is derived. It is shown that the equation has an infinite sequence of conservation laws. An inverse scattering problem is formulated; it has a third-order eigenvalue problem. A procedure for finding the exact N-soliton solution to the GVE via the inverse scattering method is described. The procedure is illustrated by considering the cases N=1 and 2.

  19. Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G. T. [Los Alamos; Harris, D. A. [Fermilab; Tanaka, H. A. [British Columbia U.; Tayloe, R. [Indiana U.; Zeller, G. P. [Fermilab

    2015-06-15

    The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.

  20. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  1. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  2. Retrievals and uncertainty analysis of aerosol single scattering albedo from MFRSR measurements

    International Nuclear Information System (INIS)

    Yin, Bangsheng; Min, Qilong; Joseph, Everette

    2015-01-01

    Aerosol single scattering albedo (SSA) can be retrieved from the ratio of diffuse horizontal and direct normal fluxes measured from multifilter rotating shadowband radiometer (MFRSR). In this study, the measurement channels at 415 nm and 870 nm are selected for aerosol optical depth (AOD) and Angstrom coefficient retrievals, and the measurements at 415 nm are used for aerosol SSA retrievals with the constraint of retrieved Angstrom coefficient. We extensively assessed various issues impacting on the accuracy of SSA retrieval from measurements to input parameters and assumptions. For cloud-free days with mean aerosol loading of 0.13–0.60, our sensitivity study indicated that: (1) 1% calibration uncertainty can result in 0.8–3.7% changes in retrieved SSA; (2) without considering the cosine respond correction and/or forward scattering correction will result in underestimation of 1.1–3.3% and/or 0.73% in retrieved SSA; (3) an overestimation of 0.1 in asymmetry factor can result in an underestimation of 2.54–3.4% in retrieved SSA; (4) for small aerosol loading (e.g., 0.13), the uncertainty associated with the choice of Rayleigh optical depth value can result in non-negligible change in retrieved SSA (e.g., 0.015); (5) an uncertainty of 0.05 for surface albedo can result in changes of 1.49–5.4% in retrieved SSA. We applied the retrieval algorithm to the MFRSR measurements at the Atmospheric Radiation Measurements (ARM) Southern Great Plains (SGP) site. The retrieved results of AOD, Angstrom coefficient, and SSA are basically consistent with other independent measurements from co-located instruments at the site. - Highlights: • Aerosol SSA is derived from MFRSR measured diffuse to direct normal irradiance ratio. • We extensively assessed various issues impacting on the accuracy of SSA retrieval. • The issues are mainly from measurements and model input parameters and assumptions. • We applied the retrieval algorithm to the MFRSR measurements at ARM SGP

  3. Effect of inter-crystal scatter on estimation methods for random coincidences and subsequent correction

    International Nuclear Information System (INIS)

    Torres-Espallardo, I; Spanoudaki, V; Ziegler, S I; Rafecas, M; McElroy, D P

    2008-01-01

    Random coincidences can contribute substantially to the background in positron emission tomography (PET). Several estimation methods are being used for correcting them. The goal of this study was to investigate the validity of techniques for random coincidence estimation, with various low-energy thresholds (LETs). Simulated singles list-mode data of the MADPET-II small animal PET scanner were used as input. The simulations have been performed using the GATE simulation toolkit. Several sources with different geometries have been employed. We evaluated the number of random events using three methods: delayed window (DW), singles rate (SR) and time histogram fitting (TH). Since the GATE simulations allow random and true coincidences to be distinguished, a comparison between the number of random coincidences estimated using the standard methods and the number obtained using GATE was performed. An overestimation in the number of random events was observed using the DW and SR methods. This overestimation decreases for LETs higher than 255 keV. It is additionally reduced when the single events which have undergone a Compton interaction in crystals before being detected are removed from the data. These two observations lead us to infer that the overestimation is due to inter-crystal scatter. The effect of this mismatch in the reconstructed images is important for quantification because it leads to an underestimation of activity. This was shown using a hot-cold-background source with 3.7 MBq total activity in the background region and a 1.59 MBq total activity in the hot region. For both 200 keV and 400 keV LET, an overestimation of random coincidences for the DW and SR methods was observed, resulting in approximately 1.5% or more (at 200 keV LET: 1.7% for DW and 7% for SR) and less than 1% (at 400 keV LET: both methods) underestimation of activity within the background region. In almost all cases, images obtained by compensating for random events in the reconstruction

  4. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  5. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  6. Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.

    2001-01-01

    The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)

  7. Efficient fast multipole method for low-frequency scattering

    International Nuclear Information System (INIS)

    Darve, Eric; Have, Pascal

    2004-01-01

    The solution of the Helmholtz and Maxwell equations using integral formulations requires to solve large complex linear systems. A direct solution of those problems using a Gauss elimination is practical only for very small systems with few unknowns. The use of an iterative method such as GMRES can reduce the computational expense. Most of the expense is then computing large complex matrix vector products. The cost can be further reduced by using the fast multipole method which accelerates the matrix vector product. For a linear system of size N, the use of an iterative method combined with the fast multipole method reduces the total expense of the computation to NlogN. There exist two versions of the fast multipole method: one which is based on a multipole expansion of the interaction kernel expιkr/r and which was first proposed by V. Rokhlin and another based on a plane wave expansion of the kernel, first proposed by W.C. Chew. In this paper, we propose a third approach, the stable plane wave expansion (SPW-FMM), which has a lower computational expense than the multipole expansion and does not have the accuracy and stability problems of the plane wave expansion. The computational complexity is NlogN as with the other methods

  8. A new method for calculating the Glauber multiple scattering amplitude of composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu-shun [Center of Theoretical Physics, CCAST (World Laboratory), Beijing 100080 (China); Institute of High Energy Physics, Academia Sinica, Beijing 100039 (China); Hu Su-fen [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Yang Chao-yun [Department of Physics, The School of Zhejiang, Light Industry, Hangzhou 310015 (China); Liu Ji-feng [Department of Physics, Guangxi Normal University, Guilin 541001 (China)

    1997-11-01

    The method for calculating the scattering of composite particles with several kinds of constituent is studied. The formulae are derived and the method for sorting all Glauber expansion terms into several classes is given. The method of the integration is different from that of Lin and co-workers (Lin Z J et al 1991 J. Phys. G: Nucl. Part. Phys. 17 1159) and its analytical expressions are introduced. We calculate the D-D, P-P, P-P-bar and {pi}-P elastic scatterings. These results are compared with the data. (author)

  9. Scatter correction method for x-ray CT using primary modulation: Phantom studies

    International Nuclear Information System (INIS)

    Gao Hewei; Fahrig, Rebecca; Bennett, N. Robert; Sun Mingshan; Star-Lack, Josh; Zhu Lei

    2010-01-01

    Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems, the method is investigated using three phantoms: A Catphan(c)600 phantom, an anthropomorphic chest phantom, and the Catphan(c)600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan(c)600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan(c)600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an

  10. The effect of the global UV irradiance measurement accuracy on the single scattering albedo retrieval

    Directory of Open Access Journals (Sweden)

    S. Kazadzis

    2010-08-01

    Full Text Available The possibility of measuring aerosol optical absorption properties in the UV spectral range such as single scattering albedo (SSA, using remote sensing techniques, is currently an open scientific issue. We investigate the limitations on calculating column average SSA using a combination of global UV spectral measurements (that are comon in various UV monitoring stations worldwide with radiative transfer modeling. To point out the difficulties in such a retrieval we have used the travelling reference spectroradiometer QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe results from 27 visits to UV monitoring stations around Europe. We have used the QASUME instrument as relative reference, analyzing absolute differences and also temporal and spectral deviations of UV irraidances, that are used as basic input for the SSA retrieval.

    The results comparing the mean SSA derived by all instruments, measuring synchronous UV spectra, showed that 5 were within ± 0.02 difference from the SSA calculated from the QASUME instrument, while 17 were within ± 0.04, for the Solar zenith angle of 60 degrees. As for the uncertainty that has been calculated using the 2σ standard deviation of the spectral measurements, a mean 0.072 and 0.10 (2σ uncertainties have been calculated for 60° and 30°, respectively. Based on the fact that additional uncertainties would be introduced in the SSA retrieval from AOD model input accuracy, assymetry parameter assumptions, we show that only very few instrumnents could be able to detect long term SSA changes. However, such measurements/results ar useful in order to retrieve SSA at UV wavelengths, a product needed for various applications such as, inputs for modeling radiative forcing studies and satellite retrieval algorithms.

  11. Development of novel growth methods for halide single crystals

    Science.gov (United States)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  12. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.

    Science.gov (United States)

    Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2015-09-03

    Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the

  13. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    NARCIS (Netherlands)

    Ramamurthy, S.; D'Orsi, C.J.; Sechopoulos, I.

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360 degrees with a

  14. Stability, Accuracy, and Robustness of the Time Domain Integral Equation Method for Radar Scattering Analysis

    NARCIS (Netherlands)

    Van 't Wout, E.

    2013-01-01

    The aim of this thesis is to design a computational method that can be used in modern stealth technology. In particular, the computational method should be capable to simulate scattering of ultra-wideband radar signals for military aircraft constructed with ferromagnetic radar absorbent materials. A

  15. Variational Effective Index Method for 3D Vectorial Scattering Problems in Photonics: TE Polarization

    NARCIS (Netherlands)

    Ivanova, Alyona; Stoffer, Remco; Kauppinen, L.J.; Hammer, Manfred

    2009-01-01

    In order to reduce the computational effort we develop a method for 3D-to-2D dimensionality reduction of scattering problems in photonics. Contrary to the `standard' Effective Index Method the effective parameters of the reduced problem are always rigorously defined using the variational technique,

  16. Search for the Single Production of Doubly-Charged Higgs Bosons and Constraints on their Couplings from Bhabha Scattering

    CERN Document Server

    Abbiendi, G; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Groll, M.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, G.W.; Wilson, D.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    A search for single production of doubly-charged Higgs bosons has been performed using 600.7 pb^-1 of e+e- collision data with sqrt(s)=189--209GeV collected by the OPAL detector at LEP. No evidence for the existence of H++/-- is observed. Upper limits on the Yukawa coupling of the H++/-- to like-signed electron pairs are derived. Additionally, indirect constraints on the Yukawa coupling from Bhabha scattering, where the H++/-- would contribute via t-channel exchange, are derived for M(H++/--) < 2TeV. These are the first results for both a single production search and constraints from Bhabha scattering reported from LEP.

  17. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique.

    Science.gov (United States)

    Mei, Liang; Guan, Peng; Yang, Yang; Kong, Zheng

    2017-08-07

    An 808 nm single-band Mie scattering Scheimpflug lidar system is developed in Dalian, Northern China, for real-time, large-area atmospheric aerosol/particle remote sensing. Atmospheric measurement has been performed in urban area during a typical haze weather condition, and time-range distribution of atmospheric backscattering signal is recorded from March 18th to 22nd, 2017, by employing the Scheimpflug lidar system. Atmospheric extinction coefficient is then retrieved according to the Klett-inversion algorithm, while the boundary value is obtained by the slope-method in the far end where the atmosphere is homogeneous in a subinterval region. The correlation between the extinction coefficients retrieved from the Scheimpflug lidar technique and the PM10/PM2.5 concentrations measured by a conventional air pollution monitoring station is also studied. The good agreement between the measurement results, i.e., a correlation coefficient of 0.85, successfully demonstrates the feasibility and great potential of the Scheimpflug lidar technique for atmospheric studies and applications.

  18. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    International Nuclear Information System (INIS)

    Freund, A K; Rehm, C

    2014-01-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to 'see' the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  19. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    Science.gov (United States)

    Freund, A. K.; Rehm, C.

    2014-07-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  20. Role of non-convexity in characterizing single-scattering properties for ensembles of non-spherical precipitation particles

    Science.gov (United States)

    Kuo, K.; Clune, T.; Pearson, C.; Olson, W. S.; Skofronick-Jackson, G.; Gravner, J.; Griffeath, D.

    2010-12-01

    This study improves upon an earlier, preliminary study using only three size bins based on maximum diameter in which it is found that the single-scattering properties of ensembles of non-spherical precipitation particles can be better characterized by considering the non-convexity of these particles. The difficulty of retrievals involving non-spherical particles stems not only from the fact that these particles are not spherical but also the fact that the shape composition of an ensemble of particles is usually unknown and the possibility of its mixture is infinite. Being able to adequately characterize the single-scattering properties of ensembles involving these non-spherical particles with as few parameters as possible is at the heart of solving this thorny remote sensing problem. Inspired by how well three parameters, i.e. water content, effective radius, and effective variance (or their equivalent), characterize the single-scattering properties of an ensemble of spherical particles of varying sizes, we set out to find additional parameters that generalize these three for ensembles of non-spherical particles. We find that a non-convexity measure appears to be one of these additional parameters. Non-convexity is expressed as a ratio of two effective radii derived from the moments of a given particle size distribution (PSD), each of which is in essence a ratio of ensemble particle volume to area. The effective radius in the numerator (denoted as rA) of the non-convexity ratio is based on the projection area of the particle ensemble whereas the one in the denominator (denoted as rS) is based on the surface area. In the preliminary study with PSDs having only three size bins, it is found that variations in the single-scattering properties, such as the scattering and extinction coefficients, the asymmetry factor, and even the scattering phase function, of a particle ensemble with a specified water content are very limited (practically non-existent), if 1) the habit

  1. Application of the method of continued fractions for electron scattering by linear molecules

    International Nuclear Information System (INIS)

    Lee, M.-T.; Iga, I.; Fujimoto, M.M.; Lara, O.; Brasilia Univ., DF

    1995-01-01

    The method of continued fractions (MCF) of Horacek and Sasakawa is adapted for the first time to study low-energy electron scattering by linear molecules. Particularly, we have calculated the reactance K-matrices for an electron scattered by hydrogen molecule and hydrogen molecular ion as well as by a polar LiH molecule in the static-exchange level. For all the applications studied herein. the calculated physical quantities converge rapidly, even for a strongly polar molecule such as LiH, to the correct values and in most cases the convergence is monotonic. Our study suggests that the MCF could be an efficient method for studying electron-molecule scattering and also photoionization of molecules. (Author)

  2. Handbook of statistical methods single subject design

    CERN Document Server

    Satake, Eiki; Maxwell, David L

    2008-01-01

    This book is a practical guide of the most commonly used approaches in analyzing and interpreting single-subject data. It arranges the methodologies used in a logical sequence using an array of research studies from the existing published literature to illustrate specific applications. The book provides a brief discussion of each approach such as visual, inferential, and probabilistic model, the applications for which it is intended, and a step-by-step illustration of the test as used in an actual research study.

  3. Quasiresonant scattering

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  4. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  5. Microdefects revealed by X-ray diffusion scattering in Czochralski-growth dislocation-free silicon single crystals

    International Nuclear Information System (INIS)

    Bublik, B.T.; Zotov, N.M.

    1997-01-01

    Microdefects in the regions of Si crystals having different thermal history defined by growth conditions was studied by the X-ray diffuse scattering method on a triple crystal X-ray diffractometer. It was shown that in such crystals the microdefects with positive strength are prevalent. However, between the above indicated regions the defects with the strength of opposite sign prevail

  6. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5.

    Science.gov (United States)

    Gutmann, M J; Refson, K; Zimmermann, M V; Swainson, I P; Dabkowski, A; Dabkowska, H

    2013-08-07

    Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy x-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to be primarily due to thermal motion of the atoms. Ab initio phonons are calculated using density-functional perturbation theory and are shown to reproduce the experimental diffuse scattering. The observed diffuse x-ray and neutron scattering patterns are consistent with a summation of mode frequencies and displacement eigenvectors associated with the entire phonon spectrum, rather than with a simple, short-range static displacement. A band gap is observed between 600 and 700 cm(-1) with only two modes crossing this region, both associated with antiferroelectric Ti-O motion along a. One of these modes (of Bu symmetry), displays a large LO-TO mode-splitting (562-701.4 cm(-1)) and has a dominant component coming from Ti-O bond-stretching and, thus, the mode-splitting is related to the polarizability of the Ti-O bonds along the chain direction. Similar mode-splitting is observed in piezo- and ferroelectric materials. The calculated phonon dispersion model may be of use to others in future to understand the phase transition at higher temperatures, as well as in the interpretation of measured phonon dispersion curves.

  7. Single-electron capture for 2-8 keV incident energy and direct scattering at 6 keV in He[sup 2+]-He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D.; Dagnac, R. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique)

    1992-06-14

    We studied the single-electron capture as well as the direct processes occurring when a He[sup 2+] ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3[sup o]30' (laboratory frame). Single-electron capture into excited states of He[sup +] was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author).

  8. Δ33 resonance in pion nucleus elastic, single, and double charge exchange scattering

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1983-01-01

    The Δ 33 resonance is strongly excited in pion-nucleon scattering, but there is clearly only a limited amount of information that can be learned in scattering the pion from an isolated nucleon. One learns that there is a resonance of mass 1232 MeV, width 115 MeV, and, if one is willing to introduce a dynamical model, something about the off-shell extension of the amplitude. One stands to learn much more from pion-nucleus scattering because in this case the Δ 33 resonance has an opportunity to scatter from nucleons, and how this occurs is not well understood. What do we know about the Δ-N interaction for pion-nucleus scattering. The isobar-hole model was invented to deal directly with the Δ 33 -nucleus dynamics, and a phenomenological determination of the isobar shell-model potential was attempted. The unknown dynamics deltaU/sub Δ/ is contained in a central isoscalar spreading potential of strength W 0 and a spin orbit potential deltaU 0 = W 0 rho + spin-orbit. The real part of W 0 rho is measured relative to the nucleon-nucleus potential. From a more theoretical point of view, one would like to be able to calculate deltaU/sub Δ/, including its isospin dependence, from an underlying dynamical model which is formulated in terms of the basic effective meson-baryon couplings. Some salient properties of these couplings can be determined from models of quark-bag structure, which raises the exciting possibility of learning about these fundamental issues from pion scattering. Attempts at Los Alamos to build a theoretical framework to deal with these and other issues are described

  9. Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation

    International Nuclear Information System (INIS)

    Arkadiev, V.A.; Pogrebkov, A.K.; Polivanov, M.C.

    1989-01-01

    The inverse scattering method for Davey-Stewartson II (DS-II) equation including both soliton and continuous spectrum solutions is developed. The explicit formulae for N-soliton solutions are given. Note that our solitons decrease as |z| -2 with z tending to infinity. (author). 8 refs

  10. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the

  11. The structural and compositional analysis of single crystal surfaces using low energy ion scattering

    International Nuclear Information System (INIS)

    Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.

    1979-01-01

    The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)

  12. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  13. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  14. Analysis of Proton-Nucleus Scattering Data with a Simplified Resonating-Group Method

    Science.gov (United States)

    Kaneko, T.; Tang, Y.

    1993-12-01

    A nonlocal optical model is used to analyze proton-nucleus scattering data for target nuclei with nucleon numbers ranging from 12 to 208 and for proton energies from 16 to 65 MeV. The real part is provided by a recently-formulated simplified RGM method called model K. The imaginary part is purely phenomenological, and is obtained by simply adopting the imaginary potentials determined previously by other investigators with the usual local optical model. The influence of the Perey effect is taken into account by the introduction of an energy-dependent multiplicative factor. The results show that, with minimal effort, a good agreement between calculation and experiment for both the differential scattering cross section and the analyzing power can be achieved. This indicates that model K represents a simple and realistic approach, and can be used to construct a global nonlocal optical model for the systematic study of all existing nucleon-nucleus scattering data.

  15. Experimental investigation of exotic clustering in 13B and 14C using the resonance scattering method

    Science.gov (United States)

    Di Pietro, A.; Fernández-García, J. P.; Ferrera, F.; Figuera, P.; Fisichella, M.; Lattuada, M.; Marletta, S.; Marchetta, C.; Torresi, D.; Alcorta, M.; Borge, M. J. G.; Davinson, T.; Heinitz, S.; Laird, A. M.; Shotter, A. C.; Schumann, D.; Soic, N.; Tengblad, O.; Zadro, M.

    2018-02-01

    In order to investigate the existence of molecular and/or exotic cluster configurations in Boron and Carbon n-rich isotopes we undertook two experiments: the first experimental study of exotic 9Li+α cluster states in 13B using the resonance scattering method at TRIUMF (Canada), and, with the same technique, the measurement of 10Be+α scattering at LNS in Catania, where a 10Be radioactive beam was produced for the first time. In order to measure the excitation function in a wide energy range, the beams were stopped in a Helium-flooded chamber. In the case of 13B, the elastic excitation function shows the presence of various peaks in an excitation energy region never explored before. In the case of 14C, our exclusive measurement of elastic scattering data with a high intensity beam, sheds some light on the contradictory previously published results [1, 2].

  16. Bulk domain sizes determined by complementary scattering methods in polycrystalline Fe

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)]. E-mail: volker.wagner@ptb.de; Bellmann, Dieter [GKSS-Forschungszentrum, Max-Planck Str.1, 21502 Geesthacht (Germany)

    2007-07-15

    This work gives an experimental comparison between neutron depolarization and the small-angle scattering for the determination of magnetic domains. As sample several foils of rolled, highly pure Fe were used. The magnetic domain size was determined by three-dimensional neutron depolarization (ND) and by ultra small-angle neutron scattering (USANS). In the virgin sample, the overall mean domain size equals about 2.8 {mu}m determined by ND. The mean radius of magnetic scattering determined by USANS equals 3.0 {mu}m for volume weighted region. There is fair agreement in determining the magnetic domains in the range of several microns between the methods assuming either depolarization or USANS.

  17. Bulk domain sizes determined by complementary scattering methods in polycrystalline Fe

    International Nuclear Information System (INIS)

    Wagner, Volker; Bellmann, Dieter

    2007-01-01

    This work gives an experimental comparison between neutron depolarization and the small-angle scattering for the determination of magnetic domains. As sample several foils of rolled, highly pure Fe were used. The magnetic domain size was determined by three-dimensional neutron depolarization (ND) and by ultra small-angle neutron scattering (USANS). In the virgin sample, the overall mean domain size equals about 2.8 μm determined by ND. The mean radius of magnetic scattering determined by USANS equals 3.0 μm for volume weighted region. There is fair agreement in determining the magnetic domains in the range of several microns between the methods assuming either depolarization or USANS

  18. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering.

    Science.gov (United States)

    Wahle, Chris W; Ross, David S; Thurston, George M

    2013-09-28

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  19. Energy loss of light ions scattered off Al(110) single crystal surfaces at low energy

    NARCIS (Netherlands)

    Hausmann, S; Hofner, C; Schlathölter, Thomas; Franke, H; Narmann, A; Heiland, W

    We present energy loss data taken after grazing incidence scattering of H+, H-0, He2+, He+, and He-0 off an Al(110) surface, The data is evaluated by means of a procedure that allows to extract surface electron density parameters. The obtained density parameters will be compared to those obtained

  20. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan; Rafalovskyi, Iegor; Gregora, Ivan; Borodavka, Fedir; Savinov, Maxim; Drahokoupil, Jan; Tyunina, Marina; Kocourek, Tomáš; Jelínek, Miroslav; Bing, Y.; Ye, Z. -G.; Hlinka, Jiří

    2015-01-01

    Roč. 5, č. 2 (2015), "1550013-1"-"1550013-6" ISSN 2010-135X R&D Projects: GA ČR GA15-04121S; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : PSN * relaxors * ferroelectrics * complex perovskites * Raman scattering Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods.

    Science.gov (United States)

    Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M

    2017-04-15

    The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Single-Spin Asymmetries in Semi-Inclusive Deep-Inelastic Scattering on a Transversely Polarized Hydrogen Target

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Amarian, M.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Bacchetta, A.; Bailey, P.; Balin, D.; Beckmann, M.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Borissov, A.; Borysenko, A.; Bouwhuis, M.; Brüll, A.; Bryzgalov, V.; Capitani, G. P.; Cappiluppi, M.; Chen, T.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Leo, R. De; Demey, M.; Nardo, L. De; Sanctis, E. De; Devitsin, E.; Nezza, P. Di; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Fechtchenko, A.; Felawka, L.; Frullani, S.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Garrow, K.; Gavrilov, G.; Gharibyan, V.; Grebeniouk, O.; Gregor, I. M.; Hadjidakis, C.; Hafidi, K.; Hartig, M.; Hasch, D.; Henoch, M.; Hesselink, W. H.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Hristova, I.; Iarygin, G.; Ilyichev, A.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Kinney, E.; Kisselev, A.; Kobayashi, T.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Krauss, B.; Krivokhijine, V. G.; Lagamba, L.; Lapikás, L.; Laziev, A.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lorenzon, W.; Lu, H.; Lu, J.; Lu, S.; Ma, B.-Q.; Maiheu, B.; Makins, N. C.; Mao, Y.; Marianski, B.; Marukyan, H.; Masoli, F.; Mexner, V.; Meyners, N.; Michler, T.; Mikloukho, O.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Oganessyan, K.; Ohsuga, H.; Osborne, A.; Pickert, N.; Potterveld, D. H.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Savin, I.; Schäfer, A.; Schill, C.; Schnell, G.; Schüler, K. P.; Seele, J.; Seidl, R.; Seitz, B.; Shanidze, R.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Sinram, K.; Sommer, W.; Stancari, M.; Statera, M.; Steffens, E.; Steijger, J. J.; Stenzel, H.; Stewart, J.; Stinzing, F.; Tait, P.; Tanaka, H.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P. B.; van der Steenhoven, G.; van Haarlem, Y.; Vetterli, M. C.; Vikhrov, V.; Vincter, M. G.; Vogel, C.; Volmer, J.; Wang, S.; Wendland, J.; Wilbert, J.; Smit, G. Ybeles; Ye, Y.; Ye, Z.; Yen, S.; Zihlmann, B.; Zupranski, P.

    2005-01-01

    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ) and the target spin axis (ϕS) about the virtual-photon direction and relative to the lepton scattering plane. The extracted Fourier component πUT is a signal of the previously unmeasured quark transversity distribution, in conjunction with the Collins fragmentation function, also unknown. The component πUT arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson production.

  3. Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique

    International Nuclear Information System (INIS)

    Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd

    2011-01-01

    We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW

  4. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  5. Propagation-inside-layer-expansion method combined with physical optics for scattering by coated cylinders, a rough layer, and an object below a rough surface.

    Science.gov (United States)

    Bourlier, Christophe; Pinel, Nicolas; Kubické, Gildas

    2013-09-01

    In this article, the fields scattered by coated cylinders, a rough layer, and an object below a rough surface are computed by the efficient propagation-inside-layer-expansion (PILE) method combined with the physical optics (PO) approximation to accelerate the calculation of the local interactions on the non-illuminated scatterer, which is assumed to be perfectly conducting. The PILE method is based on the method of moments, and the impedance matrix of the two scatterers is then inverted by blocks from a Taylor series expansion of the inverse of the Schur complement. Its main interest is that it is rigorous, with a simple formulation and a straightforward physical interpretation. In addition, one of the advantages of PILE is to be able to hybridize methods (rigorous or asymptotic) valid for a single scatterer. Then, in high frequencies, the hybridization with PO allows us to significantly reduce the complexity in comparison to a direct lower-upper inversion of the impedance matrix of the two scatterers without loss in accuracy.

  6. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  7. X-ray scatter correction method for dedicated breast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, 1701 Upper Gate Drive NE, Suite 5018, Atlanta, Georgia 30322 (United States)

    2012-05-15

    Purpose: To improve image quality and accuracy in dedicated breast computed tomography (BCT) by removing the x-ray scatter signal included in the BCT projections. Methods: The previously characterized magnitude and distribution of x-ray scatter in BCT results in both cupping artifacts and reduction of contrast and accuracy in the reconstructions. In this study, an image processing method is proposed that estimates and subtracts the low-frequency x-ray scatter signal included in each BCT projection postacquisition and prereconstruction. The estimation of this signal is performed using simple additional hardware, one additional BCT projection acquisition with negligible radiation dose, and simple image processing software algorithms. The high frequency quantum noise due to the scatter signal is reduced using a noise filter postreconstruction. The dosimetric consequences and validity of the assumptions of this algorithm were determined using Monte Carlo simulations. The feasibility of this method was determined by imaging a breast phantom on a BCT clinical prototype and comparing the corrected reconstructions to the unprocessed reconstructions and to reconstructions obtained from fan-beam acquisitions as a reference standard. One-dimensional profiles of the reconstructions and objective image quality metrics were used to determine the impact of the algorithm. Results: The proposed additional acquisition results in negligible additional radiation dose to the imaged breast ({approx}0.4% of the standard BCT acquisition). The processed phantom reconstruction showed substantially reduced cupping artifacts, increased contrast between adipose and glandular tissue equivalents, higher voxel value accuracy, and no discernible blurring of high frequency features. Conclusions: The proposed scatter correction method for dedicated breast CT is feasible and can result in highly improved image quality. Further optimization and testing, especially with patient images, is necessary to

  8. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  9. Progress on hybrid finite element methods for scattering by bodies of revolution

    Science.gov (United States)

    Collins, Jeffery D.; Volakis, John L.

    1992-01-01

    Progress on the development and implementation of hybrid finite element methods for scattering by bodies of revolution are described. It was found that earlier finite element-boundary integral formulations suffered from convergence difficulties when applied to large and thin bodies of revolution. An alternative implementation is described where the finite element method is terminated with an absorbing termination boundary. In addition, an alternative finite element-boundary integral implementation is discussed for improving the convergence of the original code.

  10. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas

  11. Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering

    OpenAIRE

    Gnezdilov, V. P.; Pashkevich, Yu. G.; Tranquada, J. M.; Lemmens, P.; Guentherodt, G.; Yeremenko, A. V.; Barilo, S. N.; Shiryaev, S. V.; Kurnevich, L. A.; Gehring, P. M.

    2004-01-01

    We report a neutron and Raman scattering study of a single-crystal of La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic neutron scattering measurements show the presence of two phases, corresponding to the two edges of the first miscibility gap, all the way up to 300 K. An additional oxygen redistribution, driven by electronic energies, is identified at 250 K in Raman scattering (RS) experiments by the simultaneous onset of two-phonon and two-magnon scattering, wh...

  12. Correction for scatter in 3D brain PET using a dual energy window method

    International Nuclear Information System (INIS)

    Grootoonk, S.; Spinks, T.J.; Jones, T.; Sashin, D.; Spyrou, N.M.

    1996-01-01

    A method for scatter correction using dual energy window acquisition has been developed and implemented on data collected with a brain-PET tomograph operated in the septa retracted, 3D mode. Coincidence events are assigned to (i) an upper energy window where both photons deposit energy between 380 keV and 850 keV or (ii) a lower energy window where one or both photons deposit within 200 keV and 380 keV. Scaling parameters are derived from measurements of the ratios of counts from line sources due to scattered and unscattered events in the two energy windows in head-sized phantoms. A scaled subtraction of the two energy windows produces a distribution of scatter which is smoothed prior to subtraction from the upper energy window. In phantoms, the correction was found to restore the uniformity, contrast and linearity of activity concentration. Relative activity concentrations were restored to within 7% of their true values in a multicompartment phantom. The method was found to provide accurate correction for scattered events arising from activity outside the direct detector field of view. In a three-compartment phantom containing water, 18 F and 11 C scanned in dynamic, multiframe mode, the half-lives of the two isotopes were restored to within 2% of their true value. (author)

  13. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    International Nuclear Information System (INIS)

    Bakhlanov, S.V.; Bazlov, N.V.; Derbin, A.V.; Drachnev, I.S.; Kayunov, A.S.; Muratova, V.N.; Semenov, D.A.; Unzhakov, E.V.

    2016-01-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  14. Fast multipole accelerated boundary element method for the Helmholtz equation in acoustic scattering problems

    Science.gov (United States)

    Li, ShanDe; Gao, GuiBing; Huang, QiBai; Liu, WeiQi; Chen, Jun

    2011-08-01

    We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to overcome non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.

  15. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  16. Temperature measurement of single evaporating water droplets in a nitrogen flow using spontaneous Raman scattering.

    Science.gov (United States)

    Heinisch, Christian; Wills, Jon B; Reid, Jonathan P; Tschudi, Theo; Tropea, Cameron

    2009-11-14

    The evaporation dynamics of stationary water droplets held within an electrodynamic trap are investigated in a nitrogen flow of variable velocity. In particular, the influence of the nitrogen gas flow on the temperature of the evaporating water droplets is studied. By applying a contact free measurement technique, based on spontaneous Raman scattering, time averaged and time resolved measurements of temperature in the droplet volume are compared. This technique determines the temperature from an intensity ratio in the OH stretching band of the Stokes-Raman scattering after calibration. The measured trends in temperature over the first 5 s of evaporation are found to be in agreement with theoretical calculations of the heat and mass transfer rates.

  17. Probing Amorphous Components in High Temperature TE Materials by in situ Total Scattering and the Pair Distribution Function (PDF) Method

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    .e., by measuring both the Bragg and diffuse scattering from a sample. This method has rarely been exploited by the non-oxide thermoelectrics community. , , Treating total scattering data by the Pair Distribution Function method is a logical approach to understanding defects, disorder and amorphous components...

  18. Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models.

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J.; Ho, Chang-Hoi; Yan, Michael M.-H.; Lee, Kyu-Tae

    1998-02-01

    Parameterizations for cloud single-scattering properties and the scaling of optical thickness in a partial cloudiness condition have been developed for use in atmospheric models. Cloud optical properties are parameterized for four broad bands in the solar (or shortwave) spectrum; one in the ultraviolet and visible region and three in the infrared region. The extinction coefficient, single-scattering albedo, and asymmetry factor are parameterized separately for ice and water clouds. Based on high spectral-resolution calculations, the effective single-scattering coalbedo of a broad band is determined such that errors in the fluxes at the top of the atmosphere and at the surface are minimized. This parameterization introduces errors of a few percent in the absorption of shortwave radiation in the atmosphere and at the surface.Scaling of the optical thickness is based on the maximum-random cloud-overlapping approximation. The atmosphere is divided into three height groups separated approximately by the 400- and 700-mb levels. Clouds are assumed maximally overlapped within each height group and randomly overlapped among different groups. The scaling is applied only to the maximally overlapped cloud layers in individual height groups. The scaling as a function of the optical thickness, cloud amount, and the solar zenith angle is derived from detailed calculations and empirically adjusted to minimize errors in the fluxes at the top of the atmosphere and at the surface. Different scaling is used for direct and diffuse radiation. Except for a large solar zenith angle, the error in fluxes introduced by the scaling is only a few percent. In terms of absolute error, it is within a few watts per square meter.

  19. Discrete ordinates transport methods for problems with highly forward-peaked scattering

    International Nuclear Information System (INIS)

    Pautz, S.D.

    1998-04-01

    The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method

  20. Development of single shot 1D-Raman scattering measurements for flames

    Science.gov (United States)

    Biase, Amelia; Uddi, Mruthunjaya

    2017-11-01

    The majority of energy consumption in the US comes from burning fossil fuels which increases the concentration of carbon dioxide in the atmosphere. The increasing concentration of carbon dioxide in the atmosphere has negative impacts on the environment. One solution to this problem is to study the oxy-combustion process. A pure oxygen stream is used instead of air for combustion. Products contain only carbon dioxide and water. It is easy to separate water from carbon dioxide by condensation and the carbon dioxide can be captured easily. Lower gas volume allows for easier removal of pollutants from the flue gas. The design of a system that studies the oxy-combustion process using advanced laser diagnostic techniques and Raman scattering measurements is presented. The experiments focus on spontaneous Raman scattering. This is one of the few techniques that can provide quantitative measurements of the concentration and temperature of different chemical species in a turbulent flow. The experimental design and process of validating the design to ensure the data is accurate is described. The Raman data collected form an experimental data base that is used for the validation of spontaneous Raman scattering in high pressure environments for the oxy-combustion process. NSF EEC 1659710.

  1. Evaluation of the ICS and DEW scatter correction methods for low statistical content scans in 3D PET

    International Nuclear Information System (INIS)

    Sossi, V.; Oakes, T.R.; Ruth, T.J.

    1996-01-01

    The performance of the Integral Convolution and the Dual Energy Window scatter correction methods in 3D PET has been evaluated over a wide range of statistical content of acquired data (1M to 400M events) The order in which scatter correction and detector normalization should be applied has also been investigated. Phantom and human neuroreceptor studies were used with the following figures of merit: axial and radial uniformity, sinogram and image noise, contrast accuracy and contrast accuracy uniformity. Both scatter correction methods perform reliably in the range of number of events examined. Normalization applied after scatter correction yields better radial uniformity and fewer image artifacts

  2. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)

    OpenAIRE

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-01-01

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a stro...

  3. Study of low-energy magnetic excitations in single-crystalline CeIn sub 3 by inelastic neutron scattering

    CERN Document Server

    Knafo, W; Fak, B; Lapertot, G; Canfield, P C; Flouquet, J

    2003-01-01

    Inelastic neutron scattering experiments were performed on single crystals of the heavy-fermion compound CeIn sub 3 for temperatures below and above the Neel temperature, T sub N. In the antiferromagnetically ordered phase, well-defined spin-wave excitations with a bandwidth of 2 meV are observed. The spin waves coexist with quasielastic (QE) Kondo-type spin fluctuations and broadened crystal-field (CF) excitations below T sub N. Above T sub N , only the QE and CF excitations persist, with a weak temperature dependence.

  4. Variable single-passband narrowband optical filter based on forward stimulated interpolarization scattering in photonic crystal fiber.

    Science.gov (United States)

    Qin, Yi; Sun, Junqiang; Du, Mingdi; Liao, Jianfei

    2012-09-01

    A variable transmission spectrum single-passband narrowband optical filter is proposed and experimentally demonstrated. It is based on forward stimulated interpolarization scattering (SIPS) in a photonic crystal fiber by applying a differential quadrature phase-shift keying modulation to the pump wave to broaden and shape the SIPS gain spectrum. By choosing the bit rate of the modulation data pattern, a flat-top steep-cutoff optical bandpass filter with a 3 dB bandwidth of 70 MHz and a 10 dB bandwidth of 90 MHz is realized. In addition, a variable narrowband optical notch filter is also realized by attenuation of the pump wave.

  5. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar

    2014-01-22

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-05-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs by atmospheric black carbon (BC when it is coated in mildly absorbing material (CBrown is reduced relative to the enhancement induced by non-absorbing coatings (CClear. This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model

  7. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0{+-}4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22{+-}0.09>0.87{+-}0.22 p<0.01). The lenticular nuclear uptake ratio in SAC method was higher than that of STD method (1.26{+-}0.15>1.02{+-}0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  8. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  9. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.

    Science.gov (United States)

    Umhauer, H; Bottlinger, M

    1991-11-20

    To evaluate quantitatively the influence exerted by the shape and structure of nonspherical, nonideal particles on the results of single-particle scattered-light size analysis, measurements were conducted with individual particles of different materials (glass, limestone, and quartz). For this purpose, the particles were suspended in an electrodynamic balance and repeatedly passed through the analyzer's measuring volume with a continually changing random orientation. The scattered-light signal spectra thus obtained specify the probability with which a certain pulse height is induced when the particle passes once through the measuring volume at a given coincidental orientation. The spectra reflect the material-characteristic influence. They allow the loss of resolution of common scattered-light size analyses to be assessed and algorithms (matrices) to be compiled with which the shape and structure influence may be mathematically eliminated. Because a shape and structure independent size parameter is also determined from the individual particles, exact calibration curves can be derived in which the shape and structure influence are incorporated.

  10. Solution of scattering from rough surface with a 2D target above it by a hybrid method based on the reciprocity theorem and the forward–backward method

    International Nuclear Information System (INIS)

    Wang Yunhua; Zhang Yanmin; He Mingxia; Guo Lixin

    2008-01-01

    This paper proposes a hybrid method based on the forward–backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface. (classical areas of phenomenology)

  11. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.

    2014-01-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit to the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation

  12. Experimental validation of a multi-energy x-ray adapted scatter separation method

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  13. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    OpenAIRE

    Freund, A.K.; Rehm, C.

    2014-01-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorp...

  14. A Least-Squares Finite Element Method for Electromagnetic Scattering Problems

    Science.gov (United States)

    Wu, Jie; Jiang, Bo-nan

    1996-01-01

    The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.

  15. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    International Nuclear Information System (INIS)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0±4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22±0.09>0.87±0.22 p 1.02±0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  16. A Rejection Sampling Based Method for Determining Thermal Scattering Angle and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Haugen, Carl C.; Forget, Benoit; Smith, Kord S.

    2017-09-01

    Most high performance computing systems being deployed currently and envisioned for the future are based on making use of heavy parallelism across many computational nodes and many concurrent cores. These types of heavily parallel systems often have relatively little memory per core but large amounts of computing capability. This places a significant constraint on how data storage is handled in many Monte Carlo codes. This is made even more significant in fully coupled multiphysics simulations, which requires simulations of many physical phenomena be carried out concurrently on individual processing nodes, which further reduces the amount of memory available for storage of Monte Carlo data. As such, there has been a move towards on-the-fly nuclear data generation to reduce memory requirements associated with interpolation between pre-generated large nuclear data tables for a selection of system temperatures. Methods have been previously developed and implemented in MIT’s OpenMC Monte Carlo code for both the resolved resonance regime and the unresolved resonance regime, but are currently absent for the thermal energy regime. While there are many components involved in generating a thermal neutron scattering cross section on-the-fly, this work will focus on a proposed method for determining the energy and direction of a neutron after a thermal incoherent inelastic scattering event. This work proposes a rejection sampling based method using the thermal scattering kernel to determine the correct outgoing energy and angle. The goal of this project is to be able to treat the full S (a, ß) kernel for graphite, to assist in high fidelity simulations of the TREAT reactor at Idaho National Laboratory. The method is, however, sufficiently general to be applicable in other thermal scattering materials, and can be initially validated with the continuous analytic free gas model.

  17. Collisions of Slow Polyatomic Ions with Surfaces: The Scattering Method and Results

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2003-01-01

    Roč. 14, - (2003), s. 1360-1372 ISSN 1044-0305 R&D Projects: GA ČR GA203/97/0351; GA ČR GA203/00/0632; GA MŠk ME 188; GA MŠk ME 561 Institutional research plan: CEZ:AV0Z4040901 Keywords : surface-induced * collisions * scattering method Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.321, year: 2003

  18. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  19. Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering.

    Science.gov (United States)

    Kastrisianaki-Guyton, E S; Chen, L; Rogers, S E; Cosgrove, T; van Duijneveldt, J S

    2016-06-15

    Aqueous dispersions of single-walled carbon nanotubes are often made using sodium dodecylsulfate (SDS), which adsorbs to the nanotube surface to stabilise them. Despite SDS being commonly used with single-walled carbon nanotubes, there is no consensus on the structure of the adsorbed layer. Small-angle neutron and X-ray scattering results reported here show that the data can be fitted to a relatively simple core-shell cylinder model, consistent with a polydisperse nanotube core of radius 10Å, surrounded by an adsorbed surfactant layer of thickness 18Å and volume fraction of 0.5. This is consistent with small nanotube bundles surrounded by an adsorbed layer of extended SDS molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame

    Science.gov (United States)

    Pitz, Robert W.; Wehrmeyer, Joseph A.; Bowling, J. M.; Cheng, Tsarng-Sheng

    1990-01-01

    Spontaneous vibrational Raman scattering (VRS) is produced by a broadband excimer laser at 248 nm (KrF) in a H2-air flame, and VRS spectra are recorded for lean, stoichiometric, and rich flames. Except at very lean flame conditions, laser-induced fluorescence (LIF) processes interfere with VRS Stokes lines from H2, H2O, and O2. No interference is found for the N2 Stokes and N2 anti-Stokes lines. In a stoichiometric H2/air flame, single-pulse measurements of N2 concentration and temperature (by the VRS Stokes to anti-Stokes ratio) have a relative standard deviation of 7.7 and 10 percent, respectively. These single pulse measurement errors compare well with photon statistics calculations using measured Raman cross sections.

  1. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); Alsaedi, Ahmed; Hobiny, Aatef [NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Deng, Fu-Guo, E-mail: fgdeng@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2017-03-15

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.

  2. Volterra integral equation-factorisation method and nucleus-nucleus elastic scattering

    Science.gov (United States)

    Laha, U.; Majumder, M.; Bhoi, J.

    2018-04-01

    An approximate solution for the nuclear Hulthén plus atomic Hulthén potentials is constructed by solving the associated Volterra integral equation by series substitution method. Within the framework of supersymmetry-inspired factorisation method, this solution is exploited to construct higher partial wave interactions. The merit of our approach is examined by computing elastic scattering phases of the α {-}α system by the judicious use of phase function method. Reasonable agreements in phase shifts are obtained with standard data.

  3. Improvements in in-situ filter test methods using a total light-scattering detector

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1986-01-01

    This paper presents research aimed at providing useful data on a commonly used technique; a DOP (di-2-ethylhexyl phthalate) aerosol and a total light-scattering photometer. Methods of increasing the sensitivity of this technique are described. Alternative methods of in-situ filter testing are also considered. The sensitivity of a typical, modern, total light-scattering photometer, as a function of particle diameter, has a broad maximum in mass terms between 0.1 and 0.4 um. At its maximum usable sensitivity the instrument can detect approx. 1 particle/cm 3 . This response can be explained by light scattering theory and particle loss in the instrument inlet. The mass median diameter of the aerosols produced by various DOP generators varies from 0.2 to 1.0μm. Experiments with good quality HEPA filters indicate a maximum penetration for particles of 0.15 - 0.2μm. Details of the studies are given and the consequences discussed. It is shown that filter penetration of -3 % can be measured in-situ with existing equipment. Methods of extending the sensitivity to measure a penetration of approx.10 -5 % are described. (author)

  4. Method of estimating 10 MV X-ray irregular field dose using the collimator scatter factor (Sc) and phantom scatter factor (Sp)

    International Nuclear Information System (INIS)

    Nara, Tetsuzo; Sato, Kazuhiko; Komai, Fumio; Fukushi, Hideto; Horanai, Yoshiaki; Iwasaki, Akira

    2004-01-01

    It has been found that in general 10 MV X-ray dose calculation can be made accurately for multi-leaf collimator irregular fields by using the total scatter factor (S cp ), collimator scatter factor (S c ), and phantom scatter factor (S c ) proposed by Khan et al. With respect to the collimator scatter factor (S c ), we used the field- mapping method of Kim et al. to obtain equivalent square fields of irregular fields (the collimator reverse effect can be accurately dissolved using the field-mapping method). Even for extremely small multi-leaf fields compared with the main collimator opening, X-ray output calculations could be made accurately by introducing the small segment correction (SSC) factor. With respect to the phantom scatter factor (S p ), highly accurate calculations could be made for irregular field irradiation by applying an F MLC (multi-leaf collimator (MLC) radiation leakage) factor to the equivalent square field (in cases in which the ratio of the multi-leaf equivalent square field side to the main collimator equivalent square field side is less than 0.6). However, it has been found that highly accurate dose calculations can, in general, be performed when the main collimator is limited just at the opening determined by the multi-leaf collimator field. (author)

  5. Spatial filtering technique to image and measure two-dimensional near-forward scattering from single particles.

    Science.gov (United States)

    Berg, Matthew J; Hill, Steven C; Videen, Gorden; Gurton, Kristan P

    2010-04-26

    This work describes the design and use of an optical apparatus to measure the far-field elastic light-scattering pattern for a single particle over two angular-dimensions. A spatial filter composed of a mirror with a small through-hole is used to enable collection of the pattern uncommonly close to the forward direction; to within tenths of a degree. Minor modifications of the design allow for the simultaneous measurement of a particle's image along with its two-dimensional scattering pattern. Example measurements are presented involving single micrometer-sized glass spherical particles confined in an electrodynamic trap and a dilute suspension of polystyrene latex particles in water. A small forward-angle technique, called Guinier analysis, is used to determine a particle-size estimate directly from the measured pattern without a priori knowledge of the particle refractive index. Comparison of these size estimates to those obtained by fitting the measurements to Mie theory reveals relative errors low as 2%.

  6. Evolution of radius and light scattering properties of single drying microdroplets of colloidal suspension

    Science.gov (United States)

    Archer, J.; Kolwas, M.; Jakubczyk, D.; Derkachov, G.; Woźniak, M.; Kolwas, K.

    2017-11-01

    We report on observation of well-pronounced characteristic features of elastic light scattering of evaporating solution and suspension microdroplet of the anionic surfactant sodium dodecyl sulfate (SDS) and colloidal silica (SiO2) nanospheres in diethylene glycol (DEG) during SDS surface layer and structure formation (crystallization). For pure DEG/SDS solution droplet evaporation process, characteristic evaporation transitions manifested in the evolution of the droplet radius, a(t) for all the SDS concentrations (C = 20 mM, 40 mM and 100 mM) studied as well as well-pronounced intensity signals characterizing SDS soft gel-solid transitions for initial SDS concentrations, C > 40 mM. In the case of microdroplets composed of DEG/SDS with controlled addition of colloidal silica, the intensity fluctuations were enhanced and had profiles dependent on the initial composition of the suspension. Exemplary wet droplets at the initial evaporation stages and final dry aggregates of SDS and SDS/SiO2 were deposited on a substrate and observed with Scanning Electron Microscopy (SEM). Features of the deposited structures correlate well with the elastic scattered light measurements characterizing the drying processes.

  7. Tip Enhanced Raman Scattering of Strained Silicon with Single and Multiple Probe Scanned Probe Microscopes.

    Science.gov (United States)

    Lewis, Aaron

    2007-03-01

    Raman spectroscopy is an effective tool for the identification and analysis of molecular components of complex materials. The spatial resolution of Raman spectroscopy is limited by the wavelength of the light. One approach to overcome this drawback is Surface Enhanced Raman Scattering (SERS). This technique uses nanometric interactions between metal structures and surfaces to effect enhancement of the Raman signals. An important mechanism for enhancement originates from an electrostatic lightning rod effect due to the excitation of localized surface plasmon resonances. This is accomplished in a scanned probe microscopy context by employing an ultra-sharp metalized tip that is brought into a focused laser spot on the sample surface thereby enhancing the Raman signal. In this technique also known as Tip Enhanced Raman Scattering (TERS) the electrical field is locally enhanced near the sharp metalized tip. Rastering the sample should then allow for Raman imaging with nanometric resolution. Within this context it will be shown that multiple probe scanned probe microscopes have considerable potential in such tip enhanced applications.

  8. Near-Infrared Absorption and Scattering Separated by Extended Inverted Signal Correction (EISC): Analysis of Near-Infrared Transmittance Spectra of Single Wheat Seeds

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Martens, Harald; Pram Nielsen, Jesper

    2002-01-01

    A new extended method for separating, e.g., scattering from absorbance in spectroscopic measurements, extended inverted signal correction (EISC), is presented and compared to multiplicative signal correction (MSC) and existing modiŽ cations of this. EISC preprocessing is applied to near-infrared...... transmittance (NIT) spectra of single wheat kernels with the aim of improving the multivariate calibration for protein content by partial least-squares regression (PLSR). The primary justiŽ cation of the EISC method is to facilitate removal of spectral artifacts and interferences that are uncorrelated to target...... of the EISC was found to be comparable to a more complex dual-transformation model obtained by Ž rst calculating the second derivative NIT spectra followed by MSC. The calibration model based on EISC preprocessing performed better than models based on the raw data, second derivatives, MSC, and MSC followed...

  9. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled ...

  10. A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation

    NARCIS (Netherlands)

    van Herk, Marcel; Ploeger, Lennert; Sonke, Jan-Jakob

    2011-01-01

    Acquisition of cone-beam CT (CBCT) concurrent with VMAT results in scatter of the megavoltage (MV) beam onto the kilovoltage (kV) detector deteriorating CBCT image quality. The aim of this paper is to develop a method to estimate and correct for MV scatter reaching the kV panel. The correction

  11. Application of the Method of Auxiliary Sources for the Analysis of Plane-Wave Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  12. Dynamic light scattering: A fast and reliable method to analyze bacterial growth during the lag phase.

    Science.gov (United States)

    Vargas, Susana; Millán-Chiu, Blanca E; Arvizu-Medrano, Sofía M; Loske, Achim M; Rodríguez, Rogelio

    2017-06-01

    A comparison between plate counting (PC) and dynamic light scattering (DLS) is reported. PC is the standard technique to determine bacterial population as a function of time; however, this method has drawbacks, such as the cumbersome preparation and handling of samples, as well as the long time required to obtain results. Alternative methods based on optical density are faster, but do not distinguish viable from non-viable cells. These inconveniences are overcome by using DLS. Two different bacteria strains were considered: Escherichia coli and Staphylococcus aureus. DLS was performed at two different illuminating conditions: continuous and intermittent. By the increment of particle size as a function of time, it was possible to observe cell division and the formation of aggregates containing very few bacteria. The scattered intensity profiles showed the lag phase and the transition to the exponential phase of growth, providing a quantity proportional to viable bacteria concentration. The results revealed a clear and linear correlation in both lag and exponential phase, between the Log 10 (colony-forming units/mL) from PC and the Log 10 of the scattered intensity I s from DLS. These correlations provide a good support to use DLS as an alternative technique to determine bacterial population. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of the method of hyperspherical functions to description of 16O + 16O elastic scattering

    International Nuclear Information System (INIS)

    Nazmitdinov, R.G.; Saupe, G.

    1983-01-01

    The potentials of nuclear interaction of 16 O+ 16 O. have been calculated in the framework of the folding model and in the energy-density formalism using the radial density distributions of the nuclei obtained by the method of hyperspherical functions. The dependence of the cross section of the elastic scattering in this system at various incident energies on the type of the nucleon-nucleon forces and the influence of the choice of the model for the nuclear interaction potential on the results have been investigated. Identical description of elastic scattering by using the realistic nuclear interaction potential on the basis of the finite-range forces and the potential calculated with the Skyrme delta-forces, respectively, indicate that three-particle forces have to be taken into account

  14. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  15. Solution of the neutron transport problem with anisotropic scattering in cylindrical geometry by the decomposition method

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de

    2009-01-01

    An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method

  16. A novel method for quantitative determination of tea polysaccharide by resonance light scattering

    Science.gov (United States)

    Wei, Xinlin; Xi, Xionggang; Wu, Muxia; Wang, Yuanfeng

    2011-09-01

    A new method for the determination of tea polysaccharide (TPS) in green tea ( Camellia sinensis) leaves has been developed. The method was based on the enhancement of resonance light scattering (RLS) of TPS in the presence of cetylpyridinium chloride (CPC)-NaOH system. Under the optimum conditions, the RLS intensity of CPC was greatly enhanced by adding TPS. The maximum peak of the enhanced RLS spectra was located at 484.02 nm. The enhanced RLS intensity was proportional to the concentration of TPS in the range of 2.0-20 μg/ml. It showed that the new method and phenol-sulfuric acid method give some equivalent results by measuring the standard compounds. The recoveries of the two methods were 96.39-103.7% (novel method) and 100.15-103.65% (phenol-sulfuric acid method), respectively. However, it showed that the two methods were different to some extent. The new method offered a limit of detection (LOD) of 0.047 μg/ml, whereas the phenol-sulfuric acid method gives a LOD of 1.54 μg/ml. Interfered experiment demonstrated that the new method had highly selectivity, and was more suitable for the determination of TPS than phenol-sulfuric method. Stability test showed that new method had good stability. Moreover, the proposed method owns the advantages of easy operation, rapidity and practicability, which suggested that the proposed method could be satisfactorily applied to the determination of TPS in green tea.

  17. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  18. Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review

    NARCIS (Netherlands)

    Muñoz, O.; Hovenier, J.W.

    2011-01-01

    In this paper we present an overview of light scattering experiments devoted to measure one or more elements of the scattering matrix as functions of the scattering angle of ensembles of randomly oriented small irregular particles in air. A summary of the most important findings in light scattering

  19. Multi-parameter Analysis and Inversion for Anisotropic Media Using the Scattering Integral Method

    KAUST Repository

    Djebbi, Ramzi

    2017-10-24

    The main goal in seismic exploration is to identify locations of hydrocarbons reservoirs and give insights on where to drill new wells. Therefore, estimating an Earth model that represents the right physics of the Earth\\'s subsurface is crucial in identifying these targets. Recent seismic data, with long offsets and wide azimuth features, are more sensitive to anisotropy. Accordingly, multiple anisotropic parameters need to be extracted from the recorded data on the surface to properly describe the model. I study the prospect of applying a scattering integral approach for multi-parameter inversion for a transversely isotropic model with a vertical axis of symmetry. I mainly analyze the sensitivity kernels to understand the sensitivity of seismic data to anisotropy parameters. Then, I use a frequency domain scattering integral approach to invert for the optimal parameterization. The scattering integral approach is based on the explicit computation of the sensitivity kernels. I present a new method to compute the traveltime sensitivity kernels for wave equation tomography using the unwrapped phase. I show that the new kernels are a better alternative to conventional cross-correlation/Rytov kernels. I also derive and analyze the sensitivity kernels for a transversely isotropic model with a vertical axis of symmetry. The kernels structure, for various opening/scattering angles, highlights the trade-off regions between the parameters. For a surface recorded data, I show that the normal move-out velocity vn, ƞ and δ parameterization is suitable for a simultaneous inversion of diving waves and reflections. Moreover, when seismic data is inverted hierarchically, the horizontal velocity vh, ƞ and ϵ is the parameterization with the least trade-off. In the frequency domain, the hierarchical inversion approach is naturally implemented using frequency continuation, which makes vh, ƞ and ϵ parameterization attractive. I formulate the multi-parameter inversion using the

  20. Detection of Melanoma Skin Cancer by Elastic Scattering Spectra: A Proposed Classification Method

    Directory of Open Access Journals (Sweden)

    Afshan Shirkavand

    2017-09-01

    Full Text Available Introduction: There is a strong need for developing clinical technologies and instruments for prompt tissue assessment in a variety of oncological applications as smart methods. Elastic scattering spectroscopy (ESS is a real-time, noninvasive, point-measurement, optical diagnostic technique for malignancy detection through changes at cellular and subcellular levels, especially important in early diagnosis of invasive skin cancer, melanoma. In fact, this preliminary study was conducted to provide a classification method for analyzing the ESS spectra. Elastic scattering spectra related to the normal skin and melanoma lesions, which were already confirmed pathologically, were provided as input from an ESS database. Materials and Methods: A program was developed in MATLAB based on singular value decomposition and K-means algorithm for classification. Results: Accuracy and sensitivity of the proposed classifying method for normal and melanoma spectra were 87.5% and 80%, respectively. Conclusion: This method can be helpful for classification of melanoma and normal spectra. However, a large body of data and modifications are required to achieve better sensitivity for clinical applications.

  1. A novel method for separating intrinsic and scattering attenuation for zero-offset vertical seismic profiling data

    Science.gov (United States)

    Matsushima, Jun; Ali, Mohammed Y.; Bouchaala, Fateh

    2017-12-01

    Intrinsic attenuation has the potential to clarify the physical properties of earth materials, whereas positive utilization of seismic scattering has been recognized as useful in investigating the heterogeneities thereof. However, it has not been easy to separate between intrinsic attenuation and scattering effects. The zero-offset vertical seismic profiling (VSP) survey is recognized to be ideal for attenuation estimation because the VSP survey observes direct waveforms propagating through subsurface formations. The most popular method of separating intrinsic and scattering attenuation generates numerical zero-offset VSP data from known velocity data, such as sonic velocity logs, and isolates the intrinsic attenuation by subtracting the synthetic scattering attenuation from the total attenuation. Numerical experiments have demonstrated the limitation of this conventional method due to its assumption that the intrinsic and scattering attenuation are independent each other. We should take into account the mutual interactions between the intrinsic and scattering attenuation. In order to overcome this limitation, we herein propose a novel method for separating intrinsic and scattering attenuation for zero-offset VSP data by reforming the modified median frequency shift (MMFS) method with seismic interferometry (SI) under the assumption that intrinsic and scattering attenuation are frequency independent and frequency dependent, respectively. The proposed method can simultaneously derive both intrinsic and scattering attenuation estimates from only VSP data without sonic and density well-log data. The numerical experiments of the present study also investigate the importance of parameter optimization in applying pre-processing filters in order to balance the resolving power and noise reduction effect. Finally, we apply the proposed method to zero-offset VSP data acquired in an onshore Abu Dhabi oil field in order to demonstrate the applicability of the proposed method

  2. Analytical method for analysis of electromagnetic scattering from inhomogeneous spherical structures using duality principles

    Science.gov (United States)

    Kiani, M.; Abdolali, A.; Safari, M.

    2018-03-01

    In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.

  3. Evaluation of the scattered radiation components produced in a gamma camera using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Polo, Ivon Oramas, E-mail: ivonoramas67@gmail.com [Department of Nuclear Engineering, Faculty of Nuclear Sciences and Technologies, Higher Institute of Applied Science and Technology (InSTEC), La Habana (Cuba)

    2014-07-01

    Introduction: this paper presents a simulation for evaluation of the scattered radiation components produced in a gamma camera PARK using Monte Carlo code SIMIND. It simulates a whole body study with MDP (Methylene Diphosphonate) radiopharmaceutical based on Zubal anthropomorphic phantom, with some spinal lesions. Methods: the simulation was done by comparing 3 configurations for the detected photons. The corresponding energy spectra were obtained using Low Energy High Resolution collimator. The parameters related with the interactions and the fraction of events in the energy window, the simulated events of the spectrum and scatter events were calculated. Results: the simulation confirmed that the images without influence of scattering events have a higher number of valid recorded events and it improved the statistical quality of them. A comparison among different collimators was made. The parameters and detector energy spectrum were calculated for each simulation configuration with these collimators using {sup 99m}Tc. Conclusion: the simulation corroborated that LEHS collimator has higher sensitivity and HEHR collimator has lower sensitivity when they are used with low energy photons. (author)

  4. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  5. Cheap arbitrary high order methods for single integrand SDEs

    DEFF Research Database (Denmark)

    Debrabant, Kristian; Kværnø, Anne

    2017-01-01

    For a particular class of Stratonovich SDE problems, here denoted as single integrand SDEs, we prove that by applying a deterministic Runge-Kutta method of order $p_d$ we obtain methods converging in the mean-square and weak sense with order $\\lfloor p_d/2\\rfloor$. The reason is that the B-series...

  6. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong

    2013-01-01

    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  7. Wavelength dependence of Ångström exponent and single scattering albedo observed by skyradiometer in Seoul, Korea

    Science.gov (United States)

    Koo, Ja-Ho; Kim, Jhoon; Lee, Jaehwa; Eck, Thomas F.; Lee, Yun Gon; Park, Sang Seo; Kim, Mijin; Jung, Ukkyo; Yoon, Jongmin; Mok, Jungbin; Cho, Hi-Ku

    2016-11-01

    Absorption and scattering characteristics of various aerosol events are investigated using 2-years of measurements from a skyradiometer at Yonsei University in Seoul, Korea. Both transported dust and anthropogenic aerosols are observed at distinct geo-location of Seoul, a megacity located a few thousand kilometers away from dust source regions in China. We focus on the wavelength dependence of Ångström exponent (AE) and single scattering albedo (SSA), showing the characteristics of regional aerosols. The correlation between spectral SSAs and AEs calculated using different wavelength pairs generally indicates relatively weak absorption of fine-mode aerosols (urban pollution and/or biomass burning) and strong absorption of coarse-mode aerosols (desert dust) at this location. AE ratio (AER), a ratio of AEs calculated using wavelength pair between shorter (340-675 nm) and longer wavelength pair (675-1020 nm) correlates differently with SSA according to the dominant size of local aerosols. Correlations between SSA and AER show strong absorption of aerosols for AER 2.0. Based on the seasonal pattern of wavelength dependence of AER and SSA, this correlation difference looks to reveal the separated characteristics of transported dust and anthropogenic particles from urban pollution respectively. The seasonal characteristics of AER and SSAs also show that the skyradiometer measurement with multiple wavelengths may be able to detect the water soluble brown carbon, one of the important secondary organic aerosols in the summertime atmospheric composition.

  8. Numerical Simulations of Single and Multiple Scattering by Fractal Ice Clusters

    Science.gov (United States)

    Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We consider the scattering model in the form of a vertically and horizontally homogeneous particulate slab of an arbitrary optical thickness composed of widely separated fractal aggregates built of small spherical ice monomers. The aggregates are generated by applying three different approaches, including simulated cluster-cluster aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind radar remote-sensing applications, we report and analyze the results of computations of the backscattering circular polarization ratio obtained using efficient superposition T-matrix and vector radiative-transfer codes. The computations have been performed at a wavelength of 12.6 cm for fractal aggregates with the following characteristics: monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing density p=0.2, overall aggregate radii R in the range 4fractal dimensions D(sub f) 2.5 and 3. We show that for aggregates generated with simulated CCA and DLA procedures, the respective values of the backscattering circular polarization ratio differ weakly for D(sub f) 2.5, but the differences can increase somewhat for D(sub f)3, especially in case of an optically semi-infinite medium. For aggregates with a spheroidal overall shape, the dependence of the circular polarization ratio on the cluster morphology can be quite significant and increases with increasing the aspect ratio of the circumscribing spheroid.

  9. [A method for assessing the total viable count of fresh meat based on hyperspectral scattering technique].

    Science.gov (United States)

    Song, Yu-Lin; Peng, Yan-Kun; Guo, Hui; Zhang, Lei-Lei; Zhao, Juan

    2014-03-01

    The objective of this study is to develop a hyperspectral imaging system to predict the bacteria total viable count in fresh pork. The hyperspectral scattering data were curvefitted by different fitting methods, and correlation differences of models were compared based on the bacteria total viable count of fresh pork, thus providing modeling basis of device for future study. Total 63 fresh pork samples which was used in the experiment were stored at 4 degrees C in the refrigerator of constant temperature. Experiment was performed everyday for 15 days. 4 or 5 random samples were used each day for the experiment. Hyperspectral scattering images and spectral scattering optical data in the wavelength region of 400 to 1 100 nm were acquired from the surface of all of the pork samples. Lorentz and Gompertz function and the modified function was applied to fit the scattering profiles of pork samples. Different parameters could be obtained by Lorentz and Gompertz fitting and the modified function fitting. The different parameters could represent the optical characteristic of the scattering profiles. The standard values of the bacteria total viable count of pork were obtained by classical microbiological plating methods. Because the standard value of the bacteria total viable count was big, log10 of the bacteria total viable count obtained by classical microbiological plating was used to simplify the calculation. Both individual parameters and integrated parameters were explored to develop the models. The multi-linear regression statistical approach was used to establish the models for predicting pork the bacteria total viable count. Both Lorentz and Gompertz function and the modified function included three and four parameters formula. The results showed that correlation coefficient of the models is higher with Lorentz three parameters combination, Lorentz four parameters combination and Gompertz four parameters combination than the individual parameters and other two or

  10. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties.

    Science.gov (United States)

    Zhang, Qiang; Moran, Christine H; Xia, Xiaohu; Rycenga, Matthew; Li, Naixu; Xia, Younan

    2012-06-19

    This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.

  11. Application of an efficient asymptotic analysis method to molecule-surface scattering

    Science.gov (United States)

    Mowrey, R. C.; Kroes, G. J.

    1995-07-01

    An improved method for performing asymptotic analysis developed by Balint-Kurti et al. [J. Chem. Soc. Faraday Trans. 86, 1741 (1990)] was used with the close-coupling wave packet (CCWP) method. S-matrix elements are computed from the time dependence of the wave packet amplitude at a dividing surface in the asymptotic region. The analysis technique can be combined in a natural way with the use of an optical potential to absorb the scattered wave function beyond the dividing surface and with a technique in which the initial wave function is brought in on a separate, one-dimensional grid, thereby allowing the use of a smaller grid. The use of the method in conjunction with the Chebyshev and short-iterative Lanczos propagation techniques is demonstrated for a model problem in which H2 is scattered from LiF(001). Computed S-matrix elements are in good agreement with those obtained using a time-independent close-coupling method.

  12. Single-Frame Attitude Determination Methods for Nanosatellites

    Directory of Open Access Journals (Sweden)

    Guler Demet Cilden

    2017-06-01

    Full Text Available Single-frame methods of determining the attitude of a nanosatellite are compared in this study. The methods selected for comparison are: Single Value Decomposition (SVD, q method, Quaternion ESTimator (QUEST, Fast Optimal Attitude Matrix (FOAM − all solving optimally the Wahba’s problem, and the algebraic method using only two vector measurements. For proper comparison, two sensors are chosen for the vector observations on-board: magnetometer and Sun sensors. Covariance results obtained as a result of using those methods have a critical importance for a non-traditional attitude estimation approach; therefore, the variance calculations are also presented. The examined methods are compared with respect to their root mean square (RMS error and variance results. Also, some recommendations are given.

  13. The UIC 406 capacity method used on single track sections

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.; Jacobsen, Erik M.

    2007-01-01

    follow each other in the same direction. Anyway, special care has to be shown to how to expound the UIC 406 capacity method in specific cases. Therefore, this paper discusses where to divide the railway lines into line sections and how crossing stations and junctions and conflicts when entering......This paper describes the relatively new UIC 406 capacity method which is an easy and effective way of calculating capacity consumption on railway lines. However, it is possible to expound the method in different ways which can lead to different capacity consumptions. This paper describes the UIC...... 406 method for single track lines and how it is expounded in Denmark. Many capacity analyses using the UIC 406 capacity method for double track lines have been carried out and presented internationally but only few capacity analyses using the UIC 406 capacity method on single track lines have been...

  14. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    Science.gov (United States)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  15. A 3D boundary integral equation method for ultrasonic scattering in a fluid-loaded elastic half space

    Science.gov (United States)

    Kimoto, K.; Hirose, S.

    2002-05-01

    This paper presents a boundary integral equation method for 3D ultrasonic scattering problems in a fluid-loaded elastic half space. Since full scale of numerical calculation using finite element or boundary element method is still very expensive, we formulate a boundary integral equation for the scattered field, which is amenable to numerical treatment. In order to solve the problem using the integral equation, however, the wave field without scattering objects, so-called free field need to be given in advance. We calculate the free field by the plane wave spectral method where the asymptotic approximation is introduced for computational efficiency. To show the efficiency of our method, scattering by a spherical cavity near fluid-solid interface is solved and the validity of the results is discussed.

  16. Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate

    Czech Academy of Sciences Publication Activity Database

    Sládková, M.; Vlčková, B.; Pavel, I.; Šišková, Karolína; Šlouf, Miroslav

    924-26, SI (2009), s. 567-570 ISSN 0022-2860. [European Congress on Molecular Spectroscopy /29./. Opatija, 31.08.2008-05.09.2008] R&D Projects: GA ČR GA203/07/0717; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40500505 Keywords : single molecule SERS * 4,4"-diaminoterphenyl * molecularly bridget Ag nanoparticle aggregates Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.551, year: 2009

  17. Single view reflectance capture using multiplexed scattering and time-of-flight imaging

    OpenAIRE

    Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak

    2011-01-01

    This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...

  18. Raman scattering study of the structural phase transition in single crystal KDy(MoO4)2

    Science.gov (United States)

    Peschanskii, A. V.

    2017-11-01

    Raman scattering of light in single-crystal KDy(MoO4)2 is studied at frequencies of 3-1000 cm-1 for temperatures ranging from 2 to 300 K, including that of a structural phase transition of the cooperative Jahn-Teller type (TC ˜ 14.5 K). During the transition to the low-temperature phase, a series of additional phonon lines corresponding to the Ag, B1g, B2g, and B3g modes is observed which indicates a doubling of the unit cell during the phase transition. An analysis of the symmetry of the phonon modes shows that the low-temperature phase has a predominantly monoclinic symmetry with conservation of a second order axis along the crystallographic b direction, i.e., perpendicular to the layers. Excitations are discovered which correspond to low-energy electronic transitions between levels of the ground-state 6H15/2 multiplet of the Dy3+ ion, which is split in the crystal field with a C2 symmetry. In the vicinity of the first excited Kramers doublet of the Dy3+ ion in crystalline KDy(MoO4)2, the scattered spectrum contains four lines [16.5, 21.0, 24.9, and 29.1 cm-1 (2 K)] at low temperatures, instead of a single line [18.3 cm-1 (25 K)] above the phase transition temperature (14.5 K). This indicates the existence of four nonequivalent dysprosium ions in the low-temperature phase.

  19. Functionalization of Single-walled Carbon Nanotubes with Thermo-reversible Block Copolymers and Characterization by Small-angle Neutron Scattering.

    Science.gov (United States)

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; Smith, Gregory S; Do, Changwoo

    2016-06-01

    We demonstrate a protocol for single-walled carbon nanotube functionalization using thermo-sensitive PEO-PPO-PEO triblock copolymers in an aqueous solution. In a carbon nanotube/PEO105-PPO70-PEO105 (poloxamer 407) aqueous solution, the amphiphilic poloxamer 407 adsorbs onto the carbon nanotube surfaces and self-assembles into continuous layers, driven by intermolecular interactions between constituent molecules. The addition of 5-methylsalicylic acid changes the self-assembled structure from spherical-micellar to a cylindrical morphology. The fabricated poloxamer 407/carbon nanotube hybrid particles exhibit thermo-responsive structural features so that the density and thickness of poloxamer 407 layers are also reversibly controllable by varying temperature. The detailed structural properties of the poloxamer 407/carbon nanotube particles in suspension can be characterized by small-angle neutron scattering experiments and model fit analyses. The distinct curve shapes of the scattering intensities depending on temperature control or addition of aromatic additives are well described by a modified core-shell cylinder model consisting of a carbon nanotube core cylinder, a hydrophobic shell, and a hydrated polymer layer. This method can provide a simple but efficient way for the fabrication and in-situ characterization of carbon nanotube-based nano particles with a structure-tunable encapsulation.

  20. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  1. Compositions and methods for detecting single nucleotide polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.

    2016-11-22

    Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.

  2. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So

    1998-01-01

    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  3. Characterization of single-crystal sapphire substrates by X-ray methods and atomic force microscopy

    International Nuclear Information System (INIS)

    Prokhorov, I. A.; Zakharov, B. G.; Asadchikov, V. E.; Butashin, A. V.; Roshchin, B. S.; Tolstikhina, A. L.; Zanaveskin, M. L.; Grishchenko, Yu. V.; Muslimov, A. E.; Yakimchuk, I. V.; Volkov, Yu. O.; Kanevskii, V. M.; Tikhonov, E. O.

    2011-01-01

    The possibility of characterizing a number of practically important parameters of sapphire substrates by X-ray methods is substantiated. These parameters include wafer bending, traces of an incompletely removed damaged layer that formed as a result of mechanical treatment (scratches and marks), surface roughness, damaged layer thickness, and the specific features of the substrate real structure. The features of the real structure of single-crystal sapphire substrates were investigated by nondestructive methods of double-crystal X-ray diffraction and plane-wave X-ray topography. The surface relief of the substrates was investigated by atomic force microscopy and X-ray scattering. The use of supplementing analytical methods yields the most complete information about the structural inhomogeneities and state of crystal surface, which is extremely important for optimizing the technology of substrate preparation for epitaxy.

  4. Method for harvesting rare earth barium copper oxide single crystals

    Science.gov (United States)

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  5. Evidence of low intermolecular coupling in rubrene single crystals by Raman scattering

    International Nuclear Information System (INIS)

    Weinberg-Wolf, J R; McNeil, L E; Liu Shubin; Kloc, Christian

    2007-01-01

    The observed Raman spectra for single crystals of rubrene and tetracene are compared with the calculated spectra for the isolated molecules. The Raman measurements presented are of the bulk properties of the material, and they confirmed that the vapour growth process yields very pure, unstrained rubrene crystals. Finally, Raman measurements indicate that rubrene, unlike many other oligoacenes, has very weak intermolecular coupling and no observable intermolecular Raman vibrational modes. We discuss the apparent conflict between the high mobility and the weak π-electron overlap in this material

  6. Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2

    OpenAIRE

    Kofu, M.; Qiu, Y.; Bao, Wei; Lee, S. -H.; Chang, S.; Wu, T.; Wu, G.; Chen, X. H.

    2009-01-01

    The magnetic structure of BaFe2As2 was completely determined from polycrystalline neutron diffraction measurements soon after the ThCr2Si2-type FeAs-based superconductors were discovered. Both the moment direction and the in-plane antiferromagnetic wavevector are along the longer a-axis of the orthorhombic unit cell. There is only one combined magnetostructural transition at about 140 K. However, a later single-crystal neutron diffraction work reported contradicting results. Here we show neut...

  7. Application of the equivalent radiator method for radiative corrections to the spectra of elastic electron scattering by nuclei

    Directory of Open Access Journals (Sweden)

    I. S. Timchenko

    2015-07-01

    Full Text Available For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely, the equivalent radiator method (ERM, is used. However, the applicability of this method for evaluating the radiative tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the conditions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic scattering peak.

  8. Determination of the room scattering factor in a neutron calibration room using the polynomial fit method

    International Nuclear Information System (INIS)

    Silva, Nadja F. da; Santos, Joelan A. de L.; Correia Vilela, Eudice

    2008-01-01

    Full text: The knowledgement of the neutron irradiation spectrum in a point of interest inside a calibration room is of fundamental importance to calibrate neutron instruments. Different factors affect the spectra inside such a room and they must be established to correct the final values of interest. Among these factors the scattering room factor, that include the contribution to the instrument response due to air, walls, floor, ceiling and other equipment present inside this room during the calibration process, have to be carefully determined. The ISO 10647 suggests three methods to carry out this determination: the semi empirical method, the shadow-cone technique and the polynomial fit method. In the case of multi-detector instruments or dosimeters mounted on a thorax phantom, the ISO recommend the polynomial fit method to be employed. This method only disadvantages come from the coefficients of the polynomial fit do not necessarily have physical significance and that a complete set of measurements shall be made for each instrument to be calibrated. In this polynomial fit method, a neutron source was located at a reference point and the instrument to be calibrated-to-source distance was varied between 0,5 m and 3,75 m.The correction due to the neutron scattering inside the room was obtained as following: where M t is the neutron total count rate, l is the distance between source-to-detector center, F l (l) is the geometric corrective factor, ? is the fluence at the measure point, R ? is the fluence response obtained by the fitting process as well as the fit parameters x and y. In this work an 241 AmBe source, emission rate (4,46 ± 0,07) x 10 6 n/s at july/2005 was used together with Bonner sphere multi detectors ( 6 LiI(Eu)) and a BF 3 (ThermoElectron). The obtained results were compared with those obtained by Monte Carlo method simulation. Obtained experimental and Monte Carlo values for the room scattering factor differed less than 2%. (author)

  9. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement

    International Nuclear Information System (INIS)

    Evett, S.R.

    2000-01-01

    Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)

  10. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  11. Resonance Rayleigh scattering methods for the determination of chitosan with Congo red as probe.

    Science.gov (United States)

    Ma, Caijuan; Zhang, Weiai; Guo, Yaohui; Su, Zhengquan; Bai, Yan

    2017-12-01

    Two methods were presented for the sensitive and selective determination of chitosan (CTS) with Congo red (CR) as probe based on resonance Rayleigh scattering (RRS) intensities in health products. In weakly acidic buffer solution, the binding of CTS to CR, could result in the enhancement of the RRS intensities. Moreover, after adding OP emulsifier (octyl-phenyl polyoxyethylene ether) to the system, the RRS intensities showed more significantly enhancement. The maximum RRS signals for the CTS-CR system and the CTS-CR-OP system were located at 380 nm and 376 nm, respectively. Under optimum experimental conditions, the increased RRS intensities (ΔI) of these two systems were linear to CTS concentration in the range of 0.40-8.00 μg/ml and 0.05-1.00 μg/ml. Their limits of detection (LOD) were 44.81 ng/ml and 6.99 ng/ml, which indicated that the latter system was more sensitive than the former. In this work, the optimum conditions and the effects of some foreign substances on the determination were studied. In addition, the effect of the molecular weight of CTS and the reasons for the enhancement of resonance light scattering were discussed. Finally, these two methods were applied to the determination of chitosan in health products with satisfactory results. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Review of methods to probe single cell metabolism and bioenergetics.

    Science.gov (United States)

    Vasdekis, Andreas E; Stephanopoulos, Gregory

    2015-01-01

    Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed. Published by Elsevier Inc.

  13. Single particle electrochemical sensors and methods of utilization

    Science.gov (United States)

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  14. Resonant magneto-optic Kerr effects of a single Ni nanorod in the Mie scattering regime.

    Science.gov (United States)

    Jeong, Ho-Jin; Kim, Dongha; Song, Jung-Hwan; Jeong, Kwang-Yong; Seo, Min-Kyo

    2016-07-25

    We present a systematic, theoretical investigation of the polar magneto-optical (MO) Kerr effects of a single Ni nanorod in the Mie regime. The MO Kerr rotation, ellipticity, amplitude ratio, and phase shift are calculated as a function of the length and width of the nanorod. The electric field amplitude ratio of the MO Kerr effect is locally maximized when the nanorod supports a plasmonic resonance in the polarization state orthogonal to the incident light. The plasmonic resonances directly induced by the incident light do not enhance the amplitude ratio. In the Mie regime, multiple local maxima of the MO Kerr activity are supported by the resonant modes with different modal characteristics. From the viewpoint of first-order perturbation analysis, the spatial overlap between the incident-light-induced electric field and the Green function determines the local maxima.

  15. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.

    Science.gov (United States)

    Hart, Vern P; Doyle, Timothy E

    2013-09-01

    A Monte Carlo method was derived from the optical scattering properties of spheroidal particles and used for modeling diffuse photon migration in biological tissue. The spheroidal scattering solution used a separation of variables approach and numerical calculation of the light intensity as a function of the scattering angle. A Monte Carlo algorithm was then developed which utilized the scattering solution to determine successive photon trajectories in a three-dimensional simulation of optical diffusion and resultant scattering intensities in virtual tissue. Monte Carlo simulations using isotropic randomization, Henyey-Greenstein phase functions, and spherical Mie scattering were additionally developed and used for comparison to the spheroidal method. Intensity profiles extracted from diffusion simulations showed that the four models differed significantly. The depth of scattering extinction varied widely among the four models, with the isotropic, spherical, spheroidal, and phase function models displaying total extinction at depths of 3.62, 2.83, 3.28, and 1.95 cm, respectively. The results suggest that advanced scattering simulations could be used as a diagnostic tool by distinguishing specific cellular structures in the diffused signal. For example, simulations could be used to detect large concentrations of deformed cell nuclei indicative of early stage cancer. The presented technique is proposed to be a more physical description of photon migration than existing phase function methods. This is attributed to the spheroidal structure of highly scattering mitochondria and elongation of the cell nucleus, which occurs in the initial phases of certain cancers. The potential applications of the model and its importance to diffusive imaging techniques are discussed.

  16. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

    Directory of Open Access Journals (Sweden)

    S. Singh

    2016-11-01

    Full Text Available Biomass burning (BB aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA and Ångstrom absorption exponent (AAE were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57, despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

  17. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 5-6. A new method of preparing single-walled carbon nanotubes ... Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  18. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Unknown

    A new method of preparing single-walled carbon nanotubes. ¶. S R C VIVEKCHAND1 and A GOVINDARAJ1,2,*. 1Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for. Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India. 2Solid State and Structural Chemistry Unit, Indian Institute of Science ...

  19. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  20. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  1. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    International Nuclear Information System (INIS)

    Ramamurthy, Senthil; D’Orsi, Carl J; Sechopoulos, Ioannis

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated. (paper)

  2. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.

    2006-01-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling

  3. Laboratory estimate of the regional shortwave refractive index and single scattering albedo of mineral dust from major sources worldwide

    Science.gov (United States)

    Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.

    2017-12-01

    Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.

  4. A new method to derive electronegativity from resonant inelastic x-ray scattering.

    Science.gov (United States)

    Carniato, S; Journel, L; Guillemin, R; Piancastelli, M N; Stolte, W C; Lindle, D W; Simon, M

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p(-1)LUMO(1) electronic states reached after Cl 1s → LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p(z) atomic orbital contributing to the Cl 2p(3/2) molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  5. First- and second-order Raman scattering from MoTe2 single crystal

    Science.gov (United States)

    Caramazza, Simone; Collina, Arianna; Stellino, Elena; Ripanti, Francesca; Dore, Paolo; Postorino, Paolo

    2018-02-01

    We report on Raman experiments performed on a MoTe2 single crystal. The system belongs to the wide family of transition metal dichalcogenides which includes several of the most interesting two-dimensional materials for both basic and applied physics. Measurements were performed in the standard basal plane configuration, by placing the ab plane of the crystal perpendicular to the wave vector k i of the incident beam to explore the in-plane vibrational modes, and in the edge plane configuration with k i perpendicular to the crystal c axis, thus mainly exciting out-of-plane modes. For both configurations we performed a polarization-dependent study of the first-order Raman components and detailed computation of the corresponding selection rules. We were thus able to provide a complete assignment of the observed first-order Raman peaks, in agreement with previous literature results. A thorough analysis of the second-order Raman bands, as observed in both basal and edge plane configurations, provides new information and allows a precise assignment of these spectral structures. In particular, we have observed and assigned Raman active modes of the M point of the Brillouin zone previously predicted by ab initio calculations but never previously measured.

  6. RMCSANS-modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method

    International Nuclear Information System (INIS)

    Gereben, O; Pusztai, L; McGreevy, R L

    2010-01-01

    A new reverse Monte Carlo (RMC) method has been developed for creating three-dimensional structures in agreement with small angle scattering data. Extensive tests, using computer generated quasi-experimental data for aggregation processes via constrained RMC and Langevin molecular dynamics, were performed. The software is capable of fitting several consecutive time frames of scattering data, and movie-like visualization of the structure (and its evolution) either during or after the simulation is also possible.

  7. Single Image Super Resolution using a Joint GMM Method.

    Science.gov (United States)

    Sandeep, P; Jacob, Tony

    2016-07-07

    Single Image Super Resolution (SR) algorithms based on joint dictionaries and sparse representations of image patches have received significant attention in literature and deliver state of the art results. Recently, Gaussian Mixture Models (GMMs) have emerged as favored prior for natural image patches in various image restoration problems. In this work, we approach the single image SR problem by using a joint GMM learnt from concatenated vectors of high and low resolution patches sampled from a large database of pairs of high resolution and the corresponding low resolution images. Covariance matrices of the learnt Gaussian models capture the inherent correlations between high and low resolution patches which are utilized for inferring high resolution patches from given low resolution patches. The proposed joint GMM method can be interpreted as the GMM analogue of joint dictionary based algorithms for single image SR. We study the performance of the proposed joint GMM method by comparing with various competing algorithms for single image SR. Our experiments on various natural images demonstrate the competitive performance obtained by the proposed method at low computational cost.

  8. A method of object recognition for single pixel imaging

    Science.gov (United States)

    Li, Boxuan; Zhang, Wenwen

    2018-01-01

    Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition

  9. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    Science.gov (United States)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  10. Improvement of Source Number Estimation Method for Single Channel Signal.

    Directory of Open Access Journals (Sweden)

    Zhi Dong

    Full Text Available Source number estimation methods for single channel signal have been investigated and the improvements for each method are suggested in this work. Firstly, the single channel data is converted to multi-channel form by delay process. Then, algorithms used in the array signal processing, such as Gerschgorin's disk estimation (GDE and minimum description length (MDL, are introduced to estimate the source number of the received signal. The previous results have shown that the MDL based on information theoretic criteria (ITC obtains a superior performance than GDE at low SNR. However it has no ability to handle the signals containing colored noise. On the contrary, the GDE method can eliminate the influence of colored noise. Nevertheless, its performance at low SNR is not satisfactory. In order to solve these problems and contradictions, the work makes remarkable improvements on these two methods on account of the above consideration. A diagonal loading technique is employed to ameliorate the MDL method and a jackknife technique is referenced to optimize the data covariance matrix in order to improve the performance of the GDE method. The results of simulation have illustrated that the performance of original methods have been promoted largely.

  11. Small angle neutron scattering study of the magnetic flux-line lattice in single crystal 2H-NbSe2

    DEFF Research Database (Denmark)

    Gammel, P.L.; Huse, D.A.; Kleiman, R.N.

    1994-01-01

    We report on a small angle neutron scattering study of the flux-line lattice in single crystal 2H-NbSe2. As the magnetic field is tilted away from the crystalline c axis, we find distortions in the flux lattice as would be expected for a mass anisotropy GAMMA = 10.1 +/- 0.9. However, we find...

  12. A description of [alpha]+[sup 16]O elastic scattering near E/A=12 and 7 MeV by a single-folding potential

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxu (Dept. of Physics, Guangxi Normal Univ., Guilin (China)); Li Qingrun (CCAST (World Lab.), Inst. of High Energy Physics, Academia Sinica, Beijing (China))

    1993-02-20

    The differential cross-sections for [alpha]+[sup 16]O elastic scattering near E/A=12 and 7MeV have been calculated employing a single-folding potential based on the [alpha]-particle model for [sup 16]O. The calculated results are in good agreement with the experimental data. (orig.).

  13. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  14. Unified Scattering Parameters formalism in terms of Coupled-Mode Theory for investigating hybrid single-mode/two-mode photonic interconnects

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.

  15. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  16. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can...... suitable for use in high density arrays. These findings show the potential of parasitic scatterers as an effective method to improve the performance of existing radiative MRI coils....

  17. Mechanism and application method to analyze the carrier scattering factor by electrical conductivity ratio based on thermoelectric property measurement

    Science.gov (United States)

    Xu, Guiying; Ren, Pan; Lin, Tie; Wu, Xiaofeng; Zhang, Yanhua; Niu, Sitong; Bailey, Trevor P.

    2018-01-01

    Carrier scattering factor is one of the most important parameters for semiconductors. In this paper, we propose the mechanism and the application method to analyze the carrier scattering factor(s) by comparing the ratios of electrical conductivity σ(T)/σ(T0 = 300 K) vs. temperature T in the theoretical calculation and experimental results. It is demonstrated that σ(T)/σ(T0 = 300 K) is only related to the carrier scattering factor when the density of states effective mass, m*, is assumed to be constant in small temperature ranges. Therefore, the carrier scattering factor dependence of the ratios of σ(T)/σ(T0 = 300 K) can be used to pinpoint the carrier scattering mechanism. Taking Bi0.5Sb1.5Te2.7+xSe0.3 as an example, it is found that no matter what theoretical models for the Seebeck coefficient over a range of the reduced Fermi energy are used, the analysis results for the scattering mechanism are unique. The reason behind such an observation is that the ratio of σ(T)/σ(T0) is only dependent on the carrier scattering for a certain material. As such, we can neglect the effect of degeneracy on the carrier scattering mechanism, and select the simplest theoretical Seebeck coefficient model to estimate the scattering mechanism before the self-consistent η(T) (reduced Fermi level) is obtained. The effect of temperature dependence of the m*(T) on the σ(T)/σ(T0) is also discussed.

  18. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    International Nuclear Information System (INIS)

    Kılıç, Emre; Eibert, Thomas F.

    2015-01-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained

  19. The Study on Scattered Far-Field Analysis of Ultrasonic SH-Wave Using Boundary Element Method

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Lee, Seo Il

    1999-01-01

    It is well recognized that ultrasonic technique is one of the most common and reliable nondestructive evaluation techniques for quantitative estimation of defects in structures. For the quantitative and accurate estimation of internal defects, the characteristics of scattered ultrasonic wave fields must be understood. In this study. the scattered near-field and far-field due to a circular cavity embedded in infinite media subjected to incident SH-waves were calculated by the boundary element method. The frequency response of the scattered ultrasonic far-field was transformed into the time-domain signal by obtaining its inverse Fourier transform. It was found that the amplitude of time-domain signal decreases and its time delay increases as the distance between the detecting point of ultrasonic scattered field and the center of internal cavity increases

  20. Oil Reservoir Production Optimization using Single Shooting and ESDIRK Methods

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan

    2012-01-01

    the injections and oil production such that flow is uniform in a given geological structure. Even in the case of conventional water flooding, feedback based optimal control technologies may enable higher oil recovery than with conventional operational strategies. The optimal control problems that must be solved......Conventional recovery techniques enable recovery of 10-50% of the oil in an oil field. Advances in smart well technology and enhanced oil recovery techniques enable significant larger recovery. To realize this potential, feedback model-based optimal control technologies are needed to manipulate...... are large-scale problems and require specialized numerical algorithms. In this paper, we combine a single shooting optimization algorithm based on sequential quadratic programming (SQP) with explicit singly diagonally implicit Runge-Kutta (ESDIRK) integration methods and the a continuous adjoint method...

  1. Defects detecting method of lamp cap of single soldering lug

    Science.gov (United States)

    Cai, Jihe; Lv, Jidong

    2017-07-01

    In order to resolve the problems of low efficiency and large separating difference in fault detection of lamp holders with single soldering lug, an image-detection-based defect detection method is presented in this paper. The selected image is first preprocessed, where the possible area of soldering lug is cut in this preprocessing to narrow the scope for subsequent partition with the consideration that the smooth surface of metal at lamp holder and black insulation glass may reflect the light. Then, the soldering lug is extracted by a series of processing including clustering partition. Based on this, the defects are detected by regional marking, area comparison, circularity and coordinate deviation. The experiment results show that the designed method is simple and practical to detect main quality defects of lamp holder with single soldering lug correctly and efficiently.

  2. Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods

    Directory of Open Access Journals (Sweden)

    T. Nygrén

    1996-12-01

    Full Text Available In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods.

  3. Detection of defects on the surface of a cam shaft using laser scattering method

    International Nuclear Information System (INIS)

    Dejima, S; Miyoshi, T; Takaya, Y; Maeno, Y

    2005-01-01

    This paper describes a new system to detect defects on the cam shafts of automobiles. The theory, based on laser scattering, is studied first, and then its feasibility is confirmed through basic experiments and simulations. Next, an inspection system is designed and built to verify the effectiveness of the method. The line laser, employed as a light source, illuminates the cam surface and its grey-scale image appears on a CCD as a white line, on which the missing part can be detected when there is a defect. The experimental results show that there is a big correlation between the size of the defect and the missing width. By scanning the laser over the entire surface of the cam shaft, the size and the shape of the defect was measured

  4. A new method for deriving rigorous results on ππ scattering

    International Nuclear Information System (INIS)

    Caprini, I.; Dita, P.

    1979-06-01

    We develop a new approach to the problem of constraining the ππ scattering amplitudes by means of the axiomatically proved properties of unitarity, analyticity and crossing symmetry. The method is based on the solution of an extremal problem on a convex set of analytic functions and provides a global description of the domain of values taken by any finite number of partial waves at an arbitrary set of unphysical energies, compatible with unitarity, the bounds at complex energies derived from generalized dispersion relations and the crossing integral relations. From this doma domain we obtain new absolute bounds for the amplitudes as well as rigorous correlations between the values of various partial waves. (author)

  5. Momentum measurement by the Multiple Coulomb Scattering method in the OPERA lead emulsion target

    CERN Document Server

    Agafonova, N.; Altinok, O.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Bagulya, A.; Ben Dhahbi, A.; Bertolin, A.; Besnier, M.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Cazes, A.; Chaussard, L.; Chernyavskiy, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; Dal Corso, F.; De Lellis, G.; del Amo Sanchez, P.; Declais, Y.; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Favier, J.; Ferber, T.; Fini, R.A.; Frekers, D.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Gollnitz, C.; Goldberg, J.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Hoshino, K.; Ieva, M.; Ishida, H.; Jakovcic, K.; Jollet, C.; Juget, F.; Kamiscioglu, M.; Kazuyama, K.; Kim, S.H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Kubota, H.; Lazzaro, C.; Lenkeit, J.; Lippi, I.; Ljubicic, A.; Longhin, A.; Loverre, P.; Lutter, G.; Malgin, A.; Mandrioli, G.; Manai, K.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Naumov, D.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Okateva, N.; Olshevskiy, A.; Paniccia, M.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pretzl, K.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roganova, T.; Rokujo, H.; Romano, G.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schroeder, H.; Scotto Lavina, L.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Trabelsi, A.; Tran, T.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Yakushev, V.; Yoon, C.S.; Yoshioka, T.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2012-01-01

    A new method of momentum measurement of charged particles through Multiple Coulomb Scattering (MCS) in the OPERA lead emulsion target is presented. It is based on precise measurements of track angular deviations performed thanks to the very high resolution of nuclear emulsions. The algorithm has been tested with Monte Carlo (MC) pions. The results are found to describe within the expected uncertainties the data obtained from test beams. We also report a comparison of muon momenta evaluated through MCS in the OPERA lead emulsion target with those determined by the electronic detectors for neutrino charged current interaction events. The two independent measurements agree within the experimental uncertainties, and the results validate the algorithm developed for the emulsion detector of OPERA.

  6. Momentum measurement by the multiple Coulomb scattering method in the OPERA lead-emulsion target

    International Nuclear Information System (INIS)

    Agafonova, N; Aleksandrov, A; Buontempo, S; Altinok, O; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Ben Dhahbi, A; Autiero, D; Brugière, T; Brunetti, G; Cazes, A; Badertscher, A; Bagulya, A; Bertolin, A; Brugnera, R; Besnier, M; Brunet, F; Bozza, C

    2012-01-01

    A new method of momentum measurement of charged particles through multiple Coulomb scattering (MCS) in the OPERA lead-emulsion target is presented. It is based on precise measurements of track angular deviations carried out thanks to the very high resolution of nuclear emulsions. The algorithm has been tested with Monte Carlo pions. The results are found to describe within the expected uncertainties the data obtained from test beams. We also present a comparison of muon momenta evaluated through MCS in the OPERA lead-emulsion target with those determined by the electronic detectors for neutrino-charged current interaction events. The two independent measurements agree within the experimental uncertainties, and the results validate the algorithm developed for the emulsion detector of OPERA. (paper)

  7. alpha + sup 8 He elastic scattering with the generator-coordinate method

    CERN Document Server

    Baye, D; Kamouni, R

    2000-01-01

    The elastic alpha + sup 8 He phase shifts are calculated with a two-centre generator-coordinate method. The microscopic alpha and sup 8 He internal wave functions are defined in the harmonic-oscillator model. Bound states and resonances of sup 1 sup 2 Be are obtained. Among them, a 4 sup + resonance with a molecular structure should be observable in elastic scattering. The parity dependence of the microscopic phase shifts is analyzed by fitting them with simple potentials. The odd-even effect is similar in the alpha + sup 8 He and alpha + sup 6 He phase shifts for low partial waves but decreases more rapidly with increasing orbital momentum for alpha + sup 8 He. Refs. 36 (author)

  8. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light

    Science.gov (United States)

    Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.

    2017-05-01

    A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.

  9. Shrinkage-thresholding enhanced born iterative method for solving 2D inverse electromagnetic scattering problem

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST algorithms minimize a cost function weighted between measurement-data misfit and a zeroth/first-norm penalty term and therefore promote "sharpness" in the solution. Consequently, when applied to domains with sharp variations, discontinuities, or sparse content, the proposed framework is more efficient and accurate than the "classical" BIM that minimizes a cost function with a second-norm penalty term. Indeed, numerical results demonstrate the superiority of the IST-BIM over the classical BIM when they are applied to sparse domains: Permittivity and conductivity profiles recovered using the IST-BIM are sharper and more accurate and converge faster. © 1963-2012 IEEE.

  10. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    Science.gov (United States)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  11. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    Science.gov (United States)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  12. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions.

    Science.gov (United States)

    Xiang, Minghui; Xu, Xiao; Liu, Feng; Li, Na; Li, Ke-An

    2009-03-05

    A model was developed for the interactions between glycogen and biomacromolecules by gold nanoparticle plasmon resonance light-scattering method. The interactions between glycogen and biomacromolecules can alter the aggregation status of gold nanoparticles, which produced intensity changes in plasmon resonance light-scattering. This is a sensitive method to study the interactions between glycogen and biomacromolecules from nano- to micromolar level. And it is also a simple method that measurement can be carried out with a common fluorospectrometer using label-free gold nanoparticles as the transducer.

  13. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    Science.gov (United States)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and

  14. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-09-30

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C 3 N 4 (S-g-C 3 N 4 ) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C 3 N 4 /Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a strong interaction between S-g-C 3 N 4 and Ag NPs, which facilitates the uniform distribution of Ag NPs over the edges and surfaces of S-g-C 3 N 4 nanosheets, and induces a charge transfer from S-g-C 3 N 4 to the oxidizing agent through the silver surface, ultimately protecting Ag NPs from oxidation. Based on the theoretical calculations, we found that the net surface charge of the Ag atoms on the S-g-C 3 N 4 /Ag substrates was positive and the Ag NPs presented high dispersibility, suggesting that the Ag atoms on the S-g-C 3 N 4 /Ag substrates were not likely to be oxidized, thereby ensuring the high stability of the S-g-C 3 N 4 /Ag substrate. An understanding of the stability mechanism in this system can be helpful for developing other effective SERS substrates with long-term stability.

  15. Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003

    Directory of Open Access Journals (Sweden)

    E. I. Kassianov

    2007-06-01

    Full Text Available Multi-filter Rotating Shadowband Radiometers (MFRSRs provide routine measurements of the aerosol optical depth (τ at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 μm. The single-scattering albedo (π0 is typically estimated from the MFRSR measurements by assuming the asymmetry parameter (g. In most instances, however, it is not easy to set an appropriate value of g due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously π0 and g for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Radiation Measurement (ARM Program's Aerosol Intensive Operational Period (IOP to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET, and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~5 W/m2 to those obtained from measurements.

  16. A novel method for experimental characterization of large-angle scattered particles in scanned carbon-ion therapy

    International Nuclear Information System (INIS)

    Hara, Yousuke; Furukawa, Takuji; Inaniwa, Taku; Mizushima, Kota; Shirai, Toshiyuki; Noda, Koji

    2014-01-01

    Purpose: It is essential to consider large-angle scattered particles in dose calculation models for therapeutic carbon-ion beams. However, it is difficult to measure the small dose contribution from large-angle scattered particles. In this paper, the authors present a novel method to derive the parameters describing large-angle scattered particles from the measured results. Methods: The authors developed a new parallel-plate ionization chamber consisting of concentric electrodes. Since the sensitive volume of each channel is increased linearly with this type, it is possible to efficiently and easily detect small contributions from the large-angle scattered particles. The parameters describing the large-angle scattered particles were derived from pencil beam dose distribution in water measured with the new ionization chamber. To evaluate the validity of this method, the correction for the field-size dependence of the doses, “predicted-dose scaling factor,” was calculated with the new parameters. Results: The predicted-dose scaling factor calculated with the new parameters was compared with the existing one. The difference between the new correction factor and the existing one was 1.3%. For target volumes of different sizes, the calculated dose distribution with the new parameters was in good agreement with the measured one. Conclusions: Parameters describing the large-angle scattered particles can be efficiently and rapidly determined using the new ionization chamber. The authors confirmed that the field-size dependence of the doses could be compensated for by the new parameters. This method makes it possible to easily derive the parameters describing the large-angle scattered particles, while maintaining the dose calculation accuracy

  17. High magnetic field susceptibility and neutron scattering measurements for ZnFe2O4 single crystal

    International Nuclear Information System (INIS)

    Kamazawa, Kazuya; Nakajima, Kenji; Kohn, Key; Tsunoda, Yorihiko

    2004-01-01

    We studied field dependences of magnetic susceptibility and neutron scattering measurements for frustrated normal spinel ZnFe 2 O 4 . Although a peak which is similar to the antiferromagnetic transition is observed at 13 K in the magnetic susceptibility, there is no magnetic long-range order in our neutron scattering measurements. When we measure the magnetic susceptibility under the high magnetic field, the peak position moves toward the high temperature. In the neutron scattering measurements, magnetic diffuse scattering around the nuclear Bragg peaks disappear under the magnetic field of 3 T

  18. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves

    NARCIS (Netherlands)

    Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl

    2008-01-01

    Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve

  19. The challenge of observation on livings things by employing an ultra small-angle neutron scattering method

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Motokawa, Ryuhei; Iwase, Hiroki; Miyamoto, Nobuyoshi; Tanaka, Kazuhiro; Masui, Tomomi; Iida, You; Yue, Zhao; Chiba, Kaori; Kumada, Takayuki; Yamaguchi, Daisuke; Hashimoto, Takeji

    2007-01-01

    To address the question as to how small-angle scattering is effectively applied to the cell, i.e., a hierarchically ordered system comprising multi-components of macro and small molecules, the size of which ranges from 100 μm to several μm, we reconstructed SANS-J (pinhole small-angle neutron scattering spectrometer at research reactor JRR3, Tokai) to focusing and polarized neutron small-angle spectrometer (SANS-J-II), by employing focusing neutron lenses and high resolution photomultiplier. Consequently, an accessible minimum wave number q min was improved from 3x10 -3 A -1 to medium ultra-small angle scattering of 3x10 -4 A -1 . The focusing USANS method, thus developed, is crucial to fill the gap in wave number q between those covered by a double crystal method and by a conventional pin-hole method. (author)

  20. An alternative method for restoring single-tooth implants.

    Science.gov (United States)

    McArdle, B F; Clarizio, L F

    2001-09-01

    Having laboratory technicians prepare soft-tissue casts and implant abutments with or without concomitant removable temporary prostheses during the restorative phase of single-tooth replacement is an accepted practice. It can, however, result in functional and esthetic intraoral discrepancies. Single-tooth implants can be restored with crowns (like those for natural teeth) fabricated at a dental laboratory on casts obtained from final impressions of prepared implant abutments. In the case reported, the restorative dentist restored the patient's single-tooth implant after taking a transfer impression. He constructed a cast simulating the peri-implant soft tissue with final impression material and prepared the abutment on this model. His dental assistant then fabricated a fixed provisional restoration on the prepared abutment. At the patient's next visit, the dentist torqued the prepared abutment onto the implant, took a final impression and inserted the provisional restoration. A crown was made conventionally at the dental laboratory and cemented in place at the following visit. This alternative method for restoring single-tooth implants enhances esthetics by more accurately simulating marginal gingival architecture. It also improves function by preloading the implant through fixed temporization after the dentist, rather than the laboratory technician, prepares the abutment to the dentist's preferred contours.

  1. Evaluation of light scattering and absorption properties ofin vivorat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem

    Science.gov (United States)

    Akter, Sharmin; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2015-07-01

    Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient , the absorption coefficient μa, the tissue oxygen saturation StO2, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μa at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO2. Significant increase in μa(605)/μa(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of at 500, 530, 570, and 584 nm were well correlated with those of μa, which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in and an irreversible decrease in were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.

  2. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders - A Reference Solution for the Numerical Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived...... of the numerical Method of Auxiliary Sources for a range of scattering configurations....... with their singularities at different positions away from the origin. The transformation necessitates a truncation of the wave transformation but the inaccuracy introduced hereby is shown to be negligible. The analytical Method of Auxiliary Sources solution is employed as a reference to investigate the accuracy...

  3. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Gerfault, L [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Esteve, F [INSERM U647-RSRM, ESRF, BP200, 38043 Grenoble Cedex 09 (France); Dinten, J-M [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France)

    2007-08-07

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy.

  4. Efficient combination of acceleration techniques applied to high frequency methods for solving radiation and scattering problems

    Science.gov (United States)

    Lozano, Lorena; Algar, Ma Jesús; García, Eliseo; González, Iván; Cátedra, Felipe

    2017-12-01

    An improved ray-tracing method applied to high-frequency techniques such as the Uniform Theory of Diffraction (UTD) is presented. The main goal is to increase the speed of the analysis of complex structures while considering a vast number of observation directions and taking into account multiple bounces. The method is based on a combination of the Angular Z-Buffer (AZB), the Space Volumetric Partitioning (SVP) algorithm and the A∗ heuristic search method to treat multiple bounces. In addition, a Master Point strategy was developed to analyze efficiently a large number of Near-Field points or Far-Field directions. This technique can be applied to electromagnetic radiation problems, scattering analysis, propagation at urban or indoor environments and to the mutual coupling between antennas. Due to its efficiency, its application is suitable to study large antennas radiation patterns and even its interactions with complex environments, including satellites, ships, aircrafts, cities or another complex electrically large bodies. The new technique appears to be extremely efficient at these applications even when considering multiple bounces.

  5. Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis.

    Science.gov (United States)

    Yang, L; Weiss, T M; Harroun, T A; Heller, W T; Huang, H W

    1999-11-01

    In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model because its pore structure in membrane in known. At full hydration, the diffraction patterns of alamethicin and magainin are similar to gramicidin except in the scale of q (the momentum transfer of scattering), clearly indicating that both alamethicin and magainin form pores in membranes but of different sizes. When the hydration of the multilayer samples was decreased while the bilayers were still fluid, the in-plane positions of the membrane pores became correlated from one bilayer to the next. We believe that this is a new manifestation of the hydration force. The effect is most prominent in magainin patterns, which are used to demonstrate the method of analysis. When magainin samples were further dehydrated or cooled, the liquid-like diffraction turned into crystal-like patterns. This discovery points to the possibility of investigating the supramolecular structures with high-order diffraction.

  6. Optimization of energy window and evaluation of scatter compensation methods in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    Science.gov (United States)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric

    2015-01-01

    Abstract. We used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection domain and an anthropomorphic channelized Hotelling observer (CHO) applied to reconstructed images to optimize the acquisition energy window width and to evaluate various scatter compensation methods in the context of a myocardial perfusion single-photon emission computed tomography (SPECT) defect detection task. The IO has perfect knowledge of the image formation process and thus reflects the performance with perfect compensation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal parameters compared with those optimized for humans interpreting SPECT images reconstructed with imperfect or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process. We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO was similar; in its absence, the IO-MM gave a better prediction of the optimal energy window for the CHO using different scatter compensation methods. These data suggest that the IO-MM may be useful for projection-domain optimization when MM is significant and that the IO is useful when followed by reconstruction with good models of the image formation process. PMID:26029730

  7. Low energy elastic scattering of positrons by CO: An application of continued fractions and Schwinger variational iterative methods

    International Nuclear Information System (INIS)

    Arretche, F.; Mazon, K.T.; Michelin, S.E.; Fujimoto, M.M.; Iga, I.; Lee, M.-T.

    2008-01-01

    Iterative Schwinger variational methods and the method of continued fractions, widely used for electron-molecule scattering, are applied for the first time to investigate positron-molecule interactions. Specifically, integral and differential cross sections for elastic positron scattering by CO in the (0.5-20) eV energy range are calculated and reported. In our calculation, a static plus correlation-polarization potential is used to represent the collisional dynamics. Our calculated results are in general agreement with the theoretical and experimental data available in the literature

  8. SPECT quantification: a review of the different correction methods with compton scatter, attenuation and spatial deterioration effects

    International Nuclear Information System (INIS)

    Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.; Dreuille, O. de; Gaillard, J.F.; Bendriem, B.

    1997-01-01

    SPECT quantification: a review of the different correction methods with Compton scatter attenuation and spatial deterioration effects. The improvement of gamma-cameras, acquisition and reconstruction software opens new perspectives in term of image quantification in nuclear medicine. In order to meet the challenge, numerous works have been undertaken in recent years to correct for the different physical phenomena that prevent an exact estimation of the radioactivity distribution. The main phenomena that have to betaken into account are scatter, attenuation and resolution. In this work, authors present the physical basis of each issue, its consequences on quantification and the main methods proposed to correct them. (authors)

  9. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)

    2009-07-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  10. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint

    Directory of Open Access Journals (Sweden)

    Ang Gong

    2015-12-01

    Full Text Available For Global Navigation Satellite System (GNSS single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  11. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint.

    Science.gov (United States)

    Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong

    2015-12-02

    For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  12. Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns - an investigation using modelled scattering data

    Science.gov (United States)

    Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi

    2017-11-01

    Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.

  13. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  14. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in (Na ,Bi ) Ti O3-x BaTi O3 single crystals near the morphotropic phase boundary

    Science.gov (United States)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier

    2017-11-01

    Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.

  15. Global Scale Exploration Seismics: Mapping Mantle Discontinuities with Inverse Scattering Methods and Millions of Seismograms

    Science.gov (United States)

    van der Hilst, R. D.; de Hoop, M. V.; Shim, S. H.; Shang, X.; Wang, P.; Cao, Q.

    2012-04-01

    Over the past three decades, tremendous progress has been made with the mapping of mantle heterogeneity and with the understanding of these structures in terms of, for instance, the evolution of Earth's crust, continental lithosphere, and thermo-chemical mantle convection. Converted wave imaging (e.g., receiver functions) and reflection seismology (e.g. SS stacks) have helped constrain interfaces in crust and mantle; surface wave dispersion (from earthquake or ambient noise signals) characterizes wavespeed variations in continental and oceanic lithosphere, and body wave and multi-mode surface wave data have been used to map trajectories of mantle convection and delineate mantle regions of anomalous elastic properties. Collectively, these studies have revealed substantial ocean-continent differences and suggest that convective flow is strongly influenced by but permitted to cross the upper mantle transition zone. Many questions have remained unanswered, however, and further advances in understanding require more accurate depictions of Earth's heterogeneity at a wider range of length scales. To meet this challenge we need new observations—more, better, and different types of data—and methods that help us extract and interpret more information from the rapidly growing volumes of broadband data. The huge data volumes and the desire to extract more signal from them means that we have to go beyond 'business as usual' (that is, simplified theory, manual inspection of seismograms, …). Indeed, it inspires the development of automated full wave methods, both for tomographic delineation of smooth wavespeed variations and the imaging (for instance through inverse scattering) of medium contrasts. Adjoint tomography and reverse time migration, which are closely related wave equation methods, have begun to revolutionize seismic inversion of global and regional waveform data. In this presentation we will illustrate this development - and its promise - drawing from our work

  16. Comparison of time domain reflectometry, capacitance methods and neutron scattering in soil moisture measurements

    International Nuclear Information System (INIS)

    Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.

    2011-01-01

    An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.

  17. Resonance effects in Raman scattering of quantum dots formed by the Langmuir-Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A G; Sveshnikova, L L; Duda, T A [Institute of Semiconductor Physics, Lavrentjev av.13, 630090, Novosibirsk (Russian Federation); Surovtsev, N V; Adichtchev, S V [Institute of Automation and Electrometry, Koptyug av.1, 630090, Novosibirsk (Russian Federation); Azhniuk, Yu M [Institute of Electron Physics, Universytetska Str. 21, 88017, Uzhhorod (Ukraine); Himcinschi, C [Institut fuer Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596, Freiberg (Germany); Kehr, M; Zahn, D R T, E-mail: milekhin@thermo.isp.nsc.r [Semiconductor Physics, Chemnitz University of Technology, Chemnitz (Germany)

    2010-09-01

    The enhancement of Raman scattering by optical phonon modes in quantum dots was achieved in resonant and surface-enhanced Raman scattering experiments by approaching the laser energy to the energy of either the interband transitions or the localized surface plasmons in silver nanoclusters deposited onto the nanostructures. Resonant Raman scattering by TO, LO, and SO phonons as well as their overtones was observed for PbS, ZnS, and ZnO quantum dots while enhancement for LO and SO modes in CdS quantum dots with a factor of about 700 was measured in surface enhanced Raman scattering experiments. Multiple phonon Raman scattering observed up to 5th and 7th order for CdS and ZnO, respectively, confirms the high crystalline quality of the grown QDs.

  18. The multi-scattering-Xα method for analysis of the electronic structure of atomic clusters

    International Nuclear Information System (INIS)

    Bahurmuz, A.A.; Woo, C.H.

    1984-12-01

    A computer program, MSXALPHA, has been developed to carry out a quantum-mechanical analysis of the electronic structure of molecules and atomic clusters using the Multi-Scattering-Xα (MSXα) method. The MSXALPHA program is based on a code obtained from the University of Alberta; several improvements and new features were incorporated to increase generality and efficiency. The major ones are: (1) minimization of core memory usage, (2) reduction of execution time, (3) introduction of a dynamic core allocation scheme for a large number of arrays, (4) incorporation of an atomic program to generate numerical orbitals used to construct the initial molecular potential, and (5) inclusion of a routine to evaluate total energy. This report is divided into three parts. The first discusses the theory of the MSXα method. The second gives a detailed description of the program, MSXALPHA. The third discusses the results of calculations carried out for the methane molecule (CH 4 ) and a four-atom zirconium cluster (Zr 4 )

  19. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    Science.gov (United States)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  20. A new method to derive electronegativity from resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Carniato, S.; Journel, L.; Guillemin, R.; Piancastelli, M. N.; Simon, M. [UPMC Univ Paris 06, UMR7614, Laboratoire de Chimie Physique-Matiere et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, LCPMR (UMR 7614), 11 rue Pierre et Marie Curie, 75231 Parix Cedex 05 (France); Stolte, W. C. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4009 (United States); Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, Nevada, 89154-4003 (United States); Lindle, D. W. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4009 (United States)

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  1. Aerosol ultraviolet absorption experiment (2002 to 2004), part 2: absorption optical thickness, refractive index, and single scattering albedo

    Science.gov (United States)

    Krotkov, Nickolay A.; Bhartia, Pawan K.; Herman, Jay R.; Slusser, James R.; Scott, Gwendolyn R.; Labow, Gordon J.; Vasilkov, Alexander P.; Eck, Tom; Doubovik, Oleg; Holben, Brent N.

    2005-04-01

    Compared to the visible spectral region, very little is known about aerosol absorption in the UV. Without such information it is impossible to quantify the causes of the observed discrepancy between modeled and measured UV irradiances and photolysis rates. We report results of a 17-month aerosol column absorption monitoring experiment conducted in Greenbelt, Maryland, where the imaginary part of effective refractive index k was inferred from the measurements of direct and diffuse atmospheric transmittances by a UV-multifilter rotating shadowband radiometer [UV-MFRSR, U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Network]. Colocated ancillary measurements of aerosol effective particle size distribution and refractive index in the visible wavelengths [by CIMEL sun-sky radiometers, National Aeronautics and Space Administration (NASA) Aerosol Robotic Network (AERONET)], column ozone, surface pressure, and albedo constrain the forward radiative transfer model input, so that a unique solution for k is obtained independently in each UV-MFRSR spectral channel. Inferred values of k are systematically larger in the UV than in the visible wavelengths. The inferred k values enable calculation of the single scattering albedo ω, which is compared with AERONET inversions in the visible wavelengths. On cloud-free days with high aerosol loadings [τext(440)>0.4], ω is systematically lower at 368 nm (=0.94) than at 440 nm (=0.96), however, the mean ω differences (0.02) are within expected uncertainties of ω retrievals (~0.03). The inferred ω is even lower at shorter UV wavelengths (~=0.92), which might suggest the presence of selectively UV absorbing aerosols. We also find that decreases with decrease in aerosol loading. This could be due to real changes in the average aerosol composition between summer and winter months at the Goddard Space Flight Center (GSFC) site.

  2. Method for estimating 4 MV X-Ray irregular field dose using the collimator scatter factor (Sc) and phantom scatter factor (Sp)

    International Nuclear Information System (INIS)

    Nara, Tetsuzo; Komai, Fumio; Sato, Kazuhiko; Fukushi, Hideto; Horanai, Yoshiaki; Iwasaki, Akira

    2004-01-01

    Calculation of in-air or in-water dose for 4 MV X-ray irregular fields could be accurately performed using the collimator scatter factor (S c ) and phantom scatter factor (S p ) concepts. It has been revealed that the equivalent square field for a multi-leaf collimator (MLC) irregular field can be evaluated accurately by using the S p -Clarkson or S c -Clarkson integration method; however, the S c -Clarkson integration method is more straightforward because the S c factor expresses the in-air X-ray output factor. It has been found that when the MLC field is relatively much smaller than the main collimator field, the S c factor can be accurately evaluated by introducing the small segment correction (SSC) factor (except for the case in which the MLC field is less than 1 x 1 cm 2 ). It has also been found that both the S p factor and the tissue-phantom ratio (TPR) can be precisely evaluated by introducing the F MLC factor in cases in which the ratio of the MLC equivalent square field side to the main collimator equivalent square field side is less than about 0.7. (author)

  3. Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2014-01-01

    A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole moments is determined without assuming that the distribution is unimodal or of a particular shape. The inversion method enforces positive number densities via a non-negative least squares procedure. It is tested successfully on experimental and simulated data for ferrofluid samples with known multimodal size distributions. The created computer program MINORIM is made available on the web. - Highlights: • A method from light scattering is applied to analyze ferrofluid magnetization curves. • A magnetic size distribution is obtained without prior assumption of its shape. • The method is tested successfully on ferrofluids with a known size distribution. • The practical limits of the method are explored with simulated data including noise. • This method is implemented in the program MINORIM, freely available online

  4. Proceedings of a workshop on methods for neutron scattering instrumentation design

    International Nuclear Information System (INIS)

    Hjelm, R.P.

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database

  5. Underwater Environment SDAP Method Using Multi Single-Beam Sonars

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2013-01-01

    Full Text Available A new autopilot system for unmanned underwater vehicle (UUV using multi-single-beam sonars is proposed for environmental exploration. The proposed autopilot system is known as simultaneous detection and patrolling (SDAP, which addresses two fundamental challenges: autonomous guidance and control. Autonomous guidance, autonomous path planning, and target tracking are based on the desired reference path which is reconstructed from the sonar data collected from the environmental contour with the predefined safety distance. The reference path is first estimated by using a support vector clustering inertia method and then refined by Bézier curves in order to satisfy the inertia property of the UUV. Differential geometry feedback linearization method is used to guide the vehicle entering into the predefined path while finite predictive stable inversion control algorithm is employed for autonomous target approaching. The experimental results from sea trials have demonstrated that the proposed system can provide satisfactory performance implying its great potential for future underwater exploration tasks.

  6. Single well tracer method to evaluate enhanced recovery

    Science.gov (United States)

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  7. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders - A Reference Solution for the Numerical Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived b...

  8. Empirical Equation Based Chirality (n, m Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Directory of Open Access Journals (Sweden)

    Md Shamsul Arefin

    2012-12-01

    Full Text Available This work presents a technique for the chirality (n, m assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n, m with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot.

  9. A new method of explosive detection based on dual-energy X-ray technology and forward-scattering

    International Nuclear Information System (INIS)

    Zhao Kun; Li Jianmin

    2004-01-01

    Based on dual-energy X-ray technology combined with forward-scattering, a brand new explosive detection method is presented. Dual-energy technology can give the information on the effective atomic number (Z eff ) of an irradiated component, while the intensity of the forward scattered photons can reveal the density information according to our research. Therefore, the existence of the explosive can be effectively identified by combining these two characteristic quantities. Compared with the earlier inspection approaches, the new one has a series of particular advantages, such as high detection rate, low false alarm rate, automatic alarm and so forth. The project is ongoing. (authors)

  10. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene -enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  11. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  12. Analysis of the nano-scale structure of a natural clayey soil using the small angle neutron scattering method

    International Nuclear Information System (INIS)

    Itakura, T.; Bertram, W.K.; Hathaway, P.V.; Knott, R.B.

    2001-01-01

    The small angle neutron scattering method (SANS) was used to analyze the nano-structure of a natural clayey soil used for containment of industrial liquid wastes. A Tertiary clay deposit called the Londonderry clay was used to contain the wastes in a state-run landfill facility in NSW. A number of site assessments have been carried out at the site and continual efforts have been made to characterize interactions between soil materials and contaminants at the site. Hence, it is of research and practical interest to investigate the effects of deformation on the nano-scale structure of the soil. Experiments have been conducted to analyze the structure of reconstituted clayey soil samples that were subjected to uniaxial compression ranging from 200 kPa to 800 kPa. The small angle neutron scattering instrument was used to measure the scattering intensity of these samples at a scattering vector (q) range between 0.01 and 0.1 Angstroms -1 . The sector integration technique was used to analyse elliptical scattering patterns along the major and minor axes. A relation between stress, void ratio and nano-scale structure properties was then briefly discussed for use in assessing the performance of clayey soils as in situ barriers

  13. The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems

    Science.gov (United States)

    Taflove, A.; Umashankar, K. R.

    1987-01-01

    The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.

  14. The continuous cut-off method and the relativistic scattering of spin-1/2 particles

    International Nuclear Information System (INIS)

    Dolinszky, T.

    1979-07-01

    A high energy formula, obtained in the framework of the continuous cut-off approach, is shown to improve the correctness of the standard phase shift expression for Dirac scattering by two orders of magnitude in energy. (author)

  15. Electron re-scattering from aligned linear molecules using the R-matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, A G; Tennyson, J [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)], E-mail: j.tennyson@ucl.ac.uk

    2009-05-14

    Electron re-scattering in a strong laser field provides an important probe of molecular structure and processes. The laser field drives the ionization of the molecule, followed by acceleration and subsequent recollision of the electron with the parent molecular ion, the scattered electrons carry information about the nuclear geometry and electronic states of the molecular ion. It is advantageous in strong field experiments to work with aligned molecules, which introduces extra physics compared to the standard gas-phase, electron-molecule scattering problem. The formalism for scattering from oriented linear molecules is presented and applied to H{sub 2} and CO{sub 2}. Differential cross sections are presented for (re-)scattering by these systems concentrating on the most common, linear alignment. In H{sub 2} these cross sections show significant angular structure which, particularly for a scattering angle of 90 deg., are predicted to vary significantly between re-collisions stimulated by an even or an odd number of photons. In CO{sub 2} these cross sections are zero indicating the necessity of using non-parallel alignment with this molecule.

  16. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...... efficient than the MoM/SIBC method, proving that the proposed novel combination is a powerful and advantageous computational tool....

  17. Salt Dependence of the Radius of Gyration and Flexibility of Single-stranded DNA in Solution probed by Small-angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2012-07-06

    Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.

  18. Aerosol optical properties at Lampedusa (Central Mediterranean. 2. Determination of single scattering albedo at two wavelengths for different aerosol types

    Directory of Open Access Journals (Sweden)

    D. Meloni

    2006-01-01

    Full Text Available Aerosol optical properties were retrieved from direct and diffuse spectral irradiance measurements made by a multi-filter rotating shadowband radiometer (MFRSR at the island of Lampedusa (35.5° N, 12.6° E, in the Central Mediterranean, in the period July 2001–September 2003. In a companion paper (Pace et al., 2006 the aerosol optical depth (AOD and Ångström exponent were used together with airmass backward trajectories to identify and classify different aerosol types. The MFRSR diffuse-to-direct ratio (DDR at 415.6 nm and 868.7 nm for aerosol classified as 'biomass burning-urban/industrial', originating primarily from the European continent, and desert dust, originating from the Sahara, is used in this study to estimate the aerosol single scattering albedo (SSA. A detailed radiative transfer model is initialised with the measured aerosol optical depth; calculations are performed at the two wavelengths varying the SSA values until the modelled DDR matches the MFRSR observations. Sensitivity studies are performed to estimate how uncertainties on AOD, DDR, asymmetry factor (g, and surface albedo influence the retrieved SSA values. The results show that a 3% variation of AOD or DDR produce a change of about 0.02 in the retrieved SSA value at 415.6 and 868.7 nm; a ±0.06 variation of the asymmetry factor g produces a change of the estimated SSA of <0.04 at 415.6 nm, and <0.06 at 868.7 nm; finally, an increase of the assumed surface albedo of 0.05 causes very small changes (0.01–0.02 in the retrieved SSA. The calculations show that the SSA of desert dust (DD increases with wavelength, from 0.81±0.05 at 415.6 nm to 0.94±0.05 at 868.7 nm; on the contrary, the SSA of urban/industrial (UN aerosols decreases from 0.96±0.02 at 415.6 nm to 0.87±0.07 at 868.7 nm; the SSA of biomass burning (BB particles is 0.82±0.04 at 415.6 nm and 0.80±0.05 at 868.7 nm. Episodes of UN aerosols occur usually in June and July; long lasting BB aerosol episodes

  19. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    Science.gov (United States)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications

  20. SU-F-T-160: Commissioning of a Single-Room Double-Scattering Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H; Ahmad, S; Chen, Y; Lau, A; Islam, M; Ferreira, C; Ferguson, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Keeling, V [Carti, Inc., Little Rock, AR (United States)

    2016-06-15

    Purpose: To report the detailed commissioning experience for a compact double-scattering Mevion S250 proton therapy system at a University Cancer Center site. Methods: The commissioning of the proton therapy system mainly consisted of ensuring integrity of mechanical and imaging system, beam data collection, and commissioning of a treatment planning system (TPS). First, mechanical alignment and imaging were tested including safety, interlocks, positional accuracy of couch and gantry, image quality, mechanical and imaging isocenter and so on. Second, extensive beam data (outputs, PDDs, and profiles) were collected and analyzed through effective sampling of range (R) and modulation width (M) from 24 beam options. Three different output (cGy/MU) prediction models were also commissioned as primary and secondary MU calculation tool. Third, the Varian Eclipse TPS was commissioned through five sets of data collections (in-water Bragg peak scans, in-air longitudinal fluence scans, in-air lateral profiles, in-air half-beam profiles, and an HU-to-stopping-power conversion curve) and accuracy of TPS calculation was tested using in-water scans and dose measurements with a 2D array detector with block and range compensator. Finally, an anthropomorphic phantom was scanned and heterogeneity effects were tested by inserting radiochromic films in the phantom and PET activation scans for range verification in conjunction with end-to-end test. Results: Beam characteristics agreed well with the vendor specifications; however, minor mismatches in R and M were found in some measurements during the beam data collection. These were reflected into the TPS commissioning such that the TPS could accurately predict the R and M within tolerance levels. The output models had a good agreement with measured outputs (<3% error). The end-to-end test using the film and PET showed reasonably the TPS predicted dose, R and M in heterogeneous medium. Conclusion: The proton therapy system was successfully

  1. EEMD Domain AR Spectral Method for Mean Scatterer Spacing Estimation of Breast Tumors From Ultrasound Backscattered RF Data.

    Science.gov (United States)

    Nizam, Navid Ibtehaj; Alam, S Kaisar; Hasan, Md Kamrul

    2017-10-01

    We present a novel method for estimating the mean scatterer spacing (MSS) of breast tumors using ensemble empirical mode decomposition (EEMD) domain analysis of deconvolved backscattered radio frequency (RF) data. The autoregressive (AR) spectrum from which the MSS is estimated is obtained from the intrinsic mode functions (IMFs) due to regular scatterers embedded in RF data corrupted by the diffuse scatterers. The IMFs are chosen by giving priority to the presence of an enhanced fundamental harmonic and the presence of a greater number of higher harmonics in the AR spectrum estimated from the IMFs. The AR model order is chosen by minimizing the mean absolute percentage error (MAPE) criterion. In order to ensure that the backscattered data is indeed from a source of coherent scattering, we begin by performing a non-parametric Kolmogorov-Smirnov (K-S) classification test on the backscattered RF data. Deconvolution of the backscattered RF data, which have been classified by the K-S test as sources of significant coherent scattering, is done to reduce the system effect. EEMD domain analysis is then performed on the deconvolved data. The proposed method is able to recover the harmonics associated with the regular scatterers and overcomes many problems encountered while estimating the MSS from the AR spectrum of raw RF data. Using our technique, a mean absolute percentage error (MAPE) of 5.78% is obtained while estimating the MSS from simulated data, which is lower than that of the existing techniques. Our proposed method is shown to outperform the state of the art techniques, namely, singular spectrum analysis, generalized spectrum (GS), spectral autocorrelation (SAC), and modified SAC for different simulation conditions. The MSS for in vivo normal breast tissue is found to be 0.69 ± 0.04 mm; for benign and malignant tumors it is found to be 0.73 ± 0.03 and 0.79 ± 0.04 mm, respectively. The separation between the MSS values of normal and benign tissues for our

  2. Fermi surface of a disordered Cu-Al -alloy single crystal studied by high-resolution Compton scattering and electron diffraction

    Science.gov (United States)

    Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.

    2004-08-01

    We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.

  3. Developing advanced X-ray scattering methods combined with crystallography and computation.

    Science.gov (United States)

    Perry, J Jefferson P; Tainer, John A

    2013-03-01

    The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered

  4. Light scattering by irradiated cells as a method of biological dosimetry

    International Nuclear Information System (INIS)

    Ostashevsky, J.

    1984-01-01

    Light scattering (LS) parameters between 350-500 nm wavelength have been studied for 2 groups of cells: 1) blood (BL) and thymus (TL) lymphocytes of rats and mice, and 2) Ehrlich ascite tumor (EAT) cells. LS measurements of freshly prepared cell suspensions have been made 24 hrs after x-ray irradiation of rodents (250 Kev, HVL = 2 mm Cu) at doses of 50-900 cGy. A steep (30% per Gy) linear (50-800 cGy for TL and 50-400 cGy for BL) dose-dependence was obtained for the increase in 90 0 -angle LS intensity. Increase in absorption (low-angle LS) was also linear (50-800 cGy for TL and BL) but less steep (9% per Gy). Irradiated cells were the same size as unirradiated. Changes in LS for TL and BL appear to follow the appearance of additional vacuoles which may become new internal smaller-size centers of LS. This suggestion is supported by direct observations of cells with dark-field microscopy. For EAT cells, both 90 0 and low angle LS had the same slope. This slope (4% per Gy) is much shallower than that for BL and TL, and quantitatively coincides with enlargement of area of EAT cells, which could explain LS changes. The difference in LS behavior of the two cellular groups reflects a difference in their early response to irradiation: interphase death for TL and BL, vs division delay for EAT cells. The above data suggest the fast and simple method of biological dosimetry

  5. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method.

    Science.gov (United States)

    Zhang, Meng-Lin; Sheng, Guo-Ping; Yu, Han-Qing

    2008-07-01

    A simple and sensitive method was developed for the determination of low-concentration proteins and carbohydrates in the effluents from biological wastewater treatment reactors using resonance light-scattering (RLS) technique. Two ionic dyes, Congo red and Neutral red were, respectively used as an RLS probes for the determination of proteins and carbohydrates. This method is based on the interactions between biomacromolecules and dyes, which cause a substantial increase in the resonance scattering signal of dyes in the wavelength range of 200-650 nm. The characteristics of RLS spectra of the macromolecule-dye complexes, influencing factors, and optimum analytical conditions for the measurement were explored. The method was satisfactorily applied to the measurement of proteins and carbohydrates in the effluents from 10 aerobic or anaerobic bioreactors, and a high sensitivity were achieved.

  6. Decoration of carbon nanotubes with metal nanoparticles by wet chemical method: a small-angle neutron scattering study.

    Science.gov (United States)

    Bahadur, J; Sen, D; Mazumder, S; Parkash, Jyoti; Sathiyamoorthy, D; Venugopalan, R

    2010-05-01

    Multi-wall carbon nanotubes have been synthesized by catalytic chemical vapour deposition method. Attempts have been made to decorate the walls of these nanotubes with various metal nanoparticles (Ni, Cu and Fe) after functionalizing the nanotubes walls by wet chemical method. Small-Angle Neutron Scattering data reveals chain cluster type morphology of the carbon nanotubes. Transmission electron microscopy, Energy dispersive analysis of X-rays and Small-Angle Neutron Scattering measurements show that decoration of nanotube walls by metallic nano-particles could be realized for Ni and Cu nano-particles. Further, wall decoration by nano-particles of Fe could not be achieved by wet chemical method due to strong agglomeration behavior of Fe nano-particles.

  7. Application of the extended boundary condition method to Monte Carlo simulations of scattering of waves by two-dimensional random rough surfaces

    Science.gov (United States)

    Tsang, L.; Lou, S. H.; Chan, C. H.

    1991-01-01

    The extended boundary condition method is applied to Monte Carlo simulations of two-dimensional random rough surface scattering. The numerical results are compared with one-dimensional random rough surfaces obtained from the finite-element method. It is found that the mean scattered intensity from two-dimensional rough surfaces differs from that of one dimension for rough surfaces with large slopes.

  8. Single- and double-scattering production of four muons in ultraperipheral PbPb collisions at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Andreas van Hameren

    2018-01-01

    Full Text Available We discuss production of two μ+μ− pairs in ultraperipheral ultrarelativistic heavy ion collisions at the LHC. We take into account electromagnetic (two-photon double-scattering production and for a first time direct γγ production of four muons in one scattering. We study the unexplored process γγ→μ+μ−μ+μ−. We present predictions for total and differential cross sections. Measurable nuclear cross sections are obtained and corresponding differential distributions and counting rates are presented.

  9. Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1989-02-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  10. Relaxation of a kinetic hole due to carrier-carrier scattering in multisubband single-quantum-well semiconductors

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe a theoretical model for carrier-carrier scattering in an inverted semiconductor quantum well structure using a multisubband diagram. The model includes all possible nonvanishing interaction terms within the static screening approximation, and it enables one to calculate accurately...

  11. Polarized Raman scattering in single crystals of Nd0.7Sr0.3MnO3

    Indian Academy of Sciences (India)

    tization of NSMO 0.3 have shown the presence of magnetic disorder and spin frustration below TC [4]. Neutron scattering measurements show that the spin correlation length re- mains approximately 20 ˚A at TC and grows to 100 ˚A only at about 0.95TC [5]. Recent. NMR measurements have shown evidence for strong ...

  12. Doubly versus Singly Positively Charged Oxygen Ions Back-Scattering from a Silicon Surface under Dynamic O2+ Bombardment

    Czech Academy of Sciences Publication Activity Database

    Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk

    203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003

  13. Stress-induced light scattering method for the detection of latent flaws on fine polished glass substrates.

    Science.gov (United States)

    Sakata, Y; Sakai, K; Nonaka, K

    2014-08-01

    Fine polishing techniques, such as the chemical mechanical polishing treatment, are one of the most important technique to glass substrate manufacturing. Mechanical interaction in the form of friction occurs between the abrasive and the substrate surface during polishing, which may cause formation of latent flaws on the glass substrate surface. Fine polishing-induced latent flaws may become obvious during a subsequent cleaning process if glass surfaces are corroded away by chemical interaction with the cleaning liquid. Latent flaws thus reduce product yield. In general, non-destructive inspection techniques, such as the light-scattering methods, used to detect foreign matters on the glass substrate surface. However, it is difficult to detect latent flaws by these methods because the flaws remain closed. Authors propose a novel inspection technique for fine polishing-induced latent flaws by combining the light scattering method with stress effects, referred to as the stress-induced light scattering method (SILSM). SILSM is able to distinguish between latent flaws and particles on the surface. In this method, samples are deformed by an actuator and stress effects are induced around the tips of latent flaws. Due to the photoelastic effect, the refractive index of the material around the tip of a latent flaw is changed. This changed refractive index is in turn detected by a cooled charge-coupled device camera as variations in light scattering intensity. In this report, surface latent flaws are detected non-destructively by applying SILSM to glass substrates, and the utility of SILSM evaluated as a novel inspection technique.

  14. Annihilation probability density and other applications of the Schwinger multichannel method to the positron and electron scattering

    International Nuclear Information System (INIS)

    Varella, Marcio Teixeira do Nascimento

    2001-12-01

    We have calculated annihilation probability densities (APD) for positron collisions against He atom and H 2 molecule. It was found that direct annihilation prevails at low energies, while annihilation following virtual positronium (Ps) formation is the dominant mechanism at higher energies. In room-temperature collisions (10 -2 eV) the APD spread over a considerable extension, being quite similar to the electronic densities of the targets. The capture of the positron in an electronic Feshbach resonance strongly enhanced the annihilation rate in e + -H 2 collisions. We also discuss strategies to improve the calculation of the annihilation parameter (Z eff ), after debugging the computational codes of the Schwinger Multichannel Method (SMC). Finally, we consider the inclusion of the Ps formation channel in the SMC and show that effective configurations (pseudo eigenstates of the Hamiltonian of the collision ) are able to significantly reduce the computational effort in positron scattering calculations. Cross sections for electron scattering by polyatomic molecules were obtained in three different approximations: static-exchange (SE); tatic-exchange-plus-polarization (SEP); and multichannel coupling. The calculations for polar targets were improved through the rotational resolution of scattering amplitudes in which the SMC was combined with the first Born approximation (FBA). In general, elastic cross sections (SE and SEP approximations) showed good agreement with available experimental data for several targets. Multichannel calculations for e - -H 2 O scattering, on the other hand, presented spurious structures at the electronic excitation thresholds (author)

  15. Algorithms for solving atomic structures of nanodimensional clusters in single crystals based on X-ray and neutron diffuse scattering data

    International Nuclear Information System (INIS)

    Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.

    2004-01-01

    New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure

  16. Evaluation of back scatter interferometry, a method for detecting protein binding in solution

    DEFF Research Database (Denmark)

    Jepsen, S. T.; Jørgensen, Thomas Martini; Zong, Weiyong

    2015-01-01

    Back Scatter Interferometry (BSI) has been proposed to be a highly sensitive and versatile refractive index sensor usable for analytical detection of biomarker and protein interactions in solution. However the existing literature on BSI lacks a physical explanation of why protein interactions...

  17. Regge-pole description of potential scattering by means of the phase-integral method

    International Nuclear Information System (INIS)

    Amaha, A.

    1992-01-01

    The application of Regge-pole theory to different atomic and molecular scattering has shown to have promising interpretational power in the differential cross sections. Differential cross sections can be analysed in terms of interference between the 'background' amplitude and a few Regge-pole positions of the scattering matrix (S matrix) representing surface waves around the interaction region. By the analytic continuation of the radial Schroedinger differential equation into the complex plane of angular momentum one can determine the analytic properties of the S matrix which contains the physical information in the scattering processes. For interaction potentials fulfilling certain properties, the study of the S matrix leads to the study of the F matrix introduced by Froeman and Froeman for the treatment of connection problems for phase-integral solutions of the differential equation. In this thesis the quantum mechanical scattering problem is analysed in the framework of Regge-pole theory with the use of the complex-angular-momentum formalism. To determine the S matrix, the relevant F matrix elements which give the stokes constants are derived and their properties are studied. The poles of the S matrix for particular complex values of the angular momentum quantum number are the Regge-poles. Using the Regge-pole positions and residues together with the background integral, the differential cross sections are calculated and compared with corresponding partial-wave representations

  18. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  19. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  20. Determination of heterogeneous medium parameters by single fuel element method

    International Nuclear Information System (INIS)

    Veloso, M.A.F.

    1985-01-01

    The neutron pulse propagation technique was employed to study an heterogeneous system consisting of a single fuel element placed at the symmetry axis of a large cylindrical D 2 O tank. The response of system for the pulse propagation technique is related to the inverse complex relaxation length of the neutron waves also known as the system dispersion law ρ (ω). Experimental values of ρ (ω) were compared with the ones derived from Fermi age - Diffusion theory. The main purpose of the experiment was to obtain the Feinberg-Galanin thermal constant (γ), which is the logaritmic derivative of the neutron flux at the fuel-moderator interface and a such a main input data for heterogeneous reactor theory calculations. The γ thermal constant was determined as the number giving the best agreement between the theoretical and experimental values of ρ (ω). The simultaneous determination of two among four parameters η,ρ,τ and L s is possible through the intersection of dispersion laws of the pure moderator system and the fuel moderator system. The parameters τ and η were termined by this method. It was shown that the thermal constant γ and the product η ρ can be computed from the real and imaginary parts of the fuel-moderator dispersion law. The results for this evaluation scheme showns a not stable behavior of γ as a function of frequency, a result not foreseen by the theoretical model. (Author) [pt

  1. A method for analyzing elastic scattering data sampled with the SFM-detector at the CERN ISR

    International Nuclear Information System (INIS)

    Claesson, G.

    1983-01-01

    This paper describes a method for determination of the squared 4-momentum transfer, t, in elastic collisions sampled with the Split-Field-Magnet detector (SFM) at the CERN ISR. The t-values are calculated from the measured scattering angles and initial momenta of the beam particles. The method determines t with a relative error of 2percent in Monte-Carlo generated elastic events. The method seems to be effective in rejecting inelastic events by means of a chi 2 -test. (author)

  2. Neutron and X-ray scattering as a method of precision determination of electron density distribution in molecules and crystals

    International Nuclear Information System (INIS)

    Ozerov, R.P.; Datt, I.D.

    1975-01-01

    The radiation from nuclear reactors is commonly used at present for research in a variety of fields of human knowledge. Slow neutrons have come to be used in the study of solids, more especially in the atomic structure of solids and in the magnetism and dynamics of crystals. The review describes the fundamentals of methods based on the use of the coherent elastic scattering of neutrons (both nuclear and magnetic scattering) and X-rays in the study of electron (including spin) density distribution in crystals and molecules. It also discusses the fundamentals of X-ray and neutron structural analysis, points out the similarities and differences in the methods based on differences in the elementary scattering event, and proposes ways of carrying the experiments beyond the limits of routine localization of atoms in a crystal in order to obtain further details of the electron density distribution. The most promising method appears to be the combined application of neutrons and X-rays. The basis of this technique is described and a number of examples are given. Results obtained in similar studies are of great scientific importance, especially for the theory of the chemical structure and magnetism of solids. (author)

  3. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Haibo; Yang, Danting; Mircescu, Nicoleta E.; Ivleva, Natalia P.; Schwarzmeier, Kathrin; Niessner, Reinhard; Haisch, Christoph; Wieser, Andreas; Schubert, Sören

    2015-01-01

    We describe a method for the synthesis of SERS-active silver nanoparticles (AgNPs) directly on the surface of bacteria (bacteria-AgNPs), specifically of E. coli cells. This straightforward strategy allows for the sensitive determination of bacteria on a microarray platform. Antibodies were used as selective receptors on the microarray surface. The Raman signal of bacteria-AgNPs is about 10 times higher than that obtained previously with microarrays based on mixing bacteria and AgNPs (bacteria+AgNPs). The optimum SERS enhancement of bacteria-AgNPs is obtained under 633-nm laser excitation, and this most likely is due to the plasmonic interaction of aggregated AgNPs. The method allows for an identification and quantification even of single E. coli bacteria. In our perception, this straightforward approach represents a most valuable tool for the detection of E. coli and, conceivably, of other bacteria, and thus has a large potential in environmental monitoring, medical diagnosis, and in food safety and quality control. (author)

  4. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)

    International Nuclear Information System (INIS)

    Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.

    2006-01-01

    A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result

  5. Single-photon source engineering using a Modal Method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined as the num...... nanowire SPSs...

  6. Single molecule force spectroscopy: methods and applications in biology

    International Nuclear Information System (INIS)

    Shen Yi; Hu Jun

    2012-01-01

    Single molecule measurements have transformed our view of biomolecules. Owing to the ability of monitoring the activity of individual molecules, we now see them as uniquely structured, fluctuating molecules that stochastically transition between frequently many substrates, as two molecules do not follow precisely the same trajectory. Indeed, it is this discovery of critical yet short-lived substrates that were often missed in ensemble measurements that has perhaps contributed most to the better understanding of biomolecular functioning resulting from single molecule experiments. In this paper, we give a review on the three major techniques of single molecule force spectroscopy, and their applications especially in biology. The single molecular study of biotin-streptavidin interactions is introduced as a successful example. The problems and prospects of the single molecule force spectroscopy are discussed, too. (authors)

  7. Direct quantitative screening of influenza A virus without DNA amplification by single-particle dual-mode total internal reflection scattering.

    Science.gov (United States)

    Lee, Seungah; Chakkarapani, Suresh Kumar; Yeung, Edward S; Kang, Seong Ho

    2017-01-15

    Quantitative screening of influenza A (H7N9) virus without DNA amplification was performed based on single-particle dual-mode total internal reflection scattering (SD-TIRS) with a transmission grating (TG). A gold nanopad was utilized as a substrate for the hybridization of probe DNA molecules with the TIRS nanotag (silver-nanoparticle). The TG effectively isolated the scattering signals in first-order spectral images (n=+1) of the nanotag from that of the substrate, providing excellent enhancement of signal-to-noise and selectivity. By using single-DNA molecule/TIRS nanotag hybridization, target DNA molecules of H7N9 were detected down to 74 zM, which is at least 100,000 times lower than the current detection limit of 9.4fM. By simply modifying the design of the probe DNA molecules, this technique can be used to directly screen other viral DNAs in various human biological samples at the single-molecule level without target amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Summer and winter time heterogeneity in aerosol single scattering albedo over the northwestern Atlantic Ocean during the TCAP field campaign: Relationship to chemical composition and mixing state

    Science.gov (United States)

    Berg, L. K.; Chand, D.; Fast, J. D.; Zelenyuk, A.; Wilson, J. M.; Sedlacek, A. J., III; Tomlinson, J. M.; Hubbe, J. M.; Comstock, J. M.; Mei, F.; Kassianov, E.; Schmid, B.

    2015-12-01

    Aerosol play crucial role in earth's radiative budget by scattering and absorbing solar radiation. The impact of aerosol on radiation budget depend on several factors including single scattering albedo (SSA), composition, and the growth processes, like coating or mixing. We describe findings relevant to optical properties of aerosol characterized over the Cape Cod and nearby northwest Atlantic Ocean during the Two Column Aerosol Project (TCAP) during the summer (July 2012) and winter (February 2013) campaigns. The average single scattering albedo (SSA) shows distinctly different vertical profiles during the summer and winter periods. During the summer study period, the average SSA is greater than 0.95 near surface, it increases to 0.97 until an altitude of 2.5 km, and then decreases to 0.94 at top of the column near 4 km. In contrast, during the winter study period the average SSA is less than 0.93 and decreases with height reaching an average value of 0.87 near the top of the column. The large difference in summer and winter time SSA is linked to the presence of biomass burning (BB) aerosol rather than black carbon or soot in both seasons. In our study, the BB on average is factor of two higher in free troposphere (FT) during summer and more than a factor of two higher in the boundary layer during winter. Single particle analysis indicates that the average profiles of refractory black carbon (rBC) mass are similar in both seasons. The average rBC size are similar at all altitudes sampled (0-4 km) in summer time but different during winter time. In addition, the particles sampled in the summertime FT appear to be more aged than those seen during winter. The observed large heterogeneity in SSA and its links to the particle coating and composition highlights the importance of aging and mixing processes of aerosol in this region and represents a challenge for both regional and global scale models.

  9. High-resolution size measurement of single spherical particles with a fast Fourier transform of the angular scattering intensity.

    Science.gov (United States)

    Min, S L; Gomez, A

    1996-08-20

    A technique is described and demonstrated to measure the size of spherical particles of known index of refraction by laser light scattering with an accuracy of better than 1%. This technique entails imaging the angular scattering intensity onto a photodiode array and applying a fast Fourier transform to the array output to obtain a frequency and phase corresponding to the number and angular position of the scattering lobes. Errors associated with particle trajectory effects and changes in the index of refraction are also considered. Results are not affected by the former, whereas variations of the refractive index by 2%, as may be typical, for example, of the transient heat up of a liquid hydrocarbon droplet, cause a deterioration of sizing accuracy to approximately 3%. The technique can in principle be applied in real time at data rates as high as 20-30 kHz with a modest equipment investment. Therefore, the measurement of droplet evaporation rates in dilute sprays with unprecedented accuracy appears to be feasible.

  10. Simple fully reflective method of scatter reduction in 2D-IR spectroscopy.

    Science.gov (United States)

    Spector, Ivan C; Olson, Courtney M; Huber, Christopher J; Massari, Aaron M

    2015-04-15

    A fully reflective two-dimensional IR (2D-IR) setup is described that enables efficient cancellation of scattered light from multiple pulses in the phase-matched direction. The local oscillator pulse and the pulse that stimulates the vibrational echo signal are synchronously modulated (or fibrillated) in time maintaining their phase relationships with the echo wavepacket. The modification is cost-effective and can be easily implemented on existing 2D-IR instruments, and it avoids the addition of dispersive elements into the beam paths. The fibrillation results in a decrease of waiting-time resolution of only tens of femtoseconds and has no impact on the spectral lineshape, making it a general improvement for 2D-IR spectrometers even for weakly or non-scattering samples.

  11. A general method for measuring the scattering matrices of N-port systems

    International Nuclear Information System (INIS)

    Bizarro, J.P.; Pain, M.

    1989-01-01

    Arising from the need to test the multijunctions that will build up the JET (Joint European Torus) lower hybrid antenna, a general model to measure scattering matrices of microwave devices was developed. The model allows for devices with any number of ports and for the use of adaptors between the measuring system and the device under test. Its accuracy can be as good as 1% for waveguide components. (author)

  12. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Science.gov (United States)

    2016-12-22

    of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in

  13. Multiphase polymer systems: morphology and optical properties by light scattering methods

    Czech Academy of Sciences Publication Activity Database

    Holoubek, Jaroslav

    2002-01-01

    Roč. 18, 5-6 (2002), s. 286-292 ISSN 0934-0866 R&D Projects: GA ČR GA203/99/0573; GA AV ČR IAA4050902 Institutional research plan: CEZ:AV0Z4050913 Keywords : time-resolved light scattering * diffuse reflectance * phase dissolution Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.633, year: 2002

  14. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  15. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis.

    Science.gov (United States)

    Suzuki, Hiroshi; Toyooka, Tatsushi; Ibuki, Yuko

    2007-04-15

    Many classes of nanoparticles have been synthesized and widely applied, however, there is a serious lack of information concerning their effects on human health and the environment. Considering that their use will increase, accurate and cost-effective measurement techniques for characterizing "nanotoxicity" are required. One major toxicological concern is that nanoparticles are easily taken up in the human body. In this study, we developed a method of evaluating the uptake potential of nanosized particles using flow cytometric light scatter. Suspended titanium dioxide (TiO2) particles (5, 23, or 5000 nm) were added to Chinese hamster ovary cells. Observation by confocal laser scanning microscopy showed that the TiO2 particles easily moved to the cytoplasm of the cultured mammalian cells, not to the nucleus. The intensity of the side-scattered light revealed that the particles were taken up in the cells dose-, time-, and size-dependently. In addition, surface-coating of TiO2 particles changed the uptake into the cells, which was accurately reflected in the intensity of the side-scattered light. The uptake of other nanoparticles such as silver (Ag) and iron oxide (Fe3O4) also could be detected. This method could be used for the initial screening of the uptake potential of nanoparticles as an index of "nanotoxicity".

  16. A novel scatter separation method for multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  17. Generalized Wronskian relations one dimensional Schroedinger equation and nonlinear partial differential equations solvable by the inverse scattering method

    International Nuclear Information System (INIS)

    Calogero, F.

    1976-01-01

    A generalized Wronskian type relation is used to obtain a number of expressions for the scattering and bound state parameters (reflection and transmission coefficients, bound state energies and normalization constants) in the context of the one dimensional Schroedinger equation. These expressions are in the form of integrals over the wave functions multiplied by appropriate (generally nonlinear) combinations of the potentials and their derivatives. Some of them provide the basis for deriving classes of nonlinear partial differential equations that are solvable by the inverse scattering method. The main interest of this approach rests in its simplicity and in its delivery of nonlinear evolution equations that may involve more than one (space) variable and contain coefficients that are not constant

  18. Fast analysis of wide-band scattering from electrically large targets with time-domain parabolic equation method

    Science.gov (United States)

    He, Zi; Chen, Ru-Shan

    2016-03-01

    An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.

  19. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, I. G.; Sousa, J. B. [IFIMUP and IN, Rua do campo Alegre, 687, 4169-007 Porto (Portugal); Department of Physics, FCUP, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Leitao, D. [IFIMUP and IN, Rua do campo Alegre, 687, 4169-007 Porto (Portugal)

    2009-07-15

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  20. Single-photon source engineering using a Modal Method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    as the number of detected photons by the collection optics per trigger, is desired, and to obtain this high efficiency the photonic environment must be engineered [1] such that all the emitted light couples to the collection optics. A recent design approach is based on a quantum dot placed inside a photonic...... nanowire (Fig. 1). This structure does not feature a cavity but instead relies on a geometrical screening effect to efficiently couple photons to the fundamental waveguide mode. Furthermore, the photonic nanowire SPS implements a bottom metal mirror and exploits tapering strategies based on conical tapers...... to ensure efficient in- and out-coupling. However, the performance of the photonic nanowire SPS depends critically on the geometrical parameters, and exact optical simulations of the scattering coefficients of the fundamental waveguide mode are required to obtain a detailed understanding of the various...