WorldWideScience

Sample records for single rf pulse

  1. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    Science.gov (United States)

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  3. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  4. Generation of femtosecond electron single pulse using laser photocathode RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M.; Kinoshita, K.; Watanabe, T. [Nuclear Engineering Research Laboratory, University of Tokyo, Tokai, Ibaraki (JP)] [and others

    1998-11-01

    A new laser photocathode RF electron gun was installed in the second linac of the S-band twin linac system of Nuclear Engineering Research Laboratory(NERL) of University of Tokyo in August in 1997. Since then, the behavior of the new gun has been tested and the characteristic parameters have been evaluated. At the exit of the gun, the energy is 4.7 MeV, the charge per bunch 1 nC, the pulse width is 10 ps(FWHM), respectively, for 6 MW RF power supply from a klystron. The electron bunch is accelerated up to 17 MeV. The horizontal normalized emittance is 1 {pi} mm.mrad. Then, the bunch is compressed to be 440 fs(FWHM) with 0.35 nC by the chicane-type magnetic pulse compressor. The gun is planned to be used for femtosecond X-ray generation via the head-on Thomson scattering and laser wakefield acceleration in 1998. (author)

  5. RF pulse compression development

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Weaver, J.N.

    1987-10-01

    The body of this paper discusses the theory and some rules for designing a multistage Binary Energy Compressor (BEC) including its response to nonstandard phase coding, describes some proof-of-principle experiments with a couple of low power BECs, presents the design parameters for some sample linear collider rf systems that could possibly use a BEC to advantage and outlines in the conclusion some planned R and D efforts. 8 refs., 26 figs., 4 tabs

  6. Experimental study of rf pulsed heating

    Directory of Open Access Journals (Sweden)

    Lisa Laurent

    2011-04-01

    Full Text Available Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×10^{6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  7. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  8. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  9. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  10. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  11. Pulsed rf systems for large storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1979-03-01

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  12. Pulsed rf superconductivity program at SLAC

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM 010 caavities using short rf pulses (less than or equal to 2.5 μs) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible

  13. Pulsed RF Sources for Linear Colliders

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-01-01

    These proceedings represent papers presented at the workshop on pulsed RF sources for linear colliders. The workshop examined the performance of RF sources for possible future linear colliders. Important sources were presented on new type of klystrons, gyrotrons and gyroklystrons. A number of auxiliary topics were covered, including modulators, pulse compression, power extraction, windows, electron guns and gun codes. The workshop was sponsored by the International Committee for Future Accelerators(ICFA), the U.S. Department of Energy and the Center for Accelerator Physics at Brookhaven National Laboratory. There were forty one papers presented at the workshop and all forty one have been abstracted for the Energy Science and Technology database

  14. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  15. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  16. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  17. New fat suppression RF pulse with shorter duration

    International Nuclear Information System (INIS)

    Yamaguchi, Kojiro; Ukai, Hiroyuki

    2010-01-01

    The fat suppression radio frequency pulse currently employed for MRI, which selectively saturates the frequency of the fat, has the narrow-band frequency characteristics. Therefore, the application duration for the pulse employed tends to be prolonged. In the present study, we designed a new fat suppression radiofrequency (RF) pulse using the Laguerre function in order to shorten the duration for fat suppression RF pulse and conducted an evaluation with the clinical equipment. The length of the RF pulse that we created allowed to reduce the duration by 47.3% compared with that employed for the clinical equipment. In addition, in the MR imaging evaluation, the new pulse was confirmed to have the fat suppression effect equivalent to that employed for the clinical equipment. (author)

  18. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  19. Lasertron, a pulsed RF-source using laser triggered photocathode

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu.

    1988-12-01

    A new pulsed RF-source, 'Lasertron', are being developed as a possible RF-power source for future electron-positron linear colliders. In a series of systematic study, a prototype lasertron has been fabricated and tested. A peak power of 80 kW is attained at 2.856 GHz RF-frequency in 1-μs time duration. This paper describes the experimental results of the lasertron including the developments of the photocathode and the laser system. Test results are compared with the analysis of beam dynamics in the lasertron. (author)

  20. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel

  1. ASL: Comparison of presaturation and RF pulse optimization

    DEFF Research Database (Denmark)

    Holm, David; Sidaros, Karam

    2005-01-01

    In arterial spin labelling, the difference between the tag and control image is on the order of 1% of the equilibrium magnetization. A small offset between the images not related to perfusion, can therefore lead to large errors in the measured perfusion. One source of error is non-ideal RF pulses...... resulting in the inversion pulse affecting the acquired signal from the imaging area. This systematic error can be reduced by increasing the gap between the inversion and imaging regions, by using optimized inversion pulses e.g. FOCI1 or by saturating the signal from static tissue in the imaging area prior...

  2. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  3. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  4. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  5. A Single-Pulse Integrator

    DEFF Research Database (Denmark)

    Miller, Arne

    1974-01-01

    A single-pulse integrator is described. It gives a relative measure of the integral of the output signal from a coil monitor on the Risø 10 MeV linear accelerator, and displays the value on a digital voltmeter. The reproduccibility is found to be better than ±1% for an accelerated pulse charge...

  6. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  7. Electron pulse shaping in the FELIX RF accelerator

    International Nuclear Information System (INIS)

    Weits, H.H.; Geer, C.A.J. van der; Oepts, D.; Meer, A.F.G. van der

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel through an undulator. It was demonstrated that the power level of the CSE critically depends on the settings of the accelerator. In this article we seek to explain these observations by studying the length and shape of the electron bunches as a function of the settings of the accelerator. A particle-tracking model was used to simulate the acceleration and transport processes. These include bunch compression in a 14-cell travelling wave buncher cavity, acceleration in a travelling wave linear accelerator, and passage through a (dispersive) chicane structure. The effect of the phase setting of the RF accelerating field with respect to the arrival time of the electron bunch in each accelerator structure was studied. The parameter range of the simulations is related to that of an actual free-electron laser experiment using these bunches. We find that, for specific settings of the accelerating system, electron pulses with a length of 350 μm FWHM (1 ps) are produced. The charge in the bunch rises steeply within a distance of 25 μm. This bunch shape explains the high level of coherently enhanced spontaneous emission observed in the FELIX laser. (author)

  8. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  9. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  10. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  11. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  12. 1 ms pulse beam generation and acceleration by photo-cathode RF gun

    International Nuclear Information System (INIS)

    Watanabe, Ken; Hayano, Hitoshi; Urakawa, Jyunji

    2012-01-01

    We report successful generation of 1 ms long pulse and multi-bunch electron beam by a normal conducting photo-cathode RF gun at KEK-STF (Superconducting accelerator Test Facility). The 1 ms long Pulse beam generated by the RF gun is delivered to the injection line to examine stable acceleration and precise RF control. The 1 ms pulse beam is also used to demonstrate high brightness X-ray generation by inverse laser Compton scattering which will be also carried out at STF, supported by MEXT Quantum Beam project. The RF gun cavity has been fabricated by DESY-FNAL-KEK collaboration. Performing high power RF process and ethanol rinse to the cavity, a stable operation of the cavity up to 4.0 MW RF input power with ∼1 ms pulse length was achieved by keeping even low dark current. The beam generation test has been started since February 2012, 1 ms pulse was generated in March 2012. We explain about the STF injector and report the basic property of this 1 ms beam generation. (author)

  13. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  14. The Single Pass RF Driver: Final beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Robert, E-mail: rjburke@fusionpowercorporation.com

    2014-01-01

    The Single Pass RF Driver (SPRFD) compacts the beam from the linac without storage rings by manipulations that take advantage of the multiplicity of isotopes (16), the preserved µbunch structure, and increased total linac current. Magnetic switches on a first set of delay lines rearrange the internal structure of the various isotopic beams. A second set of delay lines sets the relative timing of the 16 isotopic beam sections so they will telescope at the pellet, in one of multiple fusion chambers, e.g. 10. Shortening each isotopic beam section uses preservation of the µbunch structure up to the final ∼2 km drift before final focus. Just before the final drift, differential acceleration of the µbunches in each isotopic beam section (128 total) launches an axial collapse, referred to as the “Slick”. The µbunches interpenetrate as their centers of mass move toward each other and individual µbunches lengthen due to their momentum spread. In longitudinal phase space they slide over one another as they lengthen in time and slim down in instantaneous energy spread. The permissible amount of µbunch lengthening is set by the design pulse shape at the pellet, which varies for different groups of isotopes. In narrow bands of ranges according to the role for each isotope group in the pellet, the ranges extend from 1 to 10 g/cm{sup 2} to drive the cylinder barrel and thin hemispherical end caps, to heat the ∼0.5 g/cm{sup 2}ρR fast ignition zone, and to improve the quasi-sphericity of the compression of the fast ignition zones at the pellet's ends. Because the µbunch–µbunch momentum differences are correlated, time-ramped beamline transport elements close after the differential accelerator are used to correct the associated shifts of focal point. Beam neutralization is needed after the differential acceleration until adjacent bunches begin to overlap. Concurrent collapse of each isotope and telescoping of the 16 isotopes cause the current in each beamline

  15. The Single Pass RF Driver: Final beam compression

    International Nuclear Information System (INIS)

    Burke, Robert

    2014-01-01

    The Single Pass RF Driver (SPRFD) compacts the beam from the linac without storage rings by manipulations that take advantage of the multiplicity of isotopes (16), the preserved µbunch structure, and increased total linac current. Magnetic switches on a first set of delay lines rearrange the internal structure of the various isotopic beams. A second set of delay lines sets the relative timing of the 16 isotopic beam sections so they will telescope at the pellet, in one of multiple fusion chambers, e.g. 10. Shortening each isotopic beam section uses preservation of the µbunch structure up to the final ∼2 km drift before final focus. Just before the final drift, differential acceleration of the µbunches in each isotopic beam section (128 total) launches an axial collapse, referred to as the “Slick”. The µbunches interpenetrate as their centers of mass move toward each other and individual µbunches lengthen due to their momentum spread. In longitudinal phase space they slide over one another as they lengthen in time and slim down in instantaneous energy spread. The permissible amount of µbunch lengthening is set by the design pulse shape at the pellet, which varies for different groups of isotopes. In narrow bands of ranges according to the role for each isotope group in the pellet, the ranges extend from 1 to 10 g/cm 2 to drive the cylinder barrel and thin hemispherical end caps, to heat the ∼0.5 g/cm 2 ρR fast ignition zone, and to improve the quasi-sphericity of the compression of the fast ignition zones at the pellet's ends. Because the µbunch–µbunch momentum differences are correlated, time-ramped beamline transport elements close after the differential accelerator are used to correct the associated shifts of focal point. Beam neutralization is needed after the differential acceleration until adjacent bunches begin to overlap. Concurrent collapse of each isotope and telescoping of the 16 isotopes cause the current in each beamline to rise

  16. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission

    Science.gov (United States)

    Garwood, Michael; Uğurbil, Kamil

    2018-06-01

    The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

  17. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  18. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Simon; Heiler, Patrick M.; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Scharf, Johann [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2011-07-01

    Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm{sup 3} are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm{sup 3} is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography. (orig.)

  19. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses

    International Nuclear Information System (INIS)

    Konstandin, Simon; Heiler, Patrick M.; Schad, Lothar R.; Scharf, Johann

    2011-01-01

    Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm 3 are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm 3 is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography. (orig.)

  20. Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air

    Science.gov (United States)

    Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri

    2018-04-01

    In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.

  1. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    Science.gov (United States)

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  2. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    Science.gov (United States)

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  3. Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector

    International Nuclear Information System (INIS)

    Musumeci, P.; Gutierrez, M. S.; Moody, J. T.; Moore, N.; Rosenzweig, J. B.; Scoby, C. M.; Travish, G.; Cultrera, L.; Ferrario, M.; Filippetto, D.; Gatti, G.; Vicario, C.

    2010-01-01

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 μJ, 800 nm pulse focused to a 140 μm rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  4. RF Application of High Temperature Single Domain Superconductors

    International Nuclear Information System (INIS)

    Ferendeci, M.

    2004-01-01

    Large single domain YBa2Cu3Ox materials have been successfully fabricated with superb RF properties by employing the seeded-melt growth (SMG) method. Commercially available Y-123 and Y-211 phase precursor powders were mixed thoroughly and pressed into various solid and cavity shapes. The solid pieces were then diced into cylindrical flat plates and polished. Following the growth procedure, the materials were then oxygenated in an oven for at least 7 days. The plates were then used as a part of a dielectric resonator cavity and the surface resistances were measured. The cavities were also tested in a closed cycle cryo cooler. The cavity resonance frequencies for the TM010 and TE111 modes, and the corresponding quality factors (Q values) were measured. From the measured Q values, the surface resistances of the cavity surfaces were calculated. Experimentally measured surface resistance values and various combinations of cavity structures for realizing highly selective RF filters will be presented

  5. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  6. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  7. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Dai Hui; Hajima, Ryoichi

    2008-11-01

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  8. RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides

    International Nuclear Information System (INIS)

    Stowell, Michael; Mueller, Joachim; Ruske, Manfred; Lutz, Mark; Linz, Thomas

    2007-01-01

    Transparent conductive oxide films are widely used materials for electronic applications such as flat panel displays and solar cells. The superposition of DC and pulsed DC power by a certain fraction of RF power was applied to deposit indium tin oxide films. This technique allows an additional tuning of different parameters relevant to film growth, and yields high quality films even under kinetically limited conditions. A long-term stable RF/DC process could be realized by using different combinations of standard power supply components, which includes a fully reliable arc handling system for both the RF and DC generators. The effectiveness of the arc handling system is illustrated by the current and voltage behavior recorded for actual arcing events. The resistivity of indium tin oxide films is strongly influenced by the respective sputtering mode. The best resistivity values of 145-148 μΩ cm were obtained by RF-superimposed pulsed DC sputtering at a pulse frequency between 100 and 200 kHz and a substrate temperature as low as 140 deg. C. In addition, the films were extremely smooth with a surface roughness of 1-2.5 nm

  9. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  10. Induction Acceleration of a Single RF Bunch in the KEK PS

    CERN Document Server

    Takayama, Ken; Arakida, Yoshio; Horioka, Kazuhiko; Igarashi, Susumu; Iwashita, Taiki; Kawasaki, Atsushi; Kishiro, Junichi; Kono, Tadaaki; Koseki, Kunio; Nakamura, Eiji; Sakuda, Makoto; Sato, Hikaru; Shiho, Makoto; Shimosaki, Yoshito; Shirakata, Masashi; Sueno, Tsuyoshi; Tokuchi, Akira; Torikai, Kota; Toyama, Takeshi; Wake, Masayoshi; Watanabe, Masao; Yamane, Isao

    2005-01-01

    A single bunch trapped in an RF bucket was accelerated by induction devices from 500 MeV to 8GeV beyond transition energy in the KEK-PS. This is the first demonstration of induction acceleration in a high energy circular ring. The acceleration was confirmed by measuring a temporal evolution of the RF phase through an entire acceleration.* Key devices in an induction acceleration system are an induction accelerating cavity capable of generating an induced voltage of 2kV/cell, a pulse modulator to drive the cavity (switching driver), and a DSP system to control gate signals for switching. Their remarkable characteristics are its repetition ratio of about 1MHz and duty factor of 50%. All devices have been newly developed at KEK so as to meet this requirement. The pulse modulator employing MOSFETs as switching elements is connected with the accelerating cavity through a long transmission cable in order to avoid a high-dose irradiation in the accelerator tunnel. The induction system has been running beyond more th...

  11. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient.

    Science.gov (United States)

    Feng, Shuo; Ji, Jim

    2014-04-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.

  12. High-power rf pulse compression with SLED-II at SLAC

    International Nuclear Information System (INIS)

    Nantista, C.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE 01 mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator)

  13. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  14. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    Science.gov (United States)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  15. RF system developments for CW and/or long pulse linacs

    International Nuclear Information System (INIS)

    Lynch, M.

    1998-01-01

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued

  16. High-quality electron pulse generation from a laser photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, Jinfeng; Sakai, Fumio; Aoki, Yasushi

    1999-01-01

    A laser photocathode RF gun system was developed for ultra short X-ray pulse generation via the inverse Compton scattering. The gun is a BNL-type S-band RF gun and the performance test of the gun was performed at the Linear Accelerator Facility in the Institute of Scientific and Industries Research, Osaka University. The gun system produced 115 pC electron bunches with the energy of 1.6 MeV under the condition of RF peak power of 1.5 MW and laser pulse energy of 65 μJ. The quantum efficiency and dark current were obtained to be 10 -5 and 0.6 nA at the repetition rate of 10 Hz, respectively. The energy and charge of the electron bunch were measured as a function of laser injection phase. Furthermore, the electron bunches were accelerated up to 117 MeV by three s-band TW linacs and the energy monochromaticity (ΔE/E) of the beam was 1.2%. The transverse emittance was also experimentally investigated at the end of the linacs. (author)

  17. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  18. Single-pulse and multi-pulse femtosecond laser damage of optical single films

    International Nuclear Information System (INIS)

    Yuan Lei; Zhao Yuan'an; He Hongbo; Shao Jianda; Fan Zhengxiu

    2006-01-01

    Laser-induced damage of a single 500 nm HfO 2 film and a single 500 nm ZrO 2 film were studied with single- and multi-pulse femtosecond laser. The laser-induced damage thresholds (LIDT) of both samples by the 1-on-1 method and the 1000-on-1 method were reported. It was discovered that the LIDT of the HfO 2 single film was higher than that of the ZrO 2 single film by both test methods, which was explained by simple Keldysh's multiphoton ionization theory. The LIDT of multi-pulse was lower than that of single-pulse for both samples as a result of accumulative effect. (authors)

  19. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  20. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  1. Preliminary tests of a second harmonic rf system for the intense pulsed neutron source synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx. 3 x 10 12 ppp, depending somewhat on the available aperture. Accelerator improvements are being directed at (1) increasing beam intensities for neutron science, (2) lowering acceleration losses to minimize activation, and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. We are now proposing a third cavity for the RF system which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses by providing more RF voltage at maximum acceleration. This paper presents an outline of the expected benefits together with recent results obtained during low energy operation with one of the two existing cavities operating at the second harmonic

  2. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  3. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  4. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    Science.gov (United States)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH-3 and SiH-2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  5. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals

    International Nuclear Information System (INIS)

    Power, J.G.; Jing, C.

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  6. Self triggered single pulse beam position monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1993-01-01

    A self triggered beam position monitor (BPM) has been developed for the NSLS injection system to provide single pulse orbit measurements in the booster synchrotron, linac, and transport lines. The BPM integrates the negative going portion of 3 nS wide bipolar pickup electrode signals. The gated, self triggering feature confines critical timing components to the front end, relaxing external timing specifications. The system features a low noise high speed FET sampler, a fiber optic gate for bunch and turn selection, and an inexpensive interface to a standard PC data acquisition system

  7. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared.

    Science.gov (United States)

    Key, Douglas J

    2007-02-01

    To compare single-treatment facial skin tightening achieved with the current radiofrequency (RF) protocol with single-treatment tightening achieved with the long-pulsed, 1064-nm Nd:YAG laser. A total of 12 patients were treated with RF energy on one side of the face and laser energy on the other. Results were evaluated on a numerical scale (0-12 with 12 = greatest enhancement) from pre- and posttreatment photographs by a blinded panel. Upper face improvement (posttreatment score minus pretreatment score) was essentially the same on both sides (30.2 and 31.3% improvement for laser and RF, respectively, P=0.89). Lower face improvement was greater in the laser-treated side (35.7 and 23.8% improvement for laser and RF, respectively), but the difference was not significant (P=0.074). Overall face improvement was significantly greater on the laser-treated side (47.5 and 29.8% improvement for laser and RF, respectively, P=0.028). A single high-fluence treatment with the long-pulse 1064-nm Nd:YAG laser may improve skin laxity more than a single treatment with the RF device. Further controlled split-face or very large non-self controlled studies are needed to conclusively determine the relative efficacies of the two technologies. (c) 2007 Wiley-Liss, Inc.

  8. A phase stabilized and pulse shaped Ti:Sapphire oscillator-amplifier laser system for the LCLS rf photoinjector

    International Nuclear Information System (INIS)

    Kotseroglou, T.; Alley, R.; Clendenin, J.; Fisher, A.; Frisch, J.

    1998-04-01

    The authors have designed a laser system for the Linac Coherent Light Source rf photoinjector consisting of a Ti:Sapphire oscillator and 2 amplifiers using Chirped Pulse Amplification. The output after tripling will be 0.5 mJ tunable UV pulses at 120 Hz, with wavelength around 260 nm, pulsewidth of 10 ps FWHM and 200 fs rise and fall times. Amplitude stability is expected to be 1% rms in the UV and timing jitter better than 500 fs rms

  9. RF compensation of single Langmuir probe in low density helicon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumen, E-mail: soumen@ipr.res.in; Chattopadhyay, Prabal K.; Ghosh, Joydeep; Bora, Dhiraj

    2016-11-15

    Highlights: • Appropriate density and temperature measurement with Langmuir probe in RF Eenvironment. • Necessity of large auxiliary electrode for RF compensation at low densities (∼10{sup 16} m{sup −3}). • Measured two temperature electrons in low pressure helicon antenna produced RF plasma. • Tail electrons are localized only at off-axis in our cylindrical plasma system. - Abstract: Interpretations of Single Langmuir probe measurements in electrode-less radio frequency (RF) plasmas are noteworthy tricky and require adequate compensation of RF. Conventional RF compensation technique is limited only at high density (>10{sup 17} m{sup −3}) RF plasmas. RF compensation of single Langmuir probe at low density RF plasmas (∼10{sup 16} m{sup −3}) is presented in this paper. In RF driven plasmas, where the RF voltage is high (∼50 V) and density is in the range (∼10{sup 16} m{sup −3}), the primary RF compensation condition (Z{sub ck} > >Z{sub sh}) is very difficult to fulfill, because of high sheath impedance (Z{sub sh}) at 13.56 MHz and the construction limitation of a self-resonant tiny chock (Z{sub ck}) with very high impedance. Introducing a large auxiliary electrode (A{sub x}), (A{sub x} >>> A{sub p}), close to the small Langmuir probe (A{sub p}) tip, connected in parallel with probe via a coupling capacitor (C{sub cp}), significantly reduces the effective sheath impedance (Z{sub sh}) and allows probe bias to follow the RF oscillation. Dimensional requirements of the auxiliary electrode and the role of suitable coupling capacitor are discussed in this paper. Observations show proper compensation leads to estimation of more positive floating potentials and lower electron temperatures compared to uncompensated probe. The electron energy probability function (EEPF) is also obtained by double differentiating the collected current with respect to the applied bias voltage using an active analog circuit.

  10. Single-side electron multipacting at the photocathode in rf guns

    Directory of Open Access Journals (Sweden)

    Jang-Hui Han

    2008-01-01

    Full Text Available Multiple electron impacting (multipacting can take place in rf fields when the rf components are composed of materials with a secondary electron yield greater than one. In rf gun cavities, multipacting may change the properties of the vacuum components or even damage them. First systematic measurements of the multipacting occurring in a photocathode rf gun were made at the Fermilab/NICADD Photoinjector Laboratory in 2000. The multipacting properties were found to depend on the cathode material and the solenoid field configuration. In this study, we measure the multipacting properties in more detail and model the secondary electron generation for numerical simulation. Measurements and simulations for the photoinjectors at Fermilab and DESY are compared. The multipacting takes place at the photocathode in rf guns and is categorized as single-side multipacting. In a low rf field, the electrons emitted from the cathode area do not leave the gun cavity within one rf cycle and have an opportunity to travel back and hit the cathode. The solenoid field distribution in the vicinity of the cathode changes the probability of electron bombardment of the cathode and makes a major contribution to the multipacting behavior.

  11. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    Science.gov (United States)

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  12. RF windows used at s-band pulsed klystrons in KEK linac

    Energy Technology Data Exchange (ETDEWEB)

    Michizono, S.; Saito, Y. [KEK, National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    The breakdown of the alumina RF-windows used in high-power klystrons is one of the most serious problems in the development of klystrons. This breakdown results from excess heating of alumina due to multipactor bombardments and/or localized RF dissipations. A statistical research of window materials was carried out, and high-power tests were performed in order to develop RF windows having high durability for the KEKB klystrons. The breakdown mechanism of RF windows is being considered. An improved RF window installed in a KEKB klystron is also being tested. (J.P.N)

  13. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  14. Relativistic acceleration and retardation effects on photoemission of intense electron short pulses, in RF-FEL photoinjectors

    International Nuclear Information System (INIS)

    Dolique, J.M.; Coacolo, M.

    1991-01-01

    In high-power free electron lasers, self-field effects in the electron beam are often the most important phenomenon on which the beam quality depends. These effects are generally conceived as space-charge effects, and described by a Poisson equation in a beam frame. In RF-FEL photoinjectors, the electrons of the intense short pulse produced by laser irradiation are submitted, just after their photoemission, to such a strong acceleration that relativistic acceleration and retardation effects are discussed, from the rigorous calculation of the Lienard-Wiechert velocity- and acceleration electric and magnetic fields, as a function of RF-electric field and beam parameters. The beam pulse is assumed to be axisymmetric, with a constant photoemitted current density. Consequences for the maximum current density that can be extracted are considered (the 'self-field limit,' a name more appropriate than 'space-charge limit' for the present conditions where electro-dynamic phenomena play an important role)

  15. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  16. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  17. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  18. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla

    NARCIS (Netherlands)

    van Kalleveen, Irene M. L.; Boer, VO; Luijten, Peter R.; Klomp, DWJ

    Purpose: Going to ultrahigh field MRI (e. g., 7 Tesla [ T]), the nonuniformity of the B_1 field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B_1, its field remains nonuniform. In this work, an RF pulse was designed

  19. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  20. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  1. Behavioral changes induced by single and multiple electron beam pulses

    International Nuclear Information System (INIS)

    Pease, V.P.; McNulty, P.J.

    1985-01-01

    The effects of single, and low-dose, high-dose-rate and multiple electron beam pulses on passive avoidance behavior in mice were studied. Passive avoidance was measured by recording the time that an animal took to enter a chamber from a narrow platform. There were four conditions in the experiment: (1) no shock no radiation-control, (2) radiation only, (3) shock only, and (4) radiation plus shock. Forty animals were run for each data point. Dose rate was held constant at 9 x 10/sup 7/ rads/sec. Average doses for the two single pulses were 7.18 and 8.72 rads. The average total dose for a 25 pulse per second condition was 324.0 rads. The differences between the single versus multiple pulse radiation-only conditions were significant with longer avoidance latencies in the multiple pulse condition. Avoidance latencies were also significantly longer in the shock plus radiation condition for the multiple beam pulse than the single pulse. It is concluded that single and multiple electron beam pulses significantly effect behavior, in this case producing avoidance

  2. A single chip pulse processor for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hilsenrath, F.; Bakke, J.C.; Voss, H.D.

    1985-01-01

    A high performance digital pulse processor, integrated into a single gate array microcircuit, has been developed for spaceflight applications. The new approach takes advantage of the latest CMOS high speed A/D flash converters and low-power gated logic arrays. The pulse processor measures pulse height, pulse area and the required timing information (e.g. multi detector coincidence and pulse pile-up detection). The pulse processor features high throughput rate (e.g. 0.5 Mhz for 2 usec gausssian pulses) and improved differential linearity (e.g. + or - 0.2 LSB for a + or - 1 LSB A/D). Because of the parallel digital architecture of the device, the interface is microprocessor bus compatible. A satellite flight application of this module is presented for use in the X-ray imager and high energy particle spectrometers of the PEM experiment on the Upper Atmospheric Research Satellite

  3. Searching for Single Pulses Using Heimdall

    Science.gov (United States)

    Walsh, Gregory; Lynch, Ryan

    2018-01-01

    In radio pulsar surveys, the interstellar medium causes a frequency dependent dispersive delay of a pulsed signal across the observing band. If not corrected, this delay substantially lowers S/N and makes most pulses undetectable. The delay is proportional to an unknown dispersion measure (DM), which must be searched over with many trial values. A number of new, GPU-accelerated codes are now available to optimize this dedispersion task, and to search for transient pulsed radio emission. We report on the use of Heimdall, one such GPU-accelerated tree dedispersion utility, to search for transient radio sources in a Green Bank Telescope survey of the Cygnus Region and North Galactic Plane. The survey is carried out at central frequency of 820 MHz with a goal of finding Fast Radio Bursts, Rotating Radio Transients, young pulsars, and millisecond pulsars. We describe the the survey, data processing pipeline, and follow-up of candidate sources.

  4. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  5. Control Instabilities in a Pulsed Multi-Cavity RF System with Vector Sum Feedback (A Mathematical Analysis)

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    Upcoming projects relying on pulsed linear accelerators intend to use superconducting RF systems. Cost reasons suggest driving several cavities by a common transmitter, controlled over a vector sum feedback system, possibly supported by a feed forward system. Numerical simulations hint that such a system may become uncontrollable under certain conditions. In the present paper, for a model very close to reality, we will present a mathematical proof that in fact spontaneous symmetry braking is possible for these configurations, defining also the precise conditions under which it will take place. These can be used as an estimate for the real RF system stability limits. The listing of a small program demonstrating the mechanism numerically for two cavities is attached.

  6. Control Instabilities in a Pulsed Multi-Cavity RF System with Vector Sum Feedback (A Mathematical Analysis) 052

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    Upcoming projects relying on pulsed linear accelerators intend to use superconducting RF systems. Cost reasons suggest driving several cavities by a common transmitter, controlled over a vector sum feedback system, possibly supported by a feed forward system. Numerical simulations hint that such a system may become uncontrollable under certain conditions. In the present paper, for a model very close to reality, we will present a mathematical proof that in fact spontaneous symmetry braking is possible for these configurations, defining also the precise conditions under which it will take place. These can be used as an estimate for the real RF system stability limits. The listing of a small program demonstrating the mechanism numerically for two cavities is attached.

  7. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-01-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method

  8. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  9. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  10. Generation of a single-cycle optical pulse

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.; Harris, S.E.

    2005-01-01

    We make use of coherent control of four-wave mixing to the ultraviolet as a diagnostic and describe the generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length, and where the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series. Specifically, using seven sidebands, we report the generation of a train of single-cycle optical pulses with a pulse width of 1.6 fs, a pulse separation of 11 fs, and a peak power of 1 MW

  11. Growth of Sr1-xNdxCuOy thin films by rf-magnetron sputtering and pulsed-laser deposition

    International Nuclear Information System (INIS)

    Sugii, N.; Ichikawa, M.; Kuba, K.; Sakurai, T.; Iamamoto, K.; Yamauchi, H.

    1992-01-01

    This paper reports on Sr 1- x Nd x CuO y thin films grown on SrTiO 3 substrates by rf-magnetron sputtering and pulsed-laser deposition. The sputter-deposited film with x=0 has an infinite-layer structure whose lattice constants are: a=0.390 nm and c=0.347 nm. When x is larger than 0.1, the films contain a phase of the Sr 14 Cu 24 O 41 structure. The laser-deposited films of Sr 1- x Nd x CuO y with x ≥ 0.075 were single phase of the infinite-layer structure. The lattice parameter c decreased and the lattice parameter a increased, as the Nd content, x, increased. The films with x=0.10 and 0.125 exhibited superconducting onset temperatures around 26 K. Weak Meissner signals were observed for these films at temperatures below 30 K

  12. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  13. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  14. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    Indian Academy of Sciences (India)

    ing (GIG) cavity, single-mode dye laser pumped by high repetition rate ... in a high loss cavity, a detailed theoretical study and optimization of cavity ..... rate for high conversion efficiency and longer pulse width of the single-mode dye laser.

  15. Ultrafast geometric control of a single qubit using chirped pulses

    International Nuclear Information System (INIS)

    Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2012-01-01

    We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.

  16. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    Science.gov (United States)

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. S-process studies using single and pulsed neutron exposures

    Science.gov (United States)

    Beer, H.

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A = 90 to 200. For the isotopes from iron to zirconium an additional 'weak' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, the inclusion of new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of an s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process.

  18. S-process studies using single and pulsed neutron exposures

    International Nuclear Information System (INIS)

    Beer, H.

    1986-01-01

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A=90 to 200. For the isotopes from iron to zirconium an additional ''weak'' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, including new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of a s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process

  19. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  20. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  1. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  2. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    International Nuclear Information System (INIS)

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence

  3. Single flux pulses affecting the ensemble of superconducting qubits

    Science.gov (United States)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-02-01

    The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.

  4. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  5. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  6. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  7. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  8. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    Science.gov (United States)

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  9. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  10. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  11. Precoding Design for Single-RF Massive MIMO Systems: A Large System Analysis

    KAUST Repository

    Sifaou, Houssem

    2016-08-26

    This work revisits a recently proposed precoding design for massive multiple-input multiple output (MIMO) systems that is based on the use of an instantaneous total power constraint. The main advantages of this technique lie in its suitability to the recently proposed single radio frequency (RF) MIMO transmitter coupled with a very-high power efficiency. Such features have been proven using simulations for uncorrelated channels. Based on tools from random matrix theory, we propose in this work to analyze the performance of this precoder for more involved channels accounting for spatial correlation. The obtained expressions are then optimized in order to maximize the signalto- interference-plus-noise ratio (SINR). Simulation results are provided in order to illustrate the performance of the optimized precoder in terms of peak-to-average power ratio (PAPR) and signal-to-interference-plus-noise ratio (SINR). © 2012 IEEE.

  12. Comparison of photobiomodulation therapy and suprascapular nerve-pulsed radiofrequency in chronic shoulder pain: a randomized controlled, single-blind, clinical trial.

    Science.gov (United States)

    Ökmen, Burcu Metin; Ökmen, Korgün

    2017-11-01

    Shoulder pain can be difficult to treat due to its complex anatomic structure, and different treatment methods can be used. We aimed to examine the efficacy of photobiomodulation therapy (PBMT) and suprascapular nerve (SSN)-pulsed radiofrequency (RF) therapy. In this prospective, randomized, controlled, single-blind study, 59 patients with chronic shoulder pain due to impingement syndrome received PBMT (group H) or SSN-pulsed RF therapy (group P) in addition to exercise therapy for 14 sessions over 2 weeks. Records were taken using visual analog scale (VAS), Shoulder Pain and Disability Index (SPADI), and Nottingham Health Profile (NHP) scoring systems for pretreatment (PRT), posttreatment (PST), and PST follow-up at months 1, 3, and 6. There was no statistically significant difference in initial VAS score, SPADI, and NHP values between group H and group P (p > 0.05). Compared to the values of PRT, PST, and PST at months 1, 3, and 6, VAS, SPADI, and NHP values were statistically significantly lower in both groups (p measurement times in VAS, SPADI, and NHP between the two groups. We established that PBMT and SSN-pulsed RF therapy are effective methods, in addition to exercise therapy, in patients with chronic shoulder pain. PBMT seems to be advantageous compared to SSN-pulsed RF therapy, as it is a noninvasive method.

  13. Single event effects in pulse width modulation controllers

    International Nuclear Information System (INIS)

    Penzin, S.H.; Crain, W.R.; Crawford, K.B.; Hansel, S.J.; Kirshman, J.F.; Koga, R.

    1996-01-01

    SEE testing was performed on pulse width modulation (PWM) controllers which are commonly used in switching mode power supply systems. The devices are designed using both Set-Reset (SR) flip-flops and Toggle (T) flip-flops which are vulnerable to single event upset (SEU) in a radiation environment. Depending on the implementation of the different devices the effect can be significant in spaceflight hardware

  14. THE CRAB PULSAR AT CENTIMETER WAVELENGTHS. II. SINGLE PULSES

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, T. H.; Eilek, J. A. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Jones, G., E-mail: thankins@aoc.nrao.edu [Columbia University, New York, NY 10027 (United States)

    2016-12-10

    We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Interpulses, and the two  High-Frequency Components. Our data include observations at frequencies ranging from 1 to 43 GHz with time resolutions down to a fraction of a nanosecond. We find that at least two types of emission physics are operating in this pulsar. Both Main Pulses and Low-Frequency Interpulses, up to ∼10 GHz, are characterized by nanoshot emission—overlapping clumps of narrowband nanoshots, each with its own polarization signature. High-Frequency Interpulses, between 5 and 30 GHz, are characterized by spectral band emission—linearly polarized emission containing ∼30 proportionately spaced spectral bands. We cannot say whether the longer-duration High-Frequency Components pulses are due to a scattering process, or if they come from yet another type of emission physics.

  15. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  16. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

    Directory of Open Access Journals (Sweden)

    Tyrone Sherwin

    2018-02-01

    Full Text Available Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  17. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.

    Science.gov (United States)

    Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin

    2018-02-14

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  18. Deposition of PZT thin film onto copper-coated polymer films by mean of pulsed-DC and RF-reactive sputtering

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Labitzke, R.; Adolphi, B.; Jastrabík, Lubomír; Adámek, Petr; Drahokoupil, Jan; Hubička, Zdeněk; Kiselev, D.A.; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 205, č. 2 (2011), S241-S244 ISSN 0257-8972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed DC reactive sputtering * RF reactive sputtering * complex oxide film deposition * polymer substrate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  19. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  20. Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species

    International Nuclear Information System (INIS)

    Leveille, V; Coulombe, S

    2005-01-01

    The design of a miniature low-power atmospheric pressure glow discharge torch (APGD-t) and the results of its preliminary electrical and spectroscopic characterization are presented. A capacitively-coupled pulsed RF (13.56 MHz) helium plasma jet is formed in a converging confinement tube and O 2 is injected downstream in the plasma afterglow region through a capillary electrode. With 1 SLM He, the APGD-t produced a non-thermal plasma jet of 500 μm-diameter and ∼2.5 mm-long at power levels ranging from 1 to 5 W. At ∼1 W, the gas temperature and He excitation temperature near the nozzle exit were ∼50 0 C and slightly below 2000 K, respectively. The breakdown voltage in 1 SLM He is approximately 220 V pk-to-0 . Careful electric probe measurements and circuit analysis revealed the strong effect of the voltage probe on the total load impedance. The injection of 10 SCCM O 2 through the capillary electrode led to the transport of atomic O further downstream in the plasma jet and to a slight increase of the He excitation temperature without significant effects on the electrical properties and jet length. Alternatively, the addition of an equivalent amount of O 2 (1 v/v%) to the plasma-forming gas affected the electrical properties slightly, but led to a drastic contraction of the plasma jet. The atomic oxygen production and transport conditions provided by the APGD-t are promising for precise bio-applications such as the treatment of skin tissues and cells

  1. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    International Nuclear Information System (INIS)

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick (/similar to/1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target (/similar to/1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs

  2. A nuclear pulse amplitude acquisition system based on 80C31 single-chip microcomputer

    International Nuclear Information System (INIS)

    Zhao Xiuliang; Qu Guopu; Guo Lanying; Zhang Songbai

    1999-01-01

    A kind of multichannel nuclear pulse amplitude signal acquisition system is described, which is composed of pulse peak detector, integrated S/H circuit, A/D converter and 80C31 single-chip microcomputer

  3. Updating the induction module from single-pulse to double-pulses

    International Nuclear Information System (INIS)

    Huang Ziping; Wang Huacen; Deng Jianjun

    2002-01-01

    A double-pulse Linear Induced Accelerator (LIA) module is reconstructed based on a usual simple-pulse LIA module. By changing the length of one of the cables between the inductive cell and the Blumlein pulse forming line, two induction pulses with 90 ns FWHM and 150 kV pulse voltage are generated by the ferrite cores inductive cell. The interval time of the pulses is adjustable by changing the lengths of the cable

  4. A 12 kV, 1 kHz, Pulse Generator for Breakdown Studies of Samples for CLIC RF Accelerating Structures

    CERN Document Server

    Soares, R H; Kovermann, J; Calatroni, S; Wuensch, W

    2012-01-01

    Compact Linear Collider (CLIC) RF structures must be capable of sustaining high surface electric fields, in excess of 200 MV/m, with a breakdown (BD) rate below 3×10-7 breakdowns/pulse/m. Achieving such a low rate requires a detailed understanding of all the steps involved in the mechanism of breakdown. One of the fundamental studies is to investigate the statistical characteristics of the BD rate phenomenon at very low values to understand the origin of an observed dependency of the surface electric field raised to the power of 30. To acquire sufficient BD data, in a reasonable period of time, a high repetition rate pulse generator is required for an existing d.c. spark system at CERN. Following BD of the material sample the pulse generator must deliver a current pulse of several 10’s of Amperes for ~2 μs. A high repetition rate pulse generator has been designed, built and tested; this utilizes pulse forming line technology and employs MOSFET switches. This paper describes the design of the pulse generat...

  5. High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration

    Directory of Open Access Journals (Sweden)

    Tejinder Singh

    2014-01-01

    Full Text Available This paper presents a novel design of single-pole four-throw (SP4T RF-MEMS switch employing both capacitive and ohmic switches. It is designed on high-resistivity silicon substrate and has a compact area of 1.06 mm2. The series or ohmic switches have been designed to provide low insertion loss with good ohmic contact. The pull-in voltage for ohmic switches is calculated to be 7.19 V. Shunt or capacitive switches have been used in each port to improve the isolation for higher frequencies. The proposed SP4T switch provides excellent RF performances with isolation better than 70.64 dB and insertion loss less than 0.72 dB for X-band between the input port and each output port.

  6. RF extraction issues in the relativistic klystron amplifiers

    Science.gov (United States)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  7. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  8. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  9. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  10. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  11. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    Science.gov (United States)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated

  12. Design of a high charge (10 - 100 nC) and short pulse (2 - 5 ps) rf photocathode gun for wakefield acceleration

    International Nuclear Information System (INIS)

    Gai, W.

    1998-01-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed

  13. Features of single and double ionization processes induced by few cycle laser pulses

    International Nuclear Information System (INIS)

    Starace, A.F.

    2005-01-01

    Full text: The advent of laser pulses with attosecond pulse lengths ushers in the regime of few cycle laser pulse interactions with atoms and ions, including the interesting cases of single and half cycle laser pulses. In this talk I will present results of recent studies of single electron ionization/detachment and double electron ionization/detachment produced by a few cycle laser pulse. For the former case, we shall demonstrate that the ionized/detached electron momentum distribution reflects the interference of electron probability wave packets produced by each half cycle of a single cycle pulse. Also, that the ionized/detached electron momentum distribution uniquely characterizes the phase of the single cycle laser pulse within the laser pulse envelope. Regarding double ionization/detachment, our numerical experiments have shown that single cycle and double half cycle pulses produce different electron angular distributions. Some double ionization features that are present only in the single cycle case can only have been produced by electron impact ionization during rescattering of an initially ionized electron and thus represent a sensitive measure of the rescattering process. Refs. 2 (author)

  14. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  15. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  16. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  17. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  18. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  19. Toeless pulse shaping with a single delay-line network

    International Nuclear Information System (INIS)

    Tauhata, L.; Binns, D.C.

    1976-04-01

    New unipolar delay-line clippers producing negligible cancellation remnant have been developed. Near perfect clipping is achieved using a combination of several types of coaxial cable tranformers working as a phase inverter, a new pulse adder, or an impedance transformer. Only passive elements are used in the bridge network. The construction is simple and the performance is extremely stable and wide in dynamic range and frequency band width. Completely symmetrical bipolar pulses are also easily obtained using this technique

  20. Absorption efficiency and heating kinetics of nanoparticles in the RF range for selective nanotherapy of cancer.

    Science.gov (United States)

    Letfullin, Renat R; Letfullin, Alla R; George, Thomas F

    2015-02-01

    Radio-frequency (RF) waves have an excellent ability to penetrate into the human body, giving a great opportunity to activate/heat nanoparticles delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of nanoparticles in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of nanoparticles in the RF range. This study uses a phenomenological approach to estimate the absorption efficiency of metal and dielectric nanoparticles in the RF range through a study of heating kinetics of those particles in radio wave field. We also discuss the specific features of heating kinetics of nanoparticles, such as a short time scale for heating and cooling of nanoparticles in a liquid biological environment, and the effect of the radiation field structure on the heating kinetics by single-pulse and multipulse RF radiation. In this study a phenomenological approach was applied to estimate the absorption efficiency of radiofrequency radiation (RF) by metal and dielectric nanoparticles. Such nanoparticles can be designed and used for therapeutic purposes, like for localized heating and to activate nanoparticles by RF. The authors also discuss the differences in heating kinetics using single-pulse and multi-pulse RF radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Study on irradiation effects of nucleus electromagnetic pulse on single chip computer system

    International Nuclear Information System (INIS)

    Hou Minsheng; Liu Shanghe; Wang Shuping

    2001-01-01

    Intense electromagnetic pulse, namely nucleus electromagnetic pulse (NEMP), lightning electromagnetic pulse (LEMP) and high power microwave (HPM), can disturb and destroy the single chip computer system. To study this issue, the authors made irradiation experiments by NEMPs generated by gigahertz transversal electromagnetic (GTEM) Cell. The experiments show that shutdown, restarting, communication errors of the single chip microcomputer system would occur when it was irradiated by the NEMPs. Based on the experiments, the cause on the effects on the single chip microcomputer system is discussed

  2. Single pulse analysis of intracranial pressure for a hydrocephalus implant.

    Science.gov (United States)

    Elixmann, I M; Hansinger, J; Goffin, C; Antes, S; Radermacher, K; Leonhardt, S

    2012-01-01

    The intracranial pressure (ICP) waveform contains important diagnostic information. Changes in ICP are associated with changes of the pulse waveform. This change has explicitly been observed in 13 infusion tests by analyzing 100 Hz ICP data. An algorithm is proposed which automatically extracts the pulse waves and categorizes them into predefined patterns. A developed algorithm determined 88 %±8 % (mean ±SD) of all classified pulse waves correctly on predefined patterns. This algorithm has low computational cost and is independent of a pressure drift in the sensor by using only the relationship between special waveform characteristics. Hence, it could be implemented on a microcontroller of a future electromechanic hydrocephalus shunt system to control the drainage of cerebrospinal fluid (CSF).

  3. Soft error rate analysis methodology of multi-Pulse-single-event transients

    International Nuclear Information System (INIS)

    Zhou Bin; Huo Mingxue; Xiao Liyi

    2012-01-01

    As transistor feature size scales down, soft errors in combinational logic because of high-energy particle radiation is gaining more and more concerns. In this paper, a combinational logic soft error analysis methodology considering multi-pulse-single-event transients (MPSETs) and re-convergence with multi transient pulses is proposed. In the proposed approach, the voltage pulse produced at the standard cell output is approximated by a triangle waveform, and characterized by three parameters: pulse width, the transition time of the first edge, and the transition time of the second edge. As for the pulse with the amplitude being smaller than the supply voltage, the edge extension technique is proposed. Moreover, an efficient electrical masking model comprehensively considering transition time, delay, width and amplitude is proposed, and an approach using the transition times of two edges and pulse width to compute the amplitude of pulse is proposed. Finally, our proposed firstly-independently-propagating-secondly-mutually-interacting (FIP-SMI) is used to deal with more practical re-convergence gate with multi transient pulses. As for MPSETs, a random generation model of MPSETs is exploratively proposed. Compared to the estimates obtained using circuit level simulations by HSpice, our proposed soft error rate analysis algorithm has 10% errors in SER estimation with speed up of 300 when the single-pulse-single-event transient (SPSET) is considered. We have also demonstrated the runtime and SER decrease with the increment of P0 using designs from the ISCAS-85 benchmarks. (authors)

  4. Development and contribution of rf heating and current drive systems to long pulse, high performance experiments in JT-60U

    International Nuclear Information System (INIS)

    Moriyama, Shinichi; Seki, Masami; Terakado, Masayuki; Shimono, Mitsugu; Ide, Shunsuke; Isayama, Akihiko; Suzuki, Takahiro; Fujii, Tsuneyuki

    2005-01-01

    To contribute to high performance long pulse (∼65 s) experiments in JT-60U, the target of the electron cyclotron (EC) operation in long pulse is 0.6 MW for 30 s with four gyrotrons, though 10 MJ (2.8 MW and 3.6 s) was achieved in high power operation before 2003. One of the critical issues for the long pulse operation is detuning due to decay in beam current of the gyrotron. This decay comes from the cathode cooling by continuous electron emission. As a countermeasure for this issue, active adjustments for the heater current and anode voltage during the pulse have successfully extended the duration of a good oscillation condition for the gyrotron. As a result, 0.4 MW for 16 s with one gyrotron to the dummy load and for 8.7 s to the plasma have been achieved up to now

  5. Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.

    2002-01-01

    We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three...

  6. Single-pulse and burst-mode ablation of gold films measured by quartz crystal microbalance

    Science.gov (United States)

    Andrusyak, Oleksiy G.; Bubelnik, Matthew; Mares, Jeremy; McGovern, Theresa; Siders, Craig W.

    2005-02-01

    Femtosecond ablation has several distinct advantages: the threshold energy fluence for the onset of damage and ablation is orders of magnitude less than for traditional nanosecond laser machining, and by virtue of the rapid material removal of approximately an optical penetration depth per pulse, femtosecond machined cuts can be cleaner and more precise than those made with traditional nanosecond or longer pulse lasers. However, in many materials of interest, especially metals, this limits ablation rates to 10-100 nm/pulse. We present the results of using multiple pulse bursts to significantly increase the per-burst ablation rate compared to a single pulse with the same integrated energy, while keeping the peak intensity of each individual pulse below the air ionization limit. Femtosecond ablation with pulses centered at 800-nm having integrated energy of up to 30 mJ per pulse incident upon thin gold films was measured via resonance frequency shifts in a gold-electrode-coated quartz-crystal oscillator. Measurements were performed using Michelson-interferometer-based burst generators, with up to 2 ns pulse separations, as well as pulse shaping by programmable acousto-optic dispersive filter (Dazzler from FastLite) with up to 2 ps pulse separations.

  7. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  8. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  9. Cooling the vertical surface by conditionally single pulses

    Directory of Open Access Journals (Sweden)

    Karpov Pavel

    2017-01-01

    Full Text Available You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of “island” film cooling.

  10. Cooling the vertical surface by conditionally single pulses

    Science.gov (United States)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  11. Broadband excitation by chirped pulses: application to single electron spins in diamond

    International Nuclear Information System (INIS)

    Niemeyer, I; Shim, J H; Zhang, J; Suter, D; Taniguchi, T; Teraji, T; Abe, H; Onoda, S; Yamamoto, T; Ohshima, T; Isoya, J; Jelezko, F

    2013-01-01

    Pulsed excitation of broad spectra requires very high field strengths if monochromatic pulses are used. If the corresponding high power is not available or not desirable, the pulses can be replaced by suitable low-power pulses that distribute the power over a wider bandwidth. As a simple case, we use microwave pulses with a linear frequency chirp. We use these pulses to excite spectra of single nitrogen–vacancy centres in a Ramsey experiment. Compared to the conventional Ramsey experiment, our approach increases the bandwidth by at least an order of magnitude. Compared to the conventional continuous wave-ODMR experiment, the chirped Ramsey experiment does not suffer from power broadening and increases the resolution by at least an order of magnitude. As an additional benefit, the chirped Ramsey spectrum contains not only ‘allowed’ single quantum transitions, but also ‘forbidden’ zero- and double quantum transitions, which can be distinguished from the single quantum transitions by phase-shifting the readout pulse with respect to the excitation pulse or by variation of the external magnetic field strength. (paper)

  12. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  13. Optical π phase shift created with a single-photon pulse.

    Science.gov (United States)

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  14. Self-phase modulation of a single-cycle THz pulse

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.

    2013-01-01

    We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...... results in a strong modification of the THz-range dielectric function of the material. THz SPM is observed directly in the time domain as a characteristic reshaping of single-cycle THz pulse. In the frequency domain, it corresponds to a strong frequency-dependent refractive index nonlinearity of n...

  15. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  16. SU-F-J-112: Clinical Feasibility Test of An RF Pulse-Based MRI Method for the Quantitative Fat-Water Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S; Wloch, J; Pirkola, M [William Beaumont Hospital, Royal Oak, MI (United States)

    2016-06-15

    Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations have been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.

  17. Possible effects of RF field near ICRF antenna on density control during long pulse discharge in LHD

    International Nuclear Information System (INIS)

    Saito, K.; Kumazawa, R.; Mutoh, T.; Seki, T.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Noda, N.; Watanabe, T.; Shoji, M.; Masuzaki, S.; Morita, S.; Goto, M.; Torii, Y.; Takeuchi, N.; Shimpo, F.; Nomura, G.; Yokota, M.; Kato, A.; Zhao, Y.

    2005-01-01

    In the large helical device (LHD), the plasma duration time was extended up to 150 s by ion cyclotron range of frequencies (ICRF) heating. Time-integrated total input power reached 71 MJ. However, this discharge terminated due to radiation collapse accompanied by an increase of electron density. The temperature of the divertor plates and the intensity of H α were locally increased in the same toroidal section, near the ICRF antenna. One of the possible causes of the increase of radiation power is an outgassing from the divertor plates that were heated by particles accelerated in the cyclotron resonance layer near the antenna. Another possible cause is the outgassing from the ICRF antenna itself due to a temperature increase of the ICRF antenna owing to high-energy particles, or the formation of an RF (radio frequency) sheath

  18. SINGLE-PULSE RADIO OBSERVATIONS OF THE GALACTIC CENTER MAGNETAR PSR J1745–2900

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhen; Shen, Zhi-Qiang; Wu, Ya-Jun; Zhao, Rong-Bing; Fan, Qing-Yuan; Hong, Xiao-Yu; Jiang, Dong-Rong; Li, Bin; Liang, Shi-Guang; Ling, Quan-Bao; Liu, Qing-Hui; Qian, Zhi-Han; Zhang, Xiu-Zhong; Zhong, Wei-Ye; Ye, Shu-Hua [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Wu, Xin-Ji [Department of Astronomy, Peking University, Beijing 100871 (China); Manchester, R. N. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Yuan, Jian-Ping [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China); Lee, Ke-Jia, E-mail: yanzhen@shao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2015-11-20

    In this paper, we report radio observations of the Galactic Center magnetar PSR J1745–2900 at six epochs between 2014 June and October. These observations were carried out using the new Shanghai Tian Ma Radio Telescope at a frequency of 8.6 GHz. Both the flux density and integrated profile of PSR J1745–2900 show dramatic changes from epoch to epoch, showing that the pulsar was in its “erratic” phase. On MJD 56836, the flux density of this magnetar was about 8.7 mJy, which was 10 times larger than that reported at the time of discovery, enabling a single-pulse analysis. The emission is dominated by narrow “spiky” pulses that follow a log-normal distribution in peak flux density. From 1913 pulses, we detected 53 pulses whose peak flux densities are 10 times greater than that of the integrated profile. They are concentrated in pulse phase at the peaks of the integrated profile. The pulse widths at the 50% level of these bright pulses were between 0.°2 and 0.°9, much narrower than that of the integrated profile (∼12°). The observed pulse widths may be limited by interstellar scattering. No clear correlation was found between the widths and peak flux density of these pulses and no evidence was found for subpulse drifting. Relatively strong spiky pulses are also detected in the other five epochs of observation, showing the same properties as those detected in MJD 56836. These strong spiky pulses cannot be classified as “giant” pulses but are more closely related to normal pulse emission.

  19. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  20. A simple angular transmit diversity scheme using a single RF frontend for PSK modulation schemes

    DEFF Research Database (Denmark)

    Alrabadi, Osama Nafeth Saleem; Papadias, Constantinos B.; Kalis, Antonis

    2009-01-01

    array (SPA) with a single transceiver, and an array area of 0.0625 square wavelengths. The scheme which requires no channel state information (CSI) at the transmitter, provides mainly a diversity gain to combat against multipath fading. The performance/capacity of the proposed diversity scheme...

  1. RF Design and Operating Performance of the BNL/AES 1.3 GHz Single Cell Superconducting RF Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Cole, Michael; Kneisel, Peter; Ben-Zvi, Ilan; Burrill, Andrew; Hahn, H.; Rao, Triveni; Zhao, Y.

    2005-01-01

    Over the past several years Advanced Energy Systems and BNL have been collaborating on the development and testing of a fully superconducting photocathode electron gun. Over the past year we have begun to realize significant results which have been published elsewhere (1). This paper will review the RF design of the gun under test and present results of its performance under various operating conditions. Results for cavity quality factor will be presented for various operating temperatures and cavity field gradients. We will also discuss future plans for testing using this gun.

  2. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  3. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    Science.gov (United States)

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  4. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  5. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kisielewski, J., E-mail: jankis@uwb.edu.pl; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A. [Faculty of Physics, University of Białystok, Ciołkowskiego 1L, 15-245 Białystok (Poland); Wawro, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-05-21

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  6. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A.; Wawro, A.

    2016-01-01

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  7. Method for single-shot measurement of picosecond laser pulse-lengths without electronic time dispersion

    International Nuclear Information System (INIS)

    Kyrala, G.A.

    1987-01-01

    A two-source shear pattern recording is proposed as a method for single-shot measurement of the pulse shape from nearly monochromatic sources whose pulse lengths are shorter than their coherence times. The basis of this method relies on the assertion that if two identical electromagnetic pulses are recombined with a time delay greater than the sum of their pulse widths, the recordable spatial pattern has no fringes in it. At an arbitrary delay, translated into an actual spatial recording position, the recorded modulated intensity will sample the corresponding laser intensity at that delay time, but with a modulation due to the coherence function of the electromagnetic pulse. Two arrangements are proposed for recording the pattern. The principles, the design parameters, and the methodologies of these arrangements are presented. Resolutions of the configurations and their limitations are given as well

  8. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    Science.gov (United States)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  9. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  10. Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing

    International Nuclear Information System (INIS)

    Sah, Santosh Prasad; Tatsuno, Yasuhiro; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-01-01

    Research highlights: → We examined dielectric breakdown of anodic alumina by single pulse anodizing. → Current transients and morphology of discharge channels are dependent upon electrolyte and voltage. → There is a good correlation between current transient and morphology of discharge channel. → Healing of open discharge pores occurs in alkaline silicate, but not in pentaborate electrolyte. - Abstract: Single pulse anodizing of aluminium micro-electrode has been employed to study the behaviour of dielectric breakdown and subsequent oxide formation on aluminium in alkaline silicate and pentaborate electrolytes. Current transients during applying pulse voltage have been measured, and surface has been observed by scanning electron microscopy. Two types of current transients are observed, depending on the electrolyte and applied voltage. There is a good correlation between the current transient behaviour and the shape of discharge channels. In alkaline silicate electrolyte, circular open pores are healed by increasing the pulse width, but such healing is not obvious in pentaborate electrolyte.

  11. SiOx Ink-Repellent Layer Deposited by Radio Frequency (RF) Plasmas in Continuous Wave and Pulse Mode

    International Nuclear Information System (INIS)

    Chen Qiang; Fu Yabo; Pang Hua; Zhang Yuefei; Zhang Guangqiu

    2007-01-01

    Low surface energy layers, proposed application for non-water printing in computer to plate (CTP) technology, are deposited in both continuous wave and pulse radio frequency (13.56 MHz) plasma with hexamethyldisiloxane (HMDSO) as precursor. It is found that the plasma mode dominates the polymer growth rate and the surface composition. Derived from the spectra of X-ray photoelectron spectroscopy (XPS) and combined with printable test it is concluded that concentration of Si in coatings plays an important role for the ink printability and the ink does not adhere on the surface with high silicon concentration

  12. Instant recording of the duration of a single mode-locked Nd:YAG laser pulse

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Thebault, J.

    1975-01-01

    An electro-optic streak camera incorporating a storage memory video system has been developed and used to instantly visualize and record the shape of a 1.06-μ-wavelength pulse generated by a mode-locked Nd:YAG laser. The duration of a single laser pulse (approximately 30 psec) has been directly measured with and without laser amplification. (U.S.)

  13. Output pulse-shapes of position-sensitive proportional counters using high resistance single wire

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Nishiyama, Fumitaka; Hasai, Hiromi

    1980-01-01

    The measurements and model analysis of the output pulse-shapes from a single wire proportional counter (SWPC) which has a high resistance anode are described. The characteristics of the observed pulse-shapes are determined by only one parameter which is a function of anode resistance and load resistance and they are reproduced by a simple model. Using this model, the methods for position read-out are discussed in a systematical way. (author)

  14. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    OpenAIRE

    Diwei He; Stephen P. Morgan; Dimitrios Trachanis; Jan van Hese; Dimitris Drogoudis; Franco Fummi; Francesco Stefanni; Valerio Guarnieri; Barrie R. Hayes-Gill

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 ?m CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the...

  15. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Page 1 ... Keywords. Dye lasers; single longitudinal mode; flow fluctuations. PACS Nos 42.55.Mv; 42.60.Mi; 42.60.By. 1. Introduction. Narrow-band dye lasers offer ... stabilized tunable laser source plays an important role for many applications as mentioned above [1]. For tight wavelength control, the ...

  16. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    precious materials. In particular, single-longitudinal mode dye lasers are useful ... to the longitudinal mode spacing of 10 GHz. Grating of 3300 .... the band of wavelength covering 3 pm and SLM operation was shown in the band of 0.5 pm.

  17. Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems.

    Science.gov (United States)

    Block, Erica; Thomas, Jens; Durfee, Charles; Squier, Jeff

    2014-12-15

    A Ti:Al(3)O(2) multipass chirped pulse amplification system is outfitted with a single-grating, simultaneous spatial and temporal focusing (SSTF) compressor platform. For the first time, this novel design has the ability to easily vary the beam aspect ratio of an SSTF beam, and thus the degree of pulse-front tilt at focus, while maintaining a net zero-dispersion system. Accessible variation of pulse front tilt gives full spatiotemporal control over the intensity distribution at the focus and could lead to better understanding of effects such as nonreciprocal writing and SSTF-material interactions.

  18. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers

    Science.gov (United States)

    Cai, Wangyang; Wang, Lei; Wen, Shuangchun

    2018-04-01

    The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.

  19. SCREAMER: a single-line pulsed-power design tool

    International Nuclear Information System (INIS)

    Kiefer, M.L.; Widner, M.M.

    1985-01-01

    SCREAMER is a special purpose circuit code developed as a design tool for single module accelerators. It is fast, accurate, flexible, and user-friendly. Its development was motivated by the excessive costs and long turn-around times incurred when using the SCEPTRE circuit analysis code to perform simulations of circuits with large numbers of nodes and with nonlinear components. Comparable simulations between SCREAMER running on a VAX 11/780 and SCEPTRE running on a CRAY-1S show that turn-around times and costs can be two orders of magnitude lower when using SCREAMER

  20. SCREAMER - A single-line pulsed-power design tool

    International Nuclear Information System (INIS)

    Kiefer, M.L.; Widner, M.M.

    1985-01-01

    SCREAMER is a special purpose circuit code developed as a design tool for single module accelerators. it is fast, accurate, flexible, and user-friendly. Its development was motivated by the excessive costs and long turn-around times incurred when using the SCEPTRE circuit analysis code to perform simulations of circuits with large numbers of modes and with nonlinear components. Comparable simulations between SCREAMER running on a VAX 11/780 and SCEPTRE running on a CRAY-1S show that turn-around times and costs can be two orders of magnitude lower when using SCREAMER

  1. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reinsberg, K.-G.; Schumacher, C.; Tempez, A.; Nielsch, K.; Broekaert, J.A.C.

    2012-01-01

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS™)) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s −1 and 3 nm s −1 , respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi 2 Te 3 the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb 2 Te 3 the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: ► Depth resolution in sub micrometer size by glow discharge mass spectrometry. ► Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. ► Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  2. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  3. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  4. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  5. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  6. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Andrew M Huettner

    Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.

  7. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  8. Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation

    DEFF Research Database (Denmark)

    Zegler, M.; Tomm, J.W.; Reeber, D.

    2009-01-01

    is achieved. The thermal runaway process is unambiguously related to the occurrence of a “thermal flash.” A one-by-one correlation between nearfield, thermal flash, thermal runaway, and structural damage is observed. The single-pulse excitation technique allows for controlling the propagation...

  9. Visual CRO display of pulse height distribution including discriminator setting for a single channel X-ray analyser

    International Nuclear Information System (INIS)

    Shaw, S.E.

    1979-01-01

    An outline for a simple pulse spectroscope which attaches to a standard laboratory CRO is presented. The peak amplitude voltage of each pulse from the linear amplifier of a single channel X-ray analyser is stored for the duration of one oscilloscope trace. For each amplifier pulse, input from the discriminator is tested and if these is coincidence of pulses the oscilloscope beam is blanked for approximately the first 2 cm of its traverse across the screen. Repetition of pulses forms a pulse height distribution with a rectangular dark area marking the position of the discriminator window. (author)

  10. Timing Solution and Single-pulse Properties for Eight Rotating Radio Transients

    Energy Technology Data Exchange (ETDEWEB)

    Cui, B.-Y.; McLaughlin, M. A. [Department of Physics and Astronomy West Virginia University Morgantown, WV 26506 (United States); Boyles, J. [Department of Physics and Astronomy West Kentucky University Bowling Green, KY 42101 (United States); Palliyaguru, N. [Physics and Astronomy Department Texas Tech University Lubbock, TX 79409-1051 (United States)

    2017-05-01

    Rotating radio transients (RRATs), loosely defined as objects that are discovered through only their single pulses, are sporadic pulsars that have a wide range of emission properties. For many of them, we must measure their periods and determine timing solutions relying on the timing of their individual pulses, while some of the less sporadic RRATs can be timed by using folding techniques as we do for other pulsars. Here, based on Parkes and Green Bank Telescope (GBT) observations, we introduce our results on eight RRATs including their timing-derived rotation parameters, positions, and dispersion measures (DMs), along with a comparison of the spin-down properties of RRATs and normal pulsars. Using data for 24 RRATs, we find that their period derivatives are generally larger than those of normal pulsars, independent of any intrinsic correlation with period, indicating that RRATs’ highly sporadic emission may be associated with intrinsically larger magnetic fields. We carry out Lomb–Scargle tests to search for periodicities in RRATs’ pulse detection times with long timescales. Periodicities are detected for all targets, with significant candidates of roughly 3.4 hr for PSR J1623−0841 and 0.7 hr for PSR J1839−0141. We also analyze their single-pulse amplitude distributions, finding that log-normal distributions provide the best fits, as is the case for most pulsars. However, several RRATs exhibit power-law tails, as seen for pulsars emitting giant pulses. This, along with consideration of the selection effects against the detection of weak pulses, imply that RRAT pulses generally represent the tail of a normal intensity distribution.

  11. Timing Solution and Single-pulse Properties for Eight Rotating Radio Transients

    Science.gov (United States)

    Cui, B.-Y.; Boyles, J.; McLaughlin, M. A.; Palliyaguru, N.

    2017-05-01

    Rotating radio transients (RRATs), loosely defined as objects that are discovered through only their single pulses, are sporadic pulsars that have a wide range of emission properties. For many of them, we must measure their periods and determine timing solutions relying on the timing of their individual pulses, while some of the less sporadic RRATs can be timed by using folding techniques as we do for other pulsars. Here, based on Parkes and Green Bank Telescope (GBT) observations, we introduce our results on eight RRATs including their timing-derived rotation parameters, positions, and dispersion measures (DMs), along with a comparison of the spin-down properties of RRATs and normal pulsars. Using data for 24 RRATs, we find that their period derivatives are generally larger than those of normal pulsars, independent of any intrinsic correlation with period, indicating that RRATs’ highly sporadic emission may be associated with intrinsically larger magnetic fields. We carry out Lomb-Scargle tests to search for periodicities in RRATs’ pulse detection times with long timescales. Periodicities are detected for all targets, with significant candidates of roughly 3.4 hr for PSR J1623-0841 and 0.7 hr for PSR J1839-0141. We also analyze their single-pulse amplitude distributions, finding that log-normal distributions provide the best fits, as is the case for most pulsars. However, several RRATs exhibit power-law tails, as seen for pulsars emitting giant pulses. This, along with consideration of the selection effects against the detection of weak pulses, imply that RRAT pulses generally represent the tail of a normal intensity distribution.

  12. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  13. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  14. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole

    2017-01-01

    We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One...... laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10-4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation...

  15. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  16. Single-electron pulse-height spectra in thin-gap parallel-plate chambers

    CERN Document Server

    Fonte, Paulo J R; Peskov, Vladimir; Policarpo, Armando

    1999-01-01

    Single-electron pulse-height spectra were measured in 0.6 and 1.2 mm parallel-plate chambers developed for the TOF system of the ALICE /LHC-HI experiment. Mixtures of Ar with ethane, isobutane, and SF/sub 6/ were studied. The observed spectrum shows a clear peak for all gases, suggesting efficient single-electron detection in thin parallel-plate structures. The pulse-height spectrum can be described by the weighted sum of an exponential and a Polya distribution, the Polya contribution becoming more important at higher gains. Additionally, it was found that the maximum gain, above 10/sup 6/, is limited by the appearance of streamers and depends weakly on the gas composition. The suitability of each mixture for single-electron detection is also quantitatively assessed. (8 refs).

  17. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  18. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  19. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  20. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reinsberg, K.-G. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Schumacher, C. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Tempez, A. [HORIBA Jobin Yvon, 16-18 rue du Canal, F-91160 Longjumeau (France); Nielsch, K. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2012-10-15

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS Trade-Mark-Sign )) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s{sup -1} and 3 nm s{sup -1}, respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi{sub 2}Te{sub 3} the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb{sub 2}Te{sub 3} the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: Black-Right-Pointing-Pointer Depth resolution in sub micrometer size by glow discharge mass spectrometry. Black-Right-Pointing-Pointer Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. Black-Right-Pointing-Pointer Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  1. Self-organization of single filaments and diffusive plasmas during a single pulse in dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2014-01-01

    Self-organization of filaments in dielectric-barrier discharges (DBDs) probably has many origins. However, the dominant cause is proposed to be the accumulation of charge on the surfaces of the bounding dielectrics that reinforces successive discharge pulses to occur at the same locations. A secondary cause is the electrostatic repulsion of individual plasma filaments. Self-organization typically develops over many discharge pulses. In this paper, we discuss the results of a computational investigation of plasma filaments in overvoltage DBDs that, under select conditions, display self-organized patterns (SOPs) of plasma density during a single discharge pulse. (Overvoltage refers to the rapid application of a voltage in excess of the quasi-dc breakdown voltage.) The origin of the SOPs is a synergistic relationship between the speed of the surface-ionization waves that propagate along each dielectric and the rate at which avalanche occurs across the gap. For our test conditions, SOPs were not observed at lower voltages and gradually formed at higher voltages. The same conditions that result in SOPs, i.e. the application of an overvoltage, also produce more diffuse discharges. A transition from a single narrow filament to a more diffuse structure was observed as overvoltage was approached. The sensitivity of SOPs to the orientation and permittivity of the bounding dielectrics is discussed. (paper)

  2. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  3. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    Science.gov (United States)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  4. Ultrashort and coherent single-electron pulses for diffraction at ultimate resolutions

    International Nuclear Information System (INIS)

    Kirchner, Friedrich Oscar

    2013-01-01

    Ultrafast electron diffraction is a powerful tool for studying structural dynamics with femtosecond temporal and sub-aangstroem spatial resolutions. It benefits from the high scattering cross-sections of electrons compared X-rays and allows the examination of thin samples, surfaces and gases. One of the main challenges in ultrafast electron diffraction is the generation of electron pulses with a short duration and a large transverse coherence. The former limits the temporal resolution of the experiment while the latter determines the maximum size of the scattering structures that can be studied. In this work, we strive to push the limits of electron diffraction towards higher temporal and spatial resolutions. The decisive step in our approach is to eliminate all detrimental effects caused by Coulomb repulsion between the electrons by reducing the number of electrons per pulse to one. In this situation, the electrons' longitudinal and transverse velocity distributions are determined solely by the photoemission process. By reducing the electron source size on the photocathode, we make use of the small transverse velocity spread to produce electron pulses with a transverse coherence length of 20 nm, which is about an order of magnitude larger than the reported values for comparable experiments. The energy distribution of an ensemble of single-electron pulses from a photoemission source is directly linked to the mismatch between the photon energy and the cathode's work function. This excess energy can be reduced by using a photon energy close to the material's work function. Using a tunable source of ultraviolet pulses, we demonstrate the reduction of the velocity spread of the electrons, resulting in a shorter duration of the electron pulses. The reduced electron pulse durations achieved by a tunable excitation or by other approaches require new characterization techniques for electron pulses. We developed a novel method for the characterization of electron pulses at

  5. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  6. Two-pulse driving of D+D nuclear fusion within a single Coulomb exploding nanodroplet

    International Nuclear Information System (INIS)

    Last, Isidore; Jortner, Joshua; Peano, Fabio; Silva, Luis O.

    2010-01-01

    This paper presents a computational study of D+D fusion driven by Coulomb explosion (CE) within a single, homonuclear deuterium nanodroplet, subjected to double-pulse ultraintense laser irradiation. This irradiation scheme results in the attainment (by the first weaker pulse) of a transient inhomogeneous density profile, which serves as a target for the driving (by the second superintense pulse) of nonuniform CE that triggers overrun effects and induces intrananodroplet (INTRA) D+D fusion. Scaled electron and ion dynamics simulations were utilized to explore the INTRA D+D fusion yields for double-pulse, near-infrared laser irradiation of deuterium nanodroplets. The dependence of the INTRA yield on the nanodroplet size and on the parameters of the two laser pulses was determined, establishing the conditions for the prevalence of efficient INTRA fusion. The INTRA fusion yields are amenable to experimental observation within an assembly of nanodroplets. The INTRA D+D fusion can be distinguished from the concurrent internanodroplet D+D fusion reaction occurring in the macroscopic plasma filament and outside it in terms of the different energies of the neutrons produced in these two channels.

  7. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  8. RF assisted switching in magnetic Josephson junctions

    Science.gov (United States)

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  9. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  10. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    Energy Technology Data Exchange (ETDEWEB)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Huang, J. W.; Zeng, X. L.; Li, Y.; E, J. C.; Huang, J. Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Sun, T.; Fezzaa, K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Wang, Z. [Physics Division P-25, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-15

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantify lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.

  11. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  12. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  13. Pulsed neural networks consisting of single-flux-quantum spiking neurons

    International Nuclear Information System (INIS)

    Hirose, T.; Asai, T.; Amemiya, Y.

    2007-01-01

    An inhibitory pulsed neural network was developed for brain-like information processing, by using single-flux-quantum (SFQ) circuits. It consists of spiking neuron devices that are coupled to each other through all-to-all inhibitory connections. The network selects neural activity. The operation of the neural network was confirmed by computer simulation. SFQ neuron devices can imitate the operation of the inhibition phenomenon of neural networks

  14. Rise time of voltage pulses in NbN superconducting single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  15. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.; Hunt, D.; Hahn, D.; Cradick, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Morgan, D. V. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.

  16. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    Directory of Open Access Journals (Sweden)

    Diwei He

    2015-07-01

    Full Text Available Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1% with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  17. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    Science.gov (United States)

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  18. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  19. Partial Shading Detection in Solar System Using Single Short Pulse of Load

    Directory of Open Access Journals (Sweden)

    Bartczak Mateusz

    2017-03-01

    Full Text Available A single photovoltaic panel under uniform illumination has only one global maximum power point, but the same panel in irregularly illuminated conditions can have more maxima on its power-voltage curve. The irregularly illuminated conditions in most cases are results of partial shading. In the work a single short pulse of load is used to extract information about partial shading. This information can be useful and can help to make some improvements in existing MPPT algorithms. In the paper the intrinsic capacitance of a photovoltaic system is used to retrieve occurrence of partial shading.

  20. Single-shot femtosecond-pulsed phase-shifting digital holography.

    Science.gov (United States)

    Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2012-08-27

    Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

  1. Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume

    International Nuclear Information System (INIS)

    Gamaly, E. G.; Madsen, N. R.; Rode, A. V.; Golberg, D.

    2009-01-01

    Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2x10 -2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example.

  2. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  3. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  4. High gradient RF breakdown study

    International Nuclear Information System (INIS)

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  5. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  6. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  7. A single-probe heat pulse method for estimating sap velocity in trees.

    Science.gov (United States)

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency...

  9. Pulse Propagation in Presence of Polarization Mode Dispersion and Chromatic Dispersion in Single Mode Fibers

    Directory of Open Access Journals (Sweden)

    Hassan Abid Yasser

    2013-01-01

    Full Text Available The presence of (first and second orders polarization mode dispersion (PMD, chromatic dispersion, and initial chirp makes effects on the propagated pulses in single mode fiber. Nowadays, there is not an accurate mathematical formula that describes the pulse shape in the presence of these effects. In this work, a theoretical study is introduced to derive a generalized formula. This formula is exactly approached to mathematical relations used in their special cases. The presence of second-order PMD (SOPMD will not affect the orthogonality property between the principal states of polarization. The simulation results explain that the interaction of the SOPMD components with the conventional effects (chromatic dispersion and chirp will cause a broadening/narrowing and shape distortion. This changes depend on the specified values of SOPMD components as well as the present conventional parameters.

  10. Surprise in simplicity: an unusual spectral evolution of a single pulse GRB 151006A

    Science.gov (United States)

    Basak, R.; Iyyani, S.; Chand, V.; Chattopadhyay, T.; Bhattacharya, D.; Rao, A. R.; Vadawale, S. V.

    2017-11-01

    We present a detailed analysis of GRB 151006A, the first gamma-ray burst (GRB) detected by AstroSat Cadmium-Zinc-Telluride Imager (CZTI). We study the long-term spectral evolution by exploiting the capabilities of Fermi and Swift satellites at different phases, which is complemented by the polarization measurement with the CZTI. While the light curve of the GRB in different energy bands shows a simple pulse profile, the spectrum shows an unusual evolution. The first phase exhibits a hard-to-soft evolution until ∼16-20 s, followed by a sudden increase in the spectral peak reaching a few MeV. Such a dramatic change in the spectral evolution in the case of a single pulse burst is reported for the first time. This is captured by all models we used namely, Band function, blackbody+Band and two blackbodies+power law. Interestingly, the Fermi Large Area Telescope also detects its first photon (>100 MeV) during this time. This new injection of energy may be associated with either the beginning of afterglow phase, or a second hard pulse of the prompt emission itself that, however, is not seen in the otherwise smooth pulse profile. By constructing Bayesian blocks and studying the hardness evolution we find a good evidence for a second hard pulse. The Swift data at late epochs (>T90 of the GRB) also show a significant spectral evolution consistent with the early second phase. The CZTI data (100-350 keV), though having low significance (1σ), show high values of polarization in the two epochs (77-94 per cent), in agreement with our interpretation.

  11. Long-duration nano-second single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures

    International Nuclear Information System (INIS)

    Thornton, Blair; Sakka, Tetsuo; Masamura, Tatsuya; Tamura, Ayaka; Takahashi, Tomoko; Matsumoto, Ayumu

    2014-01-01

    The influence of laser pulse duration on the spectral emissions observed from bulk ionic solutions has been investigated for hydrostatic pressures between 0.1 and 30 MPa. Transient pressure, shadowgraph imaging and spectroscopic measurements were performed for single pulses of duration 20 and 150 ns. The transient pressure measurements show that for hydrostatic pressures up to 30 MPa, propagation of the high-pressure shockwave generated by the focused laser causes the local pressure to reduce below ambient levels during the time frame that spectroscopic measurements can be made. The pressure impulse and subsequent reduction in pressure are larger, with the latter lasting longer for the 150 ns pulse compared to a 20 ns pulse of the same energy. The 150 ns pulse generates larger cavities with significant enhancement of the spectral emissions observed compared to the 20 ns duration pulse for pressures up to 30 MPa. The results demonstrate that laser-induced breakdown using a long ns duration pulse offers an advantage over conventional, short ns duration pulses for the analysis of bulk ionic solutions at hydrostatic pressures between 0.1 and 30 MPa. - Highlights: • Long-ns-duration laser pulses enhance the spectra observed from bulk solutions. • Laser-induced shockwaves momentarily reduce pressures to below ambient levels. • 150 ns pulses generate larger cavities than 20 ns pulses of the same energy. • Hydrostatic pressures < 30 MPa have no significant effect on the observed spectra

  12. Pulse laser induced change in thermal radiation from a single spherical particle on thermally bad conducting surface : an analytical solution

    International Nuclear Information System (INIS)

    Moksin, M.M.; Grozescu, V.I.; Yunus, W.M.M.; Azmi, B.Z.; Talib, Z.A.; Wahab, Z.A.

    1996-01-01

    A relatively simple analytical expression was derived that provided a description of the radius and thermal properties of a single particle from the change in grey body radiation emission subsequent to pulse laser heating of the particle

  13. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  14. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    Science.gov (United States)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  15. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.

    Science.gov (United States)

    Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M

    2015-05-08

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  16. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    Science.gov (United States)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  17. RF-source development for ITER: Large area H- beam extraction, modifications for long pulse operation and design of a half size ITER source

    International Nuclear Information System (INIS)

    Kraus, W.; Heinemann, B.; Falter, H.D.; Franzen, P.; Speth, E.; Entscheva, A.; Fantz, U.; Franke, T.; Holtum, D.; Martens, Ch.; McNeely, P.; Riedl, R.; Wilhelm, R.

    2005-01-01

    With an extraction area of 152 cm 2 a calorimetrically measured H - current density of 19.3 mA/cm 2 has been achieved at 0.45 Pa with 90 kW RF power. With 306 cm 2 the electrically measured H - current has reached up to 9.7 A corresponding to 32 mA/cm 2 at 100 kW. The current on the calorimeter is limited by the extraction system. Down to 0.2 Pa only a weak dependence on the source pressure has been observed. The test bed will be upgraded to demonstrate cw operation with deuterium. Based on the tested prototype a half size ITER RF-source of 80 cm x 90 cm with 360 kW RF power has been designed

  18. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  19. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  20. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.

    Science.gov (United States)

    Maxwell, Adam D; Cain, Charles A; Hall, Timothy L; Fowlkes, J Brian; Xu, Zhen

    2013-03-01

    In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  2. Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, Chiara [Biophysics and Nanoscience Centre, DEB-CNISM, Università della Tuscia, I-01100 Viterbo (Italy); Institute of Agro-Environmental and Forest Biology, CNR, I-05010 Porano (Italy); Kumar, Vivek; Bizzarri, Anna Rita; Cannistraro, Salvatore, E-mail: cannistr@unitus.it [Biophysics and Nanoscience Centre, DEB-CNISM, Università della Tuscia, I-01100 Viterbo (Italy)

    2015-05-04

    Redox metalloproteins are emerging as promising candidates for future bio-optoelectronic and nano-biomemory devices, and the control of their electron transfer properties through external signals is still a crucial task. Here, we show that a reversible on/off switching of the electron current tunnelling through a single protein can be achieved in azurin protein molecules adsorbed on gold surfaces, by applying appropriate voltage pulses through a scanning tunnelling microscope tip. The observed changes in the hybrid system tunnelling properties are discussed in terms of long-sustained charging of the protein milieu.

  3. A low-cost multichannel pulse-height analyzer PHA 256 using single-chip microcomputer

    International Nuclear Information System (INIS)

    Koehler, M.; Meiling, W.

    1985-01-01

    The PHA 256 multichannel analyzer on the base of the U8820 single-chip microcomputer applied for radiation measurements, for example in monitoring systems with scintillation detectors, is described. The analyzer contains a power supply unit and 7 boards, namely, the processor board; data and program memory; 8-bit analog-to-digital converter; driver to display device; keyboard with 23 function keys; pulse amplifier and high-voltage supply (up to 2 kV). Software used provides preprocessing of spectra supported by following functions: addition and subtraction of different spectra, spectrum monitoring by use of a 5-point-algorithm, calculation of peak areas with linearly interpolated background

  4. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  5. Self-pulsing and chaos in inhomogeneously broadened single mode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R; Cho, Y

    1983-08-01

    A four-dimensional model and a six-dimensional model describing the self-pulsing instabilities and chaotic dynamics of inhomogeneously broadened single-mode lasers are derived as the first two steps of an infinite hierarchy of approximations increasing in accuracy and complexity. The results of a linear stability analysis of the time-independent states and some numerical solutions are given to show the various types of dynamic behavior which can occur in these models. The dynamic behavior is found to be much more complex than in the homogeneously broadened case and is obtained under physically more realistic conditions. 10 references.

  6. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    Science.gov (United States)

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  7. Fabrication and optimization of the copper halide Laser's comparison of the double-discharge (Cu Cl) with the single-pulse operation (Cu Br)

    International Nuclear Information System (INIS)

    Sajad, B.; Behrozinia, S.; Nikzad, P.; Bassam, M. A.

    2009-01-01

    In this paper, the fabrication of a double-pulse copper chloride laser was investigated to study the effect of various parameters such as buffer gas pressure, temperature, and the delay time between two electrical discharge pulses, on laser output power. Moreover, a single-pulse copper bromide laser was fabricated to optimize the laser output power versus temperature, buffer gas pressure, and electrical input power and discharge frequency. The comparison of the results in single-pulse and double-pulse excitation indicates that the former is easier in operation and more power stability can be achieved using single pulse excitation.

  8. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  9. Can a single pulse transcranial magnetic stimulation targeted to the motor cortex interrupt pain processing?

    Science.gov (United States)

    Kisler, Lee-Bareket; Gurion, Ilan; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone; Weissman-Fogel, Irit

    2018-01-01

    The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1's role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual's first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and 'SHAM-VL'), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here.

  10. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  11. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  12. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    International Nuclear Information System (INIS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-01-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results. (orig.)

  13. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  14. Electrostatic deposition of a micro solder particle using a single probe by applying a single rectangular pulse

    International Nuclear Information System (INIS)

    Nakabayashi, Daizo; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio

    2012-01-01

    Recently, micromanipulation techniques have been in high demand. A technique to deposit a metal microparticle onto a metal substrate by using a single metal probe has been proposed as one of the techniques. A solder particle with a diameter of 20–30 µm, initially adhering to the probe tip, is detached and deposited onto a substrate. The success rate of the particle deposition was 44% in the previous research, and is insufficient for industrial applications. In this paper, a technique of particle deposition by applying a single rectangular pulse is proposed, and the mechanism of the deposition is described. In the mechanism, an electric discharge between the probe and the particle when the particle reaches the substrate plays an important role in the particle deposition. Moreover, the mechanism of the proposed technique is verified by experiments of particle deposition, which are observed using a high-speed camera, a scanning electron microscope (SEM) and an oscilloscope. The success rate of the particle deposition has increased to 93% by the proposed technique. Furthermore, the damage to the particle by the electric discharge is evaluated using an RC circuit model, and the applicability of the proposed technique is discussed. (paper)

  15. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  16. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  17. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    Science.gov (United States)

    de Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-08-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.

  18. Femtosecond laser ablation of silver foil with single and double pulses

    CSIR Research Space (South Africa)

    Roberts, DE

    2009-01-01

    Full Text Available The average ablation depth per pulse of silver foil by 130 fs laser pulses has been measured in vacuum over a range of three orders of magnitude of pulse fluence up to 900 J cm-2. In addition, double pulses with separations up to 3.4 ns have been...

  19. An all metal array of antennae for RF heating of TOKAMAKS in the ion cyclotron range of frequency

    International Nuclear Information System (INIS)

    Jacquinot, J.; Lebot, H.; Adam, J.; Kuus, H.

    1980-09-01

    500 KW, the maximum available RF power, at a frequency of 60 MHz and in 50 to 100 ms pulses, has been launched in TFR plasmas using an array of 4 half turn antennae. The array has a potential power capability of 1 MW through a single port. The electrical coupling efficiency is about 90%

  20. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  1. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: spetro@vinca.rs [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2016-01-01

    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  2. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    Science.gov (United States)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  3. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  4. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  5. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  6. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  7. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  8. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  9. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  10. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  11. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    International Nuclear Information System (INIS)

    Lamb, Thorsten

    2017-05-01

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  12. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2012-02-01

    Full Text Available We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to a flat silicon (111 crystal. 10^{2} diffracted photons were detected. The spectrum of the detected x rays is compared to simulation. The diffraction and detection of 10^{2} x rays is a key step to a more efficient time resolved diagnostic in which the number of observed x rays might reach 10^{4}; enabling a unique, flexible x-ray source as a sub-ps resolution diagnostic for studying the evolution of chemical reactions, lattice deformation and melting, and magnetism.

  13. Transverse emittance measurement of high-current single pulse beams using pepper-pot method

    International Nuclear Information System (INIS)

    Ke Jianlin; Zhou Changgeng; Qiu Rui

    2013-01-01

    A pepper pot-imaging plate system has been developed and used to measure the 4-D transverse emittance of a vacuum arc ion source. Single beam pulses of tens to hundreds milliamperes were extracted from the plasma with 64 kV high voltage. An imaging plate was laid after the pepper pot to visualize the ion beamlets passing though the holes on the pepper pot. An application program was developed to show the phase-space distribution and calculate the ellipse and RMS emittances. The normalized RMS emittances are about 6.41 π·mm·mrad in x-direction and 4.61 π·mm·mrad in y-direction. It is shown that the emittance of the vacuum arc ion source is much larger than that of other types of ion sources, which is mainly attributed to the high current and the convex meniscus of this source. (authors)

  14. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  15. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.

    Science.gov (United States)

    Kühnemund, M; Nilsson, M

    2015-05-15

    Novel portable, sensitive and selective DNA sensor methods for bio-sensing applications are required that can rival conventionally used non-portable and expensive fluorescence-based sensors. In this paper, rolling circle amplification (RCA) products are detected in solution and on magnetic particles using a resistive pulse sensing (RPS) nanopore. Low amounts of DNA molecules are detected by padlock probes which are circularized in a strictly target dependent ligation reaction. The DNA-padlock probe-complex is captured on magnetic particles by sequence specific capture oligonucleotides and amplified by a short RCA. Subsequent RPS analysis is used to identify individual particles with single attached RCA products from blank particles. This proof of concept opens up for a novel non-fluorescent digital DNA quantification method that can have many applications in bio-sensing and diagnostic approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  17. High efficiency 40 K single-stage Stirling-type pulse tube cryocooler

    Science.gov (United States)

    Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.

  18. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ramesh; Singh, Manoj; Jadav, H M; Misra, Kishor; Kulkarni, S V, E-mail: rjoshi@ipr.res.i [Institute for plasma research, Bhat, Gandhinagar- 382428 (India)

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twice, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  19. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    International Nuclear Information System (INIS)

    Joshi, Ramesh; Singh, Manoj; Jadav, H M; Misra, Kishor; Kulkarni, S V

    2010-01-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twice, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  20. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    Science.gov (United States)

    Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  1. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  2. Meterwavelength Single-pulse Polarimetric Emission Survey. III. The Phenomenon of Nulling in Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rahul; Mitra, Dipanjan; Melikidze, George I., E-mail: rahulbasu.astro@gmail.com [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Szafrana 2, 65–516 Zielona Góra (Poland)

    2017-09-10

    A detailed analysis of nulling was conducted for the pulsars studied in the Meterwavelength Single-pulse Polarimetric Emission Survey. We characterized nulling in 36 pulsars including 17 pulsars where the phenomenon was reported for the first time. The most dominant nulls lasted for a short duration, less than five periods. Longer duration nulls extending to hundreds of periods were also seen in some cases. A careful analysis showed the presence of periodicities in the transition from the null to the burst states in 11 pulsars. In our earlier work, fluctuation spectrum analysis showed multiple periodicities in 6 of these 11 pulsars. We demonstrate that the longer periodicity in each case was associated with nulling. The shorter periodicities usually originate from subpulse drifting. The nulling periodicities were more aligned with the periodic amplitude modulation, indicating a possible common origin for both. The most prevalent nulls last for a single period and can be potentially explained using random variations affecting the plasma processes in the pulsar magnetosphere. On the other hand, longer-duration nulls require changes in the pair-production processes, which need an external triggering mechanism for the changes. The presence of periodic nulling puts an added constraint on the triggering mechanism, which also needs to be periodic.

  3. A precision master trigger system for SLC based on the accelerator RF drive system

    International Nuclear Information System (INIS)

    Koontz, R.F.; Leger, G.; Paffrath, L.; Wilmunder, A.

    1984-01-01

    A new trigger system consisting of a single 476 MHz rf doublet pulse superimposed on the main 476 MHz rf Drive Line signal that transits the 3 km accelerator has been implemented and is working well. This paper describes the general concept of this system, outlines the operation of the main master trigger generator, the fiducial (476 MHz doublet) generator, and the fiducial pickoff system. A companion paper by Paffrath et al describes the counter electronics that produces precision timed triggers for all SLC operations along the accelerator. (orig.)

  4. High power tests of dressed supconducting 1.3 GHz RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  5. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  6. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  7. Analysis and mitigation of systematic errors in spectral shearing interferometry of pulses approaching the single-cycle limit [Invited

    International Nuclear Information System (INIS)

    Birge, Jonathan R.; Kaertner, Franz X.

    2008-01-01

    We derive an analytical approximation for the measured pulse width error in spectral shearing methods, such as spectral phase interferometry for direct electric-field reconstruction (SPIDER), caused by an anomalous delay between the two sheared pulse components. This analysis suggests that, as pulses approach the single-cycle limit, the resulting requirements on the calibration and stability of this delay become significant, requiring precision orders of magnitude higher than the scale of a wavelength. This is demonstrated by numerical simulations of SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We briefly propose methods to minimize the effects of this sensitivity in SPIDER and review variants of spectral shearing that attempt to avoid this difficulty

  8. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    Science.gov (United States)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  9. Short range RF communication for jet engine control

    Science.gov (United States)

    Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)

    2007-01-01

    A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  10. The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses

    International Nuclear Information System (INIS)

    Gao Shujing; Chen Lansun

    2005-01-01

    In this paper, we propose an exploited single-species discrete model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Using the stroboscopic map, we obtain an exact cycle of the system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, pitch-fork and tangent bifurcation. This suggests that birth pulse provides a natural period or cyclicity that makes the dynamical behavior more complex. Moreover, we show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the earlier culling the mature fish, the larger harvest can tolerate

  11. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  12. Megajoule-class single-pulse KrF laser test facility as a logical step toward inertial fusion commercialization

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    The cost and efficiency of megajoule-class KrF laser single pulse test facilities have been examined. A baseline design is described which illuminates targets with 5 MJ with shaped 10-ns pulses. The system uses 24 main amplifiers and operates with an optics operating fluence of 4.0 J/cm 2 . This system has 9.0% efficiency and costs $200/joule. Tradeoff studies indicate that large amplifier modules and high fluences lead to the lowest laser system costs, but that only a 20% cost savings can be realized by going to amplifier modules larger than 200 kJ and/or fluences greater than 4 J/cm 2 . The role of the megajoule-class single-pulse test facility towards inertial fusion commercialization will also be discussed

  13. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  14. Microstructural evolution and mechanical performance of resistance spot welded DP1000 steel with single and double pulse welding

    NARCIS (Netherlands)

    Chabok, Ali; van der Aa, Ellen; De Hosson, Jeff; Pei, Yutao T.

    2017-01-01

    Two welding schemes of single and double pulse were used for the resistance spot welding of DP1000 dual phase steel. The changes in the mechanical performance and variant pairing of martensite under two different welding conditions were scrutinized. It is demonstrated that, although both welds fail

  15. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  16. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  17. Continuous single pulse resolved measurement of beam diameters at 200 kHz using optical transmission filters

    Science.gov (United States)

    Fruechtenicht, Johannes; Letsch, Andreas; Voss, Andreas; Abdou Ahmed, Marwan; Graf, Thomas

    2012-02-01

    We present a novel laser beam measurement setup which allows the determination of the beam diameter for each single pulse of a pulsed laser beam at repetition rates of up to 200 kHz. This is useful for online process-parameter control e.g. in micromachining or for laser source characterization. Basically, the developed instrument combines spatial transmission filters specially designed for instantaneous optical determination of the second order moments of the lateral intensity distribution of the light beam and photodiodes coupled to customized electronics. The acquisition is computer-based, enabling real-time operation for online monitoring or control. It also allows data storage for a later analysis and visualization of the measurement results. The single-pulse resolved beam diameter can be measured and recorded without any interruption for an unlimited number of pulses. It is only limited by the capacity of the data storage means. In our setup a standard PC and hard-disk provided 2 hours uninterrupted operation and recording of varying beam diameters at 200 kHz. This is about three orders of magnitude faster than other systems. To calibrate our device we performed experiments in cw and pulsed regimes and the obtained results were compared to those obtained with a commercial camera based system. Only minor deviations of the beam diameter values between the two instruments were observed, proving the reliability of our approach.

  18. Design of universal parallel-transmit refocusing kT -point pulses and application to 3D T2 -weighted imaging at 7T.

    Science.gov (United States)

    Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas

    2018-07-01

    T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  20. Investigating emotional top down modulation of ambiguous faces by single pulse TMS on early visual cortices

    Directory of Open Access Journals (Sweden)

    Zachary Adam Yaple

    2016-06-01

    Full Text Available Top-down processing is a mechanism in which memory, context and expectation are used to perceive stimuli. For this study we investigated how emotion content, induced by music mood, influences perception of happy and sad emoticons. Using single pulse TMS we stimulated right occipital face area (rOFA, primary visual cortex (V1 and vertex while subjects performed a face-detection task and listened to happy and sad music. At baseline, incongruent audio-visual pairings decreased performance, demonstrating dependence of emotion while perceiving ambiguous faces. However, performance of face identification decreased during rOFA stimulation regardless of emotional content. No effects were found between Cz and V1 stimulation. These results suggest that while rOFA is important for processing faces regardless of emotion, V1 stimulation had no effect. Our findings suggest that early visual cortex activity may not integrate emotional auditory information with visual information during emotion top-down modulation of faces.

  1. Analysis of Dietz's single, rectangular pulse theory for the generation of radiation via photoelectrons

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface has been analytically modeled and computationally simulated by several researchers. This paper analyzes and compares Dietz's theory predictions with my research to form a unified foundation of consistent, inter-supporting results that should provide confidence in the independently performed basic research and resulting scaling laws and predictions. In doing so, this paper concentrated on Dietz's small-spot, single, rectangular, ''weak'' pulse theory and equations, which involve nonrelativistic, monoenergetic photoelectrons emitted normal to a conducting surface in vacuum. In this paper I: (1) analytically compare Dietz's theory equations with my theory equations, (2) compare Dietz's theoretical scaling laws with my Particle-In-Cell (PIC) code simulation results, and (3) make Dietz's equations easier to use in predicting and optimizing photoelectron-generated radiation. As a result, it is shown that Dietz's equations match my theory's equations in their predicted scaling laws, differing only slightly in their coefficients and unique model parameters. Also, Dietz's equations generally agree with the PIC code results. Finally, optimization analysis showed that theoretical conversion efficiencies for typical real metals can meet and exceed values of 10 -5 if optimal photon energies of 15 to 20 eV are used. Even better efficiencies should be possible if the small-spot constraint is violated as well

  2. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D

    2015-01-01

    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  3. Single channel analog pulse processor Asic for gas proportional counters and SI detector

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sarkar, Soumen; Kataria, S.K.; Viyogi, Y.P.

    2005-01-01

    The paper presents the design and development of a single channel pulse processor in short Singleplex ASIC targeted for gas proportional counters/Si detectors. The design is optimized for the dynamic range of +500 fC to -500 fC with provision for externally adjusted pole-zero cancellation. A dedicated filter based on the de-convolution principle is used for the cancellation of the long hyperbolic signal tail produced by the slow drift of ions, typical in gas proportional with the filter time constants derived from the actual detector input signal shape. The pole-zero adjustment can be done by external dc voltage to achieve perfect base-line recovery to 1% after 5 μs. The simulated 0 pf noise is 500 e - rms for the peaking time of 1.2 μs with noise slope of 7e - -. The gain is 3.4 mv/fC over the entire linear dynamic range with power dissipation of 13 mW. This design is a modified version of Indiplex chip with features dynamic range equal gain on both polarities with nearly same noise and serves as diagnostic chip for Indiplex. The chip can be used for radiation monitoring instruments. (author)

  4. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  5. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  6. One nanosecond pulsed electron gun systems

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1979-02-01

    At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun

  7. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    International Nuclear Information System (INIS)

    Haenel, Marc

    2010-06-01

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs 2 Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  8. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    Energy Technology Data Exchange (ETDEWEB)

    Haenel, Marc

    2010-07-15

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs{sub 2}Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  9. RF Beam Position Monitor for the SNS Ring

    International Nuclear Information System (INIS)

    Vetter, Kurt; Cameron, Peter; Dawson, Craig; Degen, Chris; Kesselman, Martin; Mead, Joseph

    2004-01-01

    The Spallation Neutron Source Ring accumulates 1060 pulses of 38-mA peak current 1-GeV H-minus particles from the Linac through the HEBT line, then delivers this accumulated beam in a single pulse to a mercury target via the RTBT line. The dynamic range over the course of the accumulation cycle is 60 dB. As a result of particle energy distribution the 402.5-MHz RF bunching frequency quickly de-coheres during the first few turns. In order to measure first-turn position a dual-mode BPM has been designed to process 402.5-MHz signal energy during the first few turns then switch to a Baseband mode to process de-cohered energy in the low MHz region. The design has been implemented as a dual mother/daughter board PCI architecture. Both Baseband and RF calibration are included on the RF BPM board. A prototype system has been installed in the SNS Linac

  10. Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range

    International Nuclear Information System (INIS)

    Borowiec, A.; Tiedje, H.F.; Haugen, H.K.

    2005-01-01

    We present single pulse femtosecond laser ablation threshold measurements of InP obtained by optical, scanning electron, and atomic force microscopy. The experiments were conducted with laser pulses 65-175 fs in duration, in the wavelength range from 400 to 2050 nm, covering the photon energy region above and below the bandgap of InP. The ablation thresholds determined from depth and volume measurements varied from 87 mJ/cm 2 at 400 nm to 250 mJ/cm 2 at 2050 nm. In addition, crater depths and volumes were measured over a range of laser fluences extending well above the ablation threshold

  11. Implications of the spatial dependence of the single-event-upset threshold in SRAMs measured with a pulsed laser

    International Nuclear Information System (INIS)

    Buchner, S.; Langworthy, J.B.; Stapor, W.J.; Campbell, A.B.; Rivet, S.

    1994-01-01

    Pulsed laser light was used to measure single event upset (SEU) thresholds for a large number of memory cells in both CMOS and bipolar SRAMs. Results showed that small variations in intercell upset threshold could not explain the gradual rise in the curve of cross section versus linear energy transfer (LET). The memory cells exhibited greater intracell variations implying that the charge collection efficiency within a memory cell varies spatially and contributes substantially to the shape of the curve of cross section versus LET. The results also suggest that the pulsed laser can be used for hardness-assurance measurements on devices with sensitive areas larger than the diameter of the laser beam

  12. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  13. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  14. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    Science.gov (United States)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  15. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit

    International Nuclear Information System (INIS)

    Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph

    2015-01-01

    We present the design and implementation of a highly compact femtosecond electron diffractometer working at electron energies up to 100 keV. We use a multi-body particle tracing code to simulate electron bunch propagation through the setup and to calculate pulse durations at the sample position. Our simulations show that electron bunches containing few thousands of electrons per bunch are only weakly broadened by space-charge effects and their pulse duration is thus close to the one of a single-electron wavepacket. With our compact setup, we can create electron bunches containing up to 5000 electrons with a pulse duration below 100 fs on the sample. We use the diffractometer to track the energy transfer from photoexcited electrons to the lattice in a thin film of titanium. This process takes place on the timescale of few-hundred femtoseconds and a fully equilibrated state is reached within 1 ps

  16. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  17. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  18. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data

    Science.gov (United States)

    Van Den Eeckhaut, Miet; Kerle, Norman; Poesen, Jean; Hervás, Javier

    2012-11-01

    In contrast to the many studies that use expert-based analysis of LiDAR derivatives for landslide mapping in forested terrain, only few studies have attempted to develop (semi-)automatic methods for extracting landslides from LiDAR derivatives. While all these studies are pixel-based, it has not yet been tested whether object-oriented analysis (OOA) could be an alternative. This study investigates the potential of OOA using only single-pulse LiDAR derivatives, such as slope gradient, roughness and curvature to map landslides. More specifically, the focus is on both LiDAR data segmentation and classification of slow-moving landslides in densely vegetated areas, where spectral data do not allow accurate landslide identification. A multistage procedure has been developed and tested in the Flemish Ardennes (Belgium). The procedure consists of (1) image binarization and multiresolution segmentation, (2) classification of landslide parts (main scarps and landslide body segments) and non-landslide features (i.e. earth banks and cropland fields) with supervised support vector machines at the appropriate scale, (3) delineation of landslide flanks, (4) growing of a landslide body starting from its main scarp, and (5) final cleaning of the inventory map. The results obtained show that OOA using LiDAR derivatives allows recognition and characterization of profound morphologic properties of forested deep-seated landslides on soil-covered hillslopes, because more than 90% of the main scarps and 70% of the landslide bodies of an expert-based inventory were accurately identified with OOA. For mountainous areas with bedrock, on the other hand, creation of a transferable model is expected to be more difficult.

  19. Split-face comparison of radiofrequency versus long-pulse Nd-YAG treatment of facial laxity.

    Science.gov (United States)

    Taylor, Mark B; Prokopenko, Inna

    2006-04-01

    To improve photoaging skin with laser treatment, multiple sessions have been considered necessary to achieve results comparable with one radiofrequency (RF) treatment. We compared single-treatment improvements obtained by the long-pulse 1064 nm Nd:YAG laser and RF device. In a split-face study, patients with sagging skin were treated once with laser (left side) and once with RF (right side) energy. Improvement judged by six blinded observers was greater for wrinkles and laxity (30% median) on the laser-treated side and essentially the same with both modalities (15% median) for texture, pores, and pigmentation. Improvement was maintained for at least 2-6 months on both facial sides without adverse effects. With a single treatment, both the long-pulse 1064 nm Nd:YAG laser and ThermaCool RF device provide a modest degree of improvement in both wrinkles and laxity of facial skin and similar improvement in texture, pores, and pigmentation.

  20. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  1. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2013-01-01

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  2. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    Directory of Open Access Journals (Sweden)

    Jascha D Swisher

    Full Text Available High-resolution functional MRI is a leading application for very high field (7 Tesla human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  3. Multidimensional spectroscopy with a single broadband phase-shaped laser pulse

    International Nuclear Information System (INIS)

    Glenn, Rachel; Mukamel, Shaul

    2014-01-01

    We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two dimensional signals obtained by varying the detected frequency and phase parameters are presented for a three electronic band model system. We demonstrate how two-photon and stimulated Raman resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be suppressed

  4. Distributing coil elements in three dimensions enhances parallel transmission multiband RF performance: A simulation study in the human brain at 7 Tesla.

    Science.gov (United States)

    Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2016-06-01

    We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2015-01-01

    In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally...... fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...

  6. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  7. The RF system of FELI

    International Nuclear Information System (INIS)

    Morii, Y.; Miyauchi, Y.; Koga, A.; Abe, H.; Keishi, T.; Bessho, I.; Tomimasu, T.

    1994-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20 μm (infra red region) to 0.35 μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and installation of the linac will start in December 1993. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714 MHz SHB (subharmonic buncher), a 2856 MHz standing wave type buncher, and 7 ETL (Electrotechnical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power); 24 μs - 24 MW, 12.5 μs - 34 MW, 0.5 μs - 70 MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of an optical thyristor stack. These equipments are manufactured now, and an S-band klystron and modulator will be combined to test their performance at the works of NISSIN ELECTRIC Co. in October 1993. (author)

  8. Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source

    International Nuclear Information System (INIS)

    Ohta, J.; Fujioka, H.; Honke, T.; Oshima, M.

    2004-01-01

    We have grown InN films on c-plane sapphire substrates by pulsed laser deposition (PLD) with a radio frequency nitrogen radical source for the first time and investigated the effect of the substrate surface nitridation on the structural and electrical properties of InN films with reflection high energy electron diffraction (RHEED), atomic force microscope, the Hall effect measurements and high-resolution X-ray diffraction (HRXRD). RHEED and HRXRD characterizations revealed that high-quality InN grows epitaxially on sapphire by PLD and its epitaxial relationship is InN (0 0 0 1) parallel sapphire (0 0 0 1) and InN [2 -1 -1 0] parallel sapphire [1 0 -1 0]. The InN crystalline quality and the electron mobility are improved by the substrate nitridation process. The area of the pits at the InN surface is reduced by the substrate nitridation process probably due to the reduction in the interface energy between InN and the substrate. The full width at half maximum of the -1 -1 2 4 X-ray rocking curve for InN grown by the present technique without using any buffer layers was as small as 34.8 arcmin. These results indicate that the present technique is promising for the growth of the high-quality InN films

  9. Status of SPring-8 Photocathode Rf Gun for Future Light Sources

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2005-01-01

    We have been studying photocathode single-cell pillbox rf gun for future light sources since 1996. We achieved a rmaximum field gradient of 187 MV/m with chemical-etching processed cavity. We have been developed stable and highly qualified UV-laser source for the rf gun intensively last 3 years. The UV-laser pulse (10 Hz) energy is up to 850 uJ/pulse. The energy stability (rms) of laser has been improved down to 0.2~0.3 % at the fundamental and 0.7~1.3% at the third harmonic generation. This stability is held for two months continuously. In this improvement, we just passively stabilized the system in a humidity-controlled clean room. On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from the rf gun. We prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. With a deformable mirror, we obtained an emittance of1.6

  10. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  11. Saturated multikilovolt x-ray amplification with Xe clusters: single-pulse observation of Xe(L) spectral hole burning

    International Nuclear Information System (INIS)

    Borisov, Alex B; Davis, Jack; Song, Xiangyang; Koshman, Yevgeniya; Dai Yang; Boyer, Keith; Rhodes, Charles K

    2003-01-01

    Single-pulse measurements of spectral hole burning of Xe(L) 3d → 2p hollow atom transition arrays observed from a self-trapped plasma channel provide new information on the dynamics of saturated amplification in the λ ∼ 2.8-2.9 A region. The spectral hole burning on transitions in the Xe 34+ and Xe 35+ arrays reaches full suppression of the spontaneous emission and presents a corresponding width Δ h-bar ω x ∼ = 60 eV, a value adequate for efficient amplification of multikilovolt x-ray pulses down to a limiting length τ x ∼ 30 as. The depth of the suppression at 2.86 A indicates that the gain-to-loss ratio is ≥10. An independent determination of the x-ray pulse energy from damage produced on the surface of a Ti foil in the far field of the source gives a pulse energy of 20-30 μJ, a range that correlates well with the observation of the spectral hole burning and indicates an overall extraction efficiency of ∼10%. (letter to the editor)

  12. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses.

    Science.gov (United States)

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-03-08

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).

  13. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  14. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching....... The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20 wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events...

  15. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  16. Generating Efficient Femtosecond Mid-infrared Pulse by Single Near-infrared Pump Wavelength in Bulk Nonlinear Crystal Without Phase-matching

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8-2.92 μm are generated using the single pump wavelengths from 1.25-1.45 μm. © 2014 Optical Society of America...

  17. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  18. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Velasquez, A.A.; Trujillo, J.M.; Morales, A.L.; Tobon, J.E.; Gancedo, J.R.; Reyes, L.

    2005-01-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Moessbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Moessbauer spectrometer

  19. Irradiation of cells by single and double pulses of high intensity radiation: oxygen sensitization and diffusion kinetics

    International Nuclear Information System (INIS)

    Epp, E.R.; Ling, C.C.; Weiss, H.

    1976-01-01

    This paper discusses advances made on both experimental and theoretical approaches involving single and double pulses of high intensity ionizing radiation delivered to cultured bacterial and mammalian cells where the effect of oxygen is concerned. Information gained on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and perhaps intimately related to the still unknown mechanisms of oxygen sensitization is described. The diffusion characteristics of oxygen at the cellular level obtained from experimental data are discussed. Current knowledge on intracellular radiolytic oxygen depletion is also presented. Future work on the use of high intensity pulsed radiation as a tool in cellular radiobiological research is outlined. It is expected that obtaining knowledge of the time available for damaged molecules to enter into chemical reactions may lead to insights into the mechanisms of radiation injury in cells, such as those involved in the oxygen effect. (Auth.)

  20. Simultaneous fabrication of laser-active colour centres and permanent microgratings in lithium fluoride by a single femtosecond pulse

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Kawamura, Ken-ichi; Hirano, Masahiro; Hosono, Hideo

    2003-01-01

    We report, for the first time, simultaneous fabrication of laser-active F 2 and F 3 + colour centres in lithium fluoride and permanent periodic gratings with fringe spacings as fine as sub-micron size by two interfering infrared femtosecond (fs) laser pulses. In particular, the optical properties (absorption and luminescence) of F 2 and F 3 + colour centres produced by a single fs laser pulse are compared with those created by damage from radiation such as x-rays. The present technique of simultaneously fabricating laser-active colour centres and functional fine-periodic structures in photo-insensitive transparent materials may well be a useful method for making miniaturized optical devices. (letter to the editor)

  1. Analytical performances of laser-induced micro-plasma of Al samples with single and double ultrashort pulses in air and with Ar-jet: A comparative study

    International Nuclear Information System (INIS)

    Semerok, A.; Dutouquet, C.

    2014-01-01

    Ultrashort pulse laser microablation coupled with optical emission spectroscopy was under study to obtain several micro-LIBS analytical features (shot-to-shot reproducibility, spectral line intensity and lifetime, calibration curves, detection limits). Laser microablation of Al matrix samples with known Cu- and Mg-concentrations was performed by single and double pulses of 50 fs and 1 ps pulse duration in air and with Ar-jet. The micro-LIBS analytical features obtained under different experimental conditions were characterized and compared. The highest shot-to-shot reproducibility and gain in plasma spectral line intensity were obtained with double pulses with Ar-jet for both 50 fs and 1 ps pulse durations. The best calibration curves were obtained with 1 ps pulse duration with Ar-jet. Micro-LIBS with ultrashort double pulses may find its effective application for surface elemental microcartography. - Highlights: • Analytical performances of micro-LIBS with ultrashort double pulses were studied. • The maximal line intensity gain of 20 was obtained with double pulses and Ar-jet. • LIBS gain was obtained without additional ablation of a sample by the second pulse. • LIBS properties were almost the same for both 50 fs and 1 ps pulses. • The micro-LIBS detection limit was around 35 ppm

  2. High-quality beam generation using an RF gun and a 150 MeV microtron

    Science.gov (United States)

    Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.

    2000-11-01

    Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.

  3. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    International Nuclear Information System (INIS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  4. Adaptive compensation of Lorentz force detuning in superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Yuriy [Fermilab; Schappert, Warren [Fermilab

    2011-11-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities and considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate. Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  5. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  6. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  7. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber.......A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  8. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    Science.gov (United States)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2018-03-01

    It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.

  9. An extended diffusive model for calculating thermal diffusivity from single monopole tokamak heat pulse propagation

    International Nuclear Information System (INIS)

    Marinak, M.

    1990-02-01

    The problem of deducing χ e from measurements of the propagation of a monopole heatpulse is considered. An extended diffusive model, which takes into account perturbed sources and sinks is extended to the case of a monopole heat input. χ e is expressed as a function of two observables, the heat pulse velocity and the radial damping rate. Two simple expressions valid for two different ranges of the radius of the poloidal waist of the beam power profile are given. The expressions are valid in the heat pulse measurement region, extending radially 0.05a beyond the beam power waist to near 0.6a. The inferred χ e is a local value, not an average value of the radial χ e profile. 7 refs., 6 figs., 1 tab

  10. Single-pulse characteristics of the Xe(L) amplifier on the Xe35+ (3d→2p) transition array at λ ≅ 2.86 A

    International Nuclear Information System (INIS)

    Borisov, Alex B; Song Xiangyang; Zhang Ping; McCorkindale, John C; Khan, Shahab F; De Jonghe, Richard; Poopalasingam, Sankar; Zhao, Ji; Boyer, Keith; Rhodes, Charles K

    2006-01-01

    The triple comparison of (1) single-pulse spectral data, recorded with a CCD-equipped von Hamos spectrometer both axially and transversely; (2) axially measured time-integrated spectra registered on a film and (3) single-pulse x-ray images of the morphology of the self-trapped plasma channel, recorded simultaneously with the single-pulse spectra, establishes several leading characteristics of the saturated amplification observed on the Xe 35+ transition array at λ ≅ 2.86 A. The chief findings are (α) absolute positive correlation of amplification with the formation of a plasma channel, (β) a perfect spectral match of the amplified transitions in the comparison of axially recorded single-pulse and time-integrated film data and (γ) exact spectral correspondence of both the axially registered single-pulse and time-integrated film data with single-pulse transversely measured spectra exhibiting deep spectral hole burning at the position of the Xe 35+ array. (letter to the editor)

  11. Annealing of RF-magnetron sputtered SnS{sub 2} precursors as a new route for single phase SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M.G., E-mail: martasousa@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Cunha, A.F. da, E-mail: antonio.cunha@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Fernandes, P.A., E-mail: pafernandes@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto (Portugal)

    2014-04-01

    Tin sulphide thin films have been grown on soda-lime glass substrates through the annealing of RF-magnetron sputtered SnS{sub 2} precursors. Three different approaches to the annealing were compared and the resulting films thoroughly studied. One series of precursors was annealed in a tubular furnace directly exposed to a flux of sulphur vapour plus forming gas, N{sub 2} + 5%H{sub 2}, and at a constant pressure of 500 mbar. The other two series of identical precursors were annealed in the same furnace but inside a graphite box with and without elemental sulphur evaporation again in the presence of N{sub 2} + 5%H{sub 2} and at the same pressure as for the sulphur flux experiments. Different maximum annealing temperatures for each set of samples, in the range of 300–570 °C, were tested to study their effects on the properties of the final films. The resulting phases were structurally investigated by X-Ray Diffraction (XRD) and Raman spectroscopy. Annealing of SnS{sub 2} precursors in sulphur flux produced films where SnS{sub 2} was dominant for temperatures up to 480 °C. Increasing the temperature to 530 °C and 570 °C led to films where the dominant phase became Sn{sub 2}S{sub 3}. Annealing of SnS{sub 2} precursors in a graphite box with sulphur vapour at temperatures in the range between 300 °C and 480 °C the films are multi-phase, containing Sn{sub 2}S{sub 3}, SnS{sub 2} and SnS. For high annealing temperatures of 530 °C and 570 °C the films have SnS as the dominant phase. Annealing of SnS{sub 2} precursors in a graphite box without sulphur vapour at 300 °C and 360 °C the films are essentially amorphous, at 420 °C SnS{sub 2} is the dominant phase. For temperatures of 480 °C and 530 °C SnS is the dominant phase but also same residual SnS{sub 2} and Sn{sub 2}S{sub 3} phases are observed. For annealing at 570 °C, according to the XRD results the films appear to be single phase SnS. The composition was studied using energy dispersive spectroscopy being

  12. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  13. Quantifying pulsed electric field-induced membrane nanoporation in single cells.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T; Armani, Andrea M

    2016-11-01

    Plasma membrane disruption can trigger a host of cellular activities. One commonly observed type of disruption is pore formation. Molecular dynamic (MD) simulations of simplified lipid membrane structures predict that controllably disrupting the membrane via nano-scale poration may be possible with nanosecond pulsed electric fields (nsPEF). Until recently, researchers hoping to verify this hypothesis experimentally have been limited to measuring the relatively slow process of fluorescent markers diffusing across the membrane, which is indirect evidence of nanoporation that could be channel-mediated. Leveraging recent advances in nonlinear optical microscopy, we elucidate the role of pulse parameters in nsPEF-induced membrane permeabilization in live cells. Unlike previous techniques, it is able to directly observe loss of membrane order at the onset of the pulse. We also develop a complementary theoretical model that relates increasing membrane permeabilization to membrane pore density. Due to the significantly improved spatial and temporal resolution possible with our imaging method, we are able to directly compare our experimental and theoretical results. Their agreement provides substantial evidence that nanoporation does occur and that its development is dictated by the electric field distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. RF sources for recent linear accelerator projects

    International Nuclear Information System (INIS)

    Terrien, J.C.; Faillon, G.; Guidee, P.

    1992-01-01

    We present the state of the art of high power klystrons at Thomson Tubes Electroniques, along with the main technological limitations for peak power and pulse width. Then we describe the work that is under way to upgrade performance and some of the alternative RF sources that have been developed. (Author) 3 refs., 4 figs., 2 tabs

  15. Contribution of single-strand breaks and alkali-labile bonds to the loss of infectivity of γ-irradiated phiX174 RF-DNA in E. coli cells mutant in various repair functions

    International Nuclear Information System (INIS)

    McKee, R.H.

    1975-01-01

    Twenty-one radiation sensitive mutants have been examined for their capacity to support gamma-irradiated phiX174 RF-DNA. The survival of phiX174 RF-DNA was reduced in essentially all of the sensitive mutants. The irradiated phiX174 RF-DNA was then separated into populations containing either single-strand breaks or alkali-labile bonds to examine the capacity of the mutants to repair each of the classes of lesions. It was found that all E. coli strains are unable to repair 22 percent of the single-strand breaks and all sensitive mutants are unable to repair an additional 10 percent of the breaks. All the repair functions examined are involved in single-strand break repair and none are more or less necessary than any of the others. PhiX174 RF-DNA is also inactivated by alkali-labile bonds. In the normal strains the inactivation efficiency is 0.16 lethal events per lesion with a threshold dose of 15 to 20 krads. The mutants are divided into two classes by their sensitivity to alkali-labile bonds. Both classes of mutants are also inactivated by alkali-labile bonds with efficiencies of about 0.17 and 0.29 lethal events per lesion, respectively. It is proposed that the differences seen in survival curves of phiX174 measured in the sensitive mutants is due to this difference. Although in normal cells the efficiency of inactivation of phiX174 by single-strand breaks is 50 percent greater than by alkali-labile bonds, alkali-labile bonds are produced at approximately twice the rate of single-strand breaks so alkali-labile bonds account for about 61 percent of the overall inactivation. In the mutants of least sensitivity alkali-labile bonds account for about 54 percent of the inactivating events and in the most sensitive about 67 percent

  16. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Science.gov (United States)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  17. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  18. Surface modification of polymethylmethacrylate irradiated with 60 fs single laser pulses

    Czech Academy of Sciences Publication Activity Database

    Klinger, D.; Sobierajski, R.; Nietubyc, R.; Krzywinski, J.; Pelka, J.; Juha, Libor; Jurek, M.; Zymierska, D.; Guizard, S.; Merdji, H.

    2009-01-01

    Roč. 78, Suppl. 10 (2009), S71-S74 ISSN 0969-806X R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : polymethylmethacrylate (PMMA) * IR laser ablation * femtosecond laser pulse Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2009

  19. Pulse sequences for suppressing leakage in single-qubit gate operations

    Science.gov (United States)

    Ghosh, Joydip; Coppersmith, S. N.; Friesen, Mark

    2017-06-01

    Many realizations of solid-state qubits involve couplings to leakage states lying outside the computational subspace, posing a threat to high-fidelity quantum gate operations. Mitigating leakage errors is especially challenging when the coupling strength is unknown, e.g., when it is caused by noise. Here we show that simple pulse sequences can be used to strongly suppress leakage errors for a qubit embedded in a three-level system. As an example, we apply our scheme to the recently proposed charge quadrupole (CQ) qubit for quantum dots. These results provide a solution to a key challenge for fault-tolerant quantum computing with solid-state elements.

  20. A RD-ESPRIT algorithm for coherent DOA estimation in monostatic MIMO radar using a single pulse

    Science.gov (United States)

    Chen, Chen; Zhang, Xiaofei

    2014-08-01

    This paper discusses the problem of coherent direction of arrival (DOA) estimation in a monostatic multi-input multi-output (MIMO) radar using a single pulse, and proposes a reduced dimension (RD)-estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. We reconstruct the received data and then utilise it to construct a set of Toeplitz matrices. After that, we use RD-ESPRIT to obtain the DOAs of the sources. The proposed algorithm is effective for coherent angle estimation based on a single pulse, and it has much better angle estimation performance than the forward backward spatial smoothing (FBSS)-ESPRIT algorithm and the ESPRIT-like of Li, as well as very close angle estimation performance to the ESPRIT-like of Han. For complexity comparison, our algorithm has very close complexity to the FBSS-ESPRIT algorithm, and lower complexity than the ESPRIT-like of Han and the ESPRIT-like of Li. Simulation results present the effectiveness and improvement of our approach.

  1. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    Science.gov (United States)

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  2. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  3. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    International Nuclear Information System (INIS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong

    2014-01-01

    Highlights: • Single 50 fs laser pulse ablation of an aluminium target in vacuum is investigated in our experiments. • Nanoparticles with large radii of several hundred nanometers are observed. • The nanoparticles are most likely from the mechanical tensile stress relaxation. - Abstract: Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm 2 to 0.63 J/cm 2 . The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium

  4. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  5. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  6. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  7. A Single Pulse Beam Emittance Measurement for the CERN Heavy Ion Linac

    CERN Document Server

    Crescenti, M

    1995-01-01

    A new device for transverse emittance measurement has been installed in the 4.2 MeV/u filter region of the CERN Heavy Ion Linac (Linac 3). It allows to obtain pulse-to-pulse (every 1.2 sec) visualisation of the Linac 3 beam parameters in order to tune the machine and to match the beam for injection into the first circular accelerator, the PS Booster. The system is based on the "multi-slit" technique similar to the well-known "pepper pot" method. A plate with a series of horizontal or vertical slits is placed in the beam, defining positions in the phase plane. Particles pass through the slits and drift to a scintillator screen where they produce light. The screen is looked at by an externally triggered high resolution CCD camera. For each slit position the light intensity distribution, in the limit of infinitesimal slit aperture, is proportional to the angle distribution of the particles and therefore, provides the angular distribution in the phase plane. The video signal from the camera is digitised and the r...

  8. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  9. Storage of RF photons in minimal conditions

    Science.gov (United States)

    Cromières, J.-P.; Chanelière, T.

    2018-02-01

    We investigate the minimal conditions to store coherently a RF pulse in a material medium. We choose a commercial quartz as a memory support because it is a widely available component with a high Q-factor. Pulse storage is obtained by varying dynamically the light-matter coupling with an analog switch. This parametric driving of the quartz dynamics can be alternatively interpreted as a stopped-light experiment. We obtain an efficiency of 26%, a storage time of 209 μs and a time-to-bandwidth product of 98 by optimizing the pulse temporal shape. The coherent character of the storage is demonstrated. Our goal is to connect different types of memories in the RF and optical domain for quantum information processing. Our motivation is essentially fundamental.

  10. RF Processing Experience with the GTF Prototype RF Gun

    International Nuclear Information System (INIS)

    Schmerge, J.F.

    2010-01-01

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a π mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note (1).

  11. Numerical simulations of single and double ionization of H2 in short intense laser pulses

    International Nuclear Information System (INIS)

    Baier, Silvio

    2008-01-01

    Rescattering is the dominant process leading to double ionization in atoms and molecules interacting with linearly polarized laser pulses with wavelengths around 800 nm and in an intensity regime of 10 14 to 10 15 W/cm 2 . Using numerical integrations of the two-electron Schroedinger equation of the Hydrogen molecule in appropriate reduced dimensions two mechanisms, namely correlated emission of the electrons and excitation followed by field ionization after rescattering, could be identified and characterized. With the help of a planar model in reduced dimensions these mechanisms were quantitatively compared by their dependence on the molecular alignment with respect to the polarization axis. Two additional mechanisms, which are also related to rescattering, could be identified as well. (orig.)

  12. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    Science.gov (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  13. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  14. An RF cavity for barrier bucket experiment in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, M.; Iwashita, Y. [Kyoto Univ. (Japan); Mori, Y. [and others

    1998-11-01

    A barrier bucket experiment in the AGS is planed in 1998. An accumulation of the beam, which intensity of 1.0 x 10{sup 14}ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40 kV per cavity is necessary for the experiment. The RF frequency is 2 MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357 kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse. (author)

  15. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  16. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.

    Science.gov (United States)

    Qiu, Jiawei; Xia, Haiyun; Shangguan, Mingjia; Dou, Xiankang; Li, Manyi; Wang, Chong; Shang, Xiang; Lin, Shengfu; Liu, Jianjiang

    2017-11-01

    An all-fiber, eye-safe and micro-pulse polarization lidar is demonstrated with a polarization-maintaining structure, incorporating a single superconducting nanowire single-photon detector (SNSPD) at 1.5 μm. The time-division multiplexing technique is used to achieve a calibration-free optical layout. A single piece of detector is used to detect the backscatter signals at two orthogonal states in an alternative sequence. Thus, regular calibration of the two detectors in traditional polarization lidars is avoided. The signal-to-noise ratio of the lidar is guaranteed by using an SNSPD, providing high detection efficiency and low dark count noise. The linear depolarization ratio (LDR) of the urban aerosol is observed horizontally over 48 h in Hefei [N31°50'37'', E117°15'54''], when a heavy air pollution is spreading from the north to the central east of China. Phenomena of LDR bursts are detected at a location where a building is under construction. The lidar results show good agreement with the data detected from a sun photometer, a 532 nm visibility lidar, and the weather forecast information.

  17. Prototype rf cavity for the HISTRAP accelerator

    International Nuclear Information System (INIS)

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C

  18. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  19. rf driven multicusp H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DeVries, G.J.; DiVergilio, W.F.; Hamm, R.W.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.; Williams, M.D.

    1991-01-01

    An rf driven multicusp source capable of generating 1-ms H - beam pulses with a repetition rate as high as 150 Hz has been developed. This source can be operated with a filament or other types of starter. There is almost no lifetime limitation and a clean plasma can be maintained for a long period of operation. It is demonstrated that rf power as high as 25 kW could be coupled inductively to the plasma via a glass-coated copper-coil antenna. The extracted H - current density achieved is about 200 mA/cm 2

  20. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  1. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Dynamics of splashing of molten metals during irradiation with single CO2 laser pulses

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1988-03-01

    An experimental investigation was made of the dynamics of the loss of the melt as a result of interaction with single-mode CO2 laser radiation pulses of 5-35 μs duration. The dynamics of splashing of the melt during irradiation with short pulses characterized by a Gaussian intensity distribution differed from that predicted by models in which the distribution of the vapor pressure was assumed to be radially homogeneous.

  2. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  3. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  4. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  5. Realization of a counter/timer circuit used in digital pulse height analysis in a single chip

    International Nuclear Information System (INIS)

    Mahmoud, I.I.

    2000-01-01

    This paper presents a single chip realization of a counter circuit, which is used in random signal processing and nuclear gamma ray spectrometers. The circuit contains a counter to count the repetition rate of a selected pulse train coming from a single channel analyzer circuit. Also, it contains a timer to measure the accumulation period. The timer possesses a predetermined time facility so that processing lasts for a certain adjustable predetermined period. The counter and the timer are synchronized to start and stop simultaneously at the beginning and end of the counting interval. A multiplexed BCD to 7-segment decoder/driver is also included in the circuit. The multiplexing allows the decrease of pin count of the chip.Two stages are designed, simulated for a single channel, however more stages and channels can be added by copying the designed circuits. Schematic flow of Xilinx v.1.2I is used as the design strategy with top-level schematic design containing VHDL and schematic macros

  6. Sampling system for fast single pulses; Realisation d'un dispositif d'echantillonnage d'un signal bref unique

    Energy Technology Data Exchange (ETDEWEB)

    Zenatti, D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Development of a device for the enlargement of the domain of application of classical oscilloscopes to the observation of fast single pulses by application of the sampling principle. Its principal characteristics are: Bandwidth of 700 MHz; Maximum sensibility of 50 mV; Maximum amplitude of input signal of {+-} 1 V; Number of samples of 16; Samples separation of 0,2 ns. (author) [French] Realisation d'un dispositif permettant d'elargir le domaine d'utilisation des oscilloscopes classiques en appliquant le principe de l'echantillonnage a l'observation d'un signal bref unique. Les principales caracteristiques sont les suivantes: Bande passante de 700 MHz; Sensibilite maximale de 50 mV; Amplitude maximale du signal a echantillonner de {+-} 1 V; Nombre de points d'echantillonnage de 16; Pas d'echantillonnage de 0,2 ns. (auteur)

  7. 15N incorporation into organ proteins of newborn rats following single pulse-labelling with different tracers

    International Nuclear Information System (INIS)

    Wutzke, K.D.; Plath, C.; Richter, I.; Heine, W.; Zhukova, T.P.; Sorokina, E.G.; Friedrich, M.

    1987-01-01

    A short-chain 15 N-peptide mixture characterized by an average chain length of 2.3 was obtained when 15 N-labelled yeast protein was hydrolyzed enzymatically by thermitase from Thermoactinomyces vulgaris. Fifteen newborn Wistar rats were given a single pulse of [ 15 N]glycine. [ 15 N]H 4 Cl and [ 15 N]yeast protein thermitasehydrolysate (YPTH) in a dosage of 50 mg 15 N excess kg -1 by gastric tube. In comparison with [ 15 N]glycine the 15 N incorporation rates of brain, muscle and liver were approximately 150% higher after [ 15 N]YPTH application. Uniform labelling, high 15 N enrichment, almost complete absorption, avoidance of imbalances and the low price make this tracer substance superior to other tracers conventionally used for organ labelling. (author)

  8. Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown

    Science.gov (United States)

    Trusov, K. K.

    2017-08-01

    Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.

  9. Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ganin, D V; Lapshin, K E; Obidin, A Z; Vartapetov, S K [Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation)

    2015-11-30

    We present the result of the experiments on producing graphite-like cylindrical microstructures by focusing single femtosecond laser pulses into the bulk of a transparent polymer (polycarbonate). The microstructures are embedded in a cladding with a modified refractive index, possessing waveguide properties. In the experiments with nontransparent screens and diaphragms, placed in the laser beam in front of the entrance pupil of the objective with a large numerical aperture, we have found that the paraxial rays are blocked by the peripheral ones, which reduces the length of the destruction region in the pre-focal zone. In the experiments with transparent screens and diaphragms, introducing optical delays τ{sub d} between the paraxial and peripheral rays, the quantitative dependence of the destruction region length in the pre-focal zone on the value of τ{sub d} is determined. (interaction of laser radiation with matter. laser plasma)

  10. ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE SINGLE MODE LASER HOMOGENEOUS BROADENING IN THE PULSE REGIME

    Directory of Open Access Journals (Sweden)

    S. Ayadi

    2015-07-01

    Full Text Available The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1],  similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have proposed a simple harmonic expansion method to obtain a series of harmonics terms that yield analytical solutions to the laser equations. ¶This method allows us to derive an analytical expression of the laser field amplitude  when this last  undergoes a  periodic oscillations around zero mean value. We also obtain an analytical expression of the pulsing frequency.

  11. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  12. Pulsed IR Heating Studies of Single-Molecule DNA Duplex Dissociation Kinetics and Thermodynamics

    Science.gov (United States)

    Holmstrom, Erik D.; Dupuis, Nicholas F.; Nesbitt, David J.

    2014-01-01

    Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10−11 liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20–100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation. PMID:24411254

  13. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  14. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    Science.gov (United States)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  15. Single-Shot-RARE for rapid 3D hyperpolarized metabolic ex vivo tissue imaging: RF-pulse design for semi-dense spectra

    DEFF Research Database (Denmark)

    Magnusson, P.O.; Jensen, Pernille Rose; Dyrby, Tim Bjørn

    MRS of hyperpolarized (HP) 13C-enriched compounds is a promising method for in vivo cancer diagnosis . Sentinel lymph node ex vivo tissue sample histology used in clinical routine for breast cancer metastasis diagnosis requires time consuming sample analysis. 3D-HP-MRSI can potentially speed up...

  16. Control of concerted two bond versus single bond dissociation in CH3Co(CO)4 via an intermediate state using pump-dump laser pulses

    Science.gov (United States)

    Ambrosek, David; González, Leticia

    2007-10-01

    Wavepacket propagations on ab initio multiconfigurational two-dimensional potential energy surfaces for CH3Co(CO)4 indicate that after irradiation to the lowest first and second electronic excited states, concerted dissociation of CH3 and the axial CO ligand takes place. We employ a pump-dump sequence of pulses with appropriate frequencies and time delays to achieve the selective breakage of a single bond by controlling the dissociation angle. The pump and dump pulse sequence exploits the unbound surface where dissociation occurs in a counterintuitive fashion; stretching of one bond in an intermediate state enhances the single dissociation of the other bond.

  17. Control of concerted two bond versus single bond dissociation in CH(3)Co(CO)(4) via an intermediate state using pump-dump laser pulses.

    Science.gov (United States)

    Ambrosek, David; González, Leticia

    2007-10-07

    Wavepacket propagations on ab initio multiconfigurational two-dimensional potential energy surfaces for CH(3)Co(CO)(4) indicate that after irradiation to the lowest first and second electronic excited states, concerted dissociation of CH(3) and the axial CO ligand takes place. We employ a pump-dump sequence of pulses with appropriate frequencies and time delays to achieve the selective breakage of a single bond by controlling the dissociation angle. The pump and dump pulse sequence exploits the unbound surface where dissociation occurs in a counterintuitive fashion; stretching of one bond in an intermediate state enhances the single dissociation of the other bond.

  18. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  19. Directions for rf-controlled intelligent microvalve

    Science.gov (United States)

    Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek

    2001-03-01

    In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.

  20. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  1. Pain score of patients undergoing single spot, short pulse laser versus conventional laser for diabetic retinopathy.

    Science.gov (United States)

    Mirshahi, Ahmad; Lashay, Alireza; Roozbahani, Mehdi; Fard, Masoud Aghsaei; Molaie, Saber; Mireshghi, Meysam; Zaferani, Mohamad Mehdi

    2013-04-01

    To compare pain score of single spot short duration time (20 milliseconds) panretinal photocoagulation (PRP) with conventional (100 milliseconds) PRP in diabetic retinopathy. Sixty-six eyes from 33 patients with symmetrical severe non-proliferative diabetic retinopathy (non-PDR) or proliferative diabetic retinopathy (PDR) were enrolled in this prospective randomized controlled trial. One eye of each patient was randomized to undergo conventional and the other eye to undergo short time PRP. Spot size of 200 μm was used in both laser types, and energy was adjusted to achieve moderate burn on the retina. Patients were asked to mark the level of pain felt during the PRP session for each eye on the visual analog scale (VAS) and were examined at 1 week, and at 1, 2, 4 and 6 months. Sixteen women and 17 men with mean age 58.9 ± 7.8 years were evaluated. The conventional method required a mean power of 273 ± 107 mW, whereas the short duration method needed 721 ± 406 mW (P = 0.001). An average of 1,218 ± 441 spots were delivered with the conventional method and an average of 2,125 ± 503 spots were required with the short duration method (P = 0.001). Average pain score was 7.5 ± 1.14 in conventional group and 1.75 ± 0.87 in the short duration group (P = 0.001). At 1 week, 1 month, and 4 months following PRP, the mean changes of central macular thickness (CMT) from baseline in the conventional group remained 29.2 μm (P = 0.008), 40.0 μm (P = 0.001), and 40.2 μm (P = 0.007) greater than the changes in CMT for short time group. Patient acceptance of short time single spot PRP was high, and well-tolerated in a single session by all patients. Moreover, this method is significantly less painful than but just as effective as conventional laser during 6 months of follow-up. The CMT change was more following conventional laser than short time laser.

  2. RF-Breakdown kicks at the CTF3 two-beam test stand

    CERN Document Server

    Palaia, Andrea; Muranaka, Tomoko; Ruber, Roger; Ziemann, V; Farabolini, W

    2012-01-01

    The measurement of the effects of RF-breakdown on the beam in CLIC prototype accelerator structures is one of the key aspects of the CLIC two-beam acceleration scheme being addressed at the Two-beam Test Stand (TBTS) at CTF3. RF-breakdown can randomly cause energy loss and transverse kicks to the beam. Transverse kicks have been measured by means of a screen intercepting the beam after the accelerator structure. In correspondence of a RFbreakdown we detect a double beam spot which we interpret as a sudden change of the beam trajectory within a single beam pulse. To time-resolve such effect, the TBTS has been equipped with five inductive Beam Position Monitors (BPMs) and a spectrometer line to measure both relative changes of the beam trajectory and energy losses. Here we discuss the methodology used and we present the latest results of such measurements

  3. Field-free molecular orientation induced by single-cycle THz pulses: the role of resonance and quantum interference

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2013-01-01

    distributions of the pulses at the rotational resonance frequencies play an important role. Furthermore, we investigate the interference between multiple rotational excitation pathways following prealignment with a nonresonant 800-nm femtosecond pulse. It is shown that such interference can lead...

  4. SNS Low-Level RF Control System Design and Performance

    CERN Document Server

    Ma, Hengjie; Crofford, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    A full digital Low-Level RF controller has been developed for SNS LINAC. Its design is a good example of a modern digital implementation of the classic control theory. The digital hardware for all the control and DSP functionalities, including the final vector modulation, is implemented on a single high-density FPGA. Two models for the digital hardware have been written in VHDL and Verilog respectively, based on a very low latency control algorithm, and both have been being used for supporting the testing and commissioning the LINAC to the date. During the commissioning, the flexibility and ability for precise controls that only digital design on a larger FPGA can offer has proved to be a necessity for meeting the great challenge of a high-power pulsed SCL.

  5. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  6. Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure

    Science.gov (United States)

    Liu, Xiaohui; Xu, Meng; Zhang, Xijian; Wang, Weiguang; Feng, Xianjin; Song, Aimin

    2018-03-01

    Low-resistivity, single-crystalline Cu2O films were realized on MgO (110) substrates through manipulating the oxygen pressure (PO2) of pulsed-laser deposition. X-ray diffraction and high resolution transmission electron microscopy measurements revealed that the films deposited at PO2 of 0.06 and 0.09 Pa were single phase Cu2O and the 0.09-Pa-deposited film exhibited the best crystallinity with an epitaxial relationship of Cu2O (110)∥MgO (110) with Cu2O (001)∥MgO (001). The pure phase Cu2O films exhibited higher transmittances and larger band gaps with an optical band gap of 2.56 eV obtained for the 0.09 Pa-deposited film. Hall-effect measurements demonstrated that the Cu2O film deposited at 0.09 Pa had the lowest resistivity of 6.67 Ω cm and highest Hall mobility of 23.75 cm2 v-1 s-1.

  7. Femtosecond-pulse inscription of fiber Bragg gratings with single or multiple phase-shifts in the structure

    Science.gov (United States)

    Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey

    2018-05-01

    In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.

  8. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  9. Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process

    International Nuclear Information System (INIS)

    Yu Jun-Ting; Chen Shu-Ming; Chen Jian-Jun; Huang Peng-Cheng; Song Rui-Qiang

    2016-01-01

    Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications. (paper)

  10. Saturation Recovery Myocardial T1 Mapping with a Composite Radiofrequency Pulse on a 3T MR Imaging System.

    Science.gov (United States)

    Morita, Kosuke; Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Matsubara, Takatoshi; Goto, Makoto; Okuaki, Tomoyuki; Yuki, Hideaki; Nagayama, Yasunori; Kidoh, Masafumi; Hirata, Kenichiro; Iyama, Yuij; Taguchi, Narumi; Hatemura, Masahiro; Hashida, Masahiro; Yamashita, Yasuyuki

    2018-01-10

    To evaluate the effect of a composite radiofrequency (RF) pulse on saturation recovery (SR) myocardial T 1 mapping using a 3T MR system. Phantom and in vivo studies were performed with a clinical 3T MR scanner. Accuracy and reproducibility of the SR T 1 mapping using conventional and composite RF pulses were first compared in phantom experiments. An in vivo study was performed of 10 healthy volunteers who were imaged with conventional and composite RF pulse methods twice each. In vivo reproducibility of myocardial T 1 value and the inter-segment variability were assessed. The phantom study revealed significant differences in the mean T 1 values between the two methods, and the reproducibility for the composite RF pulse was significantly smaller than that for the conventional RF pulse. For both methods, the correlations of the reference and measured T 1 values were excellent (r 2 = 0.97 and 0.98 for conventional and composite RF pulses, respectively). The in vivo study showed that the mean T 1 value for composite RF pulse was slightly lower than that for conventional RF pulse, but this difference was not significant (P = 0.06). The inter-segment variability for the composite RF pulse was significantly smaller than that for conventional RF pulse (P composite RF pulses (r = 0.83 and 0.29, respectively). SR T 1 mapping using composite RF pulse provides accurate quantification of T 1 values and can lessen measurement variability and enable reproducible T 1 measurements.

  11. Material studies for CLIC RF cavities

    CERN Document Server

    Taborelli, M

    2004-01-01

    Following the EST/SM suggestion of replacing copper by molybdenum or tungsten for the construction of the RF cavity irises, different CLIC main beam accelerating structures were produced, extensively operated and disassembled for iris surface inspection. The observed surface modifications were found to be very similar to those obtained by sparking in a dedicated laboratory set-up, showing the superior behaviour of both Mo and W with respect to Cu, in terms of surface erosion and conditioning. The iris thermomechanical fatigue due to RF heating was simulated by high power pulsed laser irradiation. A CuZr alloy was found to be much more resistant than pure Cu. Measurements at higher pulse number will be performed on CuZr in order to extrapolate its fatigue behaviour up to the nominal CLIC duration. Finally a possible future development of a hybrid probe beam acceleration structure will be presented.

  12. Four-way rf beam separator

    International Nuclear Information System (INIS)

    Neil, V.K.

    1982-01-01

    A method for separating a continuous beam of relativistic particles into four pulsed beams is investigated theoretically. The separation is periodic with period 2π/#betta# so that each of the four beams consists of current pulses of duration π/#betta#. The separation is accomplished by a series of rf cavities in the beam line. The cavities operate in the TM 110 and have frequencies, #betta#, 3#betta#, 5#betta#, 7#betta#, etc. The transverse momentum imparted to the beam particles results in a time-dependent displacement of the beam centroid at a position downstream of the cavity array. The mathematical limitations imposed by truncating a Fourier series are discussed, and an expression derived for the necessary phase and amplitude of each cavity. The rf induced by the beam in the cavities is treated in detail, and does not appear to be a serious problem

  13. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  14. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  15. Double Pass 595?nm pulsed dye laser at a 6 minute interval for the treatment of port-wine stains is not more effective than single pass

    NARCIS (Netherlands)

    Peters, M. A. D.; van Drooge, A. M.; Wolkerstorfer, A.; van Gemert, M. J. C.; van der Veen, J. P. W.; Bos, J. D.; Beek, J. F.

    2012-01-01

    Background Pulsed dye laser (PDL) is the first choice for treatment of port wine stains (PWS). However, outcome is highly variable and only a few patients achieve complete clearance. The objective of the study was to compare efficacy and safety of single pass PDL with double pass PDL at a 6 minute

  16. RF system design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Schwarz, H.; Rimmer, R.

    1994-06-01

    The paper presents an overview of the design of the RF system for the PEP-II B Factory. An RF station consists of either two or four single-cell cavities driven by a 1.2 MW klystron through a waveguide distribution network. A variety of feedback loops stabilize the RF and its interaction with the beam. System parameters and all the relevant parameters of klystron and cavities are given

  17. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart.

    Science.gov (United States)

    Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J

    2017-06-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  18. Rf System for the NLCTA

    International Nuclear Information System (INIS)

    Wang, J.W.; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.

    2011-01-01

    This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

  19. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  20. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  1. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    International Nuclear Information System (INIS)

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described

  2. Multimoded rf delay line distribution system for the Next Linear Collider

    Directory of Open Access Journals (Sweden)

    S. G. Tantawi

    2002-03-01

    Full Text Available The delay line distribution system is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multimode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the Next Linear Collider design while maintaining high efficiency.

  3. Long-pulse applications of pulse-forming lines for high-power linac application

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Tallerico, P.J.

    1981-01-01

    The ever present demands for high efficiency in the RF power stations for particle accelerators have caused increased interest in longer RF pulses (ten's of microseconds) for linacs such as the Pion Generator for Medical Irradiation (PIGMI) and Free Electron Laser (FEL). For either RF power station, a fundamental decision is whether to use a modulating anode/hard-tube driver or pulsed cathode/line-type pulser configuration. The choices in the extremes of low power for very long pulses or for very-high-power, short pulses are, respectively, a modulated anode/hard tube modulator and pulsed cathode/pulse forming line. However, the demarcation between these two extremes is not clearcut. The criteria (cost, flexibility performance, reliability, efficiency) that resulted in the RF station definition of these two specific systems will be described

  4. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

    DEFF Research Database (Denmark)

    Schou, Jørgen; Ganskukh, Mungunshagai; Ettlinger, Rebecca Bolt

    2018-01-01

    The mass transfer from target to films is incongruent for chalcogenide sulfides in contrast to the expectations of pulsed laser deposition (PLD) as a stoichiometric film growth process. Films produced from a CZTS (Cu2ZnSnS4) multi-component target have no Cu below a fluence threshold of 0.2 J/cm2......, and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films...... of a similar material CTS (Cu2SnS3) have been produced by PLD from a CTS target and exhibits a similar trend in the same fluence region. The results are discussed on the basis of solid-state data and the existing data from the literature....

  5. Shifts in the metabolic function of a benthic estuarine microbial community following a single pulse exposure to silver nanoparticles

    International Nuclear Information System (INIS)

    Echavarri-Bravo, Virginia; Paterson, Lynn; Aspray, Thomas J.; Porter, Joanne S.; Winson, Michael K.; Thornton, Barry; Hartl, Mark G.J.

    2015-01-01

    The increasing use of silver nanoparticles (AgNPs) as a biocidal agent and their potential accumulation in sediments may threaten non-target natural environmental bacterial communities. In this study a microcosm approach was established to investigate the effects of well characterized OECD AgNPs (NM-300) on the function of the bacterial community inhabiting marine estuarine sediments (salinity 31‰). The results showed that a single pulse of NM-300 AgNPs (1 mg L −1 ) that led to sediment concentrations below 6 mg Ag kg −1 dry weight inhibited the bacterial utilization of environmentally relevant carbon substrates. As a result, the functional diversity changed, but recovered after 120 h under the experimental conditions. This microcosm study suggests that AgNPs under environmentally relevant experimental conditions can negatively affect bacterial function and provides an insight into the understanding of the bacterial community response and resilience to AgNPs exposure, important for informing relevant regulatory measures. - Highlights: • AgNPs affected the bacterial community function in estuarine marine sediments. • AgNPs inhibited the bacterial utilization of environmentally relevant substrates. • Heterotrophic bacterial groups showed resilience to AgNPs after 120 h exposure. • AgNPs did not affect the bacterial community structure in sediments. - AgNPs inhibited the bacterial utilization of environmentally relevant substrates and caused temporary shifts in the bacterial functional diversity in marine estuarine sediments

  6. Rheumatoid factor (RF)

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003548.htm Rheumatoid factor (RF) To use the sharing features on this ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  7. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  8. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  9. The RF power system for the SNS linac

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two

  10. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  11. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  12. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    International Nuclear Information System (INIS)

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  13. Performance of an rf beam monitor on the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Cutler, R.I.

    1985-01-01

    A prototype rf beam-position, current, and phase monitor has been used on the 100-keV injector beamline of the racetrack microtron (RTM) where performance was measured with the chopped and bunched beam. This monitor works with both a pulsed beam and a cw beam. The pulsed beam consists of beam pulses with a FWHM of 40 ns. The rf beam monitor was tested with beam currents from approx. 50 to 600 μA. The rf beam monitor will be described and its performance will be reported. 6 refs., 5 figs

  14. Formation of low time-bandwidth product, single-sided exponential optical pulses in free-electron laser oscillators

    NARCIS (Netherlands)

    MacLeod, A. M.; Yan, X.; Gillespie, W. A.; Knippels, G.M.H.; Oepts, D.; van der Meer, A. F. G.; Rella, C. W.; Smith, T. J.; Schwettman, H. A.

    2000-01-01

    The detailed shape of picosecond optical pulses from a free-electron laser (FEL) oscillator has been studied for various cavity detunings. For large values of the cavity detuning the optical pulse develops an exponential leading edge, with a time constant proportional to the applied cavity detuning

  15. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  16. The effect of the shape of single, sub-ms voltage pulses on the rates of surface immobilization and hybridization of DNA

    International Nuclear Information System (INIS)

    Cabeca, R; Rodrigues, M; Chu, V; Conde, J P; Prazeres, D M F

    2009-01-01

    Electric fields generated by single square and sinusoidal voltage pulses with amplitudes below 2 V were used to assist the covalent immobilization of single-stranded, thiolated DNA probes, onto a chemically functionalized SiO 2 surface and to assist the specific hybridization of single-stranded DNA targets with immobilized complementary probes. The single-stranded immobilized DNA probes were either covalently immobilized (chemisorption) or electrostatically adsorbed (physisorption) to a chemically functionalized surface. Comparing the speed of electric field assisted immobilization and hybridization with the corresponding control reactions (without electric field), an increase of several orders of magnitude is observed, with the reaction timescaled down from 1 to 2 h to a range between 100 ns and 1 ms. The influence of the shape of the voltage pulse (square versus sinusoidal) and its duration were studied for both immobilization and hybridization reactions. The results show that pulsed electric fields are a useful tool to achieve temporal and spatial control of surface immobilization and hybridization reactions of DNA.

  17. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  18. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  19. Influence of post-treatment on properties of Cu(In{sub ,}Ga)Se{sub 2} thin films deposited by RF magnetron sputtering using a quaternary single target for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hee; Choi, Soon Ja; Chung, Chee Won, E-mail: cwchung@inha.ac

    2014-11-03

    The deposition of Cu(In,Ga)Se{sub 2} (CIGS) thin films has been performed by one-step RF sputtering using a single quaternary target and followed by sulfurization to incorporate S into CIGS films. The effect of sulfurization temperature and time on the properties of the films was studied. The sulfurized Cu(In,Ga)(Se,S){sub 2} (CIGSeS) films show that the chalcopyrite peaks shifted to high diffraction angles and the CuS and InS second phases could be formed at low sulfurization temperature. These indicate possible incorporation of S into the films. The formation and disappearance of these second phases depended on the sulfurization temperature and time. The band gap increased with increasing sulfurization temperature and time because of the shift of the absorption edge due to the increase of S/(S + Se) ratio. It was revealed that the resistivity of the as-deposited CIGS film increased after sulfurization while the carrier concentration and mobility decreased. It is believed that the sulfurization process of CIGS films can be utilized as a method to control the properties of the films. - Highlights: • Development of sputtering process of CIGS thin films using single quaternary target • Effect of sulfurization temperature and time on the properties of CIGS films • Application of sulfurization process to improve the properties of CIGS films • Successful transformation of CIGS films to chalcopyrite structure through post-sulfirization.

  20. A single 60-min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6.

    Science.gov (United States)

    Martin, J S; Kephart, W C; Mobley, C B; Wilson, T J; Goodlett, M D; Roberts, M D

    2017-11-01

    We investigated whether a single 60-min bout of whole leg, peristaltic pulse external pneumatic compression (EPC) altered select growth factor-related mRNAs and/or various phospho(p)-proteins related to cell growth, proliferation, inflammation and apoptosis signalling (e.g. Akt-mTOR, Jak-Stat). Ten participants (8 males, 2 females; aged 22·2 ± 0·4 years) reported to the laboratory 4 h post-prandial, and vastus lateralis muscle biopsies were obtained prior to (PRE), 1 h and 4 h post-EPC treatment. mRNA expression was analysed using real-time RT-PCR and phosphophorylated and cleaved proteins were analysed using an antibody array. No changes in selected growth factor-related mRNAs were observed following EPC. All p-proteins significantly altered by EPC decreased, except for p-rps6 (Ser235/236) which increased 31% 1 h post-EPC compared to PRE levels (P = 0·016). Notable decreases also included p-BAD (Ser112; -28%, P = 0·004) at 4 h post-EPC compared to PRE levels. In summary, an acute bout of EPC transiently upregulates p-rps6 as well as affecting other markers in the Akt-mTOR signalling cascade. Future research should characterize whether chronic EPC application promotes alterations in lower-limb musculature and/or enhances exercise-induced training adaptations. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  2. Proposal for a scheme to generate 10 TW-Level femtosecond X-ray pulses for imaging single protein molecules at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Yefanov, Oleksander [Center for Free-Electron Laser Science, Hamburg (Germany)

    2013-06-15

    Single biomolecular imaging using XFEL radiation is an emerging method for protein structure determination using the ''diffraction before destruction'' method at near atomic resolution. Crucial parameters for such bio-imaging experiments are photon energy range, peak power, pulse duration, and transverse coherence. The largest diffraction signals are achieved at the longest wavelength that supports a given resolution, which should be better than 0.3 nm. We propose a configuration which combines self-seeding and undulator tapering techniques with the emittance-spoiler method in order to increase the XFEL output peak power and to shorten the pulse duration up to a level sufficient for performing bio-imaging of single protein molecules at the optimal photon energy range, i.e. around 4 keV. Experiments at the LCLS confirmed the feasibility of these three new techniques. Based on start-to-end simulations we demonstrate that self-seeding, combined with undulator tapering, allows one to achieve up to a 100-fold increase in peak-power. A slotted foil in the last bunch compressor is added for X-ray pulse duration control. Simulations indicate that one can achieve diffraction to the desired resolution with 50 mJ (corresponding to 10{sup 14} photons) per 10 fs pulse at 3.5 keV photon energy in a 100 nm focus. This result is exemplified using the photosystem I membrane protein as a case study.

  3. Analysis of the quadrupolar coupling effect on the line intensities using single-crystal nutation NMR in α-Al2O3 crystals

    International Nuclear Information System (INIS)

    Woo, Ae Ja; Cho, So Hyun; Han, Duk Young

    2000-01-01

    With 1D-nutation NMR for a spin I = 5/2 system, the relative line intensities of central and the inner- and outer-satellite transitions are calculated as functions of quadrupolar coupling ω Q and rf pulse strength ω rf . Experimentally measured line intensities including both central and satellites are used to extract the values of ω Q and ω rf from nonlinear least-squares fits. The method is illustrated in α-Al 2 O 3 crystals (ruby and corundum) with the single-crystal 27 Al nutation NMR spectra. As a result, the new feature that the rf pulse strength shows reduced effect on the satellite transition lines according to the quadrupolar coupling is discussed by using fictitious spin-1/2 operator

  4. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  5. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  6. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  7. RF and feedback systems

    International Nuclear Information System (INIS)

    Boussard, D.

    1994-01-01

    The radiofrequency system of the Tau Charm Factory accelerating 10 11 particles per bunch and a circulating current of 0.5 A is presented. In order to produce the very short bunches required, the RF system of TCF must provide a large RF voltage (8 MV) at a frequency in the neighbourhood of 400-500 MHz. It appears very attractive to produce the high voltage required with superconducting cavities, for which wall losses are negligible. A comparison between the sc RF system proposed and a possible copper system run at an average 1 MV/m, shows the clear advantage of sc cavities for TCF. (R.P.). 2 figs,. 1 tab

  8. Dynamics of Al/Fe{sub 2}O{sub 3} MIC combustion from short single-pulse photothermal initiation and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)

    2009-08-15

    Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Mics, Zoltán; Ma, Guohong

    2013-01-01

    We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the ma...... polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation....

  10. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  11. Conventional RF system design

    International Nuclear Information System (INIS)

    Puglisi, M.

    1994-01-01

    The design of a conventional RF system is always complex and must fit the needs of the particular machine for which it is planned. It follows that many different design criteria should be considered and analyzed, thus exceeding the narrow limits of a lecture. For this reason only the fundamental components of an RF system, including the generators, are considered in this short seminar. The most common formulas are simply presented in the text, while their derivations are shown in the appendices to facilitate, if desired, a more advanced level of understanding. (orig.)

  12. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  13. Radiation measurements during cavities conditioning on APS RF test stand

    International Nuclear Information System (INIS)

    Grudzien, D.M.; Kustom, R.L.; Moe, H.J.; Song, J.J.

    1993-01-01

    In order to determine the shielding structure around the Advanced Photon Source (APS) synchrotron and storage ring RF stations, the X-ray radiation has been measured in the near field and far field regions of the RF cavities during the normal conditioning process. Two cavity types, a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity, are used on the APS and are conditioned in the RF test stand. Vacuum measurements are also taken on a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity. The data will be compared with data on the five-cell cavities from CERN

  14. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  15. Beyond the RF photogun

    NARCIS (Netherlands)

    Luiten, O.J.; Rozenzweig, J.; Travish, G.

    2003-01-01

    Laser-triggered switching of MV DC voltages enables acceleration gradients an order of magnitude higher than in state-of-the-art RF photoguns. In this way ultra-short, high-brightness electron bunches may be generated without the use of magnetic compression. The evolution of the bunch during the

  16. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  17. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  18. Optimum Choice of RF Frequency for Two Beam Linear Colliders

    CERN Document Server

    Braun, Hans Heinrich

    2003-01-01

    Recent experimental results on normal conducting RF structures indicate that the scaling of the gradient limit with frequency is less favourable than what was believed. We therefore reconsider the optimum choice of RF frequency and iris aperture for a normal conducting, two-beam linear collider with E_CMS=3 TeV, a loaded accelerating gradient of 150 MV/m and a luminosity of 8 10^34 cm-^2 s^-1. The optimisation criterion is minimizing overall RF costs for investment and operation with constraints put on peak surface electric fields and pulsed heating of accelerating structures. Analytical models are employed where applicable, while interpolation on simulation program results is used for the calculation of luminosity and RF structure properties.

  19. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  20. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  1. Formation of periodic mesoscale structures arranged in a circular symmetry at the silicon surface exposed to radiation of a single femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Romashevskiy, S.A., E-mail: sa.romashevskiy@gmail.com [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13, Bd. 2, Moscow 125412 (Russian Federation); Ashitkov, S.I.; Ovchinnikov, A.V. [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13, Bd. 2, Moscow 125412 (Russian Federation); Kondratenko, P.S. [Nuclear Safety Institute of the Russian Academy of Sciences, Bol' shaya Tul' skaya st. 53, Moscow 115191 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700 (Russian Federation); Agranat, M.B. [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13, Bd. 2, Moscow 125412 (Russian Federation)

    2016-06-30

    Graphical abstract: - Highlights: • Single pulse irradiation of silicon gave rise to the periodic mesoscale structures. • The number of the periodic structures depends on the incident laser fluence. • The theory of periodically modulated absorption of laser energy is proposed. - Abstract: The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.

  2. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.

    Science.gov (United States)

    Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang

    2017-07-24

    In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

  3. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  4. Description and verification of an algorithm for obtaining microdosimetric quantities for high-LET radiation using a single TEPC without pulse height analysis.

    Science.gov (United States)

    Borak, Thomas B; Chapman, Phillip L

    2014-10-01

    Microdosimetric spectra of single event distributions have been used to provide estimates of quality factors for radiation protection of high-LET radiation. In situations with high-dose rates it becomes difficult to measure, record and store energy deposition from single events. An alternative approach is to store random energy deposition events in a sequence of fixed time intervals that does not require identifying from single events. This can be accomplished with a single detector without pulse height analysis. We show the development of the algorithm using expectation analysis of the statistical estimators for moments of lineal energy: ȳf and ȳD. The method was tested using Monte Carlo simulations based on single event distributions measured with spherical tissue equivalent proportional counters where the event sizes spanned more than two orders of magnitude. The evaluation included testing at various mean numbers of events per interval (i.e., dose rate) and numbers of intervals (i.e., total duration). Results of the expectation analysis and Monte Carlo simulation showed that the algorithm corrects for the excess dispersion due to the random number of events in each time interval when the underlying dose rate is constant. It also converges to the correct value when there is a linear trend in dose rate of the duration of the measurement process. Although this system is not applicable for pulsed radiation fields it proved to be robust when applied to measured distributions with single event spectra (PuBe neutrons, Fe ions at 1,000 MeV/nucleon and a power function distribution of single event sizes) with a coefficient of variation of 25% for estimates of ȳD using 100 sampling intervals and 10% using 400 sampling intervals.

  5. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  6. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  7. Homogenization optics to improve detectability of a fluorescence response to a single laser pulse: Detection of feces on apples

    Science.gov (United States)

    Fecal contamination of produce is a known food safety risk. Measuring fluorescence responses to UV excitation is an established method for detecting such contamination. One measurement system utilizes a pulsed UV laser to induce a fluorescence response from fecal material and a gated intensified cam...

  8. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti: sapphire waveguides

    NARCIS (Netherlands)

    Grivas, C.; May-Smith, T.C.; Shepherd, D.P.; Eason, R.W.; Pollnau, Markus; Jelinek, M.

    2004-01-01

    Active rib waveguides with depths and widths varying from 3 to 5 μm and from 9 to 24 μm, respectively, have been structured by $Ar^{+}$-beam etching in pulsed laser deposited Ti:sapphire layers. Losses in the channel structures were essentially at the same levels as the unstructured planar waveguide

  9. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Mössbauer Spectroscopy

    Science.gov (United States)

    Velásquez, A. A.; Gancedo, J. R.; Trujillo, J. M.; Morales, A. L.; Tobón, J. E.; Reyes, L.

    2005-04-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Mössbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Mössbauer spectrometer.

  10. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  11. Fine-scale movement responses of free-ranging harbour porpoises to capture, tagging and short-term noise pulses from a single airgun

    DEFF Research Database (Denmark)

    van Beest, Floris; Teilmann, Jonas; Hermannsen, Line

    2018-01-01

    , with natural behaviour resumed in less than or equal to 24 h. When we exposed porpoises to airgun pulses at ranges of 420–690 m with noise level estimates of 135–147 dB re 1 µPa2s (sound exposure level), one individual displayed rapid and directed movements away from the exposure site and two individuals used...... them to a single 10 inch3 underwater airgun producing high-intensity noise pulses (2–3 s intervals) for 1 min. All five porpoises responded to capture and tagging with longer, faster and more directed movements as well as with shorter, shallower, less wiggly dives immediately after release...... to the noise exposure. Changes in natural behaviour following anthropogenic disturbances may reduce feeding opportunities, and evaluating potential population-level consequences should be a priority research area....

  12. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  13. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  14. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  15. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    International Nuclear Information System (INIS)

    Gribkov, V A; Latyshev, S V; Miklaszewski, R A; Chernyshova, M; Drozdowicz, K; Wiacek, U; Tomaszewski, K; Lemeshko, B D

    2010-01-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E∼1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10 8 -10 9 2.45 MeV and 10 10 -10 11 14 MeV neutrons per pulse with pulse duration ∼10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH 3 OH), phosphoric (H 2 PO 4 ) and nitric (HNO 3 ) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  16. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  17. FY 1998 annual summary report on research and development of hybrid pulse plasma coating (HPPC) system (first year); 1998 nendo hybrid gata pulse plasma coating (HPPC) system no kenkyu kaihatsu seika hokokusho. Daiichinendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D program was implemented for a hybrid pulse plasma coating system, where organometallic gases as the feed gases were selected, and methods for feeding them and treating the exhaust gases to remove organic metals were studied, as the preliminary steps for the pulse introduction tests. The tests of combining an rf plasma with microwaves and pulse plasma generation have been started. The power source characteristics, e.g., pulse width, voltage and current, were analyzed, and high-voltage pulse voltage application tests were conducted, in order to grasp the power source characteristics related to the pulse voltage application. Generation of high-density plasma has been confirmed by the tests with microwaves absorbed by an rf plasma, and the plasma density measurement has been started using the single probe and double probe methods. It is also confirmed that a pulse voltage can be applied to a high-density plasma. A plasma source type ion injector (PSII) has been made on a trial basis, to collect the data for the injector. (NEDO).

  18. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  19. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  20. Effect of RF Parameters on Breakdown Limits in High-Vacuum X-Band Structures

    International Nuclear Information System (INIS)

    Dolgashev, Valery A.

    2003-01-01

    RF breakdown is one of the major factors determining performance of high power rf components and rf sources. RF breakdown limits working power and produces irreversible surface damage. The breakdown limit depends on the rf circuit, structure geometry, and rf frequency. It is also a function of the input power, pulse width, and surface electric and magnetic fields. In this paper we discuss multi-megawatt operation of X-band rf structures at pulse width on the order of one microsecond. These structures are used in rf systems of high gradient accelerators. Recent experiments at Stanford Linear Accelerator Center (SLAC) have explored the functional dependence of breakdown limit on input power and pulse width. The experimental data covered accelerating structures and waveguides. Another breakdown limit of accelerating structures was associated with high magnetic fields found in waveguide-to-structure couplers. To understand and quantify these limits we simulated 3D structures with the electrodynamics code Ansoft HFSS and the Particle-In-Cell code MAGIC3D. Results of these simulations together with experimental data will be discussed in this paper

  1. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  2. A compact rf driven H- ion source for linac injection

    International Nuclear Information System (INIS)

    Rymer, J.P.; Engeman, G.A.; Hamm, R.W.; Potter, J.M.

    1991-01-01

    A compact rf driven H - ion source has been developed for use as an injector for the AccSys radio frequency quadrupole (RFQ) linacs. A multicusp magnetic bucket geometry developed at Lawrence Berkeley Laboratory confines the plasma created by an antenna driven by 35 kW (peak) of pulsed rf power at 1.8 MHz. A three electrode system is used to extract and accelerate the H - beam, which is then focused into the RFQ by an einzel lens. Permanent magnets in the extraction region sweep electrons onto the second electrode at energies up to half of the full acceleration voltage. A fast pulsed valve allows the hydrogen gas supply to be pulsed, thus minimizing the average gas flow rate into the system. The design features and performance data from the prototype are discussed

  3. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  4. Improving the beam quality of rf guns by correction of rf and space-charge effects

    International Nuclear Information System (INIS)

    Serafini, L.

    1992-01-01

    In this paper we describe two possible strategies to attain ultra-low emittance electron beam generation by laser-driven RF guns. The first one is based on the exploitation of multi-mode resonant cavities to neutralize the emittance degradation induced by RF effects. Accelerating cigar-like (long and thin) electron bunches in multi-mode operated RF guns the space charge induced emittance is strongly decreased at the same time: high charged bunches, as typically requested by future TeV e - e + colliders, can be delivered by the gun at a quite low transverse emittance and good behaviour in the longitudinal phase space, so that they can be magnetically compressed to reach higher peak currents. The second strategy consists in using disk-like electron bunches, produced by very short laser pulses illuminating the photocathode. By means of an analytical study a new regime has been found, where the normalized transverse emittance scales like the inverse of the peak current, provided that the laser pulse intensity distribution is properly shaped in the transverse direction. Preliminary numerical simulations confirm the analytical predictions and show that the minimum emittance achievable is set up, in this new regime, by the wake-field interaction between the bunch and the cathode metallic wall

  5. Single-pulse measurement of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, D. G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density and temperature and their turbulent fluctuation levels have been obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment compare favorably with previous measurements obtained in the same facility from conventional probes and an earlier spectroscopic technique.

  6. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  7. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  8. Multiband carbon monoxide laser (2.5 -- 4.0 and 5.0 -- 6.5 micron) pumped by capacitive slab RF discharge

    Science.gov (United States)

    Ionin, Andrey; Kozlov, Andrey; Seleznev, Leonid; Sinitsyn, Dmitry

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a carbon monoxide laser excited by repetitively pulsed capacitive slab RF discharge (81.36 MHz). RF discharge pulse repetition rate was 100--500 Hz. The active volume was 3x30x250 cubic mm. Laser electrodes were cooled down to 120 K. Gas mixture CO:air:He at gas pressure 15 Torr was used. The optical scheme ``frequency selective master oscillator - laser amplifier'' was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on about 100 rotational-vibrational transitions of CO molecule within the spectral range 5.0--6.5 micron. Multiline overtone lasing was observed on about 80 spectral lines within the spectral range 2.5-4.0 micron, with maximum single line average output power 12 mW. The total output power of the slab overtone CO laser came up to 0.35 W, with laser efficiency 0.5 percent. The results of parametric studies of capacitive slab RF discharge in carbon monoxide mixtures, and overtone and fundamental band CO laser characteristics are discussed.

  9. W-1% La2O3 Submitted to a Single Laser Pulse: Effect of Particles on Heat Transfer and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Pasquale Gaudio

    2018-05-01

    Full Text Available W-1% La2O3 has been irradiated by a single laser pulse (λ = 1064 nm, pulse duration τ ≈ 15 ns, pulse energy Ep ≈ 4 J, spot size Φ = 200 μm, surface power density I = 8.5 × 1011 W·cm−2 to simulate the effects of transient thermal loads of high energy occurring in a tokamak under operative conditions. The samples have been then examined by scanning electron microscope (SEM observations to investigate erosion effects and surface morphological features. A surface depression forms in the spot central area surrounded by a ridge due to the movement of molten metal. Owing to the burst of gas bubbles, hemispherical cavities of about 10 μm and deposited droplets are observed in the ridge while the zones surrounding the ridge thermal stresses arising from fast heating and successive cooling produce an extended network of micro-cracks that often follow grain boundaries. The results are discussed and compared to those obtained in a previous work on pure bulk W.

  10. Long-lasting changes in brain activation induced by a single REAC technology pulse in Wi-Fi bands. Randomized double-blind fMRI qualitative study.

    Science.gov (United States)

    Rinaldi, Salvatore; Mura, Marco; Castagna, Alessandro; Fontani, Vania

    2014-07-11

    The aim of this randomized double-blind study was to evaluate in healthy adult subjects, with functional magnetic resonance imaging (fMRI), long lasting changes in brain activation patterns following administration of a single, 250 milliseconds pulse emitted with radio-electric asymmetric conveyer (REAC) technology in the Wi-Fi bands. The REAC impulse was not administered during the scan, but after this, according to a protocol that has previously been demonstrated to be effective in improving motor control and postural balance, in healthy subjects and patients. The study was conducted on 33 healthy volunteers, performed with a 1.5 T unit while operating a motor block task involving cyclical and alternating flexion and extension of one leg. Subsequently subjects were randomly divided into a treatment and a sham treatment control group. Repeated fMRI examinations were performed following the administration of the REAC pulse or sham treatment. The Treated group showed cerebellar and ponto-mesencephalic activation components that disappeared in the second scan, while these activation components persisted in the Sham group. This study shows that a very weak signal, such as 250 milliseconds Wi-Fi pulse, administered with REAC technology, could lead to lasting effects on brain activity modification.

  11. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  12. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  13. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    Science.gov (United States)

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode

  14. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color

    Directory of Open Access Journals (Sweden)

    Choi Ho-Sun

    2009-07-01

    Full Text Available Abstract Background Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Methods Subjects (blue-eyed n = 7; brown eyed n = 6 maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO. Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux. An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline. A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment. Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. Results The average phase delay of the DLMO was -1.3 ± 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. Conclusion A single 2-hour bright light

  15. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  16. Sensing RF signals with the optical wideband converter

    Science.gov (United States)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  17. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  18. RF radiation measurement for the Advanced Photon Source (AS) personnel safety system

    International Nuclear Information System (INIS)

    Song, J.J.; Kim, J.; Otocki, R.; Zhou, J.

    1995-01-01

    The Advanced Photon Source (APS) booster and storage ring RF system consists of five 1-MW klystrons, four 5-cell cavities, and sixteen single-cell cavities. The RF power is distributed through many hundreds of feet of WR2300 waveguide with H-hybrids and circulators. In order to protect personnel from the danger of RF radiation due to loose flanges or other openings in the waveguide system, three detector systems were implemented: an RF radiation detector, a waveguide pressure switch, and a Radiax aperture detector (RAD). This paper describes RF radiation measurements on the WR 2300 waveguide system

  19. Optimization of an RF driven H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DiVergilio, W.F.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.

    1991-04-01

    A radio-frequency driven multicusp source has recently been developed to generate volume-produced H - ion beams with extracted current density higher than 200 mA/cm 2 . We have improved the output power of the rf generator and the insulation coating of the antenna coil. We have also optimized the antenna positions and geometry and the filter magnetic field for high power pulsed operation. A total H - current of 30 mA can be obtained with a 5.4-mm-diam extraction aperture and with an rf input power of 50 kW. 4 refs., 5 figs

  20. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source