International Nuclear Information System (INIS)
Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G
2015-01-01
The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)
Recent results in Rayleigh scattering
International Nuclear Information System (INIS)
Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva
1997-01-01
New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)
Rayleigh scattering in coupled microcavities: theory.
Vörös, Zoltán; Weihs, Gregor
2014-12-03
In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.
RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL
Directory of Open Access Journals (Sweden)
S. F. Kolomiets
2014-01-01
Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.
DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.
2000-01-01
Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....
Chemical Applications of Second Harmonic Rayleigh Scattering ...
Indian Academy of Sciences (India)
Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.
Rayleigh scattering in an emitter-nanofiber-coupling system
Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng
2017-04-01
Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.
Rayleigh scattering from ions near threshold
International Nuclear Information System (INIS)
Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.
1988-01-01
Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt
Rayleigh scattering in few-mode optical fibers.
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-10-24
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.
Chemical Applications of Second Harmonic Rayleigh Scattering ...
Indian Academy of Sciences (India)
Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.
DEFF Research Database (Denmark)
Elm, Jonas; Norman, Patrick; Bilde, Merete
2014-01-01
The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...... and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single...... ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach...
Hyper-Rayleigh scattering in centrosymmetric systems
Energy Technology Data Exchange (ETDEWEB)
Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2015-09-28
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.
Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field
National Research Council Canada - National Science Library
Meents, Steven M
2008-01-01
Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...
Rayleigh scattering and depolarization ratio in linear alkylbenzene
International Nuclear Information System (INIS)
Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang
2015-01-01
It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm
Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas
Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.
1992-01-01
The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered
Rayleigh scattering under light-atom coherent interaction
Takamizawa, Akifumi; Shimoda, Koichi
2012-01-01
Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...
Otugen, M. Volkan; Popovic, Svetozar
1996-01-01
Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.
Instantaneous Rayleigh scattering from excitons localized in monolayer islands
DEFF Research Database (Denmark)
Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis
2000-01-01
We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...
Measurement of the stimulated thermal Rayleigh scattering instability
International Nuclear Information System (INIS)
Karr, T.J.; Rushford, M.C.; Murray, J.R.; Morris, J.R.
1989-04-01
Growth of perturbations due to stimulated thermal Rayleigh scattering was observed on a laser beam propagating in a 1 meter cell of CC14. Initial sinusoidal irradiance perturbations were seeded onto the laser leam, and their amplification in the cell was recorded by a near field camera. The perturbation growth rate is in agreement with analytical predictions of linearized propagation theory
Resonance scattering of Rayleigh waves by a mass defect
International Nuclear Information System (INIS)
Croitoru, M.; Grecu, D.
1978-06-01
The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)
Size estimates of nobel gas clusters by Rayleigh scattering experiments
Institute of Scientific and Technical Information of China (English)
Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)
2003-01-01
Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, Roland [Univ. of California, Berkeley, CA (United States)
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k_{p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Measurement of molecular polarizability on Rayleigh light scattering
International Nuclear Information System (INIS)
Nerushev, O.A.; Novopashin, S.A.
1994-01-01
The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs
Rayleigh-wave scattering by shallow cracks using the indirect boundary element method
International Nuclear Information System (INIS)
Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J
2009-01-01
The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks
International Nuclear Information System (INIS)
Chesskaya, T.Yu.
1998-01-01
The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
International Nuclear Information System (INIS)
Bayer, Charles
1973-06-01
The experimental variation of the scattered light with the number of scattering centers and with the refraction index of gases is in agreement with the theoretical Rayleigh scattering. A direct calibration System gives the absolute value of the Rayleigh ratio. The experimental value appears to be half of the theoretical one. (author) [fr
What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?
Ziane, D.; Hadziioannou, C.
2015-12-01
Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.
On the intensity and polarization of radiation emerging from a thick Rayleigh scattering atmosphere
Directory of Open Access Journals (Sweden)
V. Natraj
2011-09-01
Full Text Available We compute the intensity and polarization of reflected and transmitted light in optically thick Rayleigh scattering atmospheres. We obtain results accurate to seven decimal places. The results have been validated using a variety of methods.
Ultraviolet Rayleigh Scatter Imaging for Spatial Temperature Profiles in Atmospheric Microdischarges
2014-09-01
approximation of Rayleigh scattering for atomic gases, such as helium and argon . 13 Approved for public release; distribution unlimited. Figure 3... polarizability tensor , as [13] = + + = + + ...22�. (25) 16 Approved for public release; distribution unlimited. To further define the polarizability
Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity
DEFF Research Database (Denmark)
Langbein, W.; Hvam, Jørn Märcher
2001-01-01
In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does...
Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner
Gordon, Howard R.; Brown, James W.; Evans, Robert H.
1988-01-01
The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.
Measurement of the Rayleigh scattering length in liquid scintillators for JUNO
Energy Technology Data Exchange (ETDEWEB)
Hackspacher, Paul [Johannes Gutenberg-Universitaet Mainz, PRISMA Excellence Cluster (Germany); Collaboration: JUNO-Collaboration
2016-07-01
In liquid scintillator neutrino detectors such as the upcoming Jiangmen Underground Neutrino Observatory (JUNO), neutrino interactions are being detected by means of inverse beta decay and analysis of the resulting luminescent light. In order to reliably reconstruct these events from photomultiplier signals, the scattering properties of the detector materials need to be sufficiently well known. In the LAB-based liquid scintillator that has been proposed for JUNO, the primary contribution to the scattering process comes from Rayleigh scattering. The characteristic Rayleigh scattering length can be experimentally obtained in an optical laboratory setup. This talk presents the approach, the current status and the future plans of the experiment.
Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering
Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.
1999-01-01
The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.
Direct measurement of the Rayleigh scattering cross section in various gases
International Nuclear Information System (INIS)
Sneep, Maarten; Ubachs, Wim
2005-01-01
Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4
In situ nanoparticle diagnostics by multi-wavelength Rayleigh-Mie scattering ellipsometry
Gebauer, G
2003-01-01
We present and discuss the method of multiple-wavelength Rayleigh-Mie scattering ellipsometry for the in situ analysis of nanoparticles. It is applied to the problem of nanoparticles suspended in low-pressure plasmas. We discuss experimental results demonstrating that the size distribution and the complex refractive index can be determined with high accuracy and present a study on the in situ analysis of etching of melamine-formaldehyde nanoparticles suspended in an oxygen plasma. It is also shown that particles with a shell structure (core plus mantle) can be analysed by Rayleigh-Mie scattering ellipsometry. Rayleigh-Mie scattering ellipsometry is also applicable to in situ analysis of nanoparticles under high gas pressures and in liquids.
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change
Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV
International Nuclear Information System (INIS)
Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.
1979-01-01
An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references
International Nuclear Information System (INIS)
Kopainsky, J.
1975-01-01
In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)
The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen
Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao
2018-05-01
In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.
Biçer, M.; Kaşkaş, A.
2018-03-01
The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.
Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?
Poludniowski, G; Evans, PM; Webb, S
2009-01-01
Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...
Rayleigh scattering for a magnetized cold plasma sphere
International Nuclear Information System (INIS)
Li Yingle; Wang Mingjun; Tang Gaofeng; Li Jin
2010-01-01
The transformation of parameter tensors for anisotropic medium in different coordinate systems is derived. The electric field for a magnetized cold plasma sphere and the general expression of scattering field from anisotropic target are obtained. The functional relations of differential scattering cross section and the radar cross section for the magnetized plasma sphere are presented. Simulation results agree with that in the literatures, which shows the method used is correct and therefore the results may provide a theoretical base for anisotropic target identification. (authors)
Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering
Directory of Open Access Journals (Sweden)
Antoun Ayman
2004-01-01
Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.
Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations
Mielke, Amy F.; Elam, Kristie A.
2005-01-01
A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.
Spontaneous Rayleigh-Brillouin scattering spectral analysis based on the Wiener filter
Directory of Open Access Journals (Sweden)
Tao Wu
2018-01-01
Full Text Available In this paper, a spontaneous Rayleigh-Brillouin scattering spectrometer is developed to measure the gaseous spontaneous Rayleigh-Brillouin scattering profiles over the pressure range from 1 to 5 atm for a wavelength of 532nm at a constant room temperature of 296K and a 90o scattering angle. In order to make a direct comparison between the experimentally obtained spectrum and the theoretical spectrum calculated from the Tenti S6 model, the measured spontaneous Rayleigh-Brillouin scattering signal is deconvolved by the Wiener filtering. The purpose is to remove the effect on the spectrum by the transmission function of the Fabry-Perrot scanning interferometer. The results of the comparison show that the deconvolved spectra are consistent with the theoretical spectra calculated from the Tenti S6 model, and thus confirm that the deconvolution based on the Wiener filter is able to process the measured spectra and improve the spectral resolution. Some factors that influence the accuracy of deconvolution are analyzed and discussed. At the same time, another comparison between the raw experimentally obtained spectra and the theoretical spectra calculated by convolving the Tenti S6 model with instrument function of the measurement system is performed in the same experimental condition. The results of the two comparisons show that, compared with the raw experimentally obtained spectrum, the deconvolved spectrum matches the theoretically calculated spectrum more accurately under lower pressure (≤2atm than under relative higher pressure (>2atm.
RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B
Energy Technology Data Exchange (ETDEWEB)
Dragomir, Diana [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States); Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Pearson, Kyle A. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001 (United States); Crossfield, Ian J. M.; Barman, Travis [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Eastman, Jason [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Biddle, Lauren I., E-mail: diana@oddjob.uchicago.edu [Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720 (United States)
2015-12-01
GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes.
RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B
International Nuclear Information System (INIS)
Dragomir, Diana; Benneke, Björn; Pearson, Kyle A.; Crossfield, Ian J. M.; Barman, Travis; Eastman, Jason; Biddle, Lauren I.
2015-01-01
GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes
Rayleigh scattering in the atmospheres of hot stars
Czech Academy of Sciences Publication Activity Database
Fišák, J.; Krtička, J.; Munzar, D.; Kubát, Jiří
2016-01-01
Roč. 590, June (2016), A95/1-A95/6 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-02385S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : atomic processes * scattering * stars: chemically peculiar Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
In-Flight Calibration of GF-1/WFV Visible Channels Using Rayleigh Scattering
Directory of Open Access Journals (Sweden)
Xingfeng Chen
2017-05-01
Full Text Available China is planning to launch more and more optical remote-sensing satellites with high spatial resolution and multistep gains. Field calibration, the current operational method of satellite in-flight radiometric calibration, still does not have enough capacity to meet these demands. Gaofen-1 (GF-1, as the first satellite of the Chinese High-resolution Earth Observation System, has been specially arranged to obtain 22 images over clean ocean areas using the Wide Field Viewing camera. Following this, Rayleigh scattering calibration was carried out for the visible channels with these images after the appropriate data processing steps. To guarantee a high calibration precision, uncertainty was analyzed in advance taking into account ozone, aerosol optical depth (AOD, seawater salinity, chlorophyll concentration, wind speed and solar zenith angle. AOD and wind speed were found to be the biggest error sources, which were also closely coupled to the solar zenith angle. Therefore, the best sample data for Rayleigh scattering calibration were selected at the following solar zenith angle of 19–22° and wind speed of 5–13 m/s to reduce the reflection contributed by the water surface. The total Rayleigh scattering calibration uncertainties of visible bands are 2.44% (blue, 3.86% (green, and 4.63% (red respectively. Compared with the recent field calibration results, the errors are −1.69% (blue, 1.83% (green, and −0.79% (red. Therefore, the Rayleigh scattering calibration can become an operational in-flight calibration method for the high spatial resolution satellites.
Rayleigh-Brillouin scattering in SF6 in the kinetic regime
Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim
2017-01-01
Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2–5 bar and for a wavelength of λ=403.0 nm. The
Absorption and scattering properties of arbitrarily shaped particles in the Rayleigh domain
International Nuclear Information System (INIS)
Min, M.; Hovenier, J.W.; Dominik, C.; Koter, A. de; Yurkin, M.A.
2006-01-01
We provide a theoretical foundation for the statistical approach for computing the absorption properties of particles in the Rayleigh domain. We present a general method based on the discrete dipole approximation to compute the absorption and scattering properties of particles in the Rayleigh domain. The method allows to separate the geometrical aspects of a particle from its material properties. Doing the computation of the optical properties of a particle once, provides them for any set of refractive indices, wavelengths and orientations. This allows for fast computations of e.g. absorption spectra of arbitrarily shaped particles. Other practical applications of the method are in the interpretation of atmospheric and radar measurements as well as computations of the scattering matrix of small particles as a function of the scattering angle. In the statistical approach, the optical properties of irregularly shaped particles are represented by the average properties of an ensemble of particles with simple shapes. We show that the absorption cross section of an ensemble of arbitrarily shaped particles with arbitrary orientations can always be uniquely represented by the average absorption cross section of an ensemble of spheroidal particles with the same composition and fixed orientation. This proves for the first time that the statistical approach is generally viable in the Rayleigh domain
International Nuclear Information System (INIS)
Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.
2014-01-01
In the present work, a tomographic technique based on Rayleigh to Compton scattering ratio (R/C) was studied using computational simulation in order to assess its application to breast cancer diagnosis. In this preliminary study, some parameters that affect the image quality were evaluated, such as: (i) energy beam, (ii) size and glandularity of the breast, and (iii) statistical count noise. The results showed that the R/C contrast increases with increasing photon energy and decreases with increasing glandularity of the sample. The statistical noise showed to be a significant parameter, although the quality of the obtained images was acceptable for a considerable range of noise level. The preliminary results suggest that the R/C tomographic technique has a potential of being applied as a complementary tool in the breast cancer diagnostic. - Highlights: ► A tomographic technique based on Rayleigh to Compton scattering ratio is proposed in order to study breast tissues. ► The Rayleigh to Compton scattering ratio technique is compared with conventional transmission technique. ► The influence of experimental parameters (energy, sample, detection system) is studied
Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells
DEFF Research Database (Denmark)
Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner
2000-01-01
A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...
Hu, Yingtian; Liu, Chao; Wang, Xiaoping; Zhao, Dongdong
2018-06-01
At present the general scatter handling methods are unsatisfactory when scatter and fluorescence seriously overlap in excitation emission matrix. In this study, an adaptive method for scatter handling of fluorescence data is proposed. Firstly, the Raman scatter was corrected by subtracting the baseline of deionized water which was collected in each experiment to adapt to the intensity fluctuations. Then, the degrees of spectral overlap between Rayleigh scatter and fluorescence were classified into three categories based on the distance between the spectral peaks. The corresponding algorithms, including setting to zero, fitting on single or both sides, were implemented after the evaluation of the degree of overlap for individual emission spectra. The proposed method minimized the number of fitting and interpolation processes, which reduced complexity, saved time, avoided overfitting, and most importantly assured the authenticity of data. Furthermore, the effectiveness of this procedure on the subsequent PARAFAC analysis was assessed and compared to Delaunay interpolation by conducting experiments with four typical organic chemicals and real water samples. Using this method, we conducted long-term monitoring of tap water and river water near a dyeing and printing plant. This method can be used for improving adaptability and accuracy in the scatter handling of fluorescence data.
Directory of Open Access Journals (Sweden)
Weiwei Zhu
2013-01-01
Full Text Available The interaction of cadmium sulphide nanoparticles [(CdSn] with proteins has been studied by resonance Rayleigh scattering spectra (RRS. Below the isoelectric point, proteins such as bovine serum albumin (BSA, human serum albumin (HSA, lysozyme (Lys, hemoglobin (HGB, and ovalbumin (OVA can bind with CdSn to form macromolecules by virtue of electrostatic attraction and hydrophobic force. It can result in the enhancement of resonance Rayleigh scattering spectra (RRS intensity. Their maximum scattering peaks were 280 nm, and there was a smaller peak at 370 nm. The scattering enhancement (ΔIRRS is directly proportional to the concentration of proteins. A new RRS method for the determination of trace proteins using uncapped CdSn nanoparticles probe has been developed. The detection limits are 19.6 ng/mL for HSA, 16.7 ng/mL for BSA, 18.5 ng/mL for OVA, 80.2 ng/mL for HGB, and 67.4 ng/mL for Lys, separately. In this work, the optimum condition of reaction, the effect of foreign, and the analytical application had been investigated.
Rayleigh-Brillouin scattering in NH4Cl under hydrostatic pressure
International Nuclear Information System (INIS)
Hikita, Tomoyuki; Kitabatake, Makoto; Ikeda, Takuro
1981-01-01
Rayleigh-Brillouin scattering in NH 4 Cl has been studied under hydrostatic pressure. Brillouin shifts of the longitudinal phonons propagating along the and directions and of the transverse phonons propagating along the direction are measured as a function of temperature at four fixed pressures up to 2.3 kbar. All components increase almost linearly with decreasing temperature in the disordered phase and show incremental increases similar to the temperature dependence of the long range order parameter in the ordered phase. It was found that the longitudinal modes exhibit large despersion effect even at high pressures. On the other hand, the transverse mode appears to give no dispersion effect. The intensity of the Rayleigh component in the VV polarization condition increases as the temperature approaches the transition point, while that in the VH polarization does not show such anomalous increase. (author)
Energy Technology Data Exchange (ETDEWEB)
Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)
2016-02-17
Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb_{3}Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh
Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes
Directory of Open Access Journals (Sweden)
M. Sekeráš
2015-02-01
Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.
Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering
Shirley, John A.; Winter, Michael
1993-01-01
An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.
Measurements of the initial density distribution of gas puff liners by using Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Kalinin, Yu G; Shashkov, A Yu [Kurchatov Institute, Moscow (Russian Federation)
1997-12-31
Rayleigh scattering of a laser beam in a gas jet is proposed for the measurements of initial density distribution of gas-puff liners. The scattering method has several advantages when compared with interferometry. In particular, it provides information on the local gas density, it is more sensitive, and the output data can be absolutely calibrated. Theoretical background of the method is briefly discussed in the paper and the optical setup used in real experiments is described. Imaging of the scattering object make it possible to detect detailed profiles of the investigated gas jet, as illustrated by several examples taken from the experiment. In some cases even the gas jet stratification has been observed. (J.U.). 1 tab., 3 figs., 1 ref.
Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?
Poludniowski, G.; Evans, P. M.; Webb, S.
2009-11-01
Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.
Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.
Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun
2014-07-23
The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Konstantin A. Shapovalov
2013-01-01
Full Text Available The article considers general approach to structured particle and particle system form factor calculation in the Rayleigh-Gans-Debye (RGD approximation. Using this approach, amplitude of light scattering by a truncated pyramid and cone formulas in RGD approximation are obtained. Light scattering indicator by a truncated pyramid and cone in the RGD approximation are calculated.
Initial stage of cavitation in liquids and its observation by Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Pekker, M [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, United States of America (United States); Shneider, M N, E-mail: m.n.shneider@gmail.com [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America (United States)
2017-06-15
A theory is developed for the initial stage of cavitation in the framework of Zel’dovich–Fisher theory of nucleation in the field of negative pressure, while taking into account the surface tension dependence on the nanopore radius. A saturation mechanism is proposed that limits the exponential dependence of the nucleation rate on the energy required to create nanopores. An estimate of the saturated density of nanopores at the nucleation stage is obtained. It is shown that Rayleigh scattering can detect nanopores arising at the initial stage of cavitation development. (paper)
Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.
El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K
2011-01-15
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.
International Nuclear Information System (INIS)
Lu Jianfeng; Liu Meng; Han Jifeng; Li Jia; Luo Xiaobing; Miao Jingwei; Yang Chaowen
2009-01-01
In the experiments of Rayleigh scattering of gas-jet clusters, the signal amplitude of PMT is not only affected by duster itself, but also by the intensity of light source and work voltage of PMT. When the back pressure of cluster source varies from 10 atm to about 100atm, the signal amplitude of PMT may be from linear to nonlinear. In order to solve the problem, signal calibration of PMT under different intensifies of light and voltage of PMT has been done. The relationship between the amplitude of signal and intensities of light as well as voltage of PMT has been obtained. The function of scatter factor of Ar clusters with the back pressure of cluster source is gotten experimentally, and agrees with related experimental and theoretical results. (authors)
Elucidating the contribution of Rayleigh scattering to the bluish appearance of veins
Van Leeuwen, Spencer R.; Baranoski, Gladimir V. G.
2018-02-01
The bluish appearance of veins located immediately beneath the skin has long been a topic of interest for biomedical optics researchers. Despite this interest, a thorough identification of the specific optical processes responsible for this phenomenon remains to be achieved. We employ controlled in silico experiments to address this enduring open problem. Our experiments, which are supported by measured data available in the scientific literature, are performed using first-principles models of light interaction with human skin and blood. Using this investigation approach, we quantitatively demonstrate that Rayleigh scattering caused by collagen fibrils present in the papillary dermis, a sublayer of the skin, can play a pivotal role in the bluish appearance of veins as suggested by previous works in this area. Moreover, also taking color perception aspects into account, we systematically assess the effects of variations in fibril radius and papillary dermis thickness on the coloration of veins under different illuminants. Notably, this assessment indicates that Rayleigh scattering elicited by reticulin fibrils, another type of fibril found in the papillary dermis, is unlikely to significantly contribute to the bluish appearance of veins. By strengthening the current understanding of light attenuation mechanisms affecting the appearance of skin and blood, our investigation contributes to the development of more effective technologies aimed at the noninvasive measurement of the physiological properties of these tissues.
DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.
1999-01-01
Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...
Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.
Baynes, Alexander B; Godin, Oleg A
2017-12-01
Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.
Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.
Flegg, M B; Poole, C M; Whittaker, A K; Keen, I; Langton, C M
2010-06-07
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Gessel, van A.F.H.; Carbone, E.A.D.; Bruggeman, P.J.; Mullen, van der J.J.A.M.
2012-01-01
Laser scattering provides a very direct method for measuring the local densities and temperatures inside a plasma. We present new experimental results of laser scattering on an argon atmospheric pressure microwave plasma jet operating in an air environment. The plasma is very small so a high spatial
International Nuclear Information System (INIS)
Rother, Tom
2016-01-01
In this paper I propose a classical optics experiment that results in a maximum violation of a Bell-like inequality. The first part is concerned with the Bell-like inequality (the so-called CHSH-inequality) itself. Its importance and its maximum violation in Quantum Mechanics (QM) are discussed in detail by employing an abstract probability state concept in a 4-dim. but classical event space. A T-matrix that represents the integral part of a corresponding Green's function as well as a statistical operator that contains a negative quasi-probability can be related to the corresponding quantum mechanical experiment. It is demonstrated that the derivation and usage of the T-matrix and the Green's function is equivalent to what is known from classical scattering theory. It is shown moreover that the negative quasi-probability of the statistical operator may be interpreted as a sink of probabilities related to two single events of the considered 4-dim. event space. A necessary condition for the violation of the CHSH-inequality is derived and discussed afterwards. In the second part of this paper I discuss a modification of the 4-dim. event space considered in the first part. It is shown that a combination of conventional Rayleigh scattering with a Mach–Zehnder setup would be able to put this modification into practice. Thus it becomes possible to achieve a maximum violation of the CHSH-inequality, if formulated in terms of intensities, on a pure classical way. The combination of classical light scattering with correlation experiments such as proposed in this paper may open new ways to study and to use the violation of Bell-like inequalities in modern optics. - Highlights: • Consistent Green's function formulation of the quantum mechanical Bell's experiment and its classical counterpart. This description is closely related to what is known from electromagnetic wave scattering. This is achieved by introducing an abstract probability state concept. • Discussion of a
Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman
2016-02-01
Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.
Directory of Open Access Journals (Sweden)
K. A. Shapovalov
2015-01-01
Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh
Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Usoltseva, Liliya O.; Samarina, Tatiana O. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Abramchuk, Sergei S. [Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Prokhorova, Aleksandra F. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Beklemishev, Mikhail K., E-mail: mkb@analyt.chem.msu.ru [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation)
2016-11-15
Rayleigh light scattering (RLS) is a simple technique with a high potential of sensitive determination of small organic molecules. We have found that ppb amounts of quercetin (Qu) greatly enhance the RLS of the solution of silver nanoparticles (AgNPs) stabilized with cetyltrimethylammonium bromide (CTAB) or sodium n-dodecyl sulfate (SDS). Enhancement of light scattering is observed only in the presence of an excess of AgNO{sub 3}, which implies that it is a result of nanoparticle growth; another reason for the enhanced scattering is the aggregation of AgNPs by the analyte that was confirmed by dynamic light scattering technique. The conditions were chosen for the determination of Qu in aqueous solution with the detection limits of 0.01 and 0.03 μmol L{sup −1} and linear ranges of 0.1–1.3 and 0.1–2.0 μmol L{sup −1} for SDS- and CTAB-stabilized AgNPs, respectively; the intra-day RSDs did not exceed 7%. Unexpectedly, other bioflavonoids (rutin, dihydroquercetin, and naringenin) did not change the signal of Qu and did not interfere with its determination in 1:1 M ratio (0.5 μmol L{sup −1} each). Other compounds (asparagin, uric acid, urea and some inorganic ions) were also tolerated in high amounts. - Highlights: • Low concentrations of quercetin enhance the light scattering by silver nanoparticles. • Main processes are aggregation, nanoparticle growth and formation of new particles. • Other compounds exert a weaker effect on the light scattering signal.
Bisyarin, M A; Kotov, O I; Hartog, A H; Liokumovich, L B; Ushakov, N A
2017-06-01
The recently developed diffraction technique of analytical investigation of the Rayleigh backscattering produced by an incident fundamental mode in a multimode optical fiber with an arbitrary refractive index profile is supplemented by taking into account the Rayleigh scattering-loss coefficient, which could be variable within the fiber cross section. The relative changes in various radial and azimuthal modes' excitation levels, due to some typical radial dependences of this coefficient, are computed for the quadratic- and step-index fibers. It is stated that the excitation efficiency could either rise or decay for different modes. The effect of the variable Rayleigh scattering-loss coefficient is shown to be more noticeable in the fibers with a quadratic refractive index profile, whereas it is negligible in actual multimode step-index fibers.
Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5
International Nuclear Information System (INIS)
Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.
1984-01-01
The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction
A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering
Mckenzie, Robert L.
1987-01-01
A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.
International Nuclear Information System (INIS)
Bohidar, H.; Berland, T.; Boger, F.; Joessang, T.; Feder, J.
1987-01-01
The development of a Multipass Fabry-Perot interforometer assembly for use in Rayleigh-Brillouin scattering experiments is reported. The optical alignment and the scattered signal data acquisition have been completely computerized. Digital scanning and alignment strategies of the Fabry-Perot resonator have been incorporated, which makes this instrument quite unique in this respect. The high contrast (∼10 10 ) and finesse (∼50) offered by this instrument makes it possible to detect Brillouin peaks from samples that have a small Brillouin scattering cross-section. As part of this system a compatible and precision sample chamber has been constructed, which has been designed to operate in the pressure and temperature ranges of 1-1000B and 20-150 o C, respectively. The cell has been constructed to be small and compact, but it still has a large heat capacity (∼250J/K) which ensures easy and stable temperature control of the liquid sample volume which has a size of 40 mm 3 . The achievable temperature stability is +-1mK and +-2mK for operating temperatures below and above 100 o C, respectively. The pressure stability is in the range of +-0.05B of the set pressure for pressures below 100B and it is +-0.05% for higher pressures up to 1000B. Both pressure and temperature are remotely monitored and controlled by a ND/100 computer. Special care has been taken in designing the optics of the pressure cell to ensure that both the primary and secondary reflections from the entrance window, as well as the main beam, go out of the scattering region in order to achieve higher signal-to-noise ratio in actual experiments
International Nuclear Information System (INIS)
Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi
2006-01-01
We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response
Rayleigh-Brillouin scattering in SF6 in the kinetic regime
Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim
2017-02-01
Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2-5 bar and for a wavelength of λ = 403.0 nm. The high quality data are compared to a number of light scattering models in order to address the effects of rotational and vibrational relaxation. While the vibrational relaxation rate is so slow that vibration degrees of freedom remain frozen, rotations relax on time scales comparable to those of the density fluctuations. Therefore, the heat capacity, the thermal conductivity and the bulk viscosity are all frequency-dependent transport coefficients. This is relevant for the Tenti model that depends on the values chosen for these transport coefficients. This is not the case for the other two models considered: a kinetic model based on rough-sphere interactions, and a model based on fluctuating hydrodynamics. The deviations with the experiment are similar between the three different models, except for the hydrodynamic model at pressures p≲ 2bar . As all models are in line with the ideal gas law, we hypothesize the presence of real gas effects in the measured spectra.
Dirac Coulomb Green's function and its application to relativistic Rayleigh scattering
International Nuclear Information System (INIS)
Wong, M.K.F.; Yeh, E.H.Y.
1985-01-01
The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The Green's function in coordinate space is obtained by the eigenfunction expansion method in terms of the wave functions obtained by Wong and Yeh. The result is simpler than those obtained previously by other authors, in that the radial part for each component contains one term only instead of four terms. Our Green's function reduces to the Schroedinger Green's function upon some simple conditions, chiefly by neglecting the spin and replacing lambda by l. The Green's function in momentum space is obtained as the Fourier transform of the coordinate space Green's function, and is expressed in terms of basically three types of functions: (1) F/sub A/ (α; β 1 β 2 β 3 ; γ 1 γ 2 γ 3 ; z 1 z 2 z 3 ), (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then obtained in analytically closed form. The matrix element is written basically in terms of the coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the matrix element is based on the calculation of the momentum space Dirac Coulomb Green's function. Finally the relativistic result is compared with the nonrelativistic result
Directory of Open Access Journals (Sweden)
M. Alpers
2004-01-01
Full Text Available For the first time, three different temperature lidar methods are combined to obtain time-resolved complete temperature profiles with high altitude resolution over an altitude range from the planetary boundary layer up to the lower thermosphere (about 1–105 km. The Leibniz-Institute of Atmospheric Physics (IAP at Kühlungsborn, Germany (54° N, 12° E operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges: (1 Probing the spectral Doppler broadening of the potassium D1 resonance lines with a tunable narrow-band laser allows atmospheric temperature profiles to be determined at metal layer altitudes (80–105 km. (2 Between about 20 and 90 km, temperatures were calculated from Rayleigh backscattering by air molecules, where the upper start values for the calculation algorithm were taken from the potassium lidar results. Correction methods have been applied to account for, e.g. Rayleigh extinction or Mie scattering of aerosols below about 32 km. (3 At altitudes below about 25 km, backscattering in the Rotational Raman lines is strong enough to obtain temperatures by measuring the temperature dependent spectral shape of the Rotational Raman spectrum. This method works well down to about 1 km. The instrumental configurations of the IAP lidars were optimized for a 3–6 km overlap of the temperature profiles at the method transition altitudes. We present two night-long measurements with clear wave structures propagating from the lower stratosphere up to the lower thermosphere.
International Nuclear Information System (INIS)
Burgess, D.D.
1985-01-01
The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)
International Nuclear Information System (INIS)
Patkowski, A.; Fischer, E. W.; Steffen, W.; Glaser, H.; Baumann, M.; Ruths, T.; Meier, G.
2001-01-01
A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4 # prime#-methoxy-5 # prime#methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment, which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the α process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations ('clusters'). We have characterized the two states by static and dynamic light scattering in the temperature range from T g to T g +200 K. The relaxation times of the α process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The α process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and q-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories
Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10
Balla, R. Jeffrey; Everhart, Joel L.
2012-01-01
In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.
What is measured by hyper-Rayleigh scattering from a liquid?
Rodriquez, Micheal B.; Shelton, David P.
2018-04-01
Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.
Servali, A.; Long, M. D.; Benoit, M.
2017-12-01
The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.
Lin, Jia-Hui; Tseng, Wei-Lung
2015-01-01
Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hey, J D
1986-07-01
The optical research of Robert John Strutt, fourth Baron Rayleigh, on the transparency of the terrestrial atmosphere as determined by the distribution of ozone, is reviewed in relation to the studies of Hartley, Cornu, Fabry and Buisson, and Fowler on this subject. It is shown that the basis of Rayleigh's work is now incorporated in the modern optical techniques for atmospheric monitoring.
Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth
International Nuclear Information System (INIS)
Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.
2011-01-01
The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.
Single Crystal Diffuse Neutron Scattering
Directory of Open Access Journals (Sweden)
Richard Welberry
2018-01-01
Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.
SEARCH FOR RAYLEIGH SCATTERING IN THE ATMOSPHERE OF GJ1214b
International Nuclear Information System (INIS)
De Mooij, E. J. W.; Jayawardhana, R.; Brogi, M.; Snellen, I. A. G.; Hoekstra, H.; Otten, G. P. P. L.; Bekkers, D. H.; Haffert, S. Y.; Van Houdt, J. J.; De Kok, R. J.; Croll, B.
2013-01-01
We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet toward the blue. We observed the transit of GJ1214b in the B band with the FOcal Reducing Spectrograph at the Very Large Telescope and in the g band with both ACAM on the William Herschel Telescope (WHT) and the Wide Field Camera at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B band of 0.1162 ± 0.0017, and in the g band 0.1180 ± 0.0009 and 0.1174 ± 0.0017 for the WHT and INT observations, respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered, a small scale-height water-dominated model fits the data best.
Sox, L.; Wickwar, V. B.; Fish, C. S.; Herron, J. P.
2014-12-01
Mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions. However, observations of these anomalies at midlatitudes are sparse. The very dense 11-year data set, collected between 1993-2004, with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), has been carefully examined for such anomalies. The temperatures derived from these data extend over the mesosphere, from 45 to 90 km. During this period extensive data were acquired during seven major SSW events. In this work we aim to determine the characteristics of the midlatitude mesospheric temperatures during these seven major SSWs. To do this, comparisons were made between the temperature profiles on individual nights before, during, and after the SSW events and the corresponding derived climatological temperature profiles (31-day by 11-year average) for those nights. A consistent disturbance pattern was observed in the mesospheric temperatures during these SSWs. A distinct shift from the nominal winter temperature pattern to a pattern more characteristic of summer temperatures was seen in the midlatitude mesosphere close to when the zonal winds in the polar stratosphere (at 10 hPa, 60° N) reversed from eastward to westward. This shift lasted for several days. This change in pattern included coolings in the upper mesosphere, comparable to those seen in the polar regions, and warmings in the lower mesosphere.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.
2016-01-01
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume
Directory of Open Access Journals (Sweden)
Tor eNordam
2013-09-01
Full Text Available A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a non-absorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p- or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.
International Nuclear Information System (INIS)
El-Wakil, S.A.; Sallah, M.; Degheidy, A.R.
2005-01-01
The time-dependent radiation transfer equation in plane geometry with Rayleigh scattering is studied. The traveling wave transformation is used to obtain the corresponding stationary-like equation. Pomraning-Eddington approximation is then used to calculate the radiation intensity in finite plane-parallel media. Numerical results and shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. For the sake of comparison, two different weight functions are introduced and to force the boundary conditions to be fulfilled
International Nuclear Information System (INIS)
Goodman, F.O.
1977-01-01
A rigorous treatment of the scattering of atoms by a stationary sinusoidal hard wall in (n+1) dimensions is presented, a previous treatment by Masel, Merrill, and Miller for n=1 being contained as a special case. Numerical comparisons are made with the GR method of Garcia, which incorporates the Rayleigh hypothesis. Advantages and disadvantages of both methods are discussed, and it is concluded that the Rayleigh GR method, if handled properly, will probably work satisfactorily in physically realistic cases
Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.
2017-12-01
The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.
Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang
2011-12-01
A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).
Energy Technology Data Exchange (ETDEWEB)
Appaji Gowda, S.B. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India); Umesh, T.K. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India)]. E-mail: tku@physics.uni-mysore.ac.in
2006-01-15
Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead in the photon energy range 24-136 keV have been determined by a numerical evaluation of the dispersion integral that relates them through optical theorem to the photo effect cross sections. The photo effect cross sections have been extracted by subtracting the coherent and incoherent scattering contribution from the measured total attenuation cross section, using high-resolution high-purity germanium detector in a narrow beam good geometry set up. The real part of the dispersion correction to which the relativistic corrections calculated by Kissel and Pratt (S-matrix approach) or Creagh and McAuley (multipole corrections) have been included are in better agreement with the available theoretical values.
Ground, Cody R.; Gopal, Vijay; Maddalena, Luca
2018-04-01
By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.
Directory of Open Access Journals (Sweden)
Xi Shao
2016-03-01
Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.
Conti, C. C.; Anjos, M. J.; Salgado, C. M.
2014-09-01
X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.
Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli
2011-01-01
The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright Â© 2010. Published by Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)
2014-09-15
Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)
International Nuclear Information System (INIS)
Pereira, Marcelo O.; Conti, Claudio de Carvalho; Anjos, Marcelino J.; Lopes, Ricardo T.
2011-01-01
The aim of this work was to develop a new method to correct the absorbed radiation (the mass attenuation coefficient curve) in low energy (E B O 3 , Na 2 CO 3 , CaCO 3 , Al 2 O 3 , K 2 SO 4 and MgO) of radiation produced by a gamma-ray source of Am-241(59.54 keV) also applied to certified biological samples of milk powder, hay powder and bovine liver (NIST 155 7B). In addition, six methods of effective atomic number determination were used as described in literature to determinate the Rayleigh to Compton scattering ratio (R/C) , in order to calculate the mass attenuation coefficient. The results obtained by the proposed method were compared with those obtained using the transmission method. The experimental results were in good agreement with transmission values suggesting that the method to correct radiation absorption presented in this paper is adequate for biological samples. (author)
Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/
Energy Technology Data Exchange (ETDEWEB)
Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)
1984-04-01
The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.
Energy Technology Data Exchange (ETDEWEB)
Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)
2017-04-15
It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.
Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air and moist air,
Witschas, B.; Vieitez, M.O.; Duijn, van E.-J.; Reitebuch, O.; Water, van de W.; Ubachs, W.
2010-01-01
Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh–Brillouin scattering measurements in the ultraviolet at a
Workman, Eli Joseph
We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.
Directory of Open Access Journals (Sweden)
Xiaoyi Bao
2013-01-01
Full Text Available A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR. These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
Tan, Xuanping; Yang, Jidong; Li, Qin; Yang, Qiong; Shen, Yizhong
2016-05-01
Four simple and accurate spectrophotometric methods were proposed for the simultaneous determination of three β-adrenergic blockade, e.g. atenolol, metoprolol and propranolol. The methods were based on the reaction of the three drugs with erythrosine B (EB) in a Britton-Robinson buffer solution at pH 4.6. EB could combine with the drugs to form three ion-association complexes, which resulted in the resonance Rayleigh scattering (RRS) intensity that is enhanced significantly with new RRS peaks that appeared at 337 nm and 370 nm, respectively. In addition, the fluorescence intensity of EB was also quenched. The enhanced scattering intensities of the two peaks and the fluorescence quenched intensity of EB were proportional to the concentrations of the drugs, respectively. What is more, the RRS intensity overlapped with the double-wavelength of 337 nm and 370 nm (so short for DW-RRS) was also proportional to the drugs concentrations. So, a new method with highly sensitive for simultaneous determination of three bisoprolol drugs was established. Finally, the optimum reaction conditions, influencing factors and spectral enhanced mechanism were investigated. The new DW-RRS method has been applied to simultaneously detect the three β-blockers in fresh serum with satisfactory results.
Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.
Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.
Ma, Caijuan; Sun, Zijun; Liu, Guihua; Su, Zhengquan; Bai, Yan
2018-02-01
The method was presented for the sensitive and selective determination of chitosan (CTS) in health products with Brilliant Blue (BB) as a probe, based on dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS). In weakly acidic buffer solution, the binding of CTS and BB could result in the RRS intensities getting enhanced significantly at RRS peaks of 344 nm and 452 nm, and the scattering intensities of the two peaks were proportional to the concentration of CTS within a certain range. When the RRS intensities of the two wavelengths were superposed, the results showed higher sensitivity. Under the optimum experimental conditions, the total of the two increased RRS intensities was linear to the CTS concentration in the range of 0.02-1.80 μg/mL and the limit of detection (LOD) was 7.45 ng/mL. In this work, the optimum conditions and the effects of some foreign substances were studied. Accordingly, the new method based on DWO-RRS for the determination of CTS was developed. In addition, the effect of the molecular weight and the deacetylation degree between different chitosan molecules was discussed. Finally, this assay was applied to determine the concentration of CTS in health products with satisfactory results.
International Nuclear Information System (INIS)
Douglas, M.R.; Deeney, C.; Roderick, N.F.
1998-01-01
A series of two-dimensional magnetohydrodynamic calculations have been carried out to investigate single and multimode growth and mode coupling for magnetically-driven Rayleigh endash Taylor instabilities in Z pinches. Wavelengths ranging from 5.0 mm down to 1.25 mm were considered. Such wavelengths are comparable to those observed at stagnation using a random density open-quotes seedingclose quotes method. The calculations show that wavelengths resolved by less than 10 cells exhibit an artificial decrease in initial Fourier spectrum amplitudes and a reduction in the corresponding amplitude growth. Single mode evolution exhibits linear exponential growth and the development of higher harmonics as the mode transitions into the nonlinear phase. The mode growth continues to exponentiate but at a slower rate than determined by linear hydrodynamic theory. In the two and three mode case, there is clear evidence of mode coupling and inverse cascade. In addition, distinct modal patterns are observed late in the implosion, resulting from finite shell thickness and magnetic field effects. copyright 1998 American Institute of Physics. thinsp
Energy Technology Data Exchange (ETDEWEB)
Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)
2015-12-28
A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.
Dawid, A
2003-01-01
We have calculated (by a molecular dynamics method) the interaction-induced polarizability correlation functions and spectra of the depolarized light scattering from fullerene C sub 6 sub 0 molecules surrounded by an argon 'atmosphere' (layer). The calculated correlation functions and spectra of (C sub 6 sub 0)Ar sub n (n = 32, 40, 46) clusters show a substantial dependence on the number n of atoms in the layer.
Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system
International Nuclear Information System (INIS)
Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W.; Glendinning, S.G.; Kalantar, D.H.; Watt, R.G.; Gobby, P.L.; Willi, O.; Taylor, R.J.
1997-01-01
The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%endash 7% over a 600-μm-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-μm and 60-μm wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-μm-thick polystyrene foam buffer layer resulted in reduced growth of the 31-μm perturbation and essentially unchanged growth for the 60-μm case when compared to targets without foam. copyright 1997 American Institute of Physics
Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin
In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.
Casamayou-Boucau, Yannick; Ryder, Alan G.
2017-09-01
Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.
Energy Technology Data Exchange (ETDEWEB)
Dong Lijun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail: chenxg@lzu.edu.cn; Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)
2007-05-15
The determination of proteins with 2-(4-chloro-2-phosphonophenylazo)-7-(4-iodophenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid (CPA-pI) by Rayleigh light scattering (RLS) was studied in this paper. The weak RLS of CPA-pI and BSA can be enhanced greatly by the addition of Al{sup 3+} at the pH 5.6 and an enhanced RLS signal was produced at 365-385 nm. Based on the reaction of CPA-pI, Al{sup 3+} and proteins, a new quantitative determination method for proteins has been developed. The effect of three variables for the determination of proteins was optimized by means of artificial neural networks (ANNs) using extended delta-bar-delta (EDBD) algorithms with the optimal network structure of 3-5-1. This method is very sensitive (2.5-35.4 {mu}g/ml for bovine serum albumin (BSA)), rapid (<2 min), simple (one step) and tolerance of most interfering substances. Six samples of protein in human serum were determined and the maximum relative error is no more than 2% and the recovery is between 95% and 105%.
Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.
2013-11-01
It is shown that complexities in a problem of elastic scattering of a photon on a pair of Rayleigh particles (two small metallic spheres) are similar to the complexities of the classic problem of three bodies in celestial mechanics. In the latter problem, as is well known, the phase trajectory of a system becomes a nonanalytical function of its variables. In our problem, the trajectory of a virtual photon at some frequency could be considered such as the well-known Antoine set (Antoine's necklace) or a chain with interlaced sections having zero topological dimension and fractal structure. Such a virtual “zero-dimensional” photon could be localized between the particles of the pair. The topology suppresses the photon's exit to the real world with dimensional equal-to-or-greater-than units. The physical reason for this type of photon localization is related to the “mechanical rigidity” of interlaced sections of the photon trajectory due to a singularity of energy density along these sections. Within the approximations used in this paper, the effect is possible if the frequency of the incident radiation is equal to double the frequency of the dipole surface plasmon in an isolated particle, which is the only character frequency in the problem. This condition and transformation of the photon trajectory to the zero-dimensional Antoine set reminds of some of the simplest variants of Poincaré's catastrophe in the dynamics of some nonintegrable systems. The influence of the localization on elastic light scattering by the pair is investigated.
International Nuclear Information System (INIS)
Artemyeva, Anastasia A.; Sharov, Andrei V.; Beklemishev, Mikhail K.; Samarina, Tatyana O.; Abramchuk, Sergei S.; Ovcharenko, Elena O.; Dityuk, Alexander I.; Efimov, Konstantin M.
2015-01-01
We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2·10 −8 , 4·10 −7 , and 6·10 −6 M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple. (author)
International Nuclear Information System (INIS)
Liu, Chao; Lee Panetta, R.; Yang, Ping
2013-01-01
Effects of surface roughness on the optical scattering properties of ice crystals are investigated using a random wave superposition model of roughness that is a simplification of models used in studies of scattering by surface water waves. Unlike previous work with models of rough surfaces applicable only in limited size ranges, such as surface perturbation methods in the small particle regime or the tilted-facet (TF) method in the large particle regime, ours uses a single roughness model to cover a range in sizes extending from the Rayleigh to the geometric optics regimes. The basic crystal shape we examine is the hexagonal column but our roughening model can be used for a wide variety of particle geometries. To compute scattering properties over the range of sizes we use the pseudo-spectral time domain method (PSTD) for small to moderate sized particles and the improved geometric optics method (IGOM) for large ones. Use of the PSTD with our roughness model is straightforward. By discretizing the roughened surface with triangular sub-elements, we adapt the IGOM to give full consideration of shadow effects, multiple reflections/refractions at the surface, and possible reentrance of the scattered beams. We measure the degree of roughness of a surface by the variance (σ 2 ) of surface slopes occurring on the surfaces. For moderately roughened surfaces (σ 2 ≤0.1) in the large particle regime, the scattering properties given by the TF and IGOM agree well, but differences in results obtained with the two methods become noticeable as the surface becomes increasingly roughened. Having a definite, albeit idealized, roughness model we are able to use the combination of the PSTD and IGOM to examine how a fixed degree of surface roughness affects the scattering properties of a particle as the size parameter of the particle changes. We find that for moderately rough surfaces in our model, as particle size parameter increases beyond about 20 the influence of surface
Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot
International Nuclear Information System (INIS)
Eliseev, V.V.; Rozmus, W.; Tikhonchuk, V.T.; Capjack, C.E.
1996-01-01
A single laser hot spot in an underdense plasma is represented as a focused Gaussian laser beam. Stimulated Brillouin scattering (SBS) from such a Gaussian beam with small f/numbers 2-4 has been studied in a three-dimensional slab geometry. It is shown that the SBS reflectivity from a single laser hot spot is much lower than that predicted by a simple three wave coupling model because of the diffraction of the scattered light from the spatially localized ion acoustic wave. SBS gain per one Rayleigh length of the incident laser beam is proposed as a quantitative measure of this effect. Diffraction-limited SBS from a randomized laser beam is also discussed. copyright 1996 American Institute of Physics
Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
International Nuclear Information System (INIS)
Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.
2000-01-01
The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics
Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
Energy Technology Data Exchange (ETDEWEB)
Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bradley, D. K. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Verdon, C. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)
2000-01-01
The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.
Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation
de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario
2018-03-01
Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.
An algorithm to determine backscattering ratio and single scattering albedo
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.
Algorithms to determine the inherent optical properties of water, backscattering probability and single scattering albedo at 490 and 676 nm from the apparent optical property, remote sensing reflectance are presented here. The measured scattering...
Rayleigh scattering of x-ray and {gamma}-ray by 1s and 2s electrons in ions and neutral atoms
Energy Technology Data Exchange (ETDEWEB)
Costescu, A; Karim, K; Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 077125 (Romania); Moldovan, M [Department of Physics, UMF Targu Mures, Targu Mures 540142 (Romania); Spanulescu, S, E-mail: severspa2004@yahoo.com [Department of Physics, Hyperion University of Bucharest, Bucharest 030629 (Romania)
2011-02-28
Using the Coulomb-Green function method and considering the nonrelativistic limit for the two-photon S-matrix element, the right nonrelativistic 2s Rayleigh scattering amplitudes are obtained. Our result takes into account all multipoles, retardation and relativistic kinematics contributions, and the old dipole approximation result of Costescu is retrieved as a limit case. The total photoeffect cross-section which is related to the imaginary part of the Rayleigh forward scattering amplitude through the optical theorem is also obtained. Our Coulombian formulae are used in the more realistic case of elastic scattering of photons by bound 1s and 2s electrons in ions and neutral atoms. Screening effects are considered in the independent particle approximation through the Hartree-Fock method. The effective charge Z{sub eff} is obtained by fitting the Hartree-Fock charge distribution by a Coulombian one. Good agreement (within 10%) is found when comparing the numerical predictions given by our nonrelativistic formulae with the full relativistic numerical results of Kissel in the case of elastic scattering of photons by 1s and 2s electrons and Scofield [3] in the case of K-shell and 2s subshell photoionization for neutral atoms with 18 {<=} Z {<=} 92 and photon energies {omega} {<=} {alpha}Zm.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering
1997-10-22
Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.
International Nuclear Information System (INIS)
Lu, Yao; Huang, Xiangyi; Ren, Jicun
2013-01-01
We describe a sensitive sandwich immunoassay for alpha-fetoprotein (AFP). It is making use of gold nanoparticles (GNPs) and magnetic beads (MBs) as labels, and of resonance Rayleigh scattering for detection. Two antibodies were labeled with GNPs and MBs, respectively, and MB-antigen-GNP complexes were formed in the presence of antigens. The MB labels also serve as solid phase carriers that can be used to magnetically separate the immuno complex. The GNP labels are used as optical probes, and Rayleigh scattering was used to determine the concentration of free GNPs-antibody after separation of the MB-antigen-GNP complexes. The concentration of AFP is related to the intensity of light scattered by free GNPs in the 13.6 pM to 436 pM concentration range, and the limit of detection is 13.6 pM. The method was applied to the determination of AFP in sera of cancer patients, and the results agree well with those obtained by conventional ELISA. (author)
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Puzzilli, L.M.
2017-01-01
Roč. 14, č. 4 (2017), s. 431-444 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : surface wave analysis * Rayleigh wave dispersion * joint inversion * Vs30 Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 0.699, year: 2016
Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.
2018-01-01
Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).
International Nuclear Information System (INIS)
Chan, W K; Schwartz, J; Flanagan, G
2013-01-01
One of the key remaining challenges to safe and reliable operation of large, high temperature superconductor (HTS)-based magnet systems is quench detection and protection. Due to the slow quench propagation in HTS systems, the conventional discrete voltage-tap approach developed for NbTi and Nb 3 Sn magnets may not be sufficient. In contrast, a distributed temperature profile, generated by a distributed temperature sensor and facilitating continuous monitoring of the temperature at any monitored locations within a magnet with high spatial resolution, may be required. One such distributed temperature sensing option is the use of Rayleigh-based fiber optic sensors (FOS), which are immune to electromagnetic interference. The detection of a quench via Rayleigh-based FOS relies on converting the spectral shifts in the Rayleigh scattering spectra into temperature variations. As a result, the higher the spatial sampling resolution the larger the data processing volume, and thus the lower the temporal sampling resolution. So, for effective quench detection, which requires the quick and accurate identification of a hot spot, it is important to find a balance between the spatial and temporal resolutions executable on a given data acquisition and processing (DAQ) system. This paper discusses a method for finding an appropriate DAQ technology that matches the characteristic of a superconducting coil, and determining the acceptable resolutions for efficient and safe quench detection. A quench detection algorithm based on distributed temperature sensing is proposed and its implementation challenges are discussed. (paper)
Gordon, Howard R.; Wang, Menghua
1992-01-01
The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.
El-Kader, M. S. A.; Godet, J.-L.; Gustafsson, M.; Maroulis, G.
2018-04-01
Quantum mechanical lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) at room temperature (295 K) are computed for gaseous mixtures of molecular hydrogen with neon, krypton and xenon. The induced spectra are detected using theoretical values for induced dipole moment, pair-polarizability trace and anisotropy, hyper-polarizability and updated intermolecular potentials. Good agreement is observed for all spectra when the literature and the present potentials which are constructed from the transport and thermo-physical properties are used.
Thakkar, Disha; Gevriya, Bhavesh; Mashru, R. C.
2014-03-01
Linezolid reacted with palladium to form 1:1 binary cationic chelate which further reacted with eosin dye to form 1:1 ternary ion association complex at pH 4 of Walpole's acetate buffer in the presence of methyl cellulose. As a result not only absorption spectra were changed but Resonance Rayleigh Scattering (RRS), Second-order Scattering (SOS) and Frequency Doubling Scattering (FDS) intensities were greatly enhanced. The analytical wavelengths of RRS, SOS and FDS (λex/λem) of ternary complex were located at 538 nm/538 nm, 240 nm/480 nm and 660 nm/330 nm, respectively. The linearity range for RRS, SOS and FDS methods were 0.01-0.5 μg mL-1, 0.1-2 μg mL-1 and 0.2-1.8 μg mL-1, respectively. The sensitivity order of three methods was as RRS > SOS > FDS. Accuracy of all methods were determined by recovery studies and showed recovery between 98% and 102%. Intraday and inter day precision were checked for all methods and %RSD was found to be less than 2 for all methods. The effects of foreign substances were tested on RRS method and it showed the method had good selectivity. For optimization of process parameter, Taguchi orthogonal array design L8(24) was used and ANOVA was adopted to determine the statistically significant control factors that affect the scattering intensities of methods. The reaction mechanism, composition of ternary ion association complex and reasons for scattering intensity enhancement was discussed in this work.
International Nuclear Information System (INIS)
Roderick, N.F.; Cochrane, K.; Douglas, M.R.
1998-01-01
Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed
Single spin asymmetries in semi-inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Mulders, P.J.
1998-01-01
In this talk I want to illustrate the many possibilities for studying the structure of hadrons in hard scattering processes by giving a number of examples involving increasing complexity in the demands for particle polarization, particle identification or polarimetry. In particular the single spin asymmetries will be discussed. The measurements discussed in this talk are restricted to lepton-hadron scattering, but can be found in various other hard processes such as Drell-Yan scattering or e + e - annihilation. (author)
Zhong, Caijun
2010-09-01
This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.
Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences
International Nuclear Information System (INIS)
Battista, J.J.; Bronskill, M.J.
1978-01-01
The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)
Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang
2018-02-01
The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.
Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli
2014-09-15
A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse
2014-09-28
Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.
Importance sampling the Rayleigh phase function
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2011-01-01
Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....
Rayleigh scattering from single-site polysylane adsorbed on silicon: Theory
Wijers, Christianus M.J.
1986-01-01
An ordered set of dipoles with mutual interaction in the close vicinity of a dielectric surface is studied. The solution of that particular theoretical problem is given rigorously both for the static and dynamic case. It can serve as a description of the polysylane molecules formed at the surface of
A Hierarchical Volumetric Shadow Algorithm for Single Scattering
Baran, Ilya; Chen, Jiawen; Ragan-Kelley, Jonathan Millar; Durand, Fredo; Lehtinen, Jaakko
2010-01-01
Volumetric effects such as beams of light through participating media are an important component in the appearance of the natural world. Many such effects can be faithfully modeled by a single scattering medium. In the presence of shadows, rendering these effects can be prohibitively expensive: current algorithms are based on ray marching, i.e., integrating the illumination scattered towards the camera along each view ray, modulated by visibility to the light source at each sample. Visibility...
Energy Technology Data Exchange (ETDEWEB)
Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)
2013-05-01
Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.
Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas
2016-04-01
The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient
Single particle analysis with a 3600 light scattering photometer
International Nuclear Information System (INIS)
Bartholdi, M.F.
1979-06-01
Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells
Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel
2004-05-01
Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.
Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.
2010-01-01
We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the
Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli
2013-03-01
In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.
National Research Council Canada - National Science Library
Bairamov, Bakhysh
2004-01-01
...: As detailed in an on-line proposal the contractor will: 1) develop and build an optical device, fitted to a Fabry-Perot interferometer, to perform high-resolution quasieleastic light scattering spectroscopy; 2...
Effective single scattering albedo estimation using regional climate model
CSIR Research Space (South Africa)
Tesfaye, M
2011-09-01
Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...
Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang
2015-08-15
In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Luo, Yanghe [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Li, Chongnin; Qin, Aimian [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Liang, Aihui, E-mail: ahliang2008@163.com [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Jiang, Zhiliang, E-mail: zljiang@mailbox.gxnu.edu.cn [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China)
2017-05-15
In pH 7.2 KH{sub 2}PO{sub 4}-NaOH buffer solution, graphene oxide (GO) has strong resonance Rayleigh scattering (RRS) effect at 400 nm, and amino acid reacted with ninhydrin to form blue-violet complex Ruhemann's purple (RP) with a absorption peak at 400 nm. RPs can strongly adsorbed on the surface of GO, and the RRS donor of GO probes coupled with the receptor of RP that reduced the RRS intensity at 400 nm due to the RRS-energy transfer (RRS-ET) from the GO to RP. With the increase of amino acid concentration, the RRS intensity quenched linearly at 400 nm due to the RRS-ET enhancing. The quenched intensity responds linearly with glutamic acid concentration in the range of 0.2–200 μmol L{sup −1}, with a detection limit of 0.08 µmol L{sup −1}. This simple and sensitive RRS-ET method was used to detect the content of amino acid in oral liquid, with satisfactory results.
Bi, Shuyun; Wang, Tianjiao; Zhao, Tingting; Wang, Yu
2014-06-01
A novel method with high sensitivity was designed for the determination of trace nucleic acids by using cationic surfactant cetylpyridinium chloride (CPC) and camellia sinensis (CS) as resonance Rayleigh light scattering (RLS) probes. It was found DNA could combine with CS and CPC in Tris-HCl buffer (pH = 7.4). Under optimum conditions, the RLS intensity of DNA can be enhanced by CPC-CS obviously at 294 nm, and the enhanced RLS intensity was directly proportional to DNA concentration in the range from 0.024 to 3.48 μg mL-1 with a good linear relationship (r = 0.9940). The limit of detection (LOD) was 1.49 ng mL-1 (S/N = 3). In addition, the effects of some interferences including K+, Na+, Mg2+, Zn2+, Cu2+, Ca2+ and glucose on the determination were studied. The developed RLS assay was successfully applied to three synthetic samples to measure DNA, the recovery was 94.7-106.3% and RSD was 0.58-3.33%.
Directory of Open Access Journals (Sweden)
Weiai Zhang
2016-04-01
Full Text Available This work describes a highly-sensitive and accurate approach for the determination of chitosan (CTS using Naphthol Green B (NGB as a probe in the Resonance Rayleigh scattering (RRS method. The interaction between CTS and NGB leads to notable enhancement of RRS, and the enhancement is proportional to the concentration of CTS over a certain range. Under optimum conditions, the calibration curve of ΔI against CTS concentration was ΔI = 1860.5c + 86.125 (c, µg/mL, R2 = 0.9999, and the linear range and detection limit (DL were 0.01–5.5 µg/mL and 8.87 ng/mL. Moreover, the effect of the molecular weight of CTS on the accurate quantification of CTS was studied. The experimental data were analyzed through linear regression analysis using SPSS20.0, and the molecular weight was found to have no statistical significance. This method has been applied to assay two CTS samples and obtained good recovery and reproducibility.
International Nuclear Information System (INIS)
Kong, L.; Liu, Z.; Hu, X.; Liu, S.; Li, W.
2012-01-01
The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkably enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. We show that the Tyr B16, Tyr B26 and Phe B24 amino acids near the active center (Phe B25) were influenced by the interaction, whereas Tyr A14, Tyr A19 and Phe B1 (which are located far away from the active center) were less influenced. The interaction provide a way in the quantitation of both ctDNA and insulin with high sensitivity. When ctDNA is used as a probe to quantify insulin, the detection limit (3σ) is 6.0 ng mL -1 . If, inversely, insulin is used as a probe to quantify ctDNA, the detection limit (3σ) is 7.2 ng mL -1 . The analysis of synthetic DNA samples and an insulin infection sample provided satisfactory results. (author)
Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio
2007-07-01
The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.
SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry
International Nuclear Information System (INIS)
Disney, R.K.; Vogtman, S.E.
1987-01-01
1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total
Elastic scattering of electrons from singly ionized argon
International Nuclear Information System (INIS)
Griffin, D.C.; Pindzola, M.S.
1996-01-01
Recently, Greenwood et al. [Phys. Rev. Lett. 75, 1062 (1995)] reported measurements of large-angle elastic scattering of electrons from singly ionized argon at an energy of 3.3 eV. They compared their results for the differential cross section with cross sections determined using phase shifts obtained from two different scattering potentials and found large discrepancies between theory and experiment at large angles. They state that these differences may be due to the effects of polarization of the target, which are not included in their calculations, as well as inaccurate representations of electron exchange in the local scattering potentials that are employed to determine the phase shifts. In order to test these proposed explanations of the discrepancies, we have carried out calculations of elastic scattering from Ar + using the R-matrix method. We compare both a single-state calculation, which does not include polarization, and a 17-state calculation, in which the effects of dipole polarizability are included through the use of polarization pseudostates within the close-coupling expansion, to each other and with the measurements. We find some differences between the two calculations at intermediate scattering angles, but very close agreement at angles above 100 degree. Although the calculated cross sections agree with experiment between 120 degree and 135 degree, large discrepancies persist at angles above 135 degree. We conclude that the differences between the measurements and theory cannot be explained on the basis of an inaccurate representation of electron exchange or polarization of the target. copyright 1996 The American Physical Society
Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen
2011-01-01
Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.
Chen, Fang; Peng, Jingdong; Liu, Shaopu; Peng, Huanjun; Pan, Ziyu; Bu, Lingli; Xiao, Huan; Zhang, Ruiwen
2017-04-01
A highly sensitive detection approach of resonance Rayleigh scattering spectra (RRS) is firstly applied to analyzing nootropic drugs including piracetam (PIR) and oxiracetam (OXI). In HCl-NaAc buffer solution (pH = 3.0), the OXI chelated with palladium (II) to form the chelate cation [Pd2·OXI]2 +, and then reacted with Congo red (CGR) by virtue of electrostatic attraction and hydrophobic force to form binary complex [Pd2·OXI]. CGR2, which could result in the great enhancement of RRS. The resonance Rayleigh scattering signal was recorded at λex = λem = 375 nm. This mixture complex not only has higher RRS, but also makes contribution to significant increase of fluorescence, and the same phenomena also were discovered in PIR. The enhanced RRS intensity is in proportion to the PIR and OXI concentration in the range of 0.03-3.0 μg mL- 1, and the detection limit (DL) of RRS method for PIR and OXI is 2.3 ng mL- 1 and 9.7 ng mL- 1. In addition, the DL of fluorescence method for PIR and OXI is 8.4 μg mL- 1 and 19.5 μg mL- 1. Obviously, the RRS is the highly sensitive method, and the recoveries of the two kinds of nootropic drugs were range from 100.4% to 101.8.0% with RSD (n = 5) from 1.1% to 3.1% by RRS method. This paper not only investigated the optimum conditions for detecting nootropics with using RRS method, but also focused on the reasons for enhancing RRS intensity and the reaction mechanism, which in order to firm and contract the resultant. Finally, The RRS method has been applied to detect nootropic drugs in human urine samples with satisfactory results. Fig. S2. The effect of ionic strength: Pd (II)-CGR system (curve a); Pd (II)-OXI-CGR system (curve b); Pd (II)-PIR- CGR system (curve c). Pd (II): 2.0 × 10- 4 mol L- 1; CGR: 1.0 × 10- 5 mol L- 1; OXI: 1.5 μg mL- 1; PIR: 2 μg mL- 1; NaCl: 1 mol L- 1. Fig. S3. The effect of time: Pd (II)-OXI-CGR system (curve a); Pd (II)-PIR-CGR system (curve b). Pd (II): 2.0 × 10- 4 mol L- 1; CGR: 1.0 × 10- 5 mol L- 1
International Nuclear Information System (INIS)
Wang Lifeng; Peng Jingdong; Liu Limin
2008-01-01
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min -1 . Column temperature was 30 deg. C. The RRS signal was detected at λ ex = λ em = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL -1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL -1 for oxytetracycline (OTC), 12.11-605.5 μg mL -1 for tetracycline (TC), 11.79-589.5 μg mL -1 for chlortetracycline (CTC) and 10.32-516.0 μg mL -1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability
Energy Technology Data Exchange (ETDEWEB)
Lifeng, Wang [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Peng Jingdong [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: hxpengjd@swu.edu.cn; Limin, Liu [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)
2008-12-07
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 {mu}m) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min{sup -1}. Column temperature was 30 deg. C. The RRS signal was detected at {lambda}{sub ex} = {lambda}{sub em} = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 {mu}g mL{sup -1} was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 {mu}g mL{sup -1} for oxytetracycline (OTC), 12.11-605.5 {mu}g mL{sup -1} for tetracycline (TC), 11.79-589.5 {mu}g mL{sup -1} for chlortetracycline (CTC) and 10.32-516.0 {mu}g mL{sup -1} for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.
Implementation of stimulated Raman scattering microscopy for single cell analysis
D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi
2017-05-01
In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.
Measuring the complex field scattered by single submicron particles
Energy Technology Data Exchange (ETDEWEB)
Potenza, Marco A. C., E-mail: marco.potenza@unimi.it; Sanvito, Tiziano [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); CIMAINA, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); EOS s.r.l., viale Ortles 22/4, I-20139 Milan (Italy); Pullia, Alberto [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy)
2015-11-15
We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.
Polarized Raman scattering of single ZnO nanorod
International Nuclear Information System (INIS)
Yu, J. L.; Lai, Y. F.; Wang, Y. Z.; Cheng, S. Y.; Chen, Y. H.
2014-01-01
Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A 1 (TO), E 1 (TO), and E 2 high in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A 1 (TO) and E 1 (TO) phonon modes normalized to that of the E 2 high phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer
The single-angle neutron scattering facility at Pelindaba
International Nuclear Information System (INIS)
Hofmeyr, C.; Mayer, R.M.; Tillwick, D.L.; Starkey, J.R.
1978-05-01
The small-angle neutron scattering facility at the SAFARI-1 reactor is described in detail, and with reference to theoretical and practical design considerations. Inexpensive copper microwave guides used as a guide-pipe for slow neutrons provided the basis for a useful though comparatively simple facility. The neutron-spectrum characteristics of the final facility in different configurations of the guide-pipe (both S and single-curved) agree wel with expected values based on results obtained with a test facility. The design, construction, installation and alignment of various components of the facility are outlined, as well as intensity optimisation. A general description is given of experimental procedures and data-aquisition electronics for the four-position sample holder and counter array of up to 18 3 He detectors and a beam monitor [af
Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds
Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola
2014-11-01
Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.
Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.
Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola
2014-11-01
Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.
Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate
Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan
2017-08-01
Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.
Retrievals and uncertainty analysis of aerosol single scattering albedo from MFRSR measurements
International Nuclear Information System (INIS)
Yin, Bangsheng; Min, Qilong; Joseph, Everette
2015-01-01
Aerosol single scattering albedo (SSA) can be retrieved from the ratio of diffuse horizontal and direct normal fluxes measured from multifilter rotating shadowband radiometer (MFRSR). In this study, the measurement channels at 415 nm and 870 nm are selected for aerosol optical depth (AOD) and Angstrom coefficient retrievals, and the measurements at 415 nm are used for aerosol SSA retrievals with the constraint of retrieved Angstrom coefficient. We extensively assessed various issues impacting on the accuracy of SSA retrieval from measurements to input parameters and assumptions. For cloud-free days with mean aerosol loading of 0.13–0.60, our sensitivity study indicated that: (1) 1% calibration uncertainty can result in 0.8–3.7% changes in retrieved SSA; (2) without considering the cosine respond correction and/or forward scattering correction will result in underestimation of 1.1–3.3% and/or 0.73% in retrieved SSA; (3) an overestimation of 0.1 in asymmetry factor can result in an underestimation of 2.54–3.4% in retrieved SSA; (4) for small aerosol loading (e.g., 0.13), the uncertainty associated with the choice of Rayleigh optical depth value can result in non-negligible change in retrieved SSA (e.g., 0.015); (5) an uncertainty of 0.05 for surface albedo can result in changes of 1.49–5.4% in retrieved SSA. We applied the retrieval algorithm to the MFRSR measurements at the Atmospheric Radiation Measurements (ARM) Southern Great Plains (SGP) site. The retrieved results of AOD, Angstrom coefficient, and SSA are basically consistent with other independent measurements from co-located instruments at the site. - Highlights: • Aerosol SSA is derived from MFRSR measured diffuse to direct normal irradiance ratio. • We extensively assessed various issues impacting on the accuracy of SSA retrieval. • The issues are mainly from measurements and model input parameters and assumptions. • We applied the retrieval algorithm to the MFRSR measurements at ARM SGP
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.
2018-01-01
Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016
Thermal neutron scattering kernels for sapphire and silicon single crystals
International Nuclear Information System (INIS)
Cantargi, F.; Granada, J.R.; Mayer, R.E.
2015-01-01
Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche
DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo
International Nuclear Information System (INIS)
Johnson, M.W.
1993-01-01
1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199
Seasonal variation of the single scattering albedo of the Jungfraujoch aerosol
Energy Technology Data Exchange (ETDEWEB)
Collaud Coen, M.; Weingartner, E.; Corrigan, C.; Baltensperger, U.
2003-03-01
The single scattering albedo ({omega}{sub 0}) represents the fraction of the light extinction due to scattering. It is there-fore a key parameter to estimate the aerosol direct radiative forcing. The seasonal and diurnal variation of the single scattering albedo was calculated for the Jungfraujoch dry aerosol, which is representative for clean remote continental conditions. The values of {omega}{sub 0} vary between 0.7 and 0.9 depending on the season and on the wavelength. (author)
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
Higginson, Drew P.
2017-11-01
We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.
Role of electron-electron scattering on spin transport in single layer graphene
Directory of Open Access Journals (Sweden)
Bahniman Ghosh
2014-01-01
Full Text Available In this work, the effect of electron-electron scattering on spin transport in single layer graphene is studied using semi-classical Monte Carlo simulation. The D’yakonov-P’erel mechanism is considered for spin relaxation. It is found that electron-electron scattering causes spin relaxation length to decrease by 35% at 300 K. The reason for this decrease in spin relaxation length is that the ensemble spin is modified upon an e-e collision and also e-e scattering rate is greater than phonon scattering rate at room temperature, which causes change in spin relaxation profile due to electron-electron scattering.
Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering
International Nuclear Information System (INIS)
Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.
2011-01-01
We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.
The single scattering properties of the aerosol particles as aggregated spheres
International Nuclear Information System (INIS)
Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.
2012-01-01
The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.
Temporary electron localization and scattering in disordered single strands of DNA
International Nuclear Information System (INIS)
Caron, Laurent; Sanche, Leon
2006-01-01
We present a theoretical study of the effect of structural and base sequence disorders on the transport properties of nonthermal electron scattering within and from single strands of DNA. The calculations are based on our recently developed formalism to treat multiple elastic scattering from simplified pseudomolecular DNA subunits. Structural disorder is shown to increase both the elastic scattering cross section and the attachment probability on the bases at low energy. Sequence disorder, however, has no significant effect
Energy Technology Data Exchange (ETDEWEB)
Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)
2011-01-01
Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.
Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09
International Nuclear Information System (INIS)
Kotane, L M; Comins, J D; Every, A G; Botha, J R
2011-01-01
Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs 0.91 Sb 0.09 . The wave speed measurements have been used to determine the room temperature values of the elastic constants C 11 , C 12 and C 44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.
Directory of Open Access Journals (Sweden)
Guennadi Saiko
2014-01-01
Full Text Available Various scenarios of light propagation paths in turbid media (single backward scattering, multiple backward scattering, banana shape are discussed and their contributions to reflectance spectra are estimated. It has been found that a single backward or multiple forward scattering quasi-1D paths can be the major contributors to reflected spectra in wide area illumination scenario. Such a single backward scattering (SBS approximation allows developing of an analytical approach which can take into account refractive index mismatched boundary conditions and multilayer geometry and can be used for real-time spectral processing. The SBS approach can be potentially applied for the distances between the transport and reduced scattering domains. Its validation versus the Kubelka-Munk model, path integrals, and diffusion approximation of the radiation transport theory is discussed.
First measurement of the Rayleigh cross section
Naus, H.; Ubachs, W.
2000-01-01
Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of
Strong paramagnon scattering in single atom Pd contacts
DEFF Research Database (Denmark)
Schendel, V.; Barreteau, Cyrille; Brandbyge, Mads
2017-01-01
Pd contacts shows a reduction with increasing bias, which gives rise to a peculiar Lambda-shaped spectrum. Supported by theoretical calculations, we correlate this finding with the lifetime of hot quasiparticles in Pd, which is strongly influenced by paramagnon scattering. In contrast to this, Co...
Energy Technology Data Exchange (ETDEWEB)
Perrett, Glynis M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Campbell, John L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Gellert, Ralf [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); King, Penelope L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Nield, Emily; O’Meara, Joanne M.; Pradler, Irina [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)
2016-02-01
The intensity ratio C/R between Compton and Rayleigh scatter peaks of the exciting Pu L X-rays in the alpha particle X-ray spectrometer (APXS) is strongly affected by the presence of very light elements such as oxygen which cannot be detected directly by the APXS. C/R values are determined along with element concentrations by fitting APXS spectra of geochemical reference materials (GRMs) with the GUAPX code. A quantity K is defined as the ratio between the C/R value determined by Monte Carlo simulation based on the measured element concentrations and the fitted C/R value from the spectrum. To ensure optimally accurate K values, the choice of appropriate GRMs is explored in detail, with attention paid to Rb and Sr, whose characteristic Kα X-ray peaks overlap the Pu Lα scatter peaks. The resulting relationship between the ratio K and the overall oxygen fraction is linear. This provides a calibration from which the concentration of additional light invisible constituents (ALICs) such as water may be estimated in unknown rock and conglomerate samples. Several GRMs are used as ‘unknowns’ in order to evaluate the accuracy of ALIC concentrations derived in this manner.
Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko
2018-04-01
Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2013-01-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis
Recent single ARM electron scattering experiments at Saclay
International Nuclear Information System (INIS)
Frois, B.
1981-07-01
Some recent electron scattering experiments at intermediate energies performed at the Saclay linear accelerator (ALS) are presented. First the definitive results of the measurements of the size of valence orbits by magnetic elastic electron scattering are discussed and followed by an overview of the study of charge distributions in closed shell nuclei. These results are among the most stringent experimental tests of nuclear theory because they probe without ambiguity the shape of nuclei. Then, it is shown how the details of the transition densities of the first excited states of 152 Sm have been brought out by very high momentum transfer experiments. Finally, the results of the investigation of mesonic degrees of freedom in deuterium and helium-3 are presented
Acoustofluidic particle dynamics: Beyond the Rayleigh limit.
Baasch, Thierry; Dual, Jürg
2018-01-01
In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.
Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective
International Nuclear Information System (INIS)
Riley, D.J.
1987-03-01
A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs
International Nuclear Information System (INIS)
Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E.; Kauppinen, T.; Patomaeki, L.
1999-01-01
Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p [de
Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh
Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.
2010-11-01
The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.
Scatter measurement and correction method for cone-beam CT based on single grating scan
Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua
2017-06-01
In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.
Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.
2003-01-01
Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).
Fast analytical scatter estimation using graphics processing units.
Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris
2015-01-01
To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.
Nekuchaev, A. O.; Shuteev, S. A.
2014-04-01
A new method of data transmission in DWDM systems along existing long-distance fiber-optic communication lines is proposed. The existing method, e.g., uses 32 wavelengths in the NRZ code with an average power of 16 conventional units (16 units and 16 zeros on the average) and transmission of 32 bits/cycle. In the new method, one of 124 wavelengths with a duration of one cycle each (at any time instant, no more than 16 obligatory different wavelengths) and capacity of 4 bits with an average power of 15 conventional units and rate of 64 bits/cycle is transmitted at every instant of a 1/16 cycle. The cross modulation and double Rayleigh scattering are significantly decreased owing to uniform distribution of power over time at different wavelengths. The time redundancy (forward error correction (FEC)) is about 7% and allows one to achieve a coding enhancement of about 6 dB by detecting and removing deletions and errors simultaneously.
Structural science using single crystal and pulse neutron scattering
International Nuclear Information System (INIS)
Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi
2008-01-01
The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)
Absorption line profiles in a moving atmosphere - A single scattering linear perturbation theory
Hays, P. B.; Abreu, V. J.
1989-01-01
An integral equation is derived which linearly relates Doppler perturbations in the spectrum of atmospheric absorption features to the wind system which creates them. The perturbation theory is developed using a single scattering model, which is validated against a multiple scattering calculation. The nature and basic properties of the kernels in the integral equation are examined. It is concluded that the kernels are well behaved and that wind velocity profiles can be recovered using standard inversion techniques.
Mimicking multi-channel scattering with single-channel approaches
Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro
2009-01-01
The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...
Comparison of scatter doses from a multislice and a single slice CT scanner
International Nuclear Information System (INIS)
Burrage, J. W.; Causer, D. A.
2006-01-01
During shielding calculations for a new multislice CT (MSCT) scanner it was found that the manufacturer's data indicated significantly higher external scatter doses than would be generated for a single slice CT (SSCT). Even allowing for increased beam width, the manufacturer's data indicated that the scatter dose per scan was higher by a factor of about 3 to 4. The magnitude of the discrepancy was contrary to expectations and also contrary to a statement by the UK ImPACT group, which indicated that when beam width is taken into account, the scatter doses should be similar. The matter was investigated by comparing scatter doses from an SSCT and an MSCT. Scatter measurements were performed at three points using a standard perspex CTDI phantom, and CT dose indices were also measured to compare scanner output. MSCT measurements were performed with a 40 mm wide beam, SSCT measurements with a 10 mm wide beam. A film badge survey was also performed after the installation of the MSCT scanner to assess the adequacy of lead shielding in the room. It was found that the scatter doses from the MSCT were lower than indicated by the manufacturer's data. MSCT scatter doses were approximately 4 times higher than those from the SSCT, consistent with expectations due to beam width differences. The CT dose indices were similar, and the film badge survey indicated that the existing shielding, which had been adequate for the SSCT, was also adequate for the MSCT
Mimicking multichannel scattering with single-channel approaches
Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro
2010-02-01
The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold Li6 and Rb87 atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.
Mimicking multichannel scattering with single-channel approaches
International Nuclear Information System (INIS)
Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro
2010-01-01
The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6 Li and 87 Rb atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.
Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering
International Nuclear Information System (INIS)
Barbara Pasquini; Marc Vanderhaeghen
2004-01-01
We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress
The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2
International Nuclear Information System (INIS)
Verheij, L.K.; Poelsema, B.; Boers, A.L.
1976-01-01
The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory
International Nuclear Information System (INIS)
Stark, Julian; Rothe, Thomas; Kienle, Alwin; Kieß, Steffen; Simon, Sven
2016-01-01
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns. (paper)
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-07
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Lattice and Molecular Vibrations in Single Crystal I2 at 77 K by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Smith, H. G.; Nielsen, Mourits; Clark, C. B.
1975-01-01
Phonon dispersion curves of single crystal iodine at 77 K have been measured by one-phonon coherent inelastic neutron scattering techniques. The data are analysed in terms of two Buckingham-six intermolecular potentials; one to represent the shortest intermolecular interaction (3.5 Å) and the other...
He, L.; Arvidson, R. E.; O'Sullivan, J. A.
2018-04-01
We use a neural network (NN) approach to simultaneously retrieve surface single scattering albedos and temperature maps for CRISM data from 1.40 to 3.85 µm. It approximates the inverse of DISORT which simulates solar and emission radiative streams.
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe
International Nuclear Information System (INIS)
Zoest, J.M. van.
1986-01-01
This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)
Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure
Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo
2017-11-01
Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.
Determining Complex Structures using Docking Method with Single Particle Scattering Data
Directory of Open Access Journals (Sweden)
Haiguang Liu
2017-04-01
Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2011-01-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a
Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells
Ozaki, Yukihiro; Aroca, Ricardo
2014-01-01
A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.
Rayleigh reciprocity relations: Applications
International Nuclear Information System (INIS)
Lin Ju; Li Xiao-Lei; Wang Ning
2016-01-01
Classical reciprocity relations have wide applications in acoustics, from field representation to generalized optical theorem. In this paper we introduce our recent results on the applications and generalization of classical Rayleigh reciprocity relation: higher derivative reciprocity relations as a generalization of the classical one and a theoretical proof on the Green’s function retrieval from volume noises. (special topic)
Shintake, Tsumoru
2008-10-01
The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.
Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze
Kattawar, G. W.; Plass, G. N.; Catchings, F. E.
1971-01-01
Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.
Imaging through scattering media by Fourier filtering and single-pixel detection
Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.
2018-02-01
We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.
Polarized Raman scattering study of PSN single crystals and epitaxial thin films
Directory of Open Access Journals (Sweden)
J. Pokorný
2015-06-01
Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.
Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.
2010-03-01
We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).
Passive retrieval of Rayleigh waves in disordered elastic media
International Nuclear Information System (INIS)
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-01-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime
Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy
Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.
2017-11-01
We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.
Microwave single-scattering properties of randomly oriented soft-ice hydrometeors
Directory of Open Access Journals (Sweden)
D. Casella
2008-11-01
Full Text Available Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters.
In this study, we use the discrete dipole approximation (DDA to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a effective-medium equivalent spheres, b solid-ice equivalent spheres, and c randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders.
Decoherence due to elastic rayleigh scattering
CSIR Research Space (South Africa)
Uys, H
2010-11-01
Full Text Available . acknowledges support from Georgia Tech and IARPA. D.M. is supported by NSF. This work was supported by the DARPA OLE program and by IARPA. This manuscript is the contribution of NIST and is not subject to U.S. copyright. *huys@csir.co.za †john...
First experimental observation of double-photon Compton scattering using single gamma detector
International Nuclear Information System (INIS)
Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.
2003-01-01
Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process
Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals
International Nuclear Information System (INIS)
Prokert, F.; Savenko, B.N.; Balagurov, A.M.
1994-01-01
At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)
International Nuclear Information System (INIS)
Buckman, S.J.; Brunger, M.J.
1996-07-01
Electron scattering cross sections (elastic, rotational and vibrational excitation) for a number of atomic and (relatively) single molecular systems are examined. Particular reference is made to the level of agreement which is obtained from the application of the completely different measurement philosophies embodied in 'beam' and 'swarm' techniques. The range of energies considered is generally restricted to the region below 5 eV. 142 refs., 1 tab., 12 figs
Energy Technology Data Exchange (ETDEWEB)
Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology and Nuclear Medicine; Kauppinen, T.; Patomaeki, L. [Kuopio Univ. (Finland). Dept. of Applied Physics
1999-05-01
Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p<0.0001) after scatter correction and the slope was 0.954. Pairwise correlation indicated the agreement between nonscatter corrected and scatter corrected images. Reconstructed slices before and after scatter correction demonstrate a good correlation in the quantitative accuracy of radionuclide concentration. G/C values have significant correlation coefficients between original and corrected data. Conclusion: The transaxial images of human brain studies show that the scatter correction using single isotope in simultaneous transmission and emission tomography provides a good scatter compensation. The contrasts were increased on all 12 ROIs. The scatter compensation enhanced details of physiological lesions. (orig.) [Deutsch] Die Photonenstreuung gehoert zu den wichtigsten Faktoren, die die quantitative Genauigkeit von SPECT-Bildern vermindern. Es wurde eine ganze Reihe von Methoden zur Streuungskorrektur vorgeschlagen. Von uns wurde die Einzelisotopen-Methode empfohlen. Ziel: Wir untersuchten die Streuungskorrektur-Methode zur Verbesserung der Bildqualitaet durch simultane Gewinnung von Emissions
International Nuclear Information System (INIS)
Um, Junshik; McFarquhar, Greg M.
2013-01-01
The optimal orientation averaging scheme (regular lattice grid scheme or quasi Monte Carlo (QMC) method), the minimum number of orientations, and the corresponding computing time required to calculate the average single-scattering properties (i.e., asymmetry parameter (g), single-scattering albedo (ω o ), extinction efficiency (Q ext ), scattering efficiency (Q sca ), absorption efficiency (Q abs ), and scattering phase function at scattering angles of 90° (P 11 (90°)), and 180° (P 11 (180°))) within a predefined accuracy level (i.e., 1.0%) were determined for four different nonspherical atmospheric ice crystal models (Gaussian random sphere, droxtal, budding Bucky ball, and column) with maximum dimension D=10μm using the Amsterdam discrete dipole approximation at λ=0.55, 3.78, and 11.0μm. The QMC required fewer orientations and less computing time than the lattice grid. The calculations of P 11 (90°) and P 11 (180°) required more orientations than the calculations of integrated scattering properties (i.e., g, ω o , Q ext , Q sca , and Q abs ) regardless of the orientation average scheme. The fewest orientations were required for calculating g and ω o . The minimum number of orientations and the corresponding computing time for single-scattering calculations decreased with an increase of wavelength, whereas they increased with the surface-area ratio that defines particle nonsphericity. -- Highlights: •The number of orientations required to calculate the average single-scattering properties of nonspherical ice crystals is investigated. •Single-scattering properties of ice crystals are calculated using ADDA. •Quasi Monte Carlo method is more efficient than lattice grid method for scattering calculations. •Single-scattering properties of ice crystals depend on a newly defined parameter called surface area ratio
Johns, Maureen; Liu, Hanli
2003-07-01
When light interacts with tissue, it can be absorbed, scattered or reflected. Such quantitative information can be used to characterize the optical properties of tissue, differentiate tissue types in vivo, and identify normal versus diseased tissue. The purpose of this research is to develop an algorithm that determines the reduced scattering coefficient (μs") of tissues from a single optical reflectance spectrum with a small source-detector separation. The basic relationship between μs" and optical reflectance was developed using Monte Carlo simulations. This produced an analytical equation containing μs" as a function of reflectance. To experimentally validate this relationship, a 1.3-mm diameter fiber optic probe containing two 400-micron diameter fibers was used to deliver light to and collect light from Intralipid solutions of various concentrations. Simultaneous measurements from optical reflectance and an ISS oximeter were performed to validate the calculated μs" values determined by the reflectance measurement against the 'gold standard" ISS readings. The calculated μs" values deviate from the expected values by approximately -/+ 5% with Intralipid concentrations between 0.5 - 2.5%. The scattering properties within this concentration range are similar to those of in vivo tissues. Additional calculations are performed to determine the scattering properties of rat brain tissues and to discuss accuracy of the algorithm for measured samples with a broad range of the absorption coefficient (μa).
Rayleigh's hypothesis and the geometrical optics limit.
Elfouhaily, Tanos; Hahn, Thomas
2006-09-22
The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.
The effect of scattering on single photon transmission of optical angular momentum
International Nuclear Information System (INIS)
Andrews, D L
2011-01-01
Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle
The effect of scattering on single photon transmission of optical angular momentum
Andrews, D. L.
2011-06-01
Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.
Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.
2016-04-01
The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.
Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide
Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.
2018-04-01
We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.
Resonant stimulation of Raman scattering from single-crystal thiophene/phenylene co-oligomers
International Nuclear Information System (INIS)
Yanagi, Hisao; Marutani, Yusuke; Matsuoka, Naoki; Hiramatsu, Toru; Ishizumi, Atsushi; Sasaki, Fumio; Hotta, Shu
2013-01-01
Amplified Raman scattering was observed from single crystals of thiophene/phenylene co-oligomers (TPCOs). Under ns-pulsed excitation, the TPCO crystals exhibited amplified spontaneous emission (ASE) at resonant absorption wavelengths. With increasing excitation wavelength to the 0-0 absorption edge, the stimulated resonant Raman peaks appeared both in the 0-1 and 0-2 ASE band regions. When the excitation wavelength coincided with the 0-1 ASE band energy, the Raman peaks selectively appeared in the 0-2 ASE band. Such unusual enhancement of the 0-2 Raman scattering was ascribed to resonant stimulation via vibronic coupling with electronic transitions in the uniaxially oriented TPCO molecules
Directory of Open Access Journals (Sweden)
Kareema Abed Al-Kadim
2017-12-01
Full Text Available In this paper Rayleigh Pareto distribution have introduced denote by( R_PD. We stated some useful functions. Therefor we give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters so the aim of this search is to introduce a new distribution
A simple proposal for Rayleigh's scaterring experiment
Directory of Open Access Journals (Sweden)
Adriano José Ortiz
2010-03-01
Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.
Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics
Directory of Open Access Journals (Sweden)
Darren J. Goossens
2016-02-01
Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.
Kang, Bin; Austin, Lauren A; El-Sayed, Mostafa A
2012-10-10
Due to their strong enhancement of scattered light, plasmonic nanoparticles have been utilized for various biological and medical applications. Here, we describe a new technique, Targeted Plasmonic-Enhanced Single-Cell Rayleigh/Raman Spectroscopy, to monitor the molecular changes of any cell-component, such as the nucleus, during the different phases of its full cell cycle by simultaneously recording its Rayleigh images and Raman vibration spectra in real-time. The analysis of the observed Raman DNA and protein peaks allowed the different phases of the cell cycle to be identified. This technique could be used for disease diagnostics and potentially improve our understanding of the molecular mechanisms of cellular functions such as division, death, signaling, and drug action.
Resonances in a two-dimensional electron waveguide with a single δ-function scatterer
International Nuclear Information System (INIS)
Boese, Daniel; Lischka, Markus; Reichl, L. E.
2000-01-01
We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single δ-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption, and show the influence of the quasibound states on these two quantities. (c) 2000 The American Physical Society
DEFF Research Database (Denmark)
Bai, M.; Miskowiec, A.; Hansen, F. Y.
2012-01-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...
Single- and coupled-channel radial inverse scattering with supersymmetric transformations
International Nuclear Information System (INIS)
Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F
2014-01-01
The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed
Extended Rayleigh Damping Model
Directory of Open Access Journals (Sweden)
Naohiro Nakamura
2016-07-01
Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.
Bacon, Neil Julian
2001-12-01
I describe experiments to investigate the properties of microscopic ice particles. The goal of the work was to measure parameters that are important in cloud processes and radiative transfer, using a novel technique that avoids the use of substrates. The experiments were conducted in two separate electrodynamic balance chambers. Single, charged ice particles were formed from frost particles or from droplets frozen either homogeneously or heteroge neously with a bionucleant. The particles were trapped at temperatures between -38°C and -4°C and grown or sublimated according to the temperature gradient in the cham ber. I describe observations of breakup of sublimating frost particles, measurements of light scattering by hexagonal crystals, and observations of the morphology of ice particles grown from frozen water droplets and frost particles. The breaking strength of frost particles was an order of magnitude less than that of bulk ice. Light scattering features not previously observed were analyzed and related to crystal dimension. Initial results from a computer model failed to reproduce these features. The widths of scattering peaks suggest that surface roughness may play a role in determining the angular distribution of scattered light. Ice particle mass evolution was found to be consistent with diffusion- limited growth. Crystals grown slowly from frozen droplets adopted isometric habits, while faster growth resulted in thin side-planes, although there was not an exact correspondence between growth conditions and particle morphology. From the morphological transition, I infer lower limits for the critical supersaturation for layer nucleation on the prism face of 2.4% at -15°C, 4.4% at -20°C, and 3.1% at -25°C. Analytic expressions for the size dependence of facet stability are developed, indicating a strong dependence of stability on both crystal size and surface kinetics, and compared with data. I discuss the role of complex particle morphologies in
Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing
2012-08-01
Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.
Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces
International Nuclear Information System (INIS)
Varlam, Mihai; Steflea, Dumitru
2001-01-01
An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surface has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen Isotopic defined beams from Pd (111) surface in the 40-400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one to the 5% D/(D+H) ratio - and for different incident energies. The beam was directed onto a single-crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to it. (authors)
Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces
International Nuclear Information System (INIS)
Varlam, Mihai; Steflea, Dumitru
1999-01-01
An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surfaces has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen isotopic defined beams from Pd (111) surfaces in the 40 - 400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one until 5% D/(D + H) and different incident energies and directed onto a single - crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to them. (authors)
International Nuclear Information System (INIS)
Haldipur, P.; Margetan, F. J.; Thompson, R. B.
2006-01-01
Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented
Analyses of the energy-dependent single separable potential models for the NN scattering
International Nuclear Information System (INIS)
Ahmad, S.S.; Beghi, L.
1981-08-01
Starting from a systematic study of the salient features regarding the quantum-mechanical two-particle scattering off an energy-dependent (ED) single separable potential and its connection with the rank-2 energy-independent (EI) separable potential in the T-(K-) amplitude formulation, the present status of the ED single separable potential models due to Tabakin (M1), Garcilazo (M2) and Ahmad (M3) has been discussed. It turned out that the incorporation of a self-consistent optimization procedure improves considerably the results of the 1 S 0 and 3 S 1 scattering phase shifts for the models (M2) and (M3) up to the CM wave number q=2.5 fm -1 , although the extrapolation of the results up to q=10 fm -1 reveals that the two models follow the typical behaviour of the well-known super-soft core potentials. It has been found that a variant of (M3) - i.e. (M4) involving one more parameter - gives the phase shifts results which are generally in excellent agreement with the data up to q=2.5 fm -1 and the extrapolation of the results for the 1 S 0 case in the higher wave number range not only follows the corresponding data qualitatively but also reflects a behaviour similar to the Reid soft core and Hamada-Johnston potentials together with a good agreement with the recent [4/3] Pade fits. A brief discussion regarding the features resulting from the variations in the ED parts of all the four models under consideration and their correlations with the inverse scattering theory methodology concludes the paper. (author)
Neutron Brillouin scattering in dense fluids
Energy Technology Data Exchange (ETDEWEB)
Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration
1997-04-01
Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).
Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.
Liu, Jingfeng; Zhou, Ming; Yu, Zongfu
2016-09-15
A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.
Bayesian Predictive Models for Rayleigh Wind Speed
DEFF Research Database (Denmark)
Shahirinia, Amir; Hajizadeh, Amin; Yu, David C
2017-01-01
predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....
Energy Technology Data Exchange (ETDEWEB)
Garvey, G.T., E-mail: garvey@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Harris, D.A., E-mail: dharris@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 60510-5011 (United States); Tanaka, H.A., E-mail: tanaka@phas.ubc.ca [Institute of Particle Physics and Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Tayloe, R., E-mail: rtayloe@indiana.edu [Department of Physics, Indiana University, 727 E. Third St., Bloomington, IN 47405-7105 (United States); Zeller, G.P., E-mail: gzeller@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 60510-5011 (United States)
2015-06-15
The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations. A recent workshop hosted by the Institute of Nuclear Theory at the University of Washington (INT-13-54W) examined experimental and theoretical developments in neutrino–nucleus interactions and related measurements from electron and pion scattering. We summarize the discussions at the workshop pertaining to the aforementioned issues in quasi-elastic scattering and single photon production, particularly where there was consensus on the highest priority issues to be resolved and the path towards resolving them.
Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch
International Nuclear Information System (INIS)
He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming
2000-01-01
It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored
Single-site Green function of the Dirac equation for full-potential electron scattering
Energy Technology Data Exchange (ETDEWEB)
Kordt, Pascal
2012-05-30
I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)
Single-site Green function of the Dirac equation for full-potential electron scattering
International Nuclear Information System (INIS)
Kordt, Pascal
2012-01-01
I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)
Directory of Open Access Journals (Sweden)
Annepu Venkata Naga Vamsi
2016-01-01
Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.
International Nuclear Information System (INIS)
Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.
1974-01-01
The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2
International Nuclear Information System (INIS)
Marinyuk, V V; Sheberstov, S V
2017-01-01
We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)
Valdés, Felipe
2013-03-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.
Proton resonance elastic scattering of $^{30}$Mg for single particle structure of $^{31}$Mg
The single particle structure of $^{31}$Mg, which is located in the so-called “island of inversion”, will be studied through measuring Isobaric Analog Resonances (IARs) of bound states of $^{31}$Mg. They are located in the high excitation energy of $^{31}$Al. We are going to determine the spectroscopic factors and angular momenta of the parent states by measuring the excitation function of the proton resonance elastic scattering around 0 degrees in the laboratory frame with around 3 MeV/nucleon $^{30}$Mg beam. The present study will reveal the shell evolution around $^{32}$Mg. In addition, the spectroscopic factor of the (7/2)$^{−}$ state which was not yet determined experimentally, may allow one to study the shape coexistence in this nucleus.
Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire
Directory of Open Access Journals (Sweden)
Hua Qi
2012-01-01
Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.
Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules
Institute of Scientific and Technical Information of China (English)
Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan
2006-01-01
Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.
Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration
2011-03-01
The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.
A database of microwave and sub-millimetre ice particle single scattering properties
Ekelund, Robin; Eriksson, Patrick
2016-04-01
Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric
On the interaction of Rayleigh surface waves with structures
International Nuclear Information System (INIS)
Simpson, I.C.
1976-12-01
A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)
International Nuclear Information System (INIS)
Rosenberg, L.; Spruch, L.
1996-01-01
Levinson close-quote s theorem relates the zero-energy phase shift δ for potential scattering in a given partial wave l, by a spherically symmetric potential that falls off sufficiently rapidly, to the number of bound states of that l supported by the potential. An extension of this theorem is presented that applies to single-channel scattering by a compound system initially in its ground state. As suggested by Swan [Proc. R. Soc. London Ser. A 228, 10 (1955)], the extended theorem differs from that derived for potential scattering; even in the absence of composite bound states δ may differ from zero as a consequence of the Pauli principle. The derivation given here is based on the introduction of a continuous auxiliary open-quote open-quote length phase close-quote close-quote η, defined modulo π for l=0 by expressing the scattering length as A=acotη, where a is a characteristic length of the target. Application of the minimum principle for the scattering length determines the branch of the cotangent curve on which η lies and, by relating η to δ, an absolute determination of δ is made. The theorem is applicable, in principle, to single-channel scattering in any partial wave for e ± -atom and nucleon-nucleus systems. In addition to a knowledge of the number of composite bound states, information (which can be rather incomplete) concerning the structure of the target ground-state wave function is required for an explicit, absolute, determination of the phase shift δ. As for Levinson close-quote s original theorem for potential scattering, no additional information concerning the scattering wave function or scattering dynamics is required. copyright 1996 The American Physical Society
Q-space analysis of light scattering by ice crystals
Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.
2016-12-01
Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.
Design of single-longitudinal-mode laser oscillator for edge Thomson scattering system in ITER
International Nuclear Information System (INIS)
Hatae, Takaki; Kusama, Yoshinori; Kubomura, Hiroyuki; Matsuoka, Shin-ichi
2006-06-01
A high output energy (5J) and high repetition rate (100 Hz) laser system is required for the edge Thomson scattering system in ITER. A YAG laser (Nd:YAG laser) is a first candidate for the laser system satisfying the requirements. It is important to develop a high beam quality and single longitudinal mode (SLM) laser oscillator in order to realize this high power laser system. In this design work, following activities relating to the SLM laser oscillator have been carried out: design of the laser head and the resonator, estimation of the output power for the SLM laser oscillator, consideration of the feedback control scheme and consideration of interface for amplification system to achieve required performance (5J, 100 Hz). It is expected that the designed laser diode (LD) pumped SLM laser oscillator realizes: 100 Hz of repetition rate, 10 mJ of output energy, 10 ns of pulse width, single longitudinal mode, TEM 00 of transversal mode, divergence less than 4 times of the diffraction limit, energy stability within 5%. (author)
Dual aerosol detector based on forward light scattering with a single laser beam
International Nuclear Information System (INIS)
Kovach, B.J.; Custer, R.A.; Powers, F.L.; Kovach, A.
1985-01-01
The in-place leak testing of HEPA filter banks using a single detector can lead to some error in the measurement due to the fluctuation of the aerosol concentration while the single detector is being switched from the upstream to downstream sampling. The time duration of the test also can cause unnecessarily high DOP loading of the HEPA filters and in some cases higher radiation exposure to the testing personnel. The new forward light scattering detector uses one 632.8 nm laser beam for aerosol detection in a dual chamber sampling and detecting aerosol concentration simultaneously both upstream and downstream. This manner of operation eliminates the errors caused by concentration variations between upstream and downstream sample points while the switching takes place. The new detector uses large area silicone photodiodes with a hole in the center, to permit uninterrupted passage of the laser beam through the downstream sample chamber. The nonlinearity due to the aerosol over population of the laser beam volume is calculated to be less than 1% using a Poisson distribution method to determine the average distance of the particles. A simple pneumatic system prevents mixing of the upstream and downstream samples even in wide pressure variations of the duct system
Are snakes particles or waves? Scattering of a limbless locomotor through a single slit
Qian, Feifei; Dai, Jin; Gong, Chaohui; Choset, Howie; Goldman, Daniel
Droplets on vertically vibrated fluid surfaces can walk and diffract through a single slit by a pilot wave hydrodynamic interaction [Couder, 2006; Bush, 2015]. Inspired by the correspondence between emergent macroscale dynamics and phenomena in quantum systems, we tested if robotic snakes, which resemble wave packets, behave emergently like particles or waves when interacting with an obstacle. In lab experiments and numerical simulations we measured how a multi-module snake-like robot swam through a single slit. We controlled the snake undulation gait as a fixed serpenoid traveling wave pattern with varying amplitude and initial phase, and we examined the snake trajectory as it swam through a slit with width d. Robot trajectories were straight before interaction with the slit, then exited at different scattering angle θ after the interaction due to a complex interaction of the body wave with the slit. For fixed amplitude and large d, the snake passed through the slit with minimal interaction and theta was ~ 0 . For sufficiently small d, θ was finite and bimodally distributed, depending on the initial phase. For intermediate d, θ was sensitive to initial phase, and the width of the distribution of θ increased with decreasing d.
Wang, Menghua
2016-05-30
To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude
Mullen, van der J.J.A.M.; Sande, van de M.J.; Vries, de N.; Broks, B.H.P.; Iordanova, E.I.; Gamero, A.; Torres, J.; Sola, A.
2007-01-01
To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based
Rayleigh wave ellipticity across the Iberian Peninsula and Morocco
Gómez García, Clara; Villaseñor, Antonio
2015-04-01
Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared
A hybrid approach to simulate multiple photon scattering in X-ray imaging
International Nuclear Information System (INIS)
Freud, N.; Letang, J.-M.; Babot, D.
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results
A hybrid approach to simulate multiple photon scattering in X-ray imaging
Energy Technology Data Exchange (ETDEWEB)
Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.
Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea
Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Li, Zhanqing; Kim, Jhoon; Koo, Ja-Ho; Go, Sujung; Irie, Hitoshi; Labow, Gordon; Eck, Thomas F.; Holben, Brent N.; Herman, Jay; Loughman, Robert P.; Spinei, Elena; Lee, Seoung Soo; Khatri, Pradeep; Campanelli, Monica
2018-04-01
Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI) and future (e.g., TROPOMI, TEMPO, GEMS, and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR, and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nm) through VIS to NIR wavelengths (870 nm).
Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun
2010-10-01
In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.
Modelling of strong heterogeneities in aerosol single scattering albedos over a polluted region
Mallet, M.; Pont, V.; Liousse, C.
2005-05-01
To date, most models dedicated to the investigation of aerosol direct or semi-direct radiative forcings have assumed the various aerosol components to be either completely externally mixed or homogeneously internally mixed. Some recent works have shown that a core-shell treatment of particles should be more realistic, leading to significant differences in the radiative impact as compared to only externally or well-internally mixed states. To account for these studies, an optical module, ORISAM-RAD, has been developed for computing aerosol radiative properties under the hypothesis of internally mixed particles with a n-layer spherical concentric structure. Mesoscale simulations using ORISAM-RAD, coupled with the 3D mesoscale model Meso-NH-C, have been performed for one selected day (06/24/2001) during the ESCOMPTE experiment in the Marseilles-Fos/Berre region, which illustrate the ability of this new module to reproduce spatial heterogeneities of measured single scattering albedo (ωo), due to industrial and/or urban pollution plumes.
Single Higgs-boson production through γγ scattering within the general 2HDM
International Nuclear Information System (INIS)
Bernal, Nicolas; Lopez-Val, David; Sola, Joan
2009-01-01
The production of a single neutral Higgs boson h through (loop-induced) γγ collisions is explored in the context of the linear colliders within the general Two-Higgs-Doublet Model (2HDM). Two different mechanisms are analyzed: on the one hand, the scattering γγ→h of two real photons in a γγ collider; on the other, the more traditional mechanism of virtual photon fusion, e + e - →e + e - γ*γ*→e + e - +h. Owing to the peculiar properties of the Higgs boson self-interactions within the general 2HDM, we find that the overall production rates can be boosted up significantly, provided the charged Higgs mass is not too heavy. For example, if M H ± ≥100 GeV and, in addition, M h 0 falls in the ballpark of the LEP bound on the SM Higgs mass up to a few hundred GeV, the cross-sections may typically render γγ→h >∼0.1-1 pb and σ(e + e - →e + e - h 0 )≤0.01 pb - in both cases well above the SM prediction. Although for M H ± >300 GeV the rates become virtually insensitive to the Higgs boson self-couplings, a significant tail of non-SM effects produced by the combined contribution of the Yukawa couplings and gauge bosons could still reveal a smoking gun.
Energy Technology Data Exchange (ETDEWEB)
Garvey, G. T. [Los Alamos; Harris, D. A. [Fermilab; Tanaka, H. A. [British Columbia U.; Tayloe, R. [Indiana U.; Zeller, G. P. [Fermilab
2015-06-15
The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.
International Nuclear Information System (INIS)
Choi, Han Kyu; Kim, Zee Hwan
2015-01-01
The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces
Czech Academy of Sciences Publication Activity Database
Burkovsky, R.G.; Bronwald, Y.A.; Filimonov, A.V.; Rudskoy, A.I.; Chernyshov, D.; Bosak, A.; Hlinka, Jiří; Long, X.; Ye, Z. -G.; Vakhrushev, S. B.
2012-01-01
Roč. 109, č. 9 (2012), "097603-1"-"097603-4" ISSN 0031-9007 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : inelastic x-ray scattering * PZT * diffuse scattering * morphotropic phase boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.943, year: 2012
Quantitative use of Rayleigh waves to locate and size subsurface holes
International Nuclear Information System (INIS)
Zachary, L.W.
1982-01-01
An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference
International Nuclear Information System (INIS)
Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M.; Huang, J.P.
2009-01-01
We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey-Greenstein (HG) function for the scattering angle range of 0-90 o . In the range of ∼90-180 o , the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ∼90 o to 145 o but larger from ∼145 o to 180 o . We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.
Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.
1996-11-01
Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.
Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.
2018-04-01
The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.
International Nuclear Information System (INIS)
Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.
2007-01-01
An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a photon spectrum. This also results in extraction of intensity distribution of multiply scattered events originating from interactions of 0.279 MeV photons with thick targets of soldering material. The observed pulse-height distributions are a composite of singly and multiply scattered events in addition to bremmstrahlung-and Rayleigh-scattered events. To evaluate the contribution of multiply scattered events, the spectrum of singly scattered events contributing to inelastic Compton peak is reconstructed analytically. The optimum thickness (saturation depth), at which the number of multiply scattered events saturates, has been measured. Monte Carlo calculations also support the present results
Létourneau, Pierre-David
2016-09-19
We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.
International Nuclear Information System (INIS)
Saddi, M.B.; Sandhu, B.S.; Singh, B.
2006-01-01
The phenomenon of double-photon Compton scattering has been successfully observed using a single γ detector, a technique avoiding the use of the complicated slow-fast coincidence set-up used till now for observing this higher-order process. Here doubly differential collision cross-sections integrated over the directions of one of the two final photons, the direction of other one being kept fixed, are measured experimentally for 0.662 MeV incident γ photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process
Abbiendi, G; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Groll, M.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, G.W.; Wilson, D.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2003-01-01
A search for single production of doubly-charged Higgs bosons has been performed using 600.7 pb^-1 of e+e- collision data with sqrt(s)=189--209GeV collected by the OPAL detector at LEP. No evidence for the existence of H++/-- is observed. Upper limits on the Yukawa coupling of the H++/-- to like-signed electron pairs are derived. Additionally, indirect constraints on the Yukawa coupling from Bhabha scattering, where the H++/-- would contribute via t-channel exchange, are derived for M(H++/--) < 2TeV. These are the first results for both a single production search and constraints from Bhabha scattering reported from LEP.
International Nuclear Information System (INIS)
Najsh, V.E.; Novoselova, T.V.; Sagaradze, I.V.; Kvyatkovskij, B.E.; Fedorov, V.I.; Chernenkov, Yu.P.
1994-01-01
With the use of X-ray diffractometer a study was made into the intensity of diffuse scattering in Ni crystals with FCC lattice. Earlier accomplished quantitative analysis for BCC crystals was extended to FCC lattices. Comparative evaluation was made for cooperative thermal oscillation patterns and corresponding diffuse scattering in crystals of various structures. Measurements on FCC crystals were carried out at room temperature using AgK a lpha-radiation in 96 points of Ni crystal. 8 refs., 4 figs
Energy Technology Data Exchange (ETDEWEB)
Gallmeier, F.X., E-mail: gallmeierfz@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Iverson, E.B.; Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G.; Ansell, S. [European Spallation Source, ESS AB, Lund (Sweden)
2016-04-01
Neutron transport simulation codes are indispensable tools for the design and construction of modern neutron scattering facilities and instrumentation. Recently, it has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modeled by the existing codes. In particular, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4, and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential phenomena for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX code to include a single-crystal neutron scattering model and neutron reflection/refraction physics. We have also generated silicon scattering kernels for single crystals of definable orientation. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal's Bragg cut–off from locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon and void layers. Finally we simulated the convoluted moderator experiments described by Iverson et al. and found satisfactory agreement between the measurements and the simulations performed with the tools we have developed.
Short Rayleigh length free electron lasers
Directory of Open Access Journals (Sweden)
W. B. Colson
2006-03-01
Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.
Energy Technology Data Exchange (ETDEWEB)
Ramos, Elsa P. R. G.; Da Silva, Antonio J. C. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Liu, Guo-Chin, E-mail: eramos@astro.up.pt [Department of Physics, Tamkang University, Tamsui District, New Taipei City 251, Taiwan (China)
2012-09-20
We present light-cone-integrated simulations of the cosmic microwave background (CMB) polarization signal induced by a single scattering in the direction of clusters of galaxies and filaments. We characterize the statistical properties of the induced polarization signals from the presence of the CMB quadrupole component (pqiCMB) and as the result of the transverse motion of ionized gas clouds with respect to the CMB rest frame (p{beta}{sup 2}{sub t}SZ). From adiabatic N-body/hydrodynamic simulations, we generated 28 random sky patches integrated along the light cone, each with about 0.86 deg{sup 2} and angular resolution of 6''. Our simulation method involves a box-stacking scheme that allows to reconstruct the CMB quadrupole component and the gas physical properties along the line of sight. We find that the linear polarization degree in the logarithmic scale of both effects follows approximately a Gaussian distribution and the mean total signal is about 10{sup -8} and 10{sup -10} for the pqiCMB and p{beta}{sup 2}{sub t}SZ effects, respectively. The polarization angle is consistent with a flat distribution in both cases. From the mean distributions of the polarization degree with redshift, the highest peak is found at z {approx_equal} 1 for the induced CMB quadrupole and at z {approx_equal} 0.5 for the kinematic component. Our results suggest that most of the contribution for the total polarization signal arises from z {approx}< 4 for the pqiCMB and z {approx}< 3 for p{beta}{sup 2}{sub t}SZ. The spectral dependency of both integrated signals is strong, increasing with the frequency, especially in the case of the p{beta}{sup 2}{sub t}SZ signal, which increases by a factor of 100 from 30 GHz to 675 GHz. The maxima values found at the highest frequency are about 3 {mu}K and 13 {mu}K for the pqiCMB and p{beta}{sup 2}{sub t}SZ, respectively. The angular power spectra of these effects peak at large multipoles l > 10{sup 4}, being of the order of 10{sup -5} {mu
Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.
2013-12-01
We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.
Valdés, Felipe
2011-06-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.
International Nuclear Information System (INIS)
Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.
2004-01-01
The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)
International Nuclear Information System (INIS)
Wegmann, K.; Brix, G.
2000-01-01
Purpose: Single photon transmission (SPT) measurements offer a new approach for the determination of attenuation correction factors (ACF) in PET. It was the aim of the present work, to evaluate a scatter correction alogrithm proposed by C. Watson by means of Monte Carlo simulations. Methods: SPT measurements with a Cs-137 point source were simulated for a whole-body PET scanner (ECAT EXACT HR + ) in both the 2D and 3D mode. To examine the scatter fraction (SF) in the transmission data, the detected photons were classified as unscattered or scattered. The simulated data were used to determine (i) the spatial distribution of the SFs, (ii) an ACF sinogram from all detected events (ACF tot ) and (iii) from the unscattered events only (ACF unscattered ), and (iv) an ACF cor =(ACF tot ) 1+Κ sinogram corrected according to the Watson algorithm. In addition, density images were reconstructed in order to quantitatively evaluate linear attenuation coefficients. Results: A high correlation was found between the SF and the ACF tot sinograms. For the cylinder and the EEC phantom, similar correction factors Κ were estimated. The determined values resulted in an accurate scatter correction in both the 2D and 3D mode. (orig.) [de
Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5.
Gutmann, M J; Refson, K; Zimmermann, M V; Swainson, I P; Dabkowski, A; Dabkowska, H
2013-08-07
Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy x-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to be primarily due to thermal motion of the atoms. Ab initio phonons are calculated using density-functional perturbation theory and are shown to reproduce the experimental diffuse scattering. The observed diffuse x-ray and neutron scattering patterns are consistent with a summation of mode frequencies and displacement eigenvectors associated with the entire phonon spectrum, rather than with a simple, short-range static displacement. A band gap is observed between 600 and 700 cm(-1) with only two modes crossing this region, both associated with antiferroelectric Ti-O motion along a. One of these modes (of Bu symmetry), displays a large LO-TO mode-splitting (562-701.4 cm(-1)) and has a dominant component coming from Ti-O bond-stretching and, thus, the mode-splitting is related to the polarizability of the Ti-O bonds along the chain direction. Similar mode-splitting is observed in piezo- and ferroelectric materials. The calculated phonon dispersion model may be of use to others in future to understand the phase transition at higher temperatures, as well as in the interpretation of measured phonon dispersion curves.
Energy Technology Data Exchange (ETDEWEB)
Bordenave-Montesquieu, D.; Dagnac, R. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique)
1992-06-14
We studied the single-electron capture as well as the direct processes occurring when a He[sup 2+] ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3[sup o]30' (laboratory frame). Single-electron capture into excited states of He[sup +] was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author).
International Nuclear Information System (INIS)
Bordenave-Montesquieu, D.; Dagnac, R.
1992-01-01
We studied the single-electron capture as well as the direct processes occurring when a He 2+ ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3 o 30' (laboratory frame). Single-electron capture into excited states of He + was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author)
The structural and compositional analysis of single crystal surfaces using low energy ion scattering
International Nuclear Information System (INIS)
Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.
1979-01-01
The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)
Schwinger–Keldysh canonical formalism for electronic Raman scattering
Energy Technology Data Exchange (ETDEWEB)
Su, Yuehua, E-mail: suyh@ytu.edu.cn
2016-03-01
Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.
International Nuclear Information System (INIS)
Aptowicz, Kevin B; Chang, Richard K
2005-01-01
Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90 deg. < θ < 165 deg. and 0 deg. < φ < 360 deg.) and with high angular resolution (1024 pixels in θ and 512 pixels in φ). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,φ), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method
International Nuclear Information System (INIS)
Huddleston, A.L.; Weaver, J.
1980-01-01
Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)
Polarized Raman scattering study of PSN single crystals and epitaxial thin films
Czech Academy of Sciences Publication Activity Database
Pokorný, Jan; Rafalovskyi, Iegor; Gregora, Ivan; Borodavka, Fedir; Savinov, Maxim; Drahokoupil, Jan; Tyunina, Marina; Kocourek, Tomáš; Jelínek, Miroslav; Bing, Y.; Ye, Z. -G.; Hlinka, Jiří
2015-01-01
Roč. 5, č. 2 (2015), "1550013-1"-"1550013-6" ISSN 2010-135X R&D Projects: GA ČR GA15-04121S; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : PSN * relaxors * ferroelectrics * complex perovskites * Raman scattering Subject RIV: BM - Solid Matter Physics ; Magnetism
DEFF Research Database (Denmark)
Schleger, P.; Casalta, H.; Hadfield, R.
1995-01-01
We present measurements of Ortho-III phase correlations in an untwinned single crystal of YBa2Cu3O6.77 by neutron scattering and the novel method of hard (95 keV) X-ray scattering. The Ortho-III ordering is essentially two-dimensional, exhibiting Lorentzian peak shapes in the a-b plane. At room...
International Nuclear Information System (INIS)
Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute
2015-01-01
Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe 2 resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects
International Nuclear Information System (INIS)
Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd
2011-01-01
We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW
A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies
International Nuclear Information System (INIS)
Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe
2009-01-01
We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.
Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.
2017-11-01
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.
2015-12-01
Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value
International Nuclear Information System (INIS)
Kirsch, Robert.
1975-01-01
Some aspects of thin crystalline layers are reminded: vacuum deposition, epitaxial growth, annealing and interdiffusion ion channeling and scattering of 1-2MeV helium ions are used to study the crystalline quality, the annealing effects and in some cases the interdiffusion in epitaxial multilayers of silver, copper gold and nickel. Thin single-crystals of gold and nickel oriented (III) plan parallel to the surface were obtained by successive epitaxial growth from muscovite mica clivages. The mounting techniques of single crystalline, self-supporting, 300 to 1200 Angstroems thick, gold and nickel targets of 3mm diameter are described. The gold single-crystals have dislocation densities of 10 8 cm -2 and the various epitaxial layers are obtained without twinning [fr
Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering.
Liu, X; Dean, M P M; Liu, J; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Yin, W G; Rayan Serrao, C; Ramesh, R; Ding, H; Hill, J P
2015-05-27
Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.
Concentric layered Hermite scatterers
Astheimer, Jeffrey P.; Parker, Kevin J.
2018-05-01
The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
Infrared dispersion analysis and Raman scattering spectra of taurine single crystals
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson
2018-01-01
A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.
Development of single shot 1D-Raman scattering measurements for flames
Biase, Amelia; Uddi, Mruthunjaya
2017-11-01
The majority of energy consumption in the US comes from burning fossil fuels which increases the concentration of carbon dioxide in the atmosphere. The increasing concentration of carbon dioxide in the atmosphere has negative impacts on the environment. One solution to this problem is to study the oxy-combustion process. A pure oxygen stream is used instead of air for combustion. Products contain only carbon dioxide and water. It is easy to separate water from carbon dioxide by condensation and the carbon dioxide can be captured easily. Lower gas volume allows for easier removal of pollutants from the flue gas. The design of a system that studies the oxy-combustion process using advanced laser diagnostic techniques and Raman scattering measurements is presented. The experiments focus on spontaneous Raman scattering. This is one of the few techniques that can provide quantitative measurements of the concentration and temperature of different chemical species in a turbulent flow. The experimental design and process of validating the design to ensure the data is accurate is described. The Raman data collected form an experimental data base that is used for the validation of spontaneous Raman scattering in high pressure environments for the oxy-combustion process. NSF EEC 1659710.
3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering
Chirumamilla, Manohar
2014-01-22
Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering
Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Das, Gobind; Proietti Zaccaria, Remo; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco De; Di Fabrizio, Enzo M.
2014-01-01
Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells
Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis
2010-01-01
A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.
International Nuclear Information System (INIS)
Iwinski, Z.R.; Rosenberg, L.; Spruch, L.
1986-01-01
For potential scattering, with delta/sub L/(k) the phase shift modulo π for an incident wave number k, Levinson's theorem gives delta/sub L/(0)-delta/sub L/(infinity) in terms of N/sub L/, the number of bound states of angular momentum L, for delta/sub L/(k) assumed to be a continuous function of k. N/sub L/ also determines the number of nodes of the zero-energy wave function u/sub L/(r). A knowledge of the nodal structure and of the absolute value of delta/sub L/(0) is very useful in theoretical studies of low-energy potential scattering. Two preliminary attempts, one formal and one ''physical,'' are made to extend the above results to single-channel scattering by a compound system initially in its ground state. The nodal structure will be of greater interest to us here than an extension of Levinson's theorem
International Nuclear Information System (INIS)
Kamphuis, C.; Beekman, F.J.; Van Rijk, P.P.; Viergever, M.A.
1998-01-01
Three-dimensional (3D) iterative maximum likelihood expectation maximization (ML-EM) algorithms for single-photon emission tomography (SPET) are capable of correcting image-degrading effects of non-uniform attenuation, distance-dependent camera response and patient shape-dependent scatter. However, the resulting improvements in quantitation, resolution and signal-to-noise ratio (SNR) are obtained at the cost of a huge computational burden. This paper presents a new acceleration method for ML-EM: dual matrix ordered subsets (DM-OS). DM-OS combines two acceleration methods: (a) different matrices for projection and back-projection and (b) ordered subsets of projections. DM-OS was compared with ML-EM on simulated data and on physical thorax phantom data, for both 180 and 360 orbits. Contrast, normalized standard deviation and mean squared error were calculated for the digital phantom experiment. DM-OS resulted in similar image quality to ML-EM, even for speed-up factors of 200 compared to ML-EM in the case of 120 projections. The thorax phantom data could be reconstructed 50 times faster (60 projections) using DM-OS with preservation of image quality. ML-EM and DM-OS with scatter compensation showed significant improvement of SNR compared to ML-EM without scatter compensation. Furthermore, inclusion of complex image formation models in the computer code is simplified in the case of DM-OS. It is thus shown that DM-OS is a fast and relatively simple algorithm for 3D iterative scatter compensation, with similar results to conventional ML-EM, for both 180 and 360 acquired data. (orig.)
Coherent control of the single-photon multichannel scattering in the dissipation case
Shi, Yun-Xia; Wang, Hang-Yu; Ma, Jin-Lou; Li, Qing; Tan, Lei
2018-03-01
Based on the quasi-boson approach, a model of a Λ-type three-level atom coupled to a X-shaped coupled cavity arrays (CCAs) is used to study the transport properties of a single-photon in the dissipative case, and a classical field is introduced to motivate the one transition of the Λ-type three-level atom (ΛTLA). The analytical expressions of transmission and transfer rate are obtained. Our results show that the cavity dissipation will obviously weaken the single-photon transfer rate where the incident energy of the single photon is resonant with the excited energy of the atom. Whether the cavity dissipation exists or not, the single photon can be almost confined in the incident channel at large detuning, and we can regulate the intensity of the classical field to control the total transmission of the single-photon.
Energy Technology Data Exchange (ETDEWEB)
Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); Alsaedi, Ahmed; Hobiny, Aatef [NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Deng, Fu-Guo, E-mail: fgdeng@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)
2017-03-15
We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.
Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.
2017-12-01
The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.
Energy Technology Data Exchange (ETDEWEB)
Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)
2013-08-01
The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.
Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S
2018-02-27
Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.
Very large solid angle spectrometer for single arm electron scattering experiments
International Nuclear Information System (INIS)
Leconte, P.
1981-01-01
Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of
International Nuclear Information System (INIS)
Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.
2006-01-01
In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible
Scattering of light and other electromagnetic radiation
Kerker, Milton
1969-01-01
The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan
International Nuclear Information System (INIS)
Larsson, S.A.; Johansson, L.; Jonsson, C.; Pagani, M.; Jacobsson, H.
2000-01-01
A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99m TcO 4 - depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with
Energy Technology Data Exchange (ETDEWEB)
., Nuruzzaman [Hampton Univ., Hampton, VA (United States)
2014-12-01
The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system
DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.
Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi
2017-12-06
We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.
RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES
International Nuclear Information System (INIS)
Jacquet, Emmanuel; Krumholz, Mark R.
2011-01-01
We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.
International Nuclear Information System (INIS)
Vorbrugg, W.; Schaerpf, O.
1975-01-01
The small-angle scattering of Ni single crystals with (111) and (100) axis orientation is measured by a photographic method in the work-hardened state after tensile deformation. Parameters are the external magnetic field H parallel to the axis (600 2 ]<=8,8), and the elastic stress tausub(el)(0<=tausub(el)<=tausub(pl)) applied to the deformed crystals during the experiments. The scattering is found to be anisotropic and characteristic for the chosen orientation. The quantitative photometric analysis shows that the parameters mentioned above only influence the intensity but not the distribution of the scattered neutrons. The scattering increases with the elastic stress and decreases with the magnetic field. In particular, in the unloaded state there is a linear relation between the scattered intensity and the plastic shear stress. (author)
International Nuclear Information System (INIS)
Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA
1993-01-01
Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)
Single-particle resonance levels in {sup 14}O examined by N13+p elastic resonance scattering
Energy Technology Data Exchange (ETDEWEB)
Teranishi, T. [Dept. of Physics, Kyushu Univ., 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)]. E-mail: teranishi@nucl.phys.kyushu-u.ac.jp; Kubono, S. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, H. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); He, J.J. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Saito, A. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fujikawa, H. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Amadio, G. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Niikura, M.; Shimoura, S. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y. [Dept. of Physics, Kyushu Univ., 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)]|[Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nishimura, S.; Nishimura, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Moon, J.Y.; Lee, C.S. [Dept. of Physics, Chung-Ang Univ., Seoul 156-756 (Korea, Republic of); Odahara, A. [Nishinippon Inst. of Technology, Kanda, Fukuoka 800-0394 (Japan); Sohler, D. [Inst. of Nuclear Research (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); Khiem, L.H. [Inst. of Physics and Electronics (IOP), Vietnamese Academy for Science and Technology (VAST), 10 Daotan, Congvi, Badinh, P.O. Box 429-BOHO, Hanoi 10000 (Viet Nam); Li, Z.H.; Lian, G.; Liu, W.P. [China Inst. of Atomic Energy, P.O. Box 275(46), Beijing 102413 (China)
2007-06-28
Single-particle properties of low-lying resonance levels in {sup 14}O have been studied efficiently by utilizing a technique of proton elastic resonance scattering with a {sup 13}N secondary beam and a thick proton target. The excitation functions for the N13+p elastic scattering were measured over a wide energy range of E{sub CM}=0.4-3.3 MeV and fitted with an R-matrix calculation. A clear assignment of J{sup {pi}}=2{sup -} has been made for the level at E{sub x}=6.767(11) MeV in {sup 14}O for the first time. The excitation functions show a signature of a new 0{sup -} level at E{sub x}=5.71(2) MeV with {gamma}=400(100) keV. The excitation energies and widths of the {sup 14}O levels are discussed in conjunction with the spectroscopic structure of A=14 nuclei with T=1.
Observations of short period seismic scattered waves by small seismic arrays
Directory of Open Access Journals (Sweden)
M. Simini
1997-06-01
Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.
Precise tests of x-ray scattering theories in the Compton regime
International Nuclear Information System (INIS)
Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.
1999-01-01
The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported
Experimental study of single-particle inclusive hadron scattering and associated multiplicities
International Nuclear Information System (INIS)
Brenner, A.E.; Carey, D.C.; Elias, J.E.; Garbincius, P.H.; Mikenberg, G.; Polychronakos, V.A.; Aitkenhead, W.; Barton, D.S.; Brandenburg, G.W.; Busza, W.; Dobrowolski, T.; Friedman, J.I.; Kendall, H.W.; Lyons, T.; Nelson, B.; Rosenson, L.; Toy, W.; Verdier, R.; Votta, L.; Chiaradia, M.T.; DeMarzo, C.; Favuzzi, C.; Germinario, G.; Guerriero, L.; LaVopa, P.; Maggi, G.; Posa, F.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Meunier, R.; Cutts, D.; Dulude, R.S.; Lanou, R.E. Jr.; Massimo, J.T.
1982-01-01
An experiment using the Fermilab single arm spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X where a and c were π +- , K +- , p, or p-bar. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12< x<1.0 and p/sub T/<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Cerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-p/sub T/ hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given
Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K
2018-06-04
The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.
Single view reflectance capture using multiplexed scattering and time-of-flight imaging
Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak
2011-01-01
This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...
Alignment characterization of single-wall carbon nanotubes by Raman scattering
International Nuclear Information System (INIS)
Liu Pijun; Liu Liyue; Zhang Yafei
2003-01-01
A novel method for identifying the Raman modes of single-wall carbon nanotubes (SWNT) based on the symmetry of the vibration modes has been studied. The Raman intensity of each vibration mode varies with polarization direction, and the relationship can be expressed as analytical functions. This method avoids troublesome numerical calculation and easily gives clear relations between Raman intensity and polarization direction. In this way, one can distinguish each Raman-active mode of SWNT through the polarized Raman spectrum
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
Raman scattering study of the structural phase transition in single crystal KDy(MoO4)2
Peschanskii, A. V.
2017-11-01
Raman scattering of light in single-crystal KDy(MoO4)2 is studied at frequencies of 3-1000 cm-1 for temperatures ranging from 2 to 300 K, including that of a structural phase transition of the cooperative Jahn-Teller type (TC ˜ 14.5 K). During the transition to the low-temperature phase, a series of additional phonon lines corresponding to the Ag, B1g, B2g, and B3g modes is observed which indicates a doubling of the unit cell during the phase transition. An analysis of the symmetry of the phonon modes shows that the low-temperature phase has a predominantly monoclinic symmetry with conservation of a second order axis along the crystallographic b direction, i.e., perpendicular to the layers. Excitations are discovered which correspond to low-energy electronic transitions between levels of the ground-state 6H15/2 multiplet of the Dy3+ ion, which is split in the crystal field with a C2 symmetry. In the vicinity of the first excited Kramers doublet of the Dy3+ ion in crystalline KDy(MoO4)2, the scattered spectrum contains four lines [16.5, 21.0, 24.9, and 29.1 cm-1 (2 K)] at low temperatures, instead of a single line [18.3 cm-1 (25 K)] above the phase transition temperature (14.5 K). This indicates the existence of four nonequivalent dysprosium ions in the low-temperature phase.
LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES
International Nuclear Information System (INIS)
Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.
2010-01-01
Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.
Single realization stochastic FDTD for weak scattering waves in biological random media.
Tan, Tengmeng; Taflove, Allen; Backman, Vadim
2013-02-01
This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result.
Short Rayleigh Length Free Electron Lasers
Crooker, P P; Armstead, R L; Blau, J
2004-01-01
Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.
International Nuclear Information System (INIS)
Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas
2017-01-01
An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 µm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P_1_1, P_1_2, P_2_2, P_3_3, P_4_3 and P_4_4). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path. - Highlights: • Single-scattering properties of ice crystals are computed from 1 to 874 GHz. • Ice refractive index temperature dependence is considered at 160, 200, 230 and 270 K. • Potential applications of the database to microwave remote sensing are illustrated. • Ignoring temperature dependence of ice refractive index can lead to 5 K difference in IWP retrieval
Kinetic simulations of Rayleigh-Taylor instabilities
International Nuclear Information System (INIS)
Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance
2014-01-01
We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.
Filtered Rayleigh Scattering Measurements in a Buoyant Flowfield
2007-03-01
horizontal and vertical buoyant jet seen everyday is from automobile emissions and smokestacks, respectively. Figure 6. A horizontal...pressure between 150-200 psig in an externally stored 6000 gallon tank. The air is dried by a series of two 21 HRM series heatless driers which
Thomson, Raman and Rayleigh scattering on atmospheric plasma jets
Gessel, van A.F.H.
2010-01-01
Non-equilibrium atmospheric pressure plasma jets are the subject of growing interest, due to their applicability in many fields, including material processing, surface treatment and medical applications. However the plasma operates in contact with air, thus species like oxygen and nitrogen diffuse
Plume structure in high-Rayleigh-number convection
Puthenveettil, Baburaj A.; Arakeri, Jaywant H.
2005-10-01
Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.
International Nuclear Information System (INIS)
Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.; Hüller, S.; Pesme, D.; Labaune, Ch.; Bandulet, H.
2014-01-01
The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incident laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power
Rayleigh-Taylor mixing in supernova experiments
International Nuclear Information System (INIS)
Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.
2015-01-01
We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order
Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.
2017-12-01
Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.
Cross, E. S.; Onasch, T. B.; Canagaratna, M.; Jayne, J. T.; Kimmel, J.; Yu, X.-Y.; Alexander, M. L.; Worsnop, D. R.; Davidovits, P.
2008-12-01
We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12-30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27-30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking
Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves
DEFF Research Database (Denmark)
Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio
dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode...... to each other reaching similar Rayleigh velocity. It is known ‘osculation’ happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired data affect the spectral and modal resolution, making it often...
Krywonos, Andrey; Harvey, James E; Choi, Narak
2011-06-01
Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.
International Nuclear Information System (INIS)
Krieger, U.K.; Meier, P.
2011-01-01
We use single bi-sphere particles levitated in an electrodynamic balance to record two-dimensional angular scattering patterns at different angles of the coordinate system of the aggregate relative to the incident laser beam. Due to Brownian motion the particle covers the whole set of possible angles with time and allows to select patterns with high symmetry for analysis. These are qualitatively compared to numerical calculations. A small cluster of four spheres shows complex scattering patterns, comparison with computations suggest a low compactness for these clusters. An experimental procedure is proposed for studying restructuring effects occurring in mixed particles upon evaporation. - Research highlights: → Single levitated bi-sphere particle. → Two-dimensional angular scattering pattern. → Comparison experiment with computations.
Elastic scattering of gamma radiation in solids
International Nuclear Information System (INIS)
Goncalves, O.D.
1987-01-01
The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)
Well-width dependence of exciton-phonon scattering in InxGa1 - xAs/GaAs single quantum wells
DEFF Research Database (Denmark)
Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1999-01-01
The temperature and density dependencies of the exciton dephasing time in In0.18Ga0.82As/GaAs single quantum wells with different thicknesses have been measured by degenerate four-wave mixing; The exciton-phonon scattering contribution to the dephasing is isolated by extrapolating the dephasing r...
Directory of Open Access Journals (Sweden)
Daqing Piao
2014-12-01
Full Text Available Recent focused Monte Carlo and experimental studies on steady-state single-fiber reflectance spectroscopy (SfRS from a biologically relevant scattering medium have revealed that, as the dimensionless reduced scattering of the medium increases, the SfRS intensity increases monotonically until reaching a plateau. The SfRS signal is semi-empirically decomposed to the product of three contributing factors, including a ratio-of-remission (RoR term that refers to the ratio of photons remitting from the medium and crossing the fiber-medium interface over the total number of photons launched into the medium. The RoR is expressed with respect to the dimensionless reduced scattering parameter , where is the reduced scattering coefficient of the medium and is the diameter of the probing fiber. We develop in this work, under the assumption of an isotropic-scattering medium, a method of analytical treatment that will indicate the pattern of RoR as a function of the dimensionless reduced scattering of the medium. The RoR is derived in four cases, corresponding to in-medium (applied to interstitial probing of biological tissue or surface-based (applied to contact-probing of biological tissue SfRS measurements using straight-polished or angle-polished fiber. The analytically arrived surface-probing RoR corresponding to single-fiber probing using a 15° angle-polished fiber over the range of agrees with previously reported similarly configured experimental measurement from a scattering medium that has a Henyey–Greenstein scattering phase function with an anisotropy factor of 0.8. In cases of a medium scattering light anisotropically, we propose how the treatment may be furthered to account for the scattering anisotropy using the result of a study of light scattering close to the point-of-entry by Vitkin et al. (Nat. Commun. 2011, doi:10.1038/ncomms1599.
Development of Rayleigh Doppler lidar for measuring middle atmosphere winds
Raghunath, K.; Patra, A. K.; Narayana Rao, D.
Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar
Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Garnier, J.; Masse, L.
2005-01-01
A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1λ for long wavelengths, but higher for short instable wavelengths in the ablative regime
Directory of Open Access Journals (Sweden)
E. I. Kassianov
2007-06-01
Full Text Available Multi-filter Rotating Shadowband Radiometers (MFRSRs provide routine measurements of the aerosol optical depth (τ at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 μm. The single-scattering albedo (π_{0} is typically estimated from the MFRSR measurements by assuming the asymmetry parameter (g. In most instances, however, it is not easy to set an appropriate value of g due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously π_{0} and g for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Radiation Measurement (ARM Program's Aerosol Intensive Operational Period (IOP to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET, and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~5 W/m^{2} to those obtained from measurements.
Pandey, Gyanendra Krishna; Pathak, Nilesh Kumar; Uma, R.; Sharma, R. P.
2017-04-01
In this article we have investigated the electromagnetic surface enhanced Raman scattering (SERS) of single biomolecule adsorbed at the surface of spherical nanodimer. The SERS mechanism has been studied using first principle approach for spherical nanodimer geometry. The coupling of plasmonic concept to biomolecule results the broadband tunable enhancement in Raman gain factor. In this observation the enhancement factor was observed around ≈ 1015. The plasmonic properties of metal nanodimer are analysed in terms of surface plasmon resonances, extinction efficiency and polarisability that have been derived under quasistatic approximation. In this paper, various facets like interdipole separation, molecule distance and size of the plasmonic nanogeometry are taken into account to analyse the Raman gain factor. We also observe that the frequency range expands sufficiently which increases the broad detectability range of the molecule which generates signal even in the outside of Raman range i.e. in between IR to UV region. Lastly, the extinction spectra and electric field profile have been evaluated at resonance wavelength 364 nm. The comparison between electrostatic approach and numerical approach (using DDA) has also been done in terms of extinction spectra.
Spin-flip transition of L10-type MnPt alloy single crystal studied by neutron scattering
International Nuclear Information System (INIS)
Hama, Hiroaki; Motomura, Ryo; Shinozaki, Tatsuya; Tsunoda, Yorihiko
2007-01-01
Magnetic structure, tetragonality, and the spin-flip transition for an L1 0 -type MnPt ordered alloy were studied by neutron scattering using a single-crystal specimen. Tetragonality of the lattice showed strong correlation with the spin-flip transition. Although the spin-flip transition looks like a gradual change of the easy axis in the temperature range between 580 and 770 K, two modes of magnon-gap peaks with different energies were observed in this transition temperature range. Thus, the crystal consists of two regions with different anisotropy energies and the volume fractions of these regions with different spin directions change gradually with temperature. The tetragonality and spin-flip transition are discussed using the hard-sphere model for atomic radii of Pt and Mn. The Invar effect of Mn atoms is proposed using high- and low-spin transitions of Mn moments in analogy with the two-γ model of Fe moments in FeNi Invar alloy
Energy Technology Data Exchange (ETDEWEB)
Howell, Rebecca M., E-mail: rhowell@mdanderson.org [Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Burgett, Eric A.; Isaacs, Daniel [Department of Nuclear Engineering, Idaho State University, Pocatello, Idaho (United States); Price Hedrick, Samantha G.; Reilly, Michael P.; Rankine, Leith J.; Grantham, Kevin K.; Perkins, Stephanie; Klein, Eric E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States)
2016-05-01
Purpose: To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Methods and Materials: Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth–dose data to in-air H* (10) values. Results: For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10{sup 6} to 1.04 × 10{sup 7} n/cm{sup 2}/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. Conclusions: For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines.
International Nuclear Information System (INIS)
Farkullin, M.N.; Nikitin, M.A.; Kashchenko, N.M.
1989-01-01
Calculations of linear increment of the Rayleigh-Taylor instability for various geophysical conditions are presented. It is shwn that space-time characteristics of increment depend strongly on conditions of solar activity and seasons. The calculation results are in a good agreement with statistical regularities of F-scattering observation in equatorial F-area, which points to the Rayleigh-Taylor natur of the penomena
Inelastic light scattering in crystals
Sushchinskii, M. M.
The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.
Andrews, Elisabeth; Ogren, John A.; Kinne, Stefan; Samset, Bjorn
2017-05-01
Here we present new results comparing aerosol optical depth (AOD), aerosol absorption optical depth (AAOD) and column single scattering albedo (SSA) obtained from in situ vertical profile measurements with AERONET ground-based remote sensing from two rural, continental sites in the US. The profiles are closely matched in time (within ±3 h) and space (within 15 km) with the AERONET retrievals. We have used Level 1.5 inversion retrievals when there was a valid Level 2 almucantar retrieval in order to be able to compare AAOD and column SSA below AERONET's recommended loading constraint (AOD > 0.4 at 440 nm). While there is reasonable agreement for the AOD comparisons, the direct comparisons of in situ-derived to AERONET-retrieved AAOD (or SSA) reveal that AERONET retrievals yield higher aerosol absorption than obtained from the in situ profiles for the low aerosol optical depth conditions prevalent at the two study sites. However, it should be noted that the majority of SSA comparisons for AOD440 > 0.2 are, nonetheless, within the reported SSA uncertainty bounds. The observation that, relative to in situ measurements, AERONET inversions exhibit increased absorption potential at low AOD values is generally consistent with other published AERONET-in situ comparisons across a range of locations, atmospheric conditions and AOD values. This systematic difference in the comparisons suggests a bias in one or both of the methods, but we cannot assess whether the AERONET retrievals are biased towards high absorption or the in situ measurements are biased low. Based on the discrepancy between the AERONET and in situ values, we conclude that scaling modeled black carbon concentrations upwards to match AERONET retrievals of AAOD should be approached with caution as it may lead to aerosol absorption overestimates in regions of low AOD. Both AERONET retrievals and in situ measurements suggest there is a systematic relationship between SSA and aerosol amount (AOD or aerosol light
Chromo-Rayleigh interactions of dark matter
International Nuclear Information System (INIS)
Bai, Yang; Osborne, James
2015-01-01
For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.
Bivariate Rayleigh Distribution and its Properties
Directory of Open Access Journals (Sweden)
Ahmad Saeed Akhter
2007-01-01
Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.
Large-scale single-crystal growth of (CH3)2NH2CuCl3 for neutron scattering experiments
Park, Garam; Oh, In-Hwan; Park, J. M. Sungil; Park, Seong-Hun; Hong, Chang Seop; Lee, Kwang-Sei
2016-05-01
Neutron scattering studies on low-dimensional quantum spin systems require large-size single-crystals. Single-crystals of (CH3)2NH2CuCl3 showing low-dimensional magnetic behaviors were grown by a slow solvent evaporation method in a two-solvent system at different temperature settings. The best results were obtained for the bilayer solution of methanol and isopropanol with a molar ratio of 2:1 at 35 °C. The quality of the obtained single-crystals was tested by powder and single-crystal X-ray diffraction and single-crystal neutron diffraction. In addition, to confirm structural phase transitions (SPTs), thermal analysis and single-crystal X-ray diffraction at 300 K and 175 K, respectively, were conducted, confirming the presence of a SPT at Tup=288 K on heating and Tdown=285 K on cooling.
Attractors of the periodically forced Rayleigh system
Directory of Open Access Journals (Sweden)
Petre Bazavan
2011-07-01
Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier
2017-11-01
Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.
van Breukelen, B.M.
2007-01-01
The Rayleigh equation relates the change in isotope ratio of an element in a substrate to the extent of substrate consumption via a single kinetic isotopic fractionation factor (α). Substrate consumption is, however, commonly distributed over several metabolic pathways each potentially having a
Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele
2017-02-01
Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.
Ultimate regime of high Rayleigh number convection in a porous medium.
Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R
2012-06-01
Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).
Directory of Open Access Journals (Sweden)
Jun Zhang
2018-01-01
Full Text Available The single scattering of P- and SV-waves by a cylindrical fiber with a partially imperfect bonding to the surrounding matrix is investigated, which benefits the characterization of the behavior of elastic waves in composite materials. The imperfect interface is modelled by the spring model. To solve the corresponding single scattering problem, a collocation point (CP method is introduced. Based on this method, influence of various aspects of the imperfect interface on the scattering of P- and SV-waves is studied. Results indicate that (i the total scattering cross section (SCS is almost symmetric about the axis α=π/2 with respect to the location (α of the imperfect interface, (ii imperfect interfaces located at α=0 and α=π highly reduce the total SCS under a P-wave incidence and imperfect interfaces located at α=π/2 reduce the total SCS most significantly under SV-incidence, and (iii under a P-wave incidence the SCS has a high sensitivity to the bonding level of imperfect interfaces when α is small, while it becomes more sensitive to the bonding level when α is larger under SV-wave incidence.
International Nuclear Information System (INIS)
Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P
2010-01-01
In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
International Nuclear Information System (INIS)
Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.
2010-01-01
In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R
2010-08-06
In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
Directory of Open Access Journals (Sweden)
Mehravar Rafati
2017-01-01
Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.
Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing
2009-01-01
Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first h...
International Nuclear Information System (INIS)
Piroga, S.A.
2001-01-01
Experimental observation using a method of inelastic scattering of thermal neutrons the longitudinal phonons in the G-Z, G-X and G-L directions in CdI 2 singe crystal has been obtained. The phonon subsystem observed in the case of CdI 2 single crystals is two dimensional. This is because of the fact that interlayer interactions are weak in compare to intra layer interactions
Czech Academy of Sciences Publication Activity Database
Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.
2017-01-01
Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016
Simulation of Rayleigh--Taylor flows using vortex blobs
International Nuclear Information System (INIS)
Kerr, R.M.
1988-01-01
An inviscid boundary-integral method is modified in order to study the single-scale Rayleigh--Taylor instability for arbitrary Atwood number. The primary modification uses vortex blobs to smooth the Green's function and suppress a finite time singularity in the curvature. Additional modifications to earlier codes such as using second-order central differences along the interface to accommodate spikes in the vorticity and spreading the nodes evenly along the interface to suppress clustering of nodes are designed to maintain resolution and accuracy. To achieve second-order accuracy in time when the nodes are spread, an extra predictor step is needed that shifts the nodes before the variables are advanced. The method successfully follows the development of a single mode to states with asymptotic velocities for the bubble and spike that depend on the Atwood number and are independent of the blob size. Incipient droplet formation is observed. copyright 1988 Academic Press, Inc
Delbrueck scattering of monoenergetic photons
International Nuclear Information System (INIS)
Kahane, S.
1978-05-01
The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)
Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation
Harris, F. S., Jr.; McCormick, M. P.
1973-01-01
Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.
International Nuclear Information System (INIS)
Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang
2016-01-01
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.
Thomson scattering measurements on an atmospheric Ar dc discharge lamp
Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.
2004-01-01
Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and
Elastic scattering of low energy γ-rays
International Nuclear Information System (INIS)
Whittingham, I.B.
1978-01-01
The current status of the theory of the elastic scattering of low energy γ rays is reviewed and a detailed analysis of the theoretical background to the recent calculation of Rayleigh scattering by W.R.Johnson and co-workers is presented
da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques
2003-12-01
Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.
Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.
2004-08-01
We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.
Directory of Open Access Journals (Sweden)
Andreas van Hameren
2018-01-01
Full Text Available We discuss production of two μ+μ− pairs in ultraperipheral ultrarelativistic heavy ion collisions at the LHC. We take into account electromagnetic (two-photon double-scattering production and for a first time direct γγ production of four muons in one scattering. We study the unexplored process γγ→μ+μ−μ+μ−. We present predictions for total and differential cross sections. Measurable nuclear cross sections are obtained and corresponding differential distributions and counting rates are presented.
Experimental confirmation of neoclassical Compton scattering theory
Energy Technology Data Exchange (ETDEWEB)
Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)
2013-12-15
Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.
Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost
2016-04-01
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.
Design Aspects of the Rayleigh Convection Code
Featherstone, N. A.
2017-12-01
Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.
Czech Academy of Sciences Publication Activity Database
Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk
203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003
DEFF Research Database (Denmark)
Dery, H.; Tromborg, Bjarne; Eisenstein, G.
2003-01-01
We describe a theoretical model for carrier-carrier scattering in an inverted semiconductor quantum well structure using a multisubband diagram. The model includes all possible nonvanishing interaction terms within the static screening approximation, and it enables one to calculate accurately...
International Nuclear Information System (INIS)
Bublik, B.T.; Zotov, N.M.
1997-01-01
Microdefects in the regions of Si crystals having different thermal history defined by growth conditions was studied by the X-ray diffuse scattering method on a triple crystal X-ray diffractometer. It was shown that in such crystals the microdefects with positive strength are prevalent. However, between the above indicated regions the defects with the strength of opposite sign prevail
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
International Nuclear Information System (INIS)
Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.
2004-01-01
New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure
Directory of Open Access Journals (Sweden)
S. Talebi
2018-04-01
Full Text Available This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.
Energy Technology Data Exchange (ETDEWEB)
Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)
2009-10-26
The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.
Centrifugally Driven Rayleigh-Taylor Instability
Scase, Matthew; Hill, Richard
2017-11-01
The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.
Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P
2017-08-24
This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.
Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.
2017-10-01
A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.
Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering
International Nuclear Information System (INIS)
Liu, X; Ding, H; Dean, M P M; Yin, W G; Hill, J P; Liu, J; Ramesh, R; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Serrao, C Rayan
2015-01-01
Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin–orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr 2 IrO 4 , where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor. (fast track communication)
Thomson scattering on non-equilibrium low density plasmas : principles, practice and challenges
Carbone, E.A.D.; Nijdam, S.
2015-01-01
In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters
Mode coupling in nonlinear Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.
1992-01-01
This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase
International Nuclear Information System (INIS)
Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek
2003-01-01
Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation
International Nuclear Information System (INIS)
Sato, Y.; Terasaki, I.; Tajima, S.
1996-01-01
Transport properties under a temperature gradient were investigated in the mixed state of YBa 2 Cu 3 O y single crystals. The ratio of the Seebeck coefficient S xx to the resistivity ρ xx , which is proportional to the thermal current, exhibits a remarkable magnetic field dependence. This implies that the quasiparticles driven by the temperature gradient are scattered by vortices to reduce their lifetime. Quantitative investigation for the H dependence of S xx /ρ xx reveals the lifetime enhancement of the quasiparticle below T c . copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Baumgarten, G.
2001-09-01
Noctilucent clouds (NLC) are rare, tenuous clouds in the terrestrial atmosphere that occur at polar latitudes in summer near 83 km altitude. These clouds where studied using the ALOMAR Rayleigh/Mie/Raman lidar located at 69 N, 16 E. The depolarization of light, which was backscattered on NLC particles was measured for the first time by the ALOMAR RMR-Lidar. Considering the small ratio of particle size over wavelength an unexpectedly large depolarization of 1.7% was observed. Comparing this result to T-matrix calculations for scattering on randomly oriented aspherical particles implies that the shape of the NLC particles is needle like. The ALOMAR RMR-Lidar is a twin-lidar equipped with two steerable telescopes which were used to observe a single NLC layer in two separate measurement volumes about 50 km apart at NLC altitudes. Cross correlation technique reveal the layer to be tilted with imbedded periodic horizontal structures showing wavelengths of about 30 to 50 km. These structures drift horizontally through the measurement volumes rather than being microphysically formed during the observation period. (orig.)
Rayleigh wave effects in an elastic half-space.
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Gorfman, Semën; Keeble, Dean S; Bombardi, Alessandro; Thomas, Pam A
2015-10-01
The results of high-resolution measurements of the diffuse X-ray scattering produced by a perovskite-based Na 0.5 Bi 0.5 TiO 3 ferroelectric single crystal between 40 and 620 K are reported. The study was designed as an attempt to resolve numerous controversies regarding the average structure of Na 0.5 Bi 0.5 TiO 3 , such as the mechanism of the phase transitions between the tetragonal, P 4 bm , and rhombohedral | monoclinic, R 3 c | Cc , space groups and the correlation between structural changes and macroscopic physical properties. The starting point was to search for any transformations of structural disorder in the temperature range of thermal depoling (420-480 K), where the average structure is known to remain unchanged. The intensity distribution around the {032} pseudocubic reflection was collected using a PILATUS 100K detector at the I16 beamline of the Diamond Light Source (UK). The data revealed previously unknown features of the diffuse scattering, including a system of dual asymmetric L-shaped diffuse scattering streaks. The topology, temperature dependence, and relationship between Bragg and diffuse intensities suggest the presence of complex microstructure in the low-temperature R 3 c | Cc phase. This microstructure may be formed by the persistence of the higher-temperature P 4 bm phase, built into a lower-temperature R 3 c | Cc matrix, accompanied by the related long-range strain fields. Finally, it is shown that a correlation between the temperature dependence of the X-ray scattering features and the temperature regime of thermal depoling is present.
International Nuclear Information System (INIS)
Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu
1998-01-01
This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0±4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22±0.09>0.87±0.22 p 1.02±0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)
Energy Technology Data Exchange (ETDEWEB)
Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)
1998-01-01
This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0{+-}4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22{+-}0.09>0.87{+-}0.22 p<0.01). The lenticular nuclear uptake ratio in SAC method was higher than that of STD method (1.26{+-}0.15>1.02{+-}0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)
Directory of Open Access Journals (Sweden)
Seonhyeop Shin
2015-06-01
Full Text Available The elastic properties of KF-substituted perovskite lead titanate (PbTiO3 were investigated by dielectric measurements and Brillouin light scattering. The ferroelectric phase transition occurred at substantially lower temperature due to KF substitution, which was attributed to the modification of the covalency in Pb–O and Ti–O bonds. The longitudinal acoustic (LA mode of KF-substituted PbTiO3 showed a frequency softening in the paraelectric phase, which was accompanied by increasing acoustic damping. This indicated that polarization fluctuations responsible for the acoustic anomalies were enhanced by KF substitution.
Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara
2017-12-01
In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas
Predictability of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Viecelli, J.A.
1986-01-01
Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs
Nonlinear saturation of the Rayleigh Taylor instability
International Nuclear Information System (INIS)
Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.
1997-01-01
The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)
Rayleigh beacon for measuring the surface profile of a radio telescope.
Padin, S
2014-12-01
Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3 mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.
Directory of Open Access Journals (Sweden)
Catherine M Shachaf
Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.
Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P
2009-01-01
Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.
Directory of Open Access Journals (Sweden)
Samira Agbolaghi
2017-12-01
Full Text Available Two types of rod-coil block copolymers including poly(3-hexylthiophene-block-poly(ethylene glycol (P3HT-b-PEG and PEG-block-polyaniline (PANI were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and ordered crystalline configurations. The conductive P3HT fibrillar single crystals covered by the dielectric coily PEG oligomers were grown from toluene, xylene, and anisole, and characterized by atomic force microscopy (AFM and grazing wide angle X-ray scattering (GIWAXS. Longer P3HT backbones resulted in folding, whereas shorter ones had a high tendency towards backbone lamination. The effective factors on folding of long P3HT backbones in the single crystal structures were the solvent quality and crystallization temperature. Better solvents due to decelerating the growth condition led to a higher number of foldings. Via increasing the crystallization temperature, the system decreased the folding number to maintain its stability. Poorer solvents also reflected a higher stacking in hexyl side chain and π-π stacking directions. The dielectric lamellar PEG single crystals sandwiched between the PANI nanorods were grown from amyl acetate, and analyzed using the interface distribution function (IDF of SAXS and AFM. The molecular weights of PANI and PEG blocks and crystallization temperature were focused while studying the grown single crystals.
Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications
Directory of Open Access Journals (Sweden)
Carlos A. Gutiérrez
2017-01-01
Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.
Energy Technology Data Exchange (ETDEWEB)
Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Mukhopadhyay, S. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)
2016-01-07
The ionic stochastic motions in the molten alkali halide NaF are investigated by quasielastic neutron scattering and first principles molecular dynamics simulation. Quasielastic neutron scattering was employed to extract the diffusion behavior of the sodium ions in the melt. An extensive first principles based simulation on a box of up to 512 particles has been performed to complement the experimental data. From that large box, a smaller 64-particle box has then been simulated over a runtime of 60 ps. A good agreement between calculated and neutron data on the level of spectral shape has been obtained. The obtained sodium diffusion coefficients agree very well. The simulation predicts a fluorine diffusion coefficient similar to the sodium one. Applying the Nernst-Einstein equation, a remarkable large cross correlation between both ions can be deduced. The velocity cross correlations demonstrate a positive correlation between the ions over a period of 0.1 ps. That strong correlation is evidence that the unlike ions do not move completely statistically independent and have a strong association over a short period of time.
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan
2014-09-08
Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.
Experimental investigation of turbulent mixing by Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Youngs, D.L.
1992-01-01
A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations
Numerical simulation of Rayleigh-Taylor instability in ablation driven systems
International Nuclear Information System (INIS)
Verdon, C.P.
1984-01-01
Two-dimensional numerical simulations of ablatively accelerated thin shells subject to Rayleigh-Taylor instability are presented. Results for both single wavelength and multiwavelength perturbations show that the nonlinear effects of the instability are evident mainly in the bubble rather than the spike. Approximate roles for predicting the dominant nonlinear mode-mode interactions, which limit shell performance, are also discussed. The work concludes with a discussion of recommendations for future work in this area
Universality in quasiperiodic Rayleigh-Benard convection
International Nuclear Information System (INIS)
Ecke, R.E.; Mainieri, R.; Sullivan, T.S.
1991-01-01
We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a 3 He--superfluid- 4 He mixture. The critical line is located in a parameter space of Rayleigh and Prandtl numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points to spiral periodic points within resonance horns. We measure the radial and angular contraction rates and extract the linear-stability eigenvalues (Flouquet multipliers) of the periodic point. At the crossings of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality class of our experimental dynamics using f(α) and trajectory-scaling-function analyses. A technique is used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different methods of multifractal analysis are employed and an understanding of statistical and systematic errors in these procedures is developed. The power law of the inflection point of the map, determined for three golden-mean-tail winding numbers, is 2.9±0.3, corresponding to the universality class of the sine map
Penetrative convection at high Rayleigh numbers
Toppaladoddi, Srikanth; Wettlaufer, John S.
2018-04-01
We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.
Energy Technology Data Exchange (ETDEWEB)
Liang, X; Zhang, Z; Xie, Y [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, GuangDong (China); Gong, S; Niu, T [Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang (China); Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Zhou, Q [Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang (China)
2016-06-15
Purpose: X-ray scatter photons result in significant image quality degradation of cone-beam CT (CBCT). Measurement based algorithms using beam blocker directly acquire the scatter samples and achieve significant improvement on the quality of CBCT image. Within existing algorithms, single-scan and stationary beam blocker proposed previously is promising due to its simplicity and practicability. Although demonstrated effectively on tabletop system, the blocker fails to estimate the scatter distribution on clinical CBCT system mainly due to the gantry wobble. In addition, the uniform distributed blocker strips in our previous design results in primary data loss in the CBCT system and leads to the image artifacts due to data insufficiency. Methods: We investigate the motion behavior of the beam blocker in each projection and design an optimized non-uniform blocker strip distribution which accounts for the data insufficiency issue. An accurate scatter estimation is then achieved from the wobble modeling. Blocker wobble curve is estimated using threshold-based segmentation algorithms in each projection. In the blocker design optimization, the quality of final image is quantified using the number of the primary data loss voxels and the mesh adaptive direct search algorithm is applied to minimize the objective function. Scatter-corrected CT images are obtained using the optimized blocker. Results: The proposed method is evaluated using Catphan@504 phantom and a head patient. On the Catphan©504, our approach reduces the average CT number error from 115 Hounsfield unit (HU) to 11 HU in the selected regions of interest, and improves the image contrast by a factor of 1.45 in the high-contrast regions. On the head patient, the CT number error is reduced from 97 HU to 6 HU in the soft tissue region and image spatial non-uniformity is decreased from 27% to 5% after correction. Conclusion: The proposed optimized blocker design is practical and attractive for CBCT guided radiation
International Nuclear Information System (INIS)
Liang, X; Zhang, Z; Xie, Y; Gong, S; Niu, T; Zhou, Q
2016-01-01
Purpose: X-ray scatter photons result in significant image quality degradation of cone-beam CT (CBCT). Measurement based algorithms using beam blocker directly acquire the scatter samples and achieve significant improvement on the quality of CBCT image. Within existing algorithms, single-scan and stationary beam blocker proposed previously is promising due to its simplicity and practicability. Although demonstrated effectively on tabletop system, the blocker fails to estimate the scatter distribution on clinical CBCT system mainly due to the gantry wobble. In addition, the uniform distributed blocker strips in our previous design results in primary data loss in the CBCT system and leads to the image artifacts due to data insufficiency. Methods: We investigate the motion behavior of the beam blocker in each projection and design an optimized non-uniform blocker strip distribution which accounts for the data insufficiency issue. An accurate scatter estimation is then achieved from the wobble modeling. Blocker wobble curve is estimated using threshold-based segmentation algorithms in each projection. In the blocker design optimization, the quality of final image is quantified using the number of the primary data loss voxels and the mesh adaptive direct search algorithm is applied to minimize the objective function. Scatter-corrected CT images are obtained using the optimized blocker. Results: The proposed method is evaluated using Catphan@504 phantom and a head patient. On the Catphan©504, our approach reduces the average CT number error from 115 Hounsfield unit (HU) to 11 HU in the selected regions of interest, and improves the image contrast by a factor of 1.45 in the high-contrast regions. On the head patient, the CT number error is reduced from 97 HU to 6 HU in the soft tissue region and image spatial non-uniformity is decreased from 27% to 5% after correction. Conclusion: The proposed optimized blocker design is practical and attractive for CBCT guided radiation
Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing
2009-01-01
Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first heterogeneous slow phase, Tlag, CaDPA levels decreased ∼15% and in the second phase ending at Trelease, remaining CaDPA was released rapidly; 2) in L-alanine germination of wild-type spores and spores lacking SleB: a) the ESLI rose ∼2-fold shortly before Tlag at T1; b) following Tlag, the ESLI again rose ∼2-fold at T2 when CaDPA levels had decreased ∼50%; and c) the ESLI reached its maximum value at ∼Trelease and then decreased; 3) in CaDPA germination of wild-type spores: a) Tlag increased and the first increase in ESLI occurred well before Tlag, consistent with different pathways for CaDPA and L-alanine germination; b) at Trelease the ESLI again reached its maximum value; 4) in L-alanine germination of spores lacking both CLEs and unable to degrade their cortex, the time ΔTrelease (Trelease–Tlag) for excretion of ≥75% of CaDPA was ∼15-fold higher than that for wild-type or sleB spores; and 5) spores lacking only CwlJ exhibited a similar, but not identical ESLI pattern during L-alanine germination to that seen with cwlJ sleB spores, and the high value for ΔTrelease. PMID:19374431
CSIR Research Space (South Africa)
Jule, L
2015-07-01
Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...
Large-scale patterns in Rayleigh-Benard convection
International Nuclear Information System (INIS)
Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.
2008-01-01
Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied
Energy Technology Data Exchange (ETDEWEB)
Poludniowski, Gavin G. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom and Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Evans, Philip M. [Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)
2013-04-15
Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size
Loughman, R. P.; Bhartia, P. K.; Moy, L.; Kramarova, N. A.; Wargan, K.
2016-12-01
Many remote sensing techniques used to monitor the Earth's upper atmosphere fall into the broad category of "limb viewing" (LV) measurements, which includes any method for which the line of sight (LOS) fails to intersect the surface. Occultation, limb emission and limb scattering (LS) measurements are all LV methods that offer strong sensitivity to changes in the atmosphere near the tangent point of the LOS, due to the enhanced geometric path through the tangent layer (where the concentration also typically peaks, for most atmospheric species). But many of the retrieval algorithms used to interpret LV measurements assume that the atmosphere consists of "spherical shells", in which the atmospheric properties vary only with altitude (creating a 1D atmosphere). This assumption simplifies the analysis, but at the possible price of misinterpreting measurements made in the real atmosphere. In this presentation, we focus on the problem of LOS inhomogeneity for LS measurements made by the OMPS Limb Profiler (LP) instrument during the 2015 ozone hole period. The GSLS radiative transfer model (RTM) used in the default OMPS LP algorithms assumes a spherical-shell atmosphere defined at levels spaced 1 km apart, with extinction coefficients assumed to vary linearly with height between levels. Several recent improvements enable an updated single-scattering version of the GSLS RTM to ingest 3D MERRA-2 analysis fields (including temperature, pressure, and ozone concentration) when creating the model atmosphere, by introducing flexible altitude grids, flexible atmospheric specification along the LOS, and improved treatment of the radiative transfer within each atmospheric layer. As a result, the effect of LOS inhomogeneity on the current (1D) OMPS LP retrieval algorithm can now be studied theoretically, using realistic 3D atmospheric profiles. This work also represents a step towards enabling OMPS LP data to be ingested as part of future data assimilation efforts.
Directory of Open Access Journals (Sweden)
S. Singh
2016-11-01
Full Text Available Biomass burning (BB aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA and Ångstrom absorption exponent (AAE were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57, despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.
International Nuclear Information System (INIS)
Hashimoto, Jun; Kubo, Atsushi; Ogawa, Koichi; Ichihara, Takashi; Motomura, Nobutoku; Takayama, Takuzo; Iwanaga, Shiro; Mitamura, Hideo; Ogawa, Satoshi
1998-01-01
A practical method for scatter and attenuation compensation was employed in thallium-201 myocardial single-photon emission tomography (SPET or ECT) with the triple-energy-window (TEW) technique and an iterative attenuation correction method by using a measured attenuation map. The map was reconstructed from technetium-99m transmission CT (TCT) data. A dual-headed SPET gamma camera system equipped with parallel-hole collimators was used for ECT/TCT data acquisition and a new type of external source named ''sheet line source'' was designed for TCT data acquisition. This sheet line source was composed of a narrow long fluoroplastic tube embedded in a rectangular acrylic board. After injection of 99m Tc solution into the tube by an automatic injector, the board was attached in front of the collimator surface of one of the two detectors. After acquiring emission and transmission data separately or simultaneously, we eliminated scattered photons in the transmission and emission data with the TEW method, and reconstructed both images. Then, the effect of attenuation in the scatter-corrected ECT images was compensated with Chang's iterative method by using measured attenuation maps. Our method was validated by several phantom studies and clinical cardiac studies. The method offered improved homogeneity in distribution of myocardial activity and accurate measurements of myocardial tracer uptake. We conclude that the above correction method is feasible because a new type of 99m Tc external source may not produce truncation in TCT images and is cost-effective and easy to prepare in clinical situations. (orig.)
Polarized Raman scattering in single crystals of Nd0.7Sr0.3MnO3
Indian Academy of Sciences (India)
2. Experimental. The single crystal was grown in an infrared image furnace by the floating zone technique. Raman measurements were performed in the spectral .... [3] C Xiong, Q Li, H L Ju, S N Mao, L Senapati, X X Xi, R L Green and T Venkatesan, Appl. Phys. Lett. 66, 1427 (1995). [4] N H Nam, R Mathieu, P Nordblad, N V ...
International Nuclear Information System (INIS)
Tyynelae, Jani; Nousiainen, Timo; Goeke, Sabine; Muinonen, Karri
2009-01-01
We study the applicability of the discrete-dipole approximation by modeling centimeter (C-band) radar echoes for hydrometeors, and compare the results to exact theories. We use ice and water particles of various shapes with varying water-content to investigate how the backscattering, extinction, and absorption cross sections change as a function of particle radius. We also compute radar parameters, such as the differential reflectivity, the linear depolarization ratio, and the copolarized correlation coefficient. We find that using discrete-dipole approximation (DDA) to model pure ice and pure water particles at the C-band, is a lot more accurate than particles containing both ice and water. For coated particles, a large grid-size is recommended so that the coating is modeled adequately. We also find that the absorption cross section is significantly less accurate than the scattering and backscattering cross sections. The accuracy of DDA can be increased by increasing the number of dipoles, but also by using the filtered coupled dipole-option for the polarizability. This halved the relative errors in cross sections.
Neutron and resonant x-ray scattering studies of RNi2B2C (R = rare earth) single crystals
International Nuclear Information System (INIS)
Stassis, C.; Goldman, A.I.; Iowa State Univ., Ames, IA
1996-01-01
This family of intermetallic compounds is ideal for the study of the interplay between superconductivity and magnetism since, in several of these compounds (Ho, Er, Tm, Dy), superconductivity coexists with magnetic ordering. The most important findings of the scattering studies are (a) in the Ho-compound, a complex magnetic structure characterized by two incommensurate wave vectors, rvec k a = 0.585 rvec a* and rvec k c = 0.915 rvec c*, exists in the vicinity of 5 K, where the almost reentrant behavior of this compound occurs; (b) an incommensurate magnetic structure with wave vector along rvec a*, close to the zone boundary, is observed in several of these compounds; and (c) pronounced soft-phonon behavior was observed for both the acoustic and first optical Δ 4 [ξ00] branches in the superconducting Lu and Ho compounds, a behavior characteristic of strongly coupled conventional superconductors. Furthermore, these phonon anomalies occur at wave vectors close to those of the incommensurate magnetically ordered structures observed in the magnetic compounds of this family. This observation suggests that both the magnetic ordering and phonon softening originate from common nesting features of the Fermi surfaces of these compounds. Band theoretical calculations are in qualitative agreement with these results
Jankowska-Sumara, Irena; Ko, Jae-Hyeon; Podgórna, Maria; Oh, Soo Han; Majchrowski, Andrzej
2017-09-01
Raman light scattering was used to detect the sequence of transitions in a PbHf1-xSnxO3 (PHS) single crystal with x = 0.30 in a temperature range of 77-873 K. Changes of Raman spectra were observed in the vicinity of structural phase transitions: between the antiferroelectric (AFE1)-antiferroelectric (AFE2)—intermediate—paraelectric phases. Light scattering and dielectric investigations were used to find out the nature and sequence of the phase transition, as well as the large dielectric permittivity values measured at the phase transition, by searching for the soft-phonon-mode behavior. The experimentally recorded spectra were analyzed in terms of the damped-harmonic oscillator model for the phonon bands. It is demonstrated that the structural phase transformations in PHS can be considered as the result of softening of many modes, not only the ferroelectric one. It was also proved that locally broken symmetry effects are present at temperatures far above the Curie temperature and are connected with the softening of two optic modes of different nature.
Energy Technology Data Exchange (ETDEWEB)
Katich, Joseph; Qian, Xin; Zhao, Yuxiang; Allada, Kalyan; Aniol, Konrad; Annand, John; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Bradshaw, Elliott; Bosted, Peter; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Chen, Wei; Chirapatpimol, Khem; Chudakov, Eugene; Cisbani, Evaristo; Cornejo, Juan; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; De Leo, Raffaele; Deng, Xiaoyan; Deur, Alexandre; Ding, Huaibo; Dolph, Peter; Dutta, Chiranjib; Dutta, Dipangkar; El Fassi, Lamiaa; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gaskell, David; Gilad, Gilad; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Guo, Lei; Hamilton, David; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jijun; Huang, Min; Ibrahim Abdalla, Hassan; Iodice, Mauro; Jin, Ge; Jones, Mark; Kelleher, Aidan; Kim, Wooyoung; Kolarkar, Ameya; Korsch, Wolfgang; LeRose, John; Li, Xiaomei; Li, Y; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lu, Hai-jiang; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Munoz Camacho, Carlos; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Oh, Yoomin; Osipenko, Mikhail; Parno, Diana; Peng, Jen-chieh; Phillips, Sarah; Posik, Matthew; Puckett, Andrew; Qiang, Yi; Rakhman, Abdurahim; Ransome, Ronald; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Schulte, Elaine; Shahinyan, Albert; Hashemi Shabestari, Mitra; Sirca, Simon; Stepanyan, Stepan; Subedi, Ramesh; Sulkosky, Vincent; Tang, Liguang; Tobias, William; Urciuoli, Guido; Vilardi, Ignazio; Wang, Kebin; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Z; Yuan, Lulin; Zhan, Xiaohui; Zhang, Yi; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao; Zhu, Lingyan; Zhu, Xiaofeng; Zong, Xing
2014-07-01
We report the first measurement of the target single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3He{uparrow}(e,e')X on a 3He gas target polarized normal to the lepton plane. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.7
Directory of Open Access Journals (Sweden)
Md Shamsul Arefin
2012-12-01
Full Text Available This work presents a technique for the chirality (n, m assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n, m with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot.
Arefin, Md Shamsul
2012-01-01
This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319
Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu
2016-01-01
Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.
Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-03-01
Single-beam, single-target, and double spin asymmetries for hard exclusive electroproduction of a photon on the proton e →p →→e'p'γ are presented. The data were taken at Jefferson Lab using the CEBAF large acceptance spectrometer and a longitudinally polarized NH3 14 target. The three asymmetries were measured in 165 four-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of generalized parton distributions. The measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H ˜ Compton form factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.
Energy Technology Data Exchange (ETDEWEB)
Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2015-03-19
Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized ^{14}NH_{3} target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.
International Nuclear Information System (INIS)
Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu
2016-01-01
Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.
Rayleigh-type parametric chemical oscillation
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Controlled light scattering in transparent polycrystalline ferroelectrics
International Nuclear Information System (INIS)
Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.
1977-01-01
Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization
Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals
International Nuclear Information System (INIS)
Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.
1988-01-01
Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found
Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals
Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.
1988-12-01
Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.
Zhang, Qiang; Moran, Christine H; Xia, Xiaohu; Rycenga, Matthew; Li, Naixu; Xia, Younan
2012-06-19
This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.
Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, C.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Katich, J.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J.-C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Rakhman, A.; Ransome, R.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration
2014-11-01
We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1
Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A
2015-09-21
We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.
SU-F-T-160: Commissioning of a Single-Room Double-Scattering Proton Therapy System
Energy Technology Data Exchange (ETDEWEB)
Jin, H; Ahmad, S; Chen, Y; Lau, A; Islam, M; Ferreira, C; Ferguson, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Keeling, V [Carti, Inc., Little Rock, AR (United States)
2016-06-15
Purpose: To report the detailed commissioning experience for a compact double-scattering Mevion S250 proton therapy system at a University Cancer Center site. Methods: The commissioning of the proton therapy system mainly consisted of ensuring integrity of mechanical and imaging system, beam data collection, and commissioning of a treatment planning system (TPS). First, mechanical alignment and imaging were tested including safety, interlocks, positional accuracy of couch and gantry, image quality, mechanical and imaging isocenter and so on. Second, extensive beam data (outputs, PDDs, and profiles) were collected and analyzed through effective sampling of range (R) and modulation width (M) from 24 beam options. Three different output (cGy/MU) prediction models were also commissioned as primary and secondary MU calculation tool. Third, the Varian Eclipse TPS was commissioned through five sets of data collections (in-water Bragg peak scans, in-air longitudinal fluence scans, in-air lateral profiles, in-air half-beam profiles, and an HU-to-stopping-power conversion curve) and accuracy of TPS calculation was tested using in-water scans and dose measurements with a 2D array detector with block and range compensator. Finally, an anthropomorphic phantom was scanned and heterogeneity effects were tested by inserting radiochromic films in the phantom and PET activation scans for range verification in conjunction with end-to-end test. Results: Beam characteristics agreed well with the vendor specifications; however, minor mismatches in R and M were found in some measurements during the beam data collection. These were reflected into the TPS commissioning such that the TPS could accurately predict the R and M within tolerance levels. The output models had a good agreement with measured outputs (<3% error). The end-to-end test using the film and PET showed reasonably the TPS predicted dose, R and M in heterogeneous medium. Conclusion: The proton therapy system was successfully
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.
Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.
The spin chirality in MnSi single crystal probed by small angle scattering with polarized neutrons
International Nuclear Information System (INIS)
Okorokov, A.I.; Grigoriev, S.V.; Chetverikov, Yu.O.; Georgii, R.; Boeni, P.; Eckerlebe, H.; Pranzas, K.; Roessli, B.
2004-01-01
The weak itinerant ferromagnet MnSi orders with a left-handed helical spin structure below T C =29 K. The helicity with a vector m=[S 1 xS 2 ]/S 2 along the crystallographic axis [1 1 1] is realized by an antisymmetric Dzyaloshinski-Moriya interaction. The small angle diffraction study with polarized neutrons on a single MnSi crystal was performed within the temperature range from 10 K to T C and the magnetic field B from 1 to 350 mT. The single crystal was oriented in such a way that two axes [1 1 1] and [1 1 -1] were set in a plane perpendicular to the incident beam. Four major diffraction peaks at ±q 1 and ±q 2 along the axes and four minor peaks at q=±q 1 ±q 2 were observed. The intensity I p =I(+P 0 )+I(-P 0 ), the polarization P p =[I(+P 0 )-I(-P 0 )]/I p and the position q p of the peaks were measured as a function of the temperature and the magnetic field. From intensity of the peaks the chiral critical exponent is obtained as β=0.47±0.04
Shen, Fahua; Wang, Bangxin; Shi, Wenjuan; Zhuang, Peng; Zhu, Chengyun; Xie, Chenbo
2018-04-01
A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5 ∼20 km, 0.5 km@20 ∼40 km, 1 km@40 ∼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210 ∼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.
Effects of shock waves on Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Zhang Yongtao; Shu Chiwang; Zhou Ye
2006-01-01
A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process
International Nuclear Information System (INIS)
Yamaji, Akio; Saito, Tetsuo.
1988-01-01
To investigate a proximity effect of ducts on shield performance against γ radiation, an experiment was performed at JRR-4 by entering the γ-ray beam into a concrete shield wall of 100 cm-thickness with 3 or 5 straight cylindrical ducts of radius of 4.45 cm placed in a straight line or crosswise at interval of 8.9 cm. The dose rates were measured using digital dosimeters on a horizontal line 20 cm apart from the rear of the wall with 0, 1, 3 and 5 ducts, and with the incident angles of 0deg, 7deg, 14deg and 20deg, respectively. The dose rate distributions depended on the number of ducts and the incident angle, and the dose rate ratios of with-three-ducts to no-duct distributed within 3.6∼12, 1.3∼5.0 and 1.1∼4.3, for the incident angles of 7deg, 14deg and 20deg, while those of with-single-duct to no-duct within 1.2∼7.1, 1.1∼2.7 and 1.0∼1.9, respectively. The experiment was analyzed using a multigroup single scattering code G33YSN able to deal with the geometry of the ducts exactly. For each incident angle, the calculation agreed with the experiment within a factor of 2. (author)
International Nuclear Information System (INIS)
Zhou, Haibo; Yang, Danting; Mircescu, Nicoleta E.; Ivleva, Natalia P.; Schwarzmeier, Kathrin; Niessner, Reinhard; Haisch, Christoph; Wieser, Andreas; Schubert, Sören
2015-01-01
We describe a method for the synthesis of SERS-active silver nanoparticles (AgNPs) directly on the surface of bacteria (bacteria-AgNPs), specifically of E. coli cells. This straightforward strategy allows for the sensitive determination of bacteria on a microarray platform. Antibodies were used as selective receptors on the microarray surface. The Raman signal of bacteria-AgNPs is about 10 times higher than that obtained previously with microarrays based on mixing bacteria and AgNPs (bacteria+AgNPs). The optimum SERS enhancement of bacteria-AgNPs is obtained under 633-nm laser excitation, and this most likely is due to the plasmonic interaction of aggregated AgNPs. The method allows for an identification and quantification even of single E. coli bacteria. In our perception, this straightforward approach represents a most valuable tool for the detection of E. coli and, conceivably, of other bacteria, and thus has a large potential in environmental monitoring, medical diagnosis, and in food safety and quality control. (author)
Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection
Lee, Changhoon; Park, Sangro
2016-11-01
Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.
A numerical study of three-dimensional bubble merger in the Rayleigh endash Taylor instability
International Nuclear Information System (INIS)
Li, X.L.
1996-01-01
The Rayleigh endash Taylor instability arises when a heavy fluid adjacent to a light fluid is accelerated in a direction against the density gradient. Under this unstable configuration, a perturbation mode of small amplitude grows into bubbles of the light fluid and spikes of the heavy fluid. Taylor discovered the steady state motion with constant velocity for a single bubble or periodic bubbles in the Rayleigh endash Taylor instability. Read and Youngs studied the motion of a randomly perturbed fluid interface in the Rayleigh endash Taylor instability. They reported constant acceleration for the overall bubble envelope. Bubble merger is believed to cause the transition from constant velocity to constant acceleration. In this paper, we present a numerical study of this important physical phenomenon. It analyzes the physical process of bubble merger and the relationship between the horizontal bubble expansion and the vertical interface acceleration. A dynamic bubble velocity, beyond Taylor close-quote s steady state value, is observed during the merger process. It is believed that this velocity is due to the superposition of the bubble velocity with a secondary subharmonic unstable mode. The numerical results are compared with experiments. copyright 1996 American Institute of Physics
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Determination of X-ray anomalous scattering in silicon
International Nuclear Information System (INIS)
Cusatis, C.
1987-01-01
The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Manipulating Rayleigh-Taylor Growth Using Adjoints
Kord, Ali; Capecelatro, Jesse
2017-11-01
It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations
International Nuclear Information System (INIS)
Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.
2011-01-01
Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since
3.5. Apparatus for plasma electron temperature measurement by Thomson scattering
International Nuclear Information System (INIS)
Kolacek, K.; Babicky, V.
1981-01-01
Equipment was developed and tested for measuring time-resolved local electron plasma temperature and density by the Thomson scattering of ruby laser light. The laser consists of a Q-switched generator (ruby 12 mm in diameter by 150 mm long) followed by one amplifier (ruby 16 mm indi long) followed by one amplifier (ruby 16 mm in diameter by 250 mm long). For Q-switching a Pockels cell with a z-cut ADP crystal was used. The laser is capable of delivering 4 J of energy in a pulse of 50 ns in duration. The spectrum of the laser light scattered at an angle of 9a degrees is analyzed by a six-channel polychromator. Fibre optics and photomultipliers with gated amplifiers are used. Output signals are transmitted via a parallel-to-series converter to a single-trace oscilloscope. The whole Thomson scattering apparatus was successfully tested by the Rayleigh scattering in the air at atmospheric pressure. (J.U.)
Directory of Open Access Journals (Sweden)
C. Di Biagio
2016-08-01
Full Text Available Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ∼ 160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84–0.70 between 370 and 950 nm are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.77 and 0.002–0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE, i.e. the DRE per unit of optical depth, at the surface (−160/−235 W m−2 τ−1 at 60° solar zenith angle and at the Top-Of-Atmosphere (−137/−92
DEFF Research Database (Denmark)
Sivaramakrishnan, S.; Sung, J.; Ali, M.
2009-01-01
as a force transducer, rigid spacer, or flexible linker in proteins. In this study, we quantity this flexibility in terms of persistence length, namely the length scale over which it is rigid. We use single-molecule optical trapping and small-angle x-ray scattering, combined with Monte Carlo simulations...
Thermal-neutron multiple scattering: critical double scattering
International Nuclear Information System (INIS)
Holm, W.A.
1976-01-01
A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer
Effect of multiple scattering on lidar measurements
International Nuclear Information System (INIS)
Cohen, A.
1977-01-01
The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed
Energy Technology Data Exchange (ETDEWEB)
Nehrkorn, Joscha; Milazzo, Ruggero; Stuiber, Stefan; Waldmann, Oliver [Physikalisches Institut, Universitaet Freiburg (Germany); Akhtar, Muhammad Nadeem; Lan, Yanhua; Powell, Annie K. [Institut fuer Anorganische Chemie, Universitaet Karlsruhe, KIT (Germany); Mutka, Hannu [Institut Laue-Langevin, Grenoble (France)
2011-07-01
The discovery of slow relaxation and quantum tunneling of the magnetization in Mn{sub 1}2ac more than 15 years ago has inspired both physicists and chemists alike. This class of molecules, now called single-molecule magnets (SMMs), has very recently been expanded to heterometallic clusters incorporating transition metal and rare earth ions. The 4f ions were chosen because of their large angular momentum and magnetic anisotropy. Inelastic neutron scattering experiments were performed on the time-of-flight disk-chopper spectrometer IN5 at ILL on the SMM Mn{sub 2}Nd{sub 2}. A magnetic model was developed which perfectly describes all data, including the magnetic data. It was found that neither the large anisotropy nor the large angular momentum of the Nd{sup I}II ions is the main reason for the SMM behavior in this molecule. Our analysis of the data indicates that it is the weak coupling of the Nd{sup I}II ions to the Mn{sup I}II ions, usually considered as a drawback of rare earth ions, which enhances the relaxation time and therefore leads to SMM behavior.
Christou, Konstantin; Knorr, Inga; Ihlemann, Jürgen; Wackerbarth, Hainer; Beushausen, Volker
2010-12-07
The fabrication of SERS-active substrates, which offer high enhancement factors as well as spatially homogeneous distribution of the enhancement, plays an important role in the expansion of surface-enhanced Raman scattering (SERS) spectroscopy to a powerful, quantitative, and noninvasive measurement technique for analytical applications. In this paper, a novel method for the fabrication of SERS-active substrates by laser treatment of 20, 40, and 60 nm thick gold and of 40 nm thick silver films supported on quartz glass is presented. Single 308 nm UV-laser pulses were applied to melt the thin gold and silver films. During the cooling process of the noble metal, particles were formed. The particle size and density were imaged by atomic force microscopy. By varying the fluence, the size of the particles can be controlled. The enhancement factors of the nanostructures were determined by recording self-assembled monolayers of benzenethiol. The intensity of the SERS signal from benzenethiol is correlated to the mean particle size and thus to the fluence. Enhancement factors up to 10(6) with a high reproducibility were reached. Finally we have analyzed the temperature dependence of the SERS effect by recording the intensity of benzenethiol vibrations from 300 to 120 K. The temperature dependence of the SERS effect is discussed with regard to the metal properties.