WorldWideScience

Sample records for single qubit gates

  1. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  2. Single qubit gates in a 3D array of neutral atoms

    Science.gov (United States)

    Corcovilos, Theodore A.; Wang, Yang; Li, Xiao; Weiss, David S.; Kim, Jungsang

    2012-06-01

    We present an approach to quantum computing using single Cs atoms in a cubic 5-μm spaced 3D optical lattice. After cooling the atoms to near their vibrational ground state (76% ground state occupancy) using projection sideband cooling, we manipulate the state of individual atoms using the AC Stark shift induced by intersecting lasers and microwave pulses that are only resonant with the shifted atom. Here we demonstrate Rabi oscillations of a single atom in the center of the array and progress towards steering the beams to address the other atoms. Rapid steering of the lasers using micromirrors allows single-atom gates of ˜10 μs. This single-site addressing along with lattice polarization rotation will enable us to fill voids in the central region of the atom array by selectively moving individual atoms. Future work will couple adjacent qubits via the Rydberg blockade mechanism with expected two-qubit gate times of ˜100 ns.

  3. Optimal strategy for a single-qubit gate and the trade-off between opposite types of decoherence

    Science.gov (United States)

    Alicki, Robert; Horodecki, Michał; Horodecki, Paweł; Horodecki, Ryszard; Jacak, Lucjan; Machnikowski, Paweł

    2004-07-01

    We study reliable quantum-information processing (QIP) under two different types of environment. The first type is Markovian exponential decay, and the appropriate elementary strategy of protection of qubit is to apply fast gates. The second one is strongly non-Markovian and occurs solely during operations on the qubit. The best strategy is then to work with slow gates. If the two types are both present, one has to optimize the speed of gate. We show that such a trade-off is present for a single-qubit operation in a semiconductor quantum dot implementation of QIP, where recombination of exciton (qubit) is Markovian, while phonon dressing gives rise to the non-Markovian contribution.

  4. Optimal strategy for a single-qubit gate and the trade-off between opposite types of decoherence

    International Nuclear Information System (INIS)

    We study reliable quantum-information processing (QIP) under two different types of environment. The first type is Markovian exponential decay, and the appropriate elementary strategy of protection of qubit is to apply fast gates. The second one is strongly non-Markovian and occurs solely during operations on the qubit. The best strategy is then to work with slow gates. If the two types are both present, one has to optimize the speed of gate. We show that such a trade-off is present for a single-qubit operation in a semiconductor quantum dot implementation of QIP, where recombination of exciton (qubit) is Markovian, while phonon dressing gives rise to the non-Markovian contribution

  5. Optimized driving of superconducting artificial atoms for improved single-qubit gates

    Science.gov (United States)

    Chow, J. M.; Dicarlo, L.; Gambetta, J. M.; Motzoi, F.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J.

    2010-10-01

    We employ simultaneous shaping of in-phase and out-of-phase resonant microwave drives to reduce single-qubit gate errors arising from the weak anharmonicity of transmon superconducting artificial atoms. To reduce the effect of higher levels present in the transmon spectrum, we apply Gaussian and derivative-of-Gaussian envelopes to the in-phase and out-of-phase quadratures, respectively, and optimize over their relative amplitude. Using randomized benchmarking, we obtain a minimum average error per gate of 0.007±0.005 using 4-ns-wide pulses, which is limited by decoherence. This simple optimization technique works for multiple transmons coupled to a single microwave resonator in a quantum bus architecture.

  6. Experimental Implementation of High-Fidelity Single-Qubit Gates for Two-Electron Spin Qubits in GaAs

    Science.gov (United States)

    Cerfontaine, Pascal; Botzem, Tim; Bluhm, Hendrik

    2015-03-01

    High fidelity gate operations for manipulating individual and multiple qubits in the presence of decoherence are a prerequisite for fault-tolerant quantum information processing. However, the control methods used in earlier experiments on GaAs two-electron spin qubits are based on unrealistic approximations which preclude reaching the required fidelities. An attractive remedy is to use control pulses found in numerical simulations that minimize the infidelity from decoherence and take the experimentally important imperfections and constraints into account. We show that the experimental implementation of these numerically optimized control pulses is possible by using a self-consistent calibration routine we proposed earlier. In our experiment this calibration routine succeeds in removing systematic gate errors to a high degree without increasing the pulses' decoherence. We extract the Bloch sphere trajectories of the resulting gate sequences using self-consistent state tomography and find good agreement with the theoretically predicted trajectories. Furthermore, we prepare different states using these gates and determine their fidelities. Alfried Krupp von Bohlen und Halbach - Foundation, Deutsche Telekom Foundation.

  7. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  8. Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit

    International Nuclear Information System (INIS)

    Brito, Frederico; DiVincenzo, David P; Koch, Roger H; Steffen, Matthias

    2008-01-01

    We present theoretical schemes for performing high-fidelity one- and two-qubit pulsed gates for a superconducting flux qubit. The 'IBM qubit' consists of three Josephson junctions, three loops and a superconducting transmission line. Assuming a fixed inductive qubit-qubit coupling, we show that the effective qubit-qubit interaction is tunable by changing the applied fluxes, and can be made negligible, allowing one to perform high-fidelity single qubit gates. Our schemes are tailored to alleviate errors due to 1/f noise; we find gates with only 1% loss of fidelity due to this source, for pulse times in the range of 20-30 ns for one-qubit gates (Z rotations, Hadamard) and 60 ns for a two-qubit gate (controlled-Z). Our relaxation and dephasing time estimates indicate a comparable loss of fidelity from this source. The control of leakage plays an important role in the design of our shaped pulses, preventing shorter pulse times. However, we have found that imprecision in the control of the quantum phase plays a major role in the limitation of the fidelity of our gates

  9. Single-Qubit-Gate Error below 0.0001 in a Trapped Ion

    Science.gov (United States)

    2011-01-01

    nuclear spins in liquid-state nuclear-magnetic resonance experiments [6] and with neutral atoms confined in optical lattices [7]; here we demonstrate...Single trapped ion 2.0(2)×10−5 Reference [6] (2009) Nuclear magnetic resonance 1.3(1)×10−4 Reference [7] (2010) Atoms in an optical lattice 1.4(1)×10...determined by comparing the qubit frequency measured in a Ramsey experiment with that of a Rabi experiment. Such back-to-back comparisons yielded values

  10. A CNOT gate between multiphoton qubits encoded in two cavities.

    Science.gov (United States)

    Rosenblum, S; Gao, Y Y; Reinhold, P; Wang, C; Axline, C J; Frunzio, L; Girvin, S M; Jiang, Liang; Mirrahimi, M; Devoret, M H; Schoelkopf, R J

    2018-02-13

    Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm must ultimately operate on error-protected logical qubits encoded in high-dimensional systems. Typically, logical qubits are encoded in multiple two-level systems, but entangling gates operating on such qubits are highly complex and have not yet been demonstrated. Here we realize a controlled NOT (CNOT) gate between two multiphoton qubits in two microwave cavities. In this approach, we encode a qubit in the high-dimensional space of a single cavity mode, rather than in multiple two-level systems. We couple two such encoded qubits together through a transmon, which is driven by an RF pump to apply the gate within 190 ns. This is two orders of magnitude shorter than the decoherence time of the transmon, enabling a high-fidelity gate operation. These results are an important step towards universal algorithms on error-corrected logical qubits.

  11. Randomized benchmarking and process tomography for gate errors in a solid-state qubit.

    Science.gov (United States)

    Chow, J M; Gambetta, J M; Tornberg, L; Koch, Jens; Bishop, Lev S; Houck, A A; Johnson, B R; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-03-06

    We present measurements of single-qubit gate errors for a superconducting qubit. Results from quantum process tomography and randomized benchmarking are compared with gate errors obtained from a double pi pulse experiment. Randomized benchmarking reveals a minimum average gate error of 1.1+/-0.3% and a simple exponential dependence of fidelity on the number of gates. It shows that the limits on gate fidelity are primarily imposed by qubit decoherence, in agreement with theory.

  12. The effect of dephasing on superadiabatic single-qubit rotation gates

    Science.gov (United States)

    Subhi Mahmoud, Gharib; Messikh, Azeddine

    2017-12-01

    To implement quantum gates stimulated Raman adiabatic passage (STIRAP) can be used. This STIRAP requires high Rabi frequencies and to overcome this problem we use superadiabatic approach. Our model is a tripod consisting of four-level system driven by three resonant fields. These fields are modulated by Gaussian pulses with different amplitudes, phases and time delays. We investigate the robustness of our model against dephasing which are caused by collisions or phase fluctuations of the fields.

  13. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications

    Science.gov (United States)

    Liu, Tong; Guo, Bao-Qing; Yu, Chang-Shui; Zhang, Wei-Ning

    2018-02-01

    In a recent remarkable experiment [R. B. Patel et al., Science advances 2, e1501531 (2016)], a 3-qubit quantum Fredkin (i.e., controlled-SWAP) gate was demonstrated by using linear optics. Here we propose a simple experimental scheme by utilizing the dispersive interaction in superconducting quantum circuit to implement a hybrid Fredkin gate with a superconducting flux qubit as the control qubit and two separated quantum memories as the target qudits. The quantum memories considered here are prepared by the superconducting coplanar waveguide resonators or nitrogen-vacancy center ensembles. In particular, it is shown that this Fredkin gate can be realized using a single-step operation and more importantly, each target qudit can be in an arbitrary state with arbitrary degrees of freedom. Furthermore, we show that this experimental scheme has many potential applications in quantum computation and quantum information processing such as generating arbitrary entangled states (discrete-variable states or continuous-variable states) of the two memories, measuring the fidelity and the entanglement between the two memories. With state-of-the-art circuit QED technology, the numerical simulation is performed to demonstrate that two-memory NOON states, entangled coherent states, and entangled cat states can be efficiently synthesized.

  14. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  15. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  16. Quantum Privacy Amplification for a Sequence of Single Qubits

    International Nuclear Information System (INIS)

    Deng Fuguo; Long Guilu

    2006-01-01

    We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.

  17. Fast quantum logic gates with trapped-ion qubits

    Science.gov (United States)

    Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.

    2018-03-01

    Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually

  18. High-Fidelity Entangling Gates for Two-Electron Spin Qubits

    Science.gov (United States)

    Cerfontaine, Pascal; Mehl, Sebastian; Divincenzo, David P.; Bluhm, Hendrik

    High fidelity gate operations for manipulating individual and multiple qubits are a prerequisite for fault-tolerant quantum information processing. Recently, we have shown that single-qubit gates for singlet-triplet qubits in GaAs can be pulse-engineered to reduce systematic errors and mitigate magnetic field fluctuations from the abundant nuclear spins, leading to experimentally demonstrated gate fidelities of 98.5%. We expect that a similar approach will be successful for two-qubit gates. We now describe short gating sequences for exchange-based two-qubit gates, showing that gate infidelities below 0.1% can be reached in realistic quantum dot setups. Additionally, we perform numerical pulse optimization to fully take the experimentally important imperfections into account, minimizing systematic errors and noise sensitivity. Since transferring the optimal control pulses to an experimental setting will inevitably incur systematic errors, we discuss how these errors can be calibrated on the experiment Supported by the Alexander von Humboldt Foundation, Alfried Krupp von Bohlen und Halbach Foundation, DFG Grant BL 1197/2- 1, and the Deutsche Telekom Foundation.

  19. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    Science.gov (United States)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  20. Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser

    International Nuclear Information System (INIS)

    Akerman, Nitzan; Navon, Nir; Kotler, Shlomi; Glickman, Yinnon; Ozeri, Roee

    2015-01-01

    We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped 88 Sr + ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser. We employed a master-slave configuration for the laser, where an ultra low expansion glass Fabry–Perot cavity is used as a stable reference as well as a spectral filter. We characterized the laser spectrum using the ions with a modified Ramsey sequence which eliminated the affect of the magnetic field noise. We demonstrated high fidelity single qubit gates with individual addressing, based on inhomogeneous micromotion, on a two-ion chain as well as the Mølmer–Sørensen two-qubit entangling gate. (paper)

  1. Optimal control of a single qubit by direct inversion

    International Nuclear Information System (INIS)

    Wenin, M.; Poetz, W.

    2006-01-01

    Optimal control of a driven single dissipative qubit is formulated as an inverse problem. We show that direct inversion is possible which allows an analytic construction of optimal control fields. Exact inversion is shown to be possible for dissipative qubits which can be described by a Lindblad equation. It is shown that optimal solutions are not unique. For a qubit with weak coupling to phonons we choose, among the set of exact solutions for the dissipationless qubit, one which minimizes the dissipative contribution in the kinetic equations. Examples are given for state trapping and Z-gate operation. Using analytic expressions for optimal control fields, favorable domains for dynamic stabilization in the Bloch sphere are identified. In the case of approximate inversion, the identified approximate solution may be used as a starting point for further optimization following standard methods

  2. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    2014-07-25

    Jul 25, 2014 ... Our work addresses the problem of generating maximally entangled two spin-1/2 (qubit) symmetric states using NMR, NQR, Lipkin–Meshkov–Glick Hamiltonians. Time evolution of such Hamiltonians provides various logic gates which can be used for quantum processing tasks. Pairs of spin-1/2s have ...

  3. Universal quantum gates for Single Cooper Pair Box based quantum computing

    Science.gov (United States)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  4. Interfacing superconducting qubits and single optical photons

    NARCIS (Netherlands)

    Das, Sumanta; Faez, Sanli; Sørensen, Anders S.

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit

  5. Demonstration of universal parametric entangling gates on a multi-qubit lattice.

    Science.gov (United States)

    Reagor, Matthew; Osborn, Christopher B; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A; Didier, Nicolas; da Silva, Marcus P; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O'Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T

    2018-02-01

    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk.

  6. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  7. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  8. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  9. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    Science.gov (United States)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  10. Spectroscopy and coherent manipulation of single and coupled flux qubits

    International Nuclear Information System (INIS)

    Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning

    2013-01-01

    Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)

  11. High fidelity all-microwave controlled-phase gate for superconducting qubits by cavity vacuum displacement

    Science.gov (United States)

    Paik, Hanhee; Zhou, D.; Reed, M. D.; Kirchmair, G.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J.

    2013-03-01

    We demonstrate a new all-microwave controlled phase entangling gate for the superconducting qubits in the three-dimensional circuit QED (3D cQED) architecture. The gate exploits the strong coupling between qubits and a cavity, wherein the cavity frequency dispersively shifts depending on the qubit register state. We off-resonantly displace the cavity vacuum state; each computational state evolves a different phase due to the dispersive coupling, yielding a conditional phase. While designed to exploit the advantages of the 3D cQED architecture, the gate requires only dispersive coupling, making the gate applicable to a wide variety of superconducting qubit architectures. We demonstrate 98% gate fidelity evaluated by quantum process tomography, and will discuss how appropriate choices of system parameters could increase this number and how we could minimize the gate infidelity due to measurement induced dephasing and non-adiabatic gate procedure.

  12. Ultrafast geometric control of a single qubit using chirped pulses

    International Nuclear Information System (INIS)

    Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2012-01-01

    We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.

  13. Gate-error analysis in simulations of quantum computers with transmon qubits

    Science.gov (United States)

    Willsch, D.; Nocon, M.; Jin, F.; De Raedt, H.; Michielsen, K.

    2017-12-01

    In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained by numerical solution of the time-dependent Schrödinger equation of the transmon system. We find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm.

  14. The validity of the RWA and gate operation speedup by violating RWA in resonant-driven qubit systems

    Science.gov (United States)

    Song, Yang

    The rotating wave approximation (RWA) is ubiquitously used in understanding (quasi)resonant driven systems and designing pulses for state evolution. Following the practice in atomic and NMR physics, a wide range of semiconducting qubit systems are driven resonantly to manipulate the qubit, including single-spin/resonant exchange (RX)/various singlet-triplet(ST)/spin-charge hybrid qubits. The purpose of this talk is twofold: (I) Examine the validity of RWA in different qubit systems and analyze the error in terms of quantum computation; (II) Present faster gate operations by going into RWA-invalid regime for resonant-driven qubits (esp. for ST and RX types). We measure the RWA-induced infidelity and discuss it in view of the fault-tolerant error correction threshold and operation speeds. Applying the analytical extension (two orders higher than RWA) greatly reduces the infidelity, in the regime where the RWA is attempted to be used. Moreover, we show that the resonant-driven system is not limited by the Rabi-like weak coupling limit and the associated slow gate speed, much smaller than the level splitting (e.g., the small Zeeman energy gradient in ST qubits). We demonstrate the universal one qubit gates for driving strength up to a few level splitting, achieving fast control with only simple sinusoidal pulses. We also solve for the `shifted sinusoidal' pulses needed for ST qubits where the exchange coupling cannot change signs. In collaboration with Xin Wang, Jason Kestner and Sankar Das Sarma, and supported by LPS-MPO-CMTC and IARPA-MQCO.

  15. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    Science.gov (United States)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  16. Generation of an N-qubit phase gate via atom—cavity nonidentical coupling

    International Nuclear Information System (INIS)

    Ying-Qiao, Zhang; Shou, Zhang

    2009-01-01

    A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom–cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N → ∞, the fidelity and success probability infinitely approach 1, but never exceed 1. (general)

  17. Universal and Deterministic Manipulation of the Quantum State of Harmonic Oscillators: A Route to Unitary Gates for Fock State Qubits

    International Nuclear Information System (INIS)

    Santos, Marcelo Franca

    2005-01-01

    We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two by two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic, and state-independent manipulation of the harmonic oscillator quantum state

  18. Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction

    International Nuclear Information System (INIS)

    Yang, C.-P.; Han Siyuan

    2006-01-01

    We show a way to realize an arbitrary rotation gate in a three-level superconducting quantum interference device (SQUID) qubit using resonant interaction. In this approach, the two logical states of the qubit are represented by the two lowest levels of the SQUID and a higher-energy intermediate level is utilized for the gate manipulation. By considering spontaneous decay from the intermediate level during the gate operation, we present a formula for calculating average fidelity over all possible initial states. Finally, based on realistic system parameters, we show that an arbitrary rotation gate can be achieved with a high fidelity in a SQUID

  19. Single qubit operations using microwave hyperbolic secant pulses

    Science.gov (United States)

    Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.

    2017-10-01

    It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.

  20. Efficient gate set tomography on a multi-qubit superconducting processor

    Science.gov (United States)

    Nielsen, Erik; Rudinger, Kenneth; Blume-Kohout, Robin; Bestwick, Andrew; Bloom, Benjamin; Block, Maxwell; Caldwell, Shane; Curtis, Michael; Hudson, Alex; Orgiazzi, Jean-Luc; Papageorge, Alexander; Polloreno, Anthony; Reagor, Matt; Rubin, Nicholas; Scheer, Michael; Selvanayagam, Michael; Sete, Eyob; Sinclair, Rodney; Smith, Robert; Vahidpour, Mehrnoosh; Villiers, Marius; Zeng, William; Rigetti, Chad

    Quantum information processors with five or more qubits are becoming common. Complete, predictive characterization of such devices e.g. via any form of tomography, including gate set tomography appears impossible because the parameter space is intractably large. Randomized benchmarking scales well, but cannot predict device behavior or diagnose failure modes. We introduce a new type of gate set tomography that uses an efficient ansatz to model physically plausible errors, but scales polynomially with the number of qubits. We will describe the theory behind this multi-qubit tomography and present experimental results from using it to characterize a multi-qubit processor made by Rigetti Quantum Computing. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidary of Lockheed Martin Corporation, for the US Department of Energy's NNSA under contract DE-AC04-94AL85000.

  1. Implementation of single qubit in QD ensembles

    International Nuclear Information System (INIS)

    Alegre, T.P. Mayer

    2004-01-01

    Full text: During the last decades the semiconductor industry has achieved the production of exponentially shrinking components. This fact points to fundamental limits of integration, making computation with single atoms or particles like an electron an ultimate goal. To get to this limit, quantum systems in solid state have to be manipulated in a controllable fashion. The assessment of quantum degrees of freedom for information processing may allow exponentially faster performance for certain classes of problems. The essential aspect to be explored in quantum information processing resides in the superposition of states that allows resources such as entangled states to be envisaged. The quest for the optimal system to host a quantum variable that is sufficiently isolated from the environment encompasses implementations spanning optical, atomic, molecular and solid state systems. In the solid state, a variety of proposals have come forth, each one having its own advantages and disadvantages. The main conclusion from these e efforts is that there is no decisive technology upon which quantum information devices will be built. Self-assembled quantum dots (SAQDs or QDs), can be grown with size uniformity that enables the observation of single electron loading events. They can in turn be used to controllably trap single electrons into discrete levels, atom-like, with their corresponding shells. Hund's rules and Pauli exclusion principle are observed in these nanostructures and are key in allowing and preserving a particular quantum state. Provided that one can trap one electron in a QD ensemble, the corresponding spin can be manipulated by an external magnetic field by either conventional Electron Spin Resonance (ESR) techniques or g-tensor modulation resonance (g-TMR). By analogy with Nuclear Magnetic Resonance, single qubit operations are proposed, which at some point in time should be scaled, provided that spin-spin interactions can be controlled. Read out can be

  2. Implementation of one-qubit holonomic rotation gate by adiabatic passage

    Directory of Open Access Journals (Sweden)

    R Nader-Ali

    2010-06-01

    Full Text Available We propose a robust scheme, using tripod stimulated Raman adiabatic passage, to generate one-qubit rotation gate. In this scheme, a four-level atom interacts with three resonant laser pulses and time evolution of the corresponding coherent system is designed such that the rotation gate is implemented at the end of process. Rotation angle in this gate is holonomic and has a geometrical basis in the parameter space. We also explore the effect of spontaneous emission on the population transfer with numerical solution of Schrödinger and Liouville equations.

  3. Dynamically correcting two-qubit gates against any systematic logical error

    Science.gov (United States)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  4. Valley qubit in a gated MoS2 monolayer quantum dot

    Science.gov (United States)

    Pawłowski, J.; Żebrowski, D.; Bednarek, S.

    2018-04-01

    The aim of the presented research is to design a nanodevice, based on a MoS2 monolayer, performing operations on a well-defined valley qubit. We show how to confine an electron in a gate-induced quantum dot within the monolayer, and to perform the not operation on its valley degree of freedom. The operations are carried out all electrically via modulation of the confinement potential by oscillating voltages applied to the local gates. Such quantum dot structure is modeled realistically. Through these simulations we investigate the possibility of realization of a valley qubit in analogy with a realization of the spin qubit. We accurately model the potential inside the nanodevice accounting for proper boundary conditions on the gates and space-dependent materials permittivity by solving the generalized Poisson's equation. The time evolution of the system is supported by realistic self-consistent Poisson-Schrödinger tight-binding calculations. The tight-binding calculations are further confirmed by simulations within the effective continuum model.

  5. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  6. Single Qubit Manipulation in a Microfabricated Surface Electrode Ion Trap (Open Access, Publisher’s Version)

    Science.gov (United States)

    2013-09-13

    electrode ion trap with field compensation using a modulated Raman effect D T C Allcock, J A Sherman, D N Stacey et al. Spatially uniform single-qubit gate...in thermal states of motion G Kirchmair, J Benhelm, F Zähringer et al. Normal modes of trapped ions in the presence of anharmonic trap potentials J P...Qloaded = 280) [35]. New Journal of Physics 15 (2013) 093018 (http://www.njp.org/) 5 2.1 GHz Zeeman = 1.4 MHz/G 36 9. 5 nm HF = 12.6 GHz 171Yb+ 2P 1

  7. Nondestructive fluorescent state detection of single neutral atom qubits.

    Science.gov (United States)

    Gibbons, Michael J; Hamley, Christopher D; Shih, Chung-Yu; Chapman, Michael S

    2011-04-01

    We demonstrate nondestructive (lossless) fluorescent state detection of individual neutral atom qubits trapped in an optical lattice. The hyperfine state of the atom is measured with a 95% accuracy and an atom loss rate of 1%. Individual atoms are initialized and detected over 100 times before being lost from the trap, representing a 100-fold improvement in data collection rates over previous experiments. Microwave Rabi oscillations are observed with repeated measurements of one and the same single atom. © 2011 American Physical Society

  8. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    International Nuclear Information System (INIS)

    Yang, Han; Wei, Wu; Chun-Wang, Wu; Hong-Yi, Dai; Cheng-Zu, Li

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given

  9. Realization of arbitrary positive-operator-value measurement of single atomic qubit via cavity QED

    International Nuclear Information System (INIS)

    Han Yang; Wu Wei; Wu Chunwang; Dai Hongyi; Li Chengzu

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given. (authors)

  10. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    Science.gov (United States)

    Han, Yang; Wu, Wei; Wu, Chun-Wang; Dai, Hong-Yi; Li, Cheng-Zu

    2008-12-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.

  11. Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei

    2007-01-01

    Building on the previous results of the Weyl chamber steering method, we demonstrate how to generate high-fidelity controlled-NOT (CNOT) gates by direct application of certain physically relevant Hamiltonians with fixed coupling constants containing Rabi terms. Such Hamiltonians are often used to describe two superconducting qubits driven by local rf pulses. It is found that in order to achieve 100% fidelity in a system with capacitive coupling of strength g, one Rabi term suffices. We give the exact values of the physical parameters needed to implement such CNOT gates. The gate time and all possible Rabi frequencies are found to be t=π/(2g) and Ω 1 /g=√(64n 2 -1),n=1,2,3,.... Generation of a perfect CNOT gate in a system with inductive coupling, characterized by additional constant k, requires the presence of both Rabi terms. The gate time is again t=π/(2g), but now there is an infinite number of solutions, each of which is valid in a certain range of k and is characterized by a pair of integers (n,m), (Ω 1,2 /g)=√(16n 2 -((k-1/2)) 2 )±√(16m 2 -((k+1/2)) 2 ). We distinguish two cases, depending on the sign of the coupling constant: (i) the antiferromagnetic case (k≥0) with n≥m=0,1,2,... and (ii) the ferromagnetic case (k≤0) with n>m=0,1,2,.... We conclude with consideration of fidelity degradation by switching to resonance. Simulation of time evolution based on the fourth-order Magnus expansion reveals characteristics of the gate similar to those found in the exact case, with slightly shorter gate time and shifted values of the Rabi frequencies

  12. Improved Sensing with a Single Qubit

    Science.gov (United States)

    Sekatski, P.; Skotiniotis, M.; Dür, W.

    2017-04-01

    We consider quantum metrology with arbitrary prior knowledge of the parameter. We demonstrate that a single sensing two-level system can act as a virtual multilevel system that offers increased sensitivity in a Bayesian single-shot metrology scenario, and that allows one to estimate (arbitrary) large parameter values by avoiding phase wraps. This is achieved by making use of additional degrees of freedom or auxiliary systems not participating in the sensing process. The joint system is manipulated by intermediate control operations in such a way that an effective Hamiltonian, with an arbitrary spectrum, is generated that mimics the spectrum of a multisystem interacting with the field. We show how to use additional internal degrees of freedom of a single trapped ion to achieve a high-sensitivity magnetic field sensor for fields with arbitrary prior knowledge.

  13. Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor.

    Science.gov (United States)

    Lu, Dawei; Li, Hang; Trottier, Denis-Alexandre; Li, Jun; Brodutch, Aharon; Krismanich, Anthony P; Ghavami, Ahmad; Dmitrienko, Gary I; Long, Guilu; Baugh, Jonathan; Laflamme, Raymond

    2015-04-10

    One of the major experimental achievements in the past decades is the ability to control quantum systems to high levels of precision. To quantify the level of control we need to characterize the dynamical evolution. Full characterization via quantum process tomography is impractical and often unnecessary. For most practical purposes, it is enough to estimate more general quantities such as the average fidelity. Here we use a unitary 2-design and twirling protocol for efficiently estimating the average fidelity of Clifford gates, to certify a 7-qubit entangling gate in a nuclear magnetic resonance quantum processor. Compared with more than 10^{8} experiments required by full process tomography, we conducted 1656 experiments to satisfy a statistical confidence level of 99%. The average fidelity of this Clifford gate in experiment is 55.1%, and rises to at least 87.5% if the signal's decay due to decoherence is taken into account. The entire protocol of certifying Clifford gates is efficient and scalable, and can easily be extended to any general quantum information processor with minor modifications.

  14. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    Science.gov (United States)

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations. PMID:25135432

  15. Single-qubit remote manipulation by magnetic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); CNISM – c/o Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Nuzzi, Davide, E-mail: nuzzi@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Vaia, Ruggero, E-mail: ruggero.vaia@isc.cnr.it [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Verrucchi, Paola, E-mail: verrucchi@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)

    2016-02-15

    Magnetic solitons can constitute a means for manipulating qubits from a distance. This would overcome the necessity of directly applying selective magnetic fields, which is unfeasible in the case of a matrix of qubits embedded in a solid-state quantum device. If the latter contained one-dimensional Heisenberg spin chains coupled to each qubit, one can originate a soliton in a selected chain by applying a time-dependent field at one end of it, far from the qubits. The generation of realistic solitons has been simulated. When a suitable soliton passes by, the coupled qubit undergoes nontrivial operations, even in the presence of moderate thermal noise. - Highlights: • Proposal for the remote control of qubits coupled to a spin chain supporting solitons. • Traveling solitons can be generated on the chain by acting far from the qubit. • Suitable magnetic solitons can properly change the qubit state. • This qubit manipulation mechanism is shown to be resilient to thermal noise.

  16. Exact synthesis of three-qubit quantum circuits from non-binary quantum gates

    Science.gov (United States)

    Yang, Guowu; Hung, William N. N.; Song, Xiaoyu; Perkowski, Marek A.

    2010-04-01

    Because of recent nano-technological advances, nano-structured systems have become highly ordered, making it quantum computing schemas possible. We propose an approach to optimally synthesise quantum circuits from non-permutative quantum gates such as controlled-square-root-of-not (i.e., controlled-V). Our approach reduces the synthesis problem to multiple-valued optimisation and uses group theory. We devise a novel technique that transforms the quantum logic synthesis problem from a multi-valued constrained optimisation problem to a permutable representation. The transformation enables us to use group theory to exploit the symmetric properties of the synthesis problem. Assuming a cost of one for each two-qubit gate, we found all reversible circuits with quantum costs of 4, 5, 6, etc., and give another algorithm to realise these reversible circuits with quantum gates. The approach can be used for both binary permutative deterministic circuits and probabilistic circuits such as controlled random-number generators and hidden Markov models.

  17. Coupling superconducting qubits via a cavity bus.

    Science.gov (United States)

    Majer, J; Chow, J M; Gambetta, J M; Koch, Jens; Johnson, B R; Schreier, J A; Frunzio, L; Schuster, D I; Houck, A A; Wallraff, A; Blais, A; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-27

    Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.

  18. Interfacing Superconducting Qubits and Single Optical Photons Using Molecules in Waveguides

    Science.gov (United States)

    Das, Sumanta; Elfving, Vincent E.; Faez, Sanli; Sørensen, Anders S.

    2017-04-01

    We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such a low light level is highly desirable for achieving a coherent optical interface with superconducting qubit, since it minimizes decoherence arising from the absorption of light.

  19. Coherent manipulation of three-qubit states in a molecular single-ion magnet

    Science.gov (United States)

    Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.

    2017-02-01

    We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.

  20. Single Qubit Spin Readout and Initialization in a Quantum Dot Quantum Computer: Design and Simulation

    Science.gov (United States)

    Tahan, Charles; Friesen, Mark; Joynt, Robert; Eriksson, M. A.

    2003-03-01

    Although electron spin qubits in semiconductors are attractive from the viewpoint of low environmental coupling and long coherence times, spin readout remains a challenge for quantum dot quantum computing. Unfortunately, promising schemes based on spin-charge transduction introduce external couplings in the form of reference qubits or Coulomb blockade leads. Here, we propose a twist on the spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot (QD). The same QD can be used for initialization, gating, and readout, without unnecessary external couplings. We present detailed investigations into such a scheme in both SiGe and GaAs systems: simulations, including capacitive coupling to a RF-SET, calculations of coherent oscillation times which determine the read-out speed, and calculations of electron spin relaxation times which determine the initialization speed. We find that both initialization and readout can be performed within the same architecture. Work supported by NSF-QuBIC and MRSEC programs, ARDA, and NSA.

  1. Threshold quantum secret sharing based on single qubit

    Science.gov (United States)

    Lu, Changbin; Miao, Fuyou; Meng, Keju; Yu, Yue

    2018-03-01

    Based on unitary phase shift operation on single qubit in association with Shamir's ( t, n) secret sharing, a ( t, n) threshold quantum secret sharing scheme (or ( t, n)-QSS) is proposed to share both classical information and quantum states. The scheme uses decoy photons to prevent eavesdropping and employs the secret in Shamir's scheme as the private value to guarantee the correctness of secret reconstruction. Analyses show it is resistant to typical intercept-and-resend attack, entangle-and-measure attack and participant attacks such as entanglement swapping attack. Moreover, it is easier to realize in physic and more practical in applications when compared with related ones. By the method in our scheme, new ( t, n)-QSS schemes can be easily constructed using other classical ( t, n) secret sharing.

  2. Hybrid quantum systems: Outsourcing superconducting qubits

    Science.gov (United States)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  3. Topological qubit design and leakage

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R; Slingerland, J K, E-mail: robert.ainsworth@nuim.ie, E-mail: joost@thphys.nuim.ie [Department of Mathematical Physics, National University of Ireland Maynooth, Co. Kildare (Ireland)

    2011-06-15

    We examine how best to design qubits for use in topological quantum computation. These qubits are topological Hilbert spaces associated with small groups of anyons. Operations are performed on these by exchanging the anyons. One might argue that in order to have as many simple single-qubit operations as possible, the number of anyons per group should be maximized. However, we show that there is a maximal number of particles per qubit, namely 4, and more generally a maximal number of particles for qudits of dimension d. We also look at the possibility of having topological qubits for which one can perform two-qubit gates without leakage into non-computational states. It turns out that the requirement that all two-qubit gates are leakage free is very restrictive and this property can only be realized for two-qubit systems related to Ising-like anyon models, which do not allow for universal quantum computation by braiding. Our results follow directly from the representation theory of braid groups, which implies that they are valid for all anyon models. We also make some remarks about generalizations to other exchange groups.

  4. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  5. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  6. Robust logic gates and realistic quantum computation

    International Nuclear Information System (INIS)

    Xiao Li; Jones, Jonathan A.

    2006-01-01

    The composite rotation approach has been used to develop a range of robust quantum logic gates, including single qubit gates and two qubit gates, which are resistant to systematic errors in their implementation. Single qubit gates based on the BB1 family of composite rotations have been experimentally demonstrated in a variety of systems, but little study has been made of their application in extended computations, and there has been no experimental study of the corresponding robust two qubit gates to date. Here we describe an application of robust gates to nuclear magnetic resonance studies of approximate quantum counting. We find that the BB1 family of robust gates is indeed useful, but that the related NB1, PB1, B4, and P4 families of tailored logic gates are less useful than initially expected

  7. Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication

    Science.gov (United States)

    Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.

  8. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  9. Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit

    International Nuclear Information System (INIS)

    Castellano, Maria Gabriella; Chiarello, Fabio; Leoni, Roberto; Torrioli, Guido; Carelli, Pasquale; Cosmelli, Carlo; Khabipov, Marat; Zorin, Alexander B; Balashov, Dmitri

    2007-01-01

    We report on the development and test of an integrated system composed of a flux qubit and a rapid single-flux quantum (RSFQ) circuit that allows qubit manipulation. The goal is to demonstrate the feasibility of control electronics integrated on the same chip as the qubit, in view of the application in quantum computation with superconducting devices. RSFQ logic relies on the storage and transmission of magnetic flux quanta and can be profitably used with superconducting qubits because of the speed, scalability, compatibility with the qubit fabrication process and low temperature environment. While standard RSFQ circuitry is well assessed, the application to quantum computing requires a complete rescaling of parameter values, in order to preserve the qubit coherence and reduce the power dissipation. In the system presented in this paper, the qubit role is played by a superconducting loop interrupted by a small dc SQUID, usually called a double SQUID, which behaves as a tunable rf-SQUID. Its energy potential has the shape of a double well, with the barrier between the wells controlled by magnetic flux applied to the inner dc SQUID. Here for the first time we report measurements at a base temperature of 370 mK in which flux control pulses with desired characteristics were supplied by a RSFQ circuit fabricated using non-standard parameters in the same chip as the qubit

  10. Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit |χ > entangled state

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-05-01

    In this paper, we present a scheme for Hierarchically controlled remote preparation of an arbitrary single-qubit state via a four-qubit |χ > state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. It is shown that the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to recover sender's original state.

  11. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-01

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  12. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  13. Single-Shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

    Science.gov (United States)

    2016-01-11

    Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator Philip Kranz1, Andreas Bengtsson1, Michaël Simoen1, Simon...Josephson Parametric Oscillator Philip Krantz1, Andreas Bengtsson1, Michaël Simoen1, Simon Gustavsson2, Vitaly Shumeiko1, W. D. Oliver2,3, C. M...2016) We propose and demonstrate a new read-out technique for a superconducting qubit by dispersively coupling it to a Josephson parametric

  14. Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits

    Science.gov (United States)

    Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A.

    2017-05-01

    The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with a finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is, therefore, a critical goal in quantum-information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive-interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing readout time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 μ s . The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

  15. Coherent manipulation of a 40Ca+ spin qubit in a micro ion trap

    DEFF Research Database (Denmark)

    Poschinger, U.G.; Huber, G.; Ziesel, F.

    2009-01-01

    the initialization and readout of the qubit levels with 99.5% efficiency. We employ a Raman transition close to the S1/2-P1/2 resonance for coherent manipulation of the qubit. We observe single qubit rotations with 96% fidelity and gate times below 5 µs. Rabi oscillations on the blue motional sideband are used...

  16. Spin Qubits in GaAs Heterostructures and Gating of InAs Nanowires for Lowtemperature Measurements

    DEFF Research Database (Denmark)

    Nissen, Peter Dahl

    from screening effects. We find that simple, alternating spin filling is not followed. Furthermore, measurement of the exchange splitting, J, indicate two magnetic field dependent transitions lifting spin blockade which is likewise inconsistent with the simplest model for spin filling. The effect...... in lateral quantum dots. First, we incorporate ferromagnetic metal in the depletion gates making them double as micro-magnets supplying magnetic eld gradients allowing spin qubit operation. We demonstrate full tunability of the electron occupation with the magnetic gate structure, combined with a magnetic...... of the magnetic field gradients from the micro-magnet could play a role in the observed differences between the multi- and the few-electron double dots....

  17. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  18. Realization of three-qubit quantum error correction with superconducting circuits.

    Science.gov (United States)

    Reed, M D; DiCarlo, L; Nigg, S E; Sun, L; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2012-02-01

    Quantum computers could be used to solve certain problems exponentially faster than classical computers, but are challenging to build because of their increased susceptibility to errors. However, it is possible to detect and correct errors without destroying coherence, by using quantum error correcting codes. The simplest of these are three-quantum-bit (three-qubit) codes, which map a one-qubit state to an entangled three-qubit state; they can correct any single phase-flip or bit-flip error on one of the three qubits, depending on the code used. Here we demonstrate such phase- and bit-flip error correcting codes in a superconducting circuit. We encode a quantum state, induce errors on the qubits and decode the error syndrome--a quantum state indicating which error has occurred--by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate that corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate (known as a conditional-conditional NOT, or Toffoli, gate) in 63 nanoseconds, using an interaction with the third excited state of a single qubit. We find 85 ± 1 per cent fidelity to the expected classical action of this gate, and 78 ± 1 per cent fidelity to the ideal quantum process matrix. Using this gate, we perform a single pass of both quantum bit- and phase-flip error correction and demonstrate the predicted first-order insensitivity to errors. Concatenation of these two codes in a nine-qubit device would correct arbitrary single-qubit errors. In combination with recent advances in superconducting qubit coherence times, this could lead to scalable quantum technology.

  19. Superconducting Qubit with Integrated Single Flux Quantum Controller Part II: Experimental Characterization

    Science.gov (United States)

    Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.

  20. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  1. Robust QKD-based private database queries based on alternative sequences of single-qubit measurements

    Science.gov (United States)

    Yang, YuGuang; Liu, ZhiChao; Chen, XiuBo; Zhou, YiHua; Shi, WeiMin

    2017-12-01

    Quantum channel noise may cause the user to obtain a wrong answer and thus misunderstand the database holder for existing QKD-based quantum private query (QPQ) protocols. In addition, an outside attacker may conceal his attack by exploiting the channel noise. We propose a new, robust QPQ protocol based on four-qubit decoherence-free (DF) states. In contrast to existing QPQ protocols against channel noise, only an alternative fixed sequence of single-qubit measurements is needed by the user (Alice) to measure the received DF states. This property makes it easy to implement the proposed protocol by exploiting current technologies. Moreover, to retain the advantage of flexible database queries, we reconstruct Alice's measurement operators so that Alice needs only conditioned sequences of single-qubit measurements.

  2. Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier

    Science.gov (United States)

    Lin, Z. R.; Inomata, K.; Oliver, W. D.; Koshino, K.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2013-09-01

    We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA, and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74%, which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.

  3. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    Science.gov (United States)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  4. Three-electron spin qubits

    Science.gov (United States)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange

  5. Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits

    Science.gov (United States)

    Guo, Y. N.; Tian, Q. L.; Mo, Y. F.; Zhang, G. L.; Zeng, K.

    2018-04-01

    In this paper, we have investigated the preservation of quantum Fisher information (QFI) of a single-qubit system coupled to a common zero temperature reservoir through the addition of noninteracting qubits. The results show that, the QFI is completely protected in both Markovian and non-Markovian regimes by increasing the number of additional qubits. Besides, the phenomena of QFI display monotonic decay or non-monotonic with revival oscillations depending on the number of additional qubits N - 1 in a common dissipative reservoir. If N < N c (a critical number depending on the reservoirs parameters), the behavior of QFI with monotonic decay occurs. However, if N ≥ N c , QFI exhibits non-monotonic behavior with revival oscillations. Moreover, we extend this model to investigate the effect of additional qubits and the initial conditions of the system on the geometric phase (GP). It is found that, the robustness of GP against the dissipative reservoir has been demonstrated by increasing gradually the number of additional qubits N - 1. Besides, the GP is sensitive to the initial parameter 𝜃, and possesses symmetric in a range regime [0,2 π].

  6. Collapse and revival of entanglement of two-qubit in superconducting quantum dot lattice with magnetic flux and inhomogeneous gate voltage

    Science.gov (United States)

    Sarkar, Sujit

    2013-04-01

    We study the entanglement of a two-qubit system in a superconducting quantum dot (SQD) lattice in the presence of magnetic flux and gate voltage. The ground state is always in a maximally entangled Bell state for homogeneous gate voltage. In the presence of inhomogeneous gate voltage, the half-integer magnetic flux quantum, completely washes out the entanglement of the system at zero temperature. The entanglement is much higher for the Mott insulating phase. At finite temperature, collapse of entanglement occurs for wider region of magnetic flux.

  7. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...

  8. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  9. Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse

    Science.gov (United States)

    Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.

    2015-10-01

    Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.

  10. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    . These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter......Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids...

  11. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-01-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732

  12. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    Science.gov (United States)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  13. Toward Molecular 4f Single-Ion Magnet Qubits.

    Science.gov (United States)

    Pedersen, Kasper S; Ariciu, Ana-Maria; McAdams, Simon; Weihe, Høgni; Bendix, Jesper; Tuna, Floriana; Piligkos, Stergios

    2016-05-11

    Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.

  14. Coherent Control of a Single Trapped Rydberg Ion

    Science.gov (United States)

    Higgins, Gerard; Pokorny, Fabian; Zhang, Chi; Bodart, Quentin; Hennrich, Markus

    2017-12-01

    Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.

  15. Ultrafast electric phase control of a single exciton qubit

    Science.gov (United States)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  16. Towards single Ce ion detection in a bulk crystal for the development of a single-ion qubit readout scheme

    OpenAIRE

    Yan, Ying

    2013-01-01

    The work presented in this thesis was concerned with investigating the relevant spectroscopic properties of Ce ions randomly doped in an Y2SiO5 crystal at low temperatures (around 4 K), in order to develop a technique and an experimental set-up to detect the fluorescence photons emitted by a single Ce ion. The aim of the work was to determine whether a single Ce ion (referred to as the readout ion) can be used as a local probe to sense the quantum state of a neighbouring single-ion qubit via ...

  17. Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Castellano, Maria Gabriella; Groenberg, Leif; Carelli, Pasquale; Chiarello, Fabio; Cosmelli, Carlo; Leoni, Roberto; Poletto, Stefano; Torrioli, Guido; Hassel, Juha; Helistoe, Panu

    2006-01-01

    In order to integrate superconducting qubits with rapid-single-flux-quantum (RSFQ) control circuitry, it is necessary to develop a fabrication process that simultaneously fulfils the requirements of both elements: low critical current density, very low operating temperature (tens of millikelvin) and reduced dissipation on the qubit side; high operation frequency, large stability margins, low dissipated power on the RSFQ side. For this purpose, VTT has developed a fabrication process based on Nb trilayer technology, which allows the on-chip integration of superconducting qubits and RSFQ circuits even at very low temperature. Here we present the characterization (at 4.2 K) of the process from the point of view of the Josephson devices and show that they are suitable to build integrated superconducting qubits

  18. Single-atom gating and magnetic interactions in quantum corrals

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Anh T.; Kim, Eugene H.; Ulloa, Sergio E.

    2017-04-01

    Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in experiments to allow precise control over superposition of electronic states in quantum corrals. Using a Green's function approach, we demonstrate theoretically that such atom gating can also be used to control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables control not only on the direct interaction between magnetic adatoms, but also over superpositions of many-body states which can then control long distance interactions. We illustrate this effect by considering the competition between direct exchange between magnetic impurities and the Kondo screening mediated by the host electrons, and how this is affected by gating. These results suggest that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impurity systems with tailored interactions, and may allow the control of entanglement of different spin states.

  19. When is a product of finite order qubit gates of infinite order?

    Science.gov (United States)

    Karnas, Katarzyna; Sawicki, Adam

    2018-02-01

    We consider a product of two finite order quantum SU(2) -gates U 1, U 2 and ask when U_1\\cdot U2 has an infinite order. Using the fact that SU(2) is a double cover of SO(3) we actually study the product O(γ, k12) of two rotations O(φ, k_1)\\in SO(3) and O(φ, k_2)\\in SO(3) about axes k1 , k_2\\in {R}3 . In particular, we focus on the case when k_1\\cdotk_2=0 , and φ_1=φ=φ2 are rational multiples of π and show that γ is not a rational multiple of π unless φ\\in\\{\\frac{kπ}{2}:k\\in{Z}\\} . The proof presented in this paper boils down to finding all pairs γ, φ\\in \\{aπ : a\\in{Q}\\} that are solutions of \\cos\\fracγ{2}=\\cos^2\\fracφ{2} .

  20. A programmable two-qubit quantum processor in silicon

    Science.gov (United States)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  1. A programmable two-qubit quantum processor in silicon.

    Science.gov (United States)

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  2. Computing with a single qubit faster than the computation quantum speed limit

    Science.gov (United States)

    Sinitsyn, Nikolai A.

    2018-02-01

    The possibility to save and process information in fundamentally indistinguishable states is the quantum mechanical resource that is not encountered in classical computing. I demonstrate that, if energy constraints are imposed, this resource can be used to accelerate information-processing without relying on entanglement or any other type of quantum correlations. In fact, there are computational problems that can be solved much faster, in comparison to currently used classical schemes, by saving intermediate information in nonorthogonal states of just a single qubit. There are also error correction strategies that protect such computations.

  3. Environment-assisted error correction of single-qubit phase damping

    International Nuclear Information System (INIS)

    Trendelkamp-Schroer, Benjamin; Helm, Julius; Strunz, Walter T.

    2011-01-01

    Open quantum system dynamics of random unitary type may in principle be fully undone. Closely following the scheme of environment-assisted error correction proposed by Gregoratti and Werner [J. Mod. Opt. 50, 915 (2003)], we explicitly carry out all steps needed to invert a phase-damping error on a single qubit. Furthermore, we extend the scheme to a mixed-state environment. Surprisingly, we find cases for which the uncorrected state is closer to the desired state than any of the corrected ones.

  4. Single electron transistor with P-type sidewall spacer gates.

    Science.gov (United States)

    Lee, Jung Han; Li, Dong Hua; Lee, Joung-Eob; Kang, Kwon-Chil; Kim, Kyungwan; Park, Byung-Gook

    2011-07-01

    A single-electron transistor (SET) is one of the promising solutions to overcome the scaling limit of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). Up to now, various kinds of SETs are being proposed and SETs with a dual gate (DG) structure using an electrical potential barrier have been demonstrated for room temperature operation. To operate DG-SETs, however, extra bias of side gates is necessary. It causes new problems that the electrode for side gates and the extra bias for electrical barrier increase the complexity in circuit design and operation power consumption, respectively. For the reason, a new mechanism using work function (WF) difference is applied to operate a SET at room temperature by three electrodes. Its structure consists of an undoped active region, a control gate, n-doped source/drain electrodes, and metal/silicide or p-type silicon side gates, and a SET with metal/silicide gates or p-type silicon gates forms tunnel barriers induced by work function between an undoped channel and grounded side gates. Via simulation, the effectiveness of the new mechanism is confirmed through various silicide materials that have different WF values. Furthermore, by considering the realistic conditions of the fabrication process, SET with p-type sidewall spacer gates was designed, and its brief fabrication process was introduced. The characteristics of its electrical barrier and the controllability of its control gate were also confirmed via simulation. Finally, a single-hole transistor with n-type sidewall spacer gates was designed.

  5. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  6. Ultrafast optical control of individual quantum dot spin qubits

    International Nuclear Information System (INIS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-01-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin–spin entanglement can be generated if each spin can emit a photon that is

  7. Distributed quantum computing with single photon sources

    International Nuclear Information System (INIS)

    Beige, A.; Kwek, L.C.

    2005-01-01

    Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)

  8. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  9. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  10. Tunable coupling between fixed-frequency superconducting transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Filipp, Stefan [IBM Research Zurich, 8803 Rueschlikon (Switzerland); McKay, David C.; Magesan, Easwar; Mezzacapo, Antonio; Chow, Jerry M.; Gambetta, Jay M. [IBM TJ Watson Research Center, Yorktown Heights, NY (United States)

    2016-07-01

    The controlled realization of qubit-qubit interactions is essential for both the physical implementation of quantum error-correction codes and for reliable quantum simulations. Ideally, the fidelity and speed of corresponding two-qubit gate operations is comparable to those of single qubit operations. In particular, in a scalable superconducting qubit architecture coherence must not be compromised by the presence of additional coupling elements mediating the interaction between qubits. Here we present a coupling method between fixed-frequency transmon qubits based on the frequency modulation of an auxiliary circuit coupling to the individual transmons. Since the coupler remains in its ground state at all times, its coherence does not significantly influence the fidelity of consequent entangling operations. Moreover, with the possibility to create interactions along different directions, our method is suited to engineer Hamiltonians with adjustable coupling terms. This property can be utilized for quantum simulations of spins or fermions in transmon arrays, in which pairwise couplings between adjacent qubits can be activated on demand.

  11. Designing single-qutrit quantum gates via tripod adiabatic passage

    Directory of Open Access Journals (Sweden)

    M. Amniat-Talab

    2014-04-01

    Full Text Available In this paper, we use stimulated Raman adiabatic passage technique to implement single-qutrit quantum gates in tripod systems. It is shown by using the Morris-Shore (MS transformation, the six-state problem with 5 pulsed fields can be reduced to a basis that decouples two states from the others. This imposes three pulses not connected to the initial condition with have the same shape. Using this method, the six-state penta-pod system is reduced to a tripod system. We can design single-qutrit quantum gates by ignoring the fragile dynamical phase, and by suitable design of Rabi frequencies of the effective Hamiltonian

  12. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions

    Science.gov (United States)

    Jacques, Vincent

    2013-03-01

    Nuclear spins are attractive candidates for solid-state quantum information storage and processing owing to their extremely long coherence time. However, since this appealing property results from a high level of isolation from the environment, it remains a challenging task to polarize, manipulate and readout with high fidelity individual nuclear spins. A promising approach to overcome this limitation consists in utilizing an ancillary single electronic spin to detect and control remote nuclear spins coupled by hyperfine interaction. In this talk, I will show how the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond can be used as a robust platform to observe the real-time evolution of surrounding single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of 13C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual 13C nuclear spin. By including the intrinsic 14N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing (QIP) including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.

  13. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    Science.gov (United States)

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  14. Electrochemically-gated single-molecule electrical devices

    International Nuclear Information System (INIS)

    Guo, Shaoyin; Artés, Juan Manuel; Díez-Pérez, Ismael

    2013-01-01

    In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour

  15. Spin-gating of a conventional aluminum single electron transistor

    Science.gov (United States)

    Zarbo, Liviu P.; Ciccarelli, Chiara; Irvine, Andy; Wunderlich, Jörg; Champion, Richard; Gallagher, Brian; Jungwirth, Tomáš; Ferguson, Andrew

    2012-02-01

    We report the realization of a single electron transistor in which electron transport from an aluminum source electrode to an aluminum drain electrode via an aluminum island is controlled by spins in a capacitively coupled magnetic gate electrode. The origin of the effect is in the change of the chemical potential on the gate, formed by the ferromagnetic semiconductor GaMnAs, with changing the direction of the magnetization. In agreement with experimental observations, microscopically calculated anisotropies of the chemical potential with respect to the magnetization orientation are of the order of 10μV which is comparable to the electrical gate voltages required to control the on and off state of the single electron transistor. Our phenomenon belongs to the family of anisotropic magnetoresistance effects which can be observed in ohmic, tunneling or other device geometries. In our case, the entire phenomenon is coded in the dependence of the chemical potential on the spin orientation which allowed us to remove the spin functionality from all current contacts and channels and place it in the capacitively coupled gate electrode. Our spintronic device therefore operates without spin current.

  16. A single nano cantilever as a reprogrammable universal logic gate

    International Nuclear Information System (INIS)

    Chappanda, K N; Ilyas, S; Kazmi, S N R; Younis, M I; Holguin-Lerma, J; Batra, N M; Costa, P M F J

    2017-01-01

    The current transistor-based computing circuits use multiple interconnected transistors to realize a single Boolean logic gate. This leads to higher power requirements and delayed computing. Transistors are not suitable for applications in harsh environments and require complicated thermal management systems due to excessive heat dissipation. Also, transistor circuits lack the ability to dynamically reconfigure their functionality in real time, which is desirable for enhanced computing capability. Further, the miniaturization of transistors to improve computational power is reaching its ultimate physical limits. As a step towards overcoming the limitations of transistor-based computing, here we demonstrate a reprogrammable universal Boolean logic gate based on a nanoelectromechanical cantilever (NC) oscillator. The fundamental XOR, AND, NOR, OR and NOT logic gates are condensed in a single NC, thereby reducing electrical interconnects between devices. The device is dynamically switchable between any logic gates at the same drive frequency without the need for any change in the circuit. It is demonstrated to operate at elevated temperatures minimizing the need for thermal management systems. It has a tunable bandwidth of 5 MHz enabling parallel and dynamically reconfigurable logic device for enhanced computing. (paper)

  17. A single nano cantilever as a reprogrammable universal logic gate

    KAUST Repository

    Chappanda, K. N.

    2017-02-24

    The current transistor-based computing circuits use multiple interconnected transistors to realize a single Boolean logic gate. This leads to higher power requirements and delayed computing. Transistors are not suitable for applications in harsh environments and require complicated thermal management systems due to excessive heat dissipation. Also, transistor circuits lack the ability to dynamically reconfigure their functionality in real time, which is desirable for enhanced computing capability. Further, the miniaturization of transistors to improve computational power is reaching its ultimate physical limits. As a step towards overcoming the limitations of transistor-based computing, here we demonstrate a reprogrammable universal Boolean logic gate based on a nanoelectromechanical cantilever (NC) oscillator. The fundamental XOR, AND, NOR, OR and NOT logic gates are condensed in a single NC, thereby reducing electrical interconnects between devices. The device is dynamically switchable between any logic gates at the same drive frequency without the need for any change in the circuit. It is demonstrated to operate at elevated temperatures minimizing the need for thermal management systems. It has a tunable bandwidth of 5 MHz enabling parallel and dynamically reconfigurable logic device for enhanced computing.

  18. Designing Better Qubits

    Science.gov (United States)

    Friesen, Mark; Joynt, Robert; Eriksson, M. A.

    2002-03-01

    The quantum dot implementation for quantum computation offers numerous advantages, in terms of qubit control and design. We extend our recent proposal for a Si-Ge based quantum computer by exploring the parameter space of the device. Split top gates confine electrons in a quantum well layer, while controlling the interactions between neighboring dots. Tunnel coupling to a back gate allows precise tuning of the number of electrons in each dot. By varying the arrangement of top gates, the size of tunnel barriers, and the heterostructure composition, it is possible to tailor devices that are well suited for general purpose quantum computation, or optimized for particular algorithms or protocols. Specifications that can be engineered include the magnitude of qubit interactions, the number of electrons per dot, and the connectivity of qubits. For a conventional, linear qubit array, with qubit separations of d =100 nm, the exchange coupling, J, can be tuned between δ (an exponentially small number that shrinks for large d) to approximately 20 μeV. In this range, the stability energy for retaining exactly one electron per dot is above 3 meV or 30 K. Work supported by NSF-QuBIC and MRSEC programs, ARDA, and NSA.

  19. Spin Qubits in GaAs Heterostructures and Gating of InAs Nanowires for Lowtemperature Measurements

    DEFF Research Database (Denmark)

    Nissen, Peter Dahl

    of the contenders in the race to build a large-scale quantum computer, is such a component, and research aiming to build, manipulate and couple spin qubits is looking at many materials systems to nd one where the requirements for fast control and long coherence time can be combined with ecient coupling between...... from screening effects. We find that simple, alternating spin filling is not followed. Furthermore, measurement of the exchange splitting, J, indicate two magnetic field dependent transitions lifting spin blockade which is likewise inconsistent with the simplest model for spin filling. The effect...

  20. Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes.

    Science.gov (United States)

    Baldoví, José J; Cardona-Serra, Salvador; Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro; Palii, Andrew

    2012-11-19

    Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.

  1. Cavity state manipulation using a dispersively coupled qubit

    Science.gov (United States)

    Heeres, Reinier; Vlastakis, Brian; Holland, Eric; Krastanov, Stefan; Albert, Victor V.; Shen, Chao; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    The large available Hilbert space and high coherence of cavity resonators makes them an interesting resource in quantum information processing. For example, several schemes exist to encode a logical qubit in such a harmonic oscillator in a way that would be protected against certain kinds of errors. Here we demonstrate a method to manipulate a cavity state using a far off-resonantly coupled qubit, using only linear controls and a gate we call the Selective Number Arbitrary Phase (SNAP) gate. This gate allows to impart an arbitrary phase on each Fock-state component of the cavity. We show how we can use these tools to correct for the effects of Kerr-evolution as well as how to create a single-photon Fock state. Our scheme can be generalized to arbitrary cavity state creation and even allows to construct arbitrary unitary operators to give universal control of the oscillator.

  2. Analyses of Short Channel Effects of Single-Gate and Double-Gate Graphene Nanoribbon Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Hojjatollah Sarvari

    2016-01-01

    Full Text Available Short channel effects of single-gate and double-gate graphene nanoribbon field effect transistors (GNRFETs are studied based on the atomistic pz orbital model for the Hamiltonian of graphene nanoribbon using the nonequilibrium Green’s function formalism. A tight-binding Hamiltonian with an atomistic pz orbital basis set is used to describe the atomistic details in the channel of the GNRFETs. We have investigated the vital short channel effect parameters such as Ion and Ioff, the threshold voltage, the subthreshold swing, and the drain induced barrier lowering versus the channel length and oxide thickness of the GNRFETs in detail. The gate capacitance and the transconductance of both devices are also computed in order to calculate the intrinsic cut-off frequency and switching delay of GNRFETs. Furthermore, the effects of doping of the channel on the threshold voltage and the frequency response of the double-gate GNRFET are discussed. We have shown that the single-gate GNRFET suffers more from short channel effects if compared with those of the double-gate structure; however, both devices have nearly the same cut-off frequency in the range of terahertz. This work provides a collection of data comparing different features of short channel effects of the single gate with those of the double gate GNRFETs. The results give a very good insight into the devices and are very useful for their digital applications.

  3. Inversion gate capacitance of undoped single-gate and double-gate field-effect transistor geometries in the extreme quantum limit

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Amlan, E-mail: amajumd@us.ibm.com [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2015-05-28

    We present first-principle analytical derivations and numerically modeled data to show that the gate capacitance per unit gate area C{sub G} of extremely thin undoped-channel single-gate and double-gate field-effect transistor geometries in the extreme quantum limit with single-subband occupancy can be written as 1/C{sub G} = 1/C{sub OX} + N{sub G}/C{sub DOS} + N{sub G}/ηC{sub WF}, where N{sub G} is the number of gates, C{sub OX} is the oxide capacitance per unit area, C{sub DOS} is the density-of-states capacitance per unit area, C{sub WF} is the wave function spreading capacitance per unit area, and η is a constant on the order of 1.

  4. Quantum Information Processing with Atomic Qubits and Optical Frequency Combs

    Science.gov (United States)

    Campbell, Wesley

    2010-03-01

    Pulsed optical fields from mode-locked lasers have found widespread use as tools for precision quantum control and are well suited for implementation in quantum information processing and quantum simulation. We experimentally demonstrate two distinct regimes of the interaction between hyperfine atomic ion qubits and stimulated Raman transitions driven by picosecond pulses from a far off- resonant mode-locked laser. In the weak pulse regime, the coherent accumulation of successive pulses from an optical frequency comb performs single qubit operations and is used to entangle two trapped atomic ion qubits. In the strong pulse regime, a single pulse is used to implement a fast (kicks. To entangle multiple ions, optical frequency combs operated near the strong pulse regime may be used to implement motion-mediated gates that can be performed much faster than a collective motional period.[4pt] [1] Garc'ia-Ripoll et al., PRL 91, 157901 (2003).[0pt] [2] Duan, PRL 93, 100502 (2004).

  5. Simple non-Markovian microscopic models for the depolarizing channel of a single qubit

    International Nuclear Information System (INIS)

    Fonseca Romero, K M; Lo Franco, R

    2012-01-01

    The archetypal one-qubit noisy channels - depolarizing, phase-damping and amplitude-damping channels - describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models that describe phase-damping and amplitude-damping channels are briefly reviewed.

  6. Experimental study of single event burnout and single event gate rupture in power MOSFETs and IGBT

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin

    2001-01-01

    An experimental study was carried out to determine the single event burnout and single event gate rupture sensitivities in power MOSFETs and IGBT which were exposed to heavy ions from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism were presented. Current measurements have been performed with a specially designed circuit. The test results include the observed dependence upon applied drain or gate to source bias and versus with external capacitors and limited resistors

  7. Quantum gates by inverse engineering of a Hamiltonian

    Science.gov (United States)

    Santos, Alan C.

    2018-01-01

    Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.

  8. Optimization of a Solid-State Electron Spin Qubit Using Gate Set Tomography (Open Access, Publisher’s Version)

    Science.gov (United States)

    2016-10-13

    are high levels of non- Markovian noise present in the system. As a consequence , we currently observe variabilities in the gate parameters betweenGST...predict RB, this is a direct consequence of the fact that GST is able to identify non-Markovian noise (although not tomodel it), and correctly warns that...Blakestad R, Jost J, Langer C,Ozeri R, Seidelin S andWinelandD 2008 Phys. Rev.A 77 012307 [19] Blume-Kohout R, Gamble J K,Nielsen E,Mizrahi J, Sterk

  9. High coherence plane breaking packaging for superconducting qubits

    Science.gov (United States)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  10. Quantum-state preparation with universal gate decompositions

    Science.gov (United States)

    Plesch, Martin; Brukner, Časlav

    2011-03-01

    In quantum computation every unitary operation can be decomposed into quantum circuits—a series of single-qubit rotations and a single type entangling two-qubit gates, such as controlled-not (cnot) gates. Two measures are important when judging the complexity of the circuit: the total number of cnot gates needed to implement it and the depth of the circuit, measured by the minimal number of computation steps needed to perform it. Here we give an explicit and simple quantum circuit scheme for preparation of arbitrary quantum states, which can directly utilize any decomposition scheme for arbitrary full quantum gates, thus connecting the two problems. Our circuit reduces the depth of the best currently known circuit by a factor of 2. It also reduces the total number of cnot gates from 2n to (23)/(24)2n in the leading order for even number of qubits. Specifically, the scheme allows us to decrease the upper bound from 11 cnot gates to 9 and the depth from 11 to 5 steps for four qubits. Our results are expected to help in designing and building small-scale quantum circuits using present technologies.

  11. Quantum cloning machines for equatorial qubits

    International Nuclear Information System (INIS)

    Fan Heng; Matsumoto, Keiji; Wang Xiangbin; Wadati, Miki

    2002-01-01

    Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal one to M phase-covariant quantum cloning transformations are given

  12. Deterministic implementations of single-photon multi-qubit Deutsch–Jozsa algorithms with linear optics

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hai-Rui, E-mail: hrwei@ustb.edu.cn; Liu, Ji-Zhen

    2017-02-15

    It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch–Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.

  13. Experimental Time-Optimal Universal Control of Spin Qubits in Solids

    Science.gov (United States)

    Geng, Jianpei; Wu, Yang; Wang, Xiaoting; Xu, Kebiao; Shi, Fazhan; Xie, Yijin; Rong, Xing; Du, Jiangfeng

    2016-10-01

    Quantum control of systems plays an important role in modern science and technology. The ultimate goal of quantum control is to achieve high-fidelity universal control in a time-optimal way. Although high-fidelity universal control has been reported in various quantum systems, experimental implementation of time-optimal universal control remains elusive. Here, we report the experimental realization of time-optimal universal control of spin qubits in diamond. By generalizing a recent method for solving quantum brachistochrone equations [X. Wang et al., Phys. Rev. Lett. 114, 170501 (2015)], we obtained accurate minimum-time protocols for multiple qubits with fixed qubit interactions and a constrained control field. Single- and two-qubit time-optimal gates are experimentally implemented with fidelities of 99% obtained via quantum process tomography. Our work provides a time-optimal route to achieve accurate quantum control and unlocks new capabilities for the emerging field of time-optimal control in general quantum systems.

  14. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    Science.gov (United States)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  15. Demonstration of a small programmable quantum computer with atomic qubits.

    Science.gov (United States)

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  16. Speed limits for quantum gates in multiqubit systems

    NARCIS (Netherlands)

    Ashhab, S.; De Groot, P.C.; Nori, F.

    2012-01-01

    We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of

  17. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  18. Universal quantum computation with unlabelled qubits

    Energy Technology Data Exchange (ETDEWEB)

    Severini, Simone [Department of Mathematics and Department of Computer Science, University of York, Heslington, YO10 5DD York (United Kingdom)

    2006-06-30

    We show that an nth root of the Walsh-Hadamard transform (obtained from the Hadamard gate and a cyclic permutation of the qubits), together with two diagonal matrices, namely a local qubit-flip (for a fixed but arbitrary qubit) and a non-local phase-flip (for a fixed but arbitrary coefficient), can do universal quantum computation on n qubits. A quantum computation, making use of n qubits and based on these operations, is then a word of variable length, but whose letters are always taken from an alphabet of cardinality three. Therefore, in contrast with other universal sets, no choice of qubit lines is needed for the application of the operations described here. A quantum algorithm based on this set can be interpreted as a discrete diffusion of a quantum particle on a de Bruijn graph, corrected on-the-fly by auxiliary modifications of the phases associated with the arcs.

  19. Universal Stabilization of a Parametrically Coupled Qubit

    Science.gov (United States)

    Lu, Yao; Chakram, S.; Leung, N.; Earnest, N.; Naik, R. K.; Huang, Ziwen; Groszkowski, Peter; Kapit, Eliot; Koch, Jens; Schuster, David I.

    2017-10-01

    We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved with a tunable coupling design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasistatic tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single-photon exchange in 6 ns. Qubit coherence times exceeding 20 μ s are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon nonconserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80%.

  20. An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs

    Science.gov (United States)

    Titus, Jeffrey L.

    2013-06-01

    Studies over the past 25 years have shown that heavy ions can trigger catastrophic failure modes in power MOSFETs [e.g., single-event gate rupture (SEGR) and single-event burnout (SEB)]. In 1996, two papers were published in a special issue of the IEEE Transaction on Nuclear Science [Johnson, Palau, Dachs, Galloway and Schrimpf, “A Review of the Techniques Used for Modeling Single-Event Effects in Power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 546-560, April. 1996], [Titus and Wheatley, “Experimental Studies of Single-Event Gate Rupture and Burnout in Vertical Power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 533-545, Apr. 1996]. Those two papers continue to provide excellent information and references with regard to SEB and SEGR in vertical planar MOSFETs. This paper provides updated references/information and provides an updated perspective of SEB and SEGR in vertical planar MOSFETs as well as provides references/information to other device types that exhibit SEB and SEGR effects.

  1. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Science.gov (United States)

    Sone, Akira; Cappellaro, Paola

    2017-12-01

    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.

  2. Experimental realization of quantum cheque using a five-qubit quantum computer

    Science.gov (United States)

    Behera, Bikash K.; Banerjee, Anindita; Panigrahi, Prasanta K.

    2017-12-01

    Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475-2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.

  3. The thinnest molecular separation sheet by graphene gates of single-walled carbon nanohorns.

    Science.gov (United States)

    Ohba, Tomonori

    2014-11-25

    Graphene is possibly the thinnest membrane that could be used as a molecular separation gate. Several techniques including absorption, cryogenic distillation, adsorption, and membrane separation have been adopted for constructing separation systems. Molecular separation using graphene as the membrane has been studied because large area synthesis of graphene is possible by chemical vapor deposition. Control of the gate sizes is necessary to achieve high separation performances in graphene membranes. The separation of molecules and ions using graphene and graphene oxide layers could be achieved by the intrinsic defects and defect donation of graphene. However, the controllability of the graphene gates is still under debate because gate size control at the picometer level is inevitable for the fabrication of the thinnest graphene membranes. In this paper, the controlled gate size in the graphene sheets in single-walled carbon nanohorns (NHs) is studied and the molecular separation ability of the graphene sheets is assessed by molecular probing with CO2, O2, N2, CH4, and SF6. Graphene sheets in NHs with different sized gates of 310, 370, and >500 pm were prepared and assessed by molecular probing. The 310 pm-gates in the graphene sheets could separate the molecules tested, whereas weak separation properties were observed for 370 pm-gates. The amount of CO2 that penetrated the 310 pm-gates was more than 35 times larger than that of CH4. These results were supported by molecular dynamics simulations of the penetration of molecules through 300, 400, and 700 pm-gates in graphene sheets. Therefore, a gas separation membrane using a 340-pm-thick graphene sheet has high potential. These findings provide unambiguous evidence of the importance of graphene gates on the picometer level. Control of the gates is the primary challenge for high-performance separation membranes made of graphene.

  4. Gate-set tomography on two coupled transmons

    Science.gov (United States)

    Silva, Marcus; Riste, Diego; Ryan, Colm; Nielsen, Erik; Rudinger, Kenneth; Blume-Kohout, Robin

    Gate set tomography (GST) is a high-accuracy method of reconstructing the evolution of a quantum register. We describe the implementation of GST on two coupled transmon qubits. The ideal gate set includes single-qubit gates and an entangling gate locally equivalent to a CNOT. The analysis shows good agreement with predictions from theoretical models of our system - including the effects of coherent errors, which serve to illustrate important differences between average infidelity and diamond norm error rates. Finally, we describe how to mitigate these errors for improved performance. This effort is supported in part by ARO under contract W911NF-14-C-0048. This document does not contain technology or technical data controlled under either the U.S. ITAR or the U.S. EAR.

  5. Lattice Vibration of Layered GaTe Single Crystals

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2018-02-01

    Full Text Available The effect of interlayer interaction on in-layer structure of laminar GaTe crystals was studied according to the lattice vibration using micro-Raman analysis. The results were also confirmed by the first principle calculations. Accordingly, the relationship between lattice vibration and crystal structure was established. Ten peaks were observed in the micro-Raman spectra from 100 cm−1 to 300 cm−1. Eight of them fit Raman-active vibration modes and the corresponding displacement vectors were calculated, which proved that the two modes situated at 128.7 cm−1 and 145.7 cm−1 were related to the lattice vibration of GaTe, instead of impurities or defects. Davydov splitting in GaTe was identified and confirmed by the existence of the other two modes, conjugate modes, at 110.7 cm−1 (∆ω = 33.1 cm−1 and 172.5 cm−1 (∆ω = 49.5 cm−1, indicates that the weak interlayer coupling has a significant effect on lattice vibrations in the two-layer monoclinic unit cell. Our results further proved the existence of two layers in each GaTe unit cell.

  6. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit.

    Science.gov (United States)

    Kolkowitz, S; Safira, A; High, A A; Devlin, R C; Choi, S; Unterreithmeier, Q P; Patterson, D; Zibrov, A S; Manucharyan, V E; Park, H; Lukin, M D

    2015-03-06

    Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems. Copyright © 2015, American Association for the Advancement of Science.

  7. Single-electron thermal devices coupled to a mesoscopic gate

    Science.gov (United States)

    Sánchez, Rafael; Thierschmann, Holger; Molenkamp, Laurens W.

    2017-11-01

    We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron–electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations.

  8. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin; Roy, A. -M.; Curry, Matthew Jon; Ten Eyck, Gregory A.; Manginell, Ronald P.; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M; Ward, Daniel Robert; Lilly, Michael; pioro-ladriere, michel

    2017-07-01

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

  9. Deep-well ultrafast manipulation of a SQUID flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M G; Chiarello, F; Mattioli, F; Torrioli, G [Istituto Fotonica e Nanotecnologie-CNR, Roma (Italy); Carelli, P [Dip. Ingegneria Elettrica e dell' Informazione, Universita dell' Aquila, L' Aquila (Italy); Cosmelli, C, E-mail: mgcastellano@ifn.cnr.i [Dip. Fisica, Sapienza Universita di Roma (Italy)

    2010-04-15

    Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 GHz, obtaining a typical operating frequency from 100 MHz to 1 GHz. A manipulation based on simple pulses in the absence of microwaves is also possible. In our system, a magnetic flux pulse modifies the potential of a double SQUID qubit from a symmetric double well to a single deep-well condition. By using this scheme with a Nb/AlO{sub x}/Nb system, we obtained coherent oscillations with sub-nanosecond period (tunable from 50 to 200 ps), very fast with respect to other manipulating procedures, and with a coherence time up to 10 ns, of the order of that obtained with similar devices and technologies but using microwave manipulation. We introduce ultrafast manipulation, presenting experimental results, new issues related to this approach (such as the use of a compensation procedure for canceling the effect of 'slow' fluctuations) and open perspectives, such as the possible use of RSFQ logic for qubit control.

  10. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    Science.gov (United States)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  11. Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits

    Science.gov (United States)

    Xue, Zheng-Yuan; Zhou, Jian; Wang, Z. D.

    2015-08-01

    To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013), 10.1038/nature12010]. Here we propose to realize nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with superconducting circuits very promising.

  12. Coulomb blockade in a Si channel gated by an Al single-electron transistor

    OpenAIRE

    Sun, L.; Brown, K. R.; Kane, B. E.

    2007-01-01

    We incorporate an Al-AlO_x-Al single-electron transistor as the gate of a narrow (~100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET). Near the MOSFET channel conductance threshold, we observe oscillations in the conductance associated with Coulomb blockade in the channel, revealing the formation of a Si single-electron transistor. Abrupt steps present in sweeps of the Al transistor conductance versus gate voltage are correlated with single-electron charging events in the Si t...

  13. Single-Photon Switching and Entanglement of Solid- State Qubits in an Integrated Nanophotonic System

    Science.gov (United States)

    Evans, Ruffin; Sipahigil, Alp; Sukachev, Denis; Burek, Michael; Borregaard, Johannes; Bhaskar, Mihir; Nguyen, Christian; Pacheco, Jose; Bielejec, Edward; Loncar, Marko; Lukin, Mikhail

    2017-04-01

    Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate a platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable states and observe switching at the single-photon level. Raman transitions are used to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. By measuring intensity correlations of indistinguishable Raman photons emitted into a single waveguide, we observe quantum interference resulting from the superradiant emission of two entangled SiV centers. We also discuss current work to extend the coherence time of the SiV spin degree of freedom, engineer deterministic multi-emitter interactions via the cavity mode, and related work with the Germanium-Vacancy center.

  14. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.

    Science.gov (United States)

    Wallraff, A; Schuster, D I; Blais, A; Frunzio, L; Huang, R- S; Majer, J; Kumar, S; Girvin, S M; Schoelkopf, R J

    2004-09-09

    The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.

  15. A compact model for single material double work function gate MOSFET

    Science.gov (United States)

    Changyong, Zheng; Wei, Zhang; Tailong, Xu; Yuehua, Dai; Junning, Chen

    2013-09-01

    An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.

  16. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  17. Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates

    Science.gov (United States)

    Jung, Minkyung; Schindele, Jens; Nau, Stefan; Weiss, Markus; Baumgartner, Andreas; Schoenenberger, Christian

    2014-03-01

    Ultraclean carbon nanotubes (CNTs) that are free from disorder provide a promising platform to manipulate single electron or hole spins for quantum information. Here, we demonstrate that ultraclean single, double, and triple quantum dots (QDs) can be formed reliably in a CNT by a straightforward fabrication technique. The QDs are electrostatically defined in the CNT by closely spaced metallic bottom gates deposited in trenches in Silicon dioxide by sputter deposition of Re. The carbon nanotubes are then grown by chemical vapor deposition (CVD) across the trenches and contacted using conventional electron beam lithography. The devices exhibit reproducibly the characteristics of ultraclean QDs behavior even after the subsequent electron beam lithography and chemical processing steps. We demonstrate the high quality using CNT devices with two narrow bottom gates and one global back gate. Tunable by the gate voltages, the device can be operated in four different regimes: i) fully p-type with ballistic transport between the outermost contacts (over a length of 700 nm), ii) clean n-type single QD behavior where a QD can be induced by either the left or the right bottom gate, iii) n-type double QD and iv) triple bipolar QD where the middle QD has opposite doping (p-type). Research at Basel is supported by the NCCR-Nano, NCCR-QIST, ERC project QUEST, and FP7 project SE2ND.

  18. Area efficient digital logic NOT gate using single electron box (SEB

    Directory of Open Access Journals (Sweden)

    Bahrepour Davoud

    2017-01-01

    Full Text Available The continuing scaling down of complementary metal oxide semiconductor (CMOS has led researchers to build new devices with nano dimensions, whose behavior will be interpreted based on quantum mechanics. Single-electron devices (SEDs are promising candidates for future VLSI applications, due to their ultra small dimensions and lower power consumption. In most SED based digital logic designs, a single gate is introduced and its performance discussed. While in the SED based circuits the fan out of designed gate circuit should be considered and measured. In the other words, cascaded SED based designs must work properly so that the next stage(s should be driven by the previous stage. In this paper, previously NOT gate based on single electron box (SEB which is an important structure in SED technology, is reviewed in order to obtain correct operation in series connections. The correct operation of the NOT gate is investigated in a buffer circuit which uses two connected NOT gate in series. Then, for achieving better performance the designed buffer circuit is improved by the use of scaling process.

  19. Anything but qubits

    OpenAIRE

    Neergaard-Nielsen, Jonas; Laghaout, Amine; Rigas, Ioannes; Kragh, Christian; Ros, Elisa Da; Hansen, Jacob Kjærsgaard; Andersen, Ulrik Lund

    2013-01-01

    Poster presented at the Photons Beyond Qubits workshop in Olomouc, April 2013. Three topics are briefly covered:   * Cat state amplification by conditional homodyning  * Displacement-enhanced entanglement distillation  * Towards an efficient single photon source with NV centres in an open microcavity The first two are theoretical schemes for quantum information processing with squeezed and cat states, published in Physical Review A 87, 043826 (2013) and Optics Express 21, 6670-...

  20. Gated blood pool studies with a single probe - clinical validity

    International Nuclear Information System (INIS)

    Loesel, E.; Hoffmann, G.

    1981-01-01

    The global volume alterations of the heart can be estimated non-invasively by means of the radiocardiographic function analysis developed by Hoffmann and Kleine. Since the failing heart with its functional disturbances demonstrates a pathological volume behaviour under physical exercise, it is possible to use these characteristics to differentiate between the intact heart and the failing heart by registration of the global volume alterations. The gated blood pool technique combined with the registration of the intraventricular pressure pulse by means of a Swan-Ganz flow-directed catheter enables demonstration of ventricular stroke work as a pressure-volume loop (work diagram). Its shape indicates whether the ventricle has to perform mainly pressure work or volume work. Myocardial failure is altering the basic conditions of the heart. The work diagram of the failing heart is significantly different from that of the intact human heart. It is shifted in its pressure-volume coordinates according to an increase of EDV and ESV and the rise of the filling pressure. Case demonstrations reveal the global volume behaviour of the heart under varying conditions: resting and physical exercise, drug influence on the intact and failing heart. (orig.) [de

  1. SCB Quantum Computers Using iSWAP and 1-Qubit Rotations

    Science.gov (United States)

    Williams, Colin; Echtemach, Pierre

    2005-01-01

    Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally

  2. Gated single photon emission computer tomography for the detection of silent myocardial ischemia

    International Nuclear Information System (INIS)

    Pena Q, Yamile; Coca P, Marco Antonio; Batista C, Juan Felipe; Fernandez-Britto, Jose; Quesada P, Rodobaldo; Pena C; Andria

    2009-01-01

    Background: Asymptomatic patients with severe coronary atherosclerosis may have a normal resting electrocardiogram and stress test. Aim: To assess the yield of Gated Single Photon Emission Computer Tomography (SPECT) for the screening of silent myocardial ischemia in type 2 diabetic patients. Material and methods: Electrocardiogram, stress test and gated-SPECT were performed on 102 type 2 diabetic patients aged 60 ± 8 years without cardiovascular symptoms. All subjects were also subjected to a coronary angiography, whose results were used as gold standard. Results: Gated-SPECT showed myocardial ischemia on 26.5% of studied patients. The sensibility, specificity, accuracy, positive predictive value and negative predictive value were 92.3%, 96%, 95%, 88.8%, 97.3%, respectively. In four and six patients ischemia was detected on resting electrocardiogram and stress test, respectively. Eighty percent of patients with doubtful resting electrocardiogram results and 70% with a doubtful stress test had a silent myocardial ischemia detected by gated-SPECT. There was a good agreement between the results of gated-SPECT and coronary angiography (k =0.873). Conclusions: Gated-SPECT was an useful tool for the screening of silent myocardial ischemia

  3. Reduced phase error through optimized control of a superconducting qubit

    International Nuclear Information System (INIS)

    Lucero, Erik; Kelly, Julian; Bialczak, Radoslaw C.; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A. D.; Sank, Daniel; Wang, H.; Weides, Martin; Wenner, James; Cleland, A. N.; Martinis, John M.; Yamamoto, Tsuyoshi

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors, in particular, we have developed an experimental metrology - amplified phase error (APE) pulses - that amplifies and helps identify phase errors in general multilevel qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement 'half derivative', an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to ∼1.6 deg. per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit |2> state, is also reduced to ∼10 -4 for 20% faster gates.

  4. Information gain when measuring an unknown qubit

    Science.gov (United States)

    Björk, Gunnar

    2018-01-01

    In quantum information the fundamental information-containing system is the qubit. A measurement of a single qubit can at most yield one classical bit. However, a dichotomous measurement of an unknown qubit will yield much less information about the qubit state. We use Bayesian inference to compute how much information one progressively gets by making sucessive, individual measurements on an ensemble of identically prepared qubits. Perhaps surprisingly, even if the measurements are arranged so that each measurement yields one classical bit, that is, the two possible measurement outcomes are a priori equiprobable, it takes almost a handful of measurements before one has gained one bit of information about the gradually concentrated qubit probability density. We also show that by following a strategy that reaps the maximum information per measurement, we are led to a mutually unbiased basis as our measurement bases. This is a pleasing, although not entirely surprising, result.

  5. Single layer of Ge quantum dots in HfO2for floating gate memory capacitors.

    Science.gov (United States)

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  6. Simulation of a quantum NOT gate for a single qutrit system

    Indian Academy of Sciences (India)

    level system; qutrit; three-level transitions; one-qutrit quantum gate. ... Because of the fact that the three-level atom defines a total normalized state composed of superposition of three different single-level states, it is assumed that such a system ...

  7. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  8. Break junction under electrochemical gating: testbed for single-molecule electronics.

    Science.gov (United States)

    Huang, Cancan; Rudnev, Alexander V; Hong, Wenjing; Wandlowski, Thomas

    2015-02-21

    Molecular electronics aims to construct functional molecular devices at the single-molecule scale. One of the major challenges is to construct a single-molecule junction and to further manipulate the charge transport through the molecular junction. Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and control the charge transport on a single-molecule scale. Moreover, additional electrochemical gating provides a unique opportunity to manipulate the energy alignment and molecular redox processes for a single-molecule junction. In this review, we start from the technical aspects of the break junction technique, then discuss the molecular structure-conductance correlation derived from break junction studies, and, finally, emphasize electrochemical gating as a promising method for the functional molecular devices.

  9. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    Science.gov (United States)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  10. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  11. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...... relaxation. Using this view, reorganization energies of ∼1.2 eV have been estimated for both the first and second redox transitions for the pTTF bridge in the 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIOTf) ionic liquid environment. By contrast, in aqueous environments, a much smaller...

  12. Quantum information transfer between topological and spin qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Leijnse, Martin; Flensberg, Karsten [Nano-Science Center and Niels Bohr Institute, University of Copenhagen (Denmark)

    2012-07-01

    In this talk I introduce a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. The transfer method uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, I discuss how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.

  13. Implementations of quantum and classical gates with linear optical devices and photon number quantum non-demolition measurement for polarization encoded qubits

    International Nuclear Information System (INIS)

    Rosa Silva, Joao Batista; Ramos, Rubens Viana

    2006-01-01

    Aiming the construction of quantum computers and quantum communication systems based on optical devices, in this work we present possible implementations of quantum and classical CNOTs gates, as well an optical setup for generation and distribution of bipartite entangled states, using linear optical devices and photon number quantum non-demolition measurement

  14. Stabilizer Quantum Error Correction Toolbox for Superconducting Qubits

    Science.gov (United States)

    Nigg, Simon E.; Girvin, S. M.

    2013-06-01

    We present a general protocol for stabilizer operator measurements in a system of N superconducting qubits. Using the dispersive coupling between the qubits and the field of a resonator as well as single qubit rotations, we show how to encode the parity of an arbitrary subset of M≤N qubits, onto two quasiorthogonal coherent states of the resonator. Together with a fast cavity readout, this enables the efficient measurement of arbitrary stabilizer operators without locality constraints.

  15. Demonstration of a Quantum Nondemolition Sum Gate

    DEFF Research Database (Denmark)

    Yoshikawa, J.; Miwa, Y.; Huck, Alexander

    2008-01-01

    The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature...

  16. Bounding quantum gate error rate based on reported average fidelity

    International Nuclear Information System (INIS)

    Sanders, Yuval R; Wallman, Joel J; Sanders, Barry C

    2016-01-01

    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates. (fast track communication)

  17. Memory effect in silicon time-gated single-photon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Mora, A.; Contini, D., E-mail: davide.contini@polimi.it; Di Sieno, L. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Tosi, A.; Boso, G.; Villa, F. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  18. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    DEFF Research Database (Denmark)

    Osorio, Edgar A; Moth-Poulsen, Kasper; van der Zant, Herre S J

    2010-01-01

    We demonstrate an electrically controlled high-spin (S = 5/2) to low-spin (S = 1/2) transition in a three-terminal device incorporating a single Mn(2+) ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand......-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also...... a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model....

  19. Braiding by Majorana tracking and long-range CNOT gates with color codes

    Science.gov (United States)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  20. Detecting highly entangled states with a joint qubit readout

    Science.gov (United States)

    Chow, J. M.; Dicarlo, L.; Gambetta, J. M.; Nunnenkamp, A.; Bishop, Lev S.; Frunzio, L.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J.

    2010-06-01

    A single-channel joint readout is used to analyze highly entangled two-qubit states in a circuit quantum electrodynamics architecture. The measurement model for the readout is fully characterized, demonstrating a large sensitivity to two-qubit correlations. We quantify the high degree of entanglement by measuring a violation of the Clauser-Horne-Shimony-Holt inequality with a value of 2.61±0.04, without optimizing the preparation of the two-qubit state. In its present form, this joint readout can resolve improvements to the fidelity of two-qubit operations and be extended to three or four qubits.

  1. Simulation and parametric analysis of graphene p-n junctions with two rectangular top gates and a single back gate

    Science.gov (United States)

    Nikiforidis, Ioannis; Karafyllidis, Ioannis G.; Dimitrakis, Panagiotis

    2018-02-01

    Graphene p-n junctions could be the building blocks of future nanoelectronic circuits. While the conductance modulation of graphene p-n junctions formed in devices with one bottom and one top gate have received much attention, there is comparatively little work done on devices with two top gates. Here, we employ tight-bind Hamiltonians and non-equilibrium Green function method to compute in a systematic way the dependence of the conductance of graphene p-n junctions, formed in a device with two top gates, on the device parameters. We present our results in a compact and systematic way, so that the effect of each parameter is clearly shown. Our results show that the device conductance can be effectively modulated, and that graphene devices with two top gates may be used as basic elements in future carbon-based nanoelectronic circuits.

  2. Memory effect in gated single-photon avalanche diodes: a limiting noise contribution similar to afterpulsing

    Science.gov (United States)

    Contini, D.; Dalla Mora, A.; Di Sieno, L.; Cubeddu, R.; Tosi, A.; Boso, G.; Pifferi, A.

    2013-03-01

    In recent years, emerging applications, such as diffuse optical imaging and spectroscopy (e.g., functional brain imaging and optical mammography), in which a wide dynamic range is crucial, have turned the interest towards Single-Photon Avalanche Diode (SPAD). In these fields, the use of a fast-gated SPAD has proven to be a successful technique to increase the measurement sensitivity of different orders of magnitude. However, an unknown background noise has been observed at high illumination during the gate-OFF time, thus setting a limit to the maximum increase of the dynamic range. In this paper we describe this noise in thin-junction silicon single-photon avalanche diode when a large amount of photons reaches the gated detector during the OFF time preceding the enabling time. This memory effect increases the background noise with respect to primary dark count rate similarly to a classical afterpulsing process, but differently it is not related to a previous avalanche ignition in the detector. We discovered that memory effect increases linearly with the power of light impinging on the detector and it has an exponential trend with time constants far different from those of afterpulsing and independently of the bias voltage applied to the junction. For these reasons, the memory effect is not due to the same trapping states of afterpulsing and must be described as a different process.

  3. Tools for Persistent-Current Qubits

    National Research Council Canada - National Science Library

    Mooij, J

    2004-01-01

    ...) Josephson junctions. This Final Report presents the major achievements obtained during the project, highlighting the progress from the initial spectroscopy and first Rabi results on a single qubit to the most...

  4. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  5. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    Science.gov (United States)

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  6. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  7. Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors

    Science.gov (United States)

    Pud, S.; Gasparyan, F.; Petrychuk, M.; Li, J.; Offenhäusser, A.; Vitusevich, S. A.

    2014-06-01

    Liquid-gated silicon nanowire (NW) field effect transistors (FETs) are fabricated and their transport and dynamic properties are investigated experimentally and theoretically. Random telegraph signal (RTS) fluctuations were registered in the nanolength channel FETs and used for the experimental and theoretical analysis of transport properties. The drain current and the carrier interaction processes with a single trap are analyzed using a quantum-mechanical evaluation of carrier distribution in the channel and also a classical evaluation. Both approaches are applied to treat the experimental data and to define an appropriate solution for describing the drain current behavior influenced by single trap resulting in RTS fluctuations in the Si NW FETs. It is shown that quantization and tunneling effects explain the behavior of the electron capture time on the single trap. Based on the experimental data, parameters of the single trap were determined. The trap is located at a distance of about 2 nm from the interface Si/SiO2 and has a repulsive character. The theory of dynamic processes in liquid-gated Si NW FET put forward here is in good agreement with experimental observations of transport in the structures and highlights the importance of quantization in carrier distribution for analyzing dynamic processes in the nanostructures.

  8. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  9. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    Science.gov (United States)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  10. Assessment of left ventricular diastolic function by gated single-photon emission tomography: comparison with Doppler echocardiography

    International Nuclear Information System (INIS)

    Yamano, Tetsuhiro; Sakamoto, Kenzo; Hikosaka, Takato; Zen, Kan; Nakamura, Takeshi; Sawada, Takahisa; Azuma, Akihiro; Nakagawa, Masao; Nakamura, Tomoki; Nishimura, Tsunehiko

    2003-01-01

    Gated single-photon emission tomography (SPET) is not yet an established procedure for the evaluation of left ventricular (LV) diastolic function. This study examined diastolic function derived from gated SPET in comparison with an established diagnostic tool, Doppler echocardiography. We examined 37 consecutive patients with normal sinus rhythm who underwent gated technetium-99m tetrofosmin SPET. A gated SPET program was used with a temporal resolution of 32 frames per R-R interval. We obtained the Doppler transmitral flow velocity waveform immediately before gated SPET image acquisition. Patients who showed a ratio of peak early transmitral flow velocity to atrial flow velocity (E/A) of >1 or whose R-R intervals differed by >5% between Doppler echocardiography and gated SPET were excluded from this investigation. We compared diastolic indices and presumed corresponding intervals in diastole using the two methods. The peak filling rate (PFR) derived from gated SPET correlated with the Doppler peak velocity of the early transmitral flow (E) wave (r=0.65) and deceleration of the E wave (r=0.71). The time to PFR and percent atrial contribution to LV filling from gated SPET correlated excellently with the Doppler LV isovolumic relaxation time (r=0.93) and the E/A ratio (r=-0.85), respectively. There was a significant linear correlation in all the intervals from the R wave to the presumed corresponding diastolic points. The point of PFR in gated SPET and the peak of the E wave in Doppler echocardiography generally coincided. The onset of filling in gated SPET tended to be closer to the second heart sound than the start of the E wave in Doppler echocardiography. We conclude that gated SPET permits the assessment of not only myocardial perfusion and LV systolic function but also diastolic function, although there may be some errors in detection of the precise beginning of LV filling. (orig.)

  11. Effect of photonic band gap on entanglement dynamics of qubits

    OpenAIRE

    Wu, Jing-Nuo; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2012-01-01

    We study how the environment of photonic band gap (PBG) materials affects entanglement dynamics of qubits. Entanglement between the single qubit and the PBG environment is investigated through the von Neumann entropy while that for two initially entangled qubits in this PBG reservoir is through concurrence. Dynamics of these measurements are solved in use of the fractional calculus which has been shown appropriate for the systems with non-Markovian dynamics. Entropy dynamics of the single qub...

  12. Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling

    Directory of Open Access Journals (Sweden)

    Baptiste Royer

    2017-05-01

    Full Text Available We investigate an approach to universal quantum computation based on the modulation of longitudinal qubit-oscillator coupling. We show how to realize a controlled-phase gate by simultaneously modulating the longitudinal coupling of two qubits to a common oscillator mode. In contrast to the more familiar transversal qubit-oscillator coupling, the magnitude of the effective qubit-qubit interaction does not rely on a small perturbative parameter. As a result, this effective interaction strength can be made large, leading to short gate times and high gate fidelities. We moreover show how the gate infidelity can be exponentially suppressed with squeezing and how the entangling gate can be generalized to qubits coupled to separate oscillators. Our proposal can be realized in multiple physical platforms for quantum computing, including superconducting and spin qubits.

  13. Single-flux-quantum logic circuits exploiting collision-based fusion gates

    International Nuclear Information System (INIS)

    Asai, T.; Yamada, K.; Amemiya, Y.

    2008-01-01

    We propose a single-flux-quantum (SFQ) logic circuit based on the fusion computing systems--collision-based and reaction-diffusion fusion computers. A fusion computing system consists of regularly arrayed unit cells (fusion gates), where each unit has two input arms and two output arms and is connected to its neighboring cells with the arms. We designed functional SFQ circuits that implemented the fusion computation. The unit cell was able to be made with ten Josephson junctions. Circuit simulation with standard Nb/Al-AlOx/Nb 2.5-kA/cm 2 process parameters showed that the SFQ fusion computing systems could operate at 10 GHz clock

  14. The Design of Control Pulses for Heisenberg Always-On Qubit Models

    Science.gov (United States)

    Magyar, Rudolph

    2015-03-01

    One model for a universal quantum computer is a spin array with constant nearest neighbor interactions and a controlled unidirectional site-specific magnetic field to generate unitary transformations. This system can be described by a Heisenberg spin Hamiltonian and can be simulated for on the order of 50 spins. It has recently been shown that time-dependent density functional inspired methods may be used to relate various spin models of qubits to ones that may be easier to compute numerically allowing potentially the efficient simulation of greater numbers of spins. One of the challenges of such an agenda is the identification of control pulses that produce desired gate operations (CNOT and single qubit phase gates). We apply control theory to design a universal set of pulses for a Heisenberg always-on model Hamiltonian for a few qubits and compare to known pulses when available. We suggest how this approach may be useful to design control pulses in other realistic designs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  15. PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)

    Science.gov (United States)

    Yildiz, Ahmet

    2016-02-01

    Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.

  16. Quantum computer gate simulations | Dada | Journal of the Nigerian ...

    African Journals Online (AJOL)

    A new interactive simulator for Quantum Computation has been developed for simulation of the universal set of quantum gates and for construction of new gates of up to 3 qubits. The simulator also automatically generates an equivalent quantum circuit for any arbitrary unitary transformation on a qubit. Available quantum ...

  17. A single high dose of escitalopram disrupts sensory gating and habituation, but not sensorimotor gating in healthy volunteers

    DEFF Research Database (Denmark)

    Oranje, Bob; Wienberg, Malene; Glenthøj, Birte Yding

    2011-01-01

    Early mechanisms to limit the input of sensory information to higher brain areas are important for a healthy individual. In previous studies, we found that a low dose of 10mg escitalopram (SSRI) disrupts habituation, without affecting sensory and sensorimotor gating in healthy volunteers. In the ......Early mechanisms to limit the input of sensory information to higher brain areas are important for a healthy individual. In previous studies, we found that a low dose of 10mg escitalopram (SSRI) disrupts habituation, without affecting sensory and sensorimotor gating in healthy volunteers....... In the current study a higher dose of 15mg was used. The hypothesis was that this higher dose of escitalopram would not only disrupt habituation, but also sensory and sensorimotor gating. Twenty healthy male volunteers received either placebo or 15mg escitalopram, after which they were tested in a P50...... suppression, and a habituation and prepulse inhibition (PPI) of the startle reflex paradigm. Escitalopram significantly decreased P50 suppression and habituation, but had no effect on PPI. The results indicate that habituation and sensory gating are disrupted by increased serotonergic activity, while...

  18. Long-Distance Entanglement of Spin Qubits via Ferromagnet

    Directory of Open Access Journals (Sweden)

    Luka Trifunovic

    2013-12-01

    Full Text Available We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a ferromagnet. We derive an effective two-spin interaction Hamiltonian and find a regime where the dynamics is coherent. Finally, we present a sequence for the implementation of the entangling controlled-not gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly promising application of our proposal is to atomistic spin qubits such as silicon-based qubits and nitrogen-vacancy centers in diamond to which existing coupling schemes do not apply.

  19. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    International Nuclear Information System (INIS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V; Touzard, Steven; Schoelkopf, Robert J; Jiang, Liang; Devoret, Michel H

    2014-01-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner

  20. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  1. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  2. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    This thesis presents the results of the experimental study performed on spin qubits realized in gate-defined gallium arsenide quantum dots, with the focus on noise suppression and long-distance coupling. First, we show that the susceptibility to charge noise can be reduced by reducing the gradient...... to put the highest, up to date, lower bound on the electron spin coherence time in gallium arsenide: 870 ms. Later, we study the perspectives of exploiting a multielectron quantum dot as a mediator of the exchange interaction. We investigate interaction between a single spin and the multelectron quantum...

  3. Qubits and chirotopes

    International Nuclear Information System (INIS)

    Nieto, J.A.

    2010-01-01

    We show that qubit and chirotope concepts are closely related. In fact, we prove that the qubit concept leads to a generalization of the chirotope concept, which we call qubitope. Moreover, we argue that a possible qubitope theory may suggest interesting applications of oriented matroid theory in at least three physical contexts, in which qubits make their appearance, namely string theory, black holes and quantum information.

  4. Qubits and chirotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, J.A., E-mail: nieto@uas.uasnet.m [Mathematical, Computational and Modeling Science Center, Arizona State University, PO Box 871904, Tempe, AZ 85287 (United States); Facultad de Ciencias Fisico-Matematicas de la Universidad Autonoma de Sinaloa, 80010, Culiacan Sinaloa (Mexico); Departamento de Investigacion en Fisica de la Universidad de Sonora, 83000, Hermosillo Sonora (Mexico)

    2010-08-16

    We show that qubit and chirotope concepts are closely related. In fact, we prove that the qubit concept leads to a generalization of the chirotope concept, which we call qubitope. Moreover, we argue that a possible qubitope theory may suggest interesting applications of oriented matroid theory in at least three physical contexts, in which qubits make their appearance, namely string theory, black holes and quantum information.

  5. Trichromatic Open Digraphs for Understanding Qubits

    Directory of Open Access Journals (Sweden)

    Alex Lang

    2012-10-01

    Full Text Available We introduce a trichromatic graphical calculus for quantum computing. The generators represent three complementary observables that are treated on equal footing, hence reflecting the symmetries of the Bloch sphere. We derive the Euler angle decomposition of the Hadamard gate within it as well as the so-called supplementary relationships, which are valid equations for qubits that were not derivable within Z/X-calculus of Coecke and Duncan. More specifically, we have: dichromatic Z/X-calculus + Euler angle decomposition of the Hadamard gate = trichromatic calculus.

  6. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.

    Science.gov (United States)

    Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G

    2017-11-15

    The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Modeling and analysis of surface potential of single gate fully depleted SOI MOSFET using 2D-Poisson's equation

    Science.gov (United States)

    Mani, Prashant; Tyagi, Chandra Shekhar; Srivastav, Nishant

    2016-03-01

    In this paper the analytical solution of the 2D Poisson's equation for single gate Fully Depleted SOI (FDSOI) MOSFET's is derived by using a Green's function solution technique. The surface potential is calculated and the threshold voltage of the device is minimized for the low power consumption. Due to minimization of threshold voltage the short channel effect of device is suppressed and after observation we obtain the device is kink free. The structure and characteristics of SingleGate FDSOI MOSFET were matched by using MathCAD and silvaco respectively.

  8. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  9. Fault-tolerant computing with biased-noise superconducting qubits: a case study

    International Nuclear Information System (INIS)

    Aliferis, P; Brito, F; DiVincenzo, D P; Steffen, M; Terhal, B M; Preskill, J

    2009-01-01

    We present a universal scheme of pulsed operations suitable for the IBM oscillator-stabilized flux qubit comprising the controlled-σ z (cphase) gate, single-qubit preparations and measurements. Based on numerical simulations, we argue that the error rates for these operations can be as low as about 0.5% and that noise is highly biased, with phase errors being stronger than all other types of errors by a factor of nearly 10 3 . In contrast, the design of a controlled-σ x (cnot) gate for this system with an error rate of less than about 1.2% seems extremely challenging. We propose a special encoding that exploits the noise bias allowing us to implement a logicalcnot gate where phase errors and all other types of errors have nearly balanced rates of about 0.4%. Our results illustrate how the design of an encoding scheme can be adjusted and optimized according to the available physical operations and the particular noise characteristics of experimental devices.

  10. Non-abelian geometrical quantum gate operation in an ultracold strontium gas

    Science.gov (United States)

    Leroux, Frederic

    The work developed in this PhD thesis is about geometric operation on a single qubit. If the external control parameters vary slowly, the quantum system evolves adiabatically in a sub-space composed of two degenerate eigenstates. After a closed loop in the space of the external parameters, the qubit acquires a geometrical rotation, which can be described by a unitary matrix in the Hilbert space of the two-level system. To the geometric rotation corresponds a non-Abelian gauge field. In this work, the qubit and the adiabatic geometrical quantum gates are implemented on a cold gas of atomic Strontium 87, trapped and cooled at the vicinity of the recoil temperature. The internal Hilbert space of the cold atoms has for basis the dressed states issued from the atom-light interaction of three lasers within a tripod configuration.

  11. Simulation of a quantum NOT gate for a single qutrit system

    Indian Academy of Sciences (India)

    arises. In particular, a three-level system or qutrit has attracted the attention [9]. The qutrit has proved to be more efficient than qubit systems for executing some tasks. For instance, for quantum key distribution it provides better security than that obtained by employing two-level encoding protocols [10,11]. In fact, it has been ...

  12. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  13. Superconducting qubits can be coupled and addressed as trapped ions

    Science.gov (United States)

    Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.

    2009-03-01

    Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518

  14. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  15. Two Superconducting Charge Qubits Coupled by a Josephson Inductance

    Science.gov (United States)

    Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen

    2007-03-01

    When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.

  16. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    Science.gov (United States)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR

  17. Silicon quantum processor with robust long-distance qubit couplings.

    Science.gov (United States)

    Tosi, Guilherme; Mohiyaddin, Fahd A; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.Quantum computers will require a large network of coherent qubits, connected in a noise-resilient way. Tosi et al. present a design for a quantum processor based on electron-nuclear spins in silicon, with electrical control and coupling schemes that simplify qubit fabrication and operation.

  18. Plasma process-induced latent damage on gate oxide - demonstrated by single-layer and multi-layer antenna structures

    NARCIS (Netherlands)

    Wang, Zhichun; Ackaert, Jan; Salm, Cora; Kuper, F.G.

    2001-01-01

    In this paper, by using both single-layer (SL) and multi-layer (ML) or stacked antenna structures, a simple experimental method is proposed to directly demonstrate the pure plasma process-induced latent damage on gate oxide without any impact of additional defects generated by normal constant

  19. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    Science.gov (United States)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  20. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  1. Simulation of n-qubit quantum systems. V. Quantum measurements

    Science.gov (United States)

    Radtke, T.; Fritzsche, S.

    2010-02-01

    The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun

  2. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  3. Coherent oscillations in a superconducting tunable flux qubit manipulated without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G; Torrioli, G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Cosmelli, C [Dipartimento Fisica, Universita di Roma La Sapienza, 00185 Roma (Italy); Carelli, P [Dipartimento Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de

    2009-01-15

    We experimentally demonstrate coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable by changing the amplitude of the flux pulse. The demonstrated operation mode could allow quantum gates to be realized in less than 100 ps, which is much shorter than gate times attainable in other superconducting qubits. Another advantage of this type of qubit is its immunity to both thermal and magnetic field fluctuations.

  4. Stabilizing Rabi oscillation of a charge qubit via the atomic clock technique

    Science.gov (United States)

    Yu, Deshui; Landra, Alessandro; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2018-02-01

    We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor-capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.

  5. Low Temperature Characterization of PMOS-type Gate-all-around Silicon nanowire FETs as single-hole-transistors

    Science.gov (United States)

    Hong, B. H.; Hwang, S. W.; Lee, Y. Y.; Son, M. H.; Ahn, D.; Cho, K. H.; Yeo, K. H.; Kim, D.-W.; Jin, G. Y.; Park, D.

    2011-12-01

    We report the single hole tunneling characteristics observed from a PMOS-type gate-all-around silicon nanowire field-effect-transistor with the radius 5 nm and the length 44 nm. The total capacitance of the quantum dot obtained from the measured Coulomb oscillations and Coulomb diamonds matches with the ideal capacitance of the silicon cylinder. It suggests that the observed single hole tunneling is originated from the fabricated structure.

  6. Implementation of quantum logic gates using coupled Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, F.S. [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Departamento de Fisica; Duzzioni, E.I. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Fisica; Sanz, L., E-mail: lsanz@infis.ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica

    2015-10-15

    In this work, we are interested in the implementation of single-qubit gates on coupled Bose-Einstein condensates (BECs). The system, a feasible candidate for a qubit, consists of condensed atoms in different hyperfine levels coupled by a two-photon transition. It is well established that the dynamics of coupled BECs can be described by the two-mode Hamiltonian that takes into account the confinement potential of the trap and the effects of collisions associated with each condensate. Other effects, such as collisions between atoms belonging to different BECs and detuning, are included in this approach. We demonstrate how to implement two types of quantum logic gates: population-transfer gates (NOT, Ŷ, and Hadamard), which require a population inversion between hyperfine levels, and phase gates (Z{sup ^}, Ŝ and T{sup ^}), which require self-trapping. We also discuss the experimental feasibility by evaluating the robustness of quantum gates against variations of physical parameters outside of the ideal conditions for the implementation of each quantum logic gate. (author)

  7. Performance of Thallium-201 Electrocardiography-gated Myocardial Perfusion Single Photon Emission Computed Tomography to Assess Left Ventricular Function

    Directory of Open Access Journals (Sweden)

    Guang-Uei Hung

    2005-05-01

    Full Text Available This study evaluated the performance of gated single photon emission computed tomography (SPECT with thallium-201 (201Tl in assessing left ventricular ejection fraction (LVEF, end-diastolic volume (EDV, and end-systolic volume (ESV in Taiwanese by determining repeatability and correlation with two-dimensional (2D echocardiography. A total of 18 patients underwent two sequential gated SPECT acquisitions within 30 minutes in the resting state to assess repeatability. Another 28 patients who underwent gated SPECT and 2D echocardiography within 7 days were included for comparison. The two sequential measurements were well correlated with respect to LVEF, EDV, and ESV (r = 0.97, 0.95, and 0.97, respectively, all p < 0.0001. Bland-Altman analysis revealed that two standard deviations of the absolute difference between the two sequential measurements for LVEF, EDV, and ESV were 6.4%, 16.8 mL, and 8.6 mL, respectively. For LVEF, EDV, and ESV, correlations between redistribution 201Tl-gated SPECT and echocardiography were also excellent (all r = 0.83, p < 0.0001. LVEF was similar with 201Tl-gated SPECT and echocardiography, but EDV and ESV were significantly higher with echocardiography (p < 0.05. Our study revealed that 201Tl-gated SPECT has high repeatability and excellent correlation with echocardiography for the assessment of LVEF and volumes in Taiwanese. These results support the clinical application of gated SPECT in routine 201Tl myocardial perfusion imaging in Taiwanese.

  8. A System For High Flexibility Entangling Gates With Trapped Ions

    Science.gov (United States)

    Milne, Alistair; Edmunds, Claire; Mavadia, Sandeep; Green, Todd; Biercuk, Michael

    Trapped ion qubits may be entangled via coupling to shared modes of motion using spin-dependent forces generated by optical fields. Residual qubit-motional coupling at the conclusion of the entangling operation is the dominant source of infidelity in this type of gate. For synchronously entangling increasing numbers of ions, longer gate times are required to minimise this residual coupling. We present a scheme that enables the state of each qubit to be simultaneously decoupled from all motional modes in an arbitrarily chosen gate time, increasing the gate fidelity and scalability. This is achieved by implementing discrete phase shifts in the optical field moderating the entangling operation. We describe an experimental system based on trapped ytterbium ions and demonstrate this scheme for two-qubit entangling gates on ytterbium ion pairs.

  9. Robust quantum gates between trapped ions using shaped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ping, E-mail: zouping@m.scnu.edu.cn; Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn

    2015-12-18

    We improve two existing entangling gate schemes between trapped ion qubits immersed in a large linear crystal. Based on the existing two-qubit gate schemes by applying segmented forces on the individually addressed qubits, we present a systematic method to optimize the shapes of the forces to suppress the dominant source of infidelity. The spin-dependent forces in the scheme can be from periodic photon kicks or from continuous optical pulses. The entangling gates are fast, robust, and have high fidelity. They can be used to implement scalable quantum computation and quantum simulation. - Highlights: • We present a systematic method to optimize the shape of the pulses to decouple qubits from intermediary motional modes. • Our optimized scheme can be applied to both the ultrafast gate and fast gate. • Our optimized scheme can suppress the dominant source of infidelity to arbitrary order. • When the number of trapped ions increase, the number of needed segments increases slowly.

  10. Local ontology for a dual-rail qubit

    International Nuclear Information System (INIS)

    Blasiak, Pawel

    2016-01-01

    We show that quantum predictions for the dual-rail realisation of a qubit can be faithfully simulated with classical stochastic gates and particles which interact entirely in a local manner. In the presented model 'non-locality' appears only on the epistemic level of description. (paper)

  11. Entanglement and discord for qubits and higher spin systems

    Indian Academy of Sciences (India)

    larger memory and for the speed-up of calculations that lend excitement to the field of quantum computing. Next, a quantum system built-up of at least two parts, such as a pair of qubits, exhibits unique correlations between them, entanglement being the best known [2]. Such pairs lead to logic gates for quantum computation ...

  12. Four qubits can be entangled in nine different ways

    International Nuclear Information System (INIS)

    Verstraete, F.; Dehaene, J.; Moor, B. de; Verschelde, H.

    2002-01-01

    We consider a single copy of a pure four-partite state of qubits and investigate its behavior under the action of stochastic local quantum operations assisted by classical communication (SLOCC). This leads to a complete classification of all different classes of pure states of four qubits. It is shown that there exist nine families of states corresponding to nine different ways of entangling four qubits. The states in the generic family give rise to Greenberger-Horne-Zeilinger-like entanglement. The other ones contain essentially two-or three-qubit entanglement distributed among the four parties. The concept of concurrence and 3-tangle is generalized to the case of mixed states of four qubits, giving rise to a seven-parameter family of entanglement monotones. Finally, the SLOCC operations maximizing all these entanglement monotones are derived, yielding the optimal single-copy distillation protocol

  13. Synthesis of multivalued quantum logic circuits by elementary gates

    Science.gov (United States)

    Di, Yao-Min; Wei, Hai-Rui

    2013-01-01

    We propose the generalized controlled X (gcx) gate as the two-qudit elementary gate, and based on Cartan decomposition, we also give the one-qudit elementary gates. Then we discuss the physical implementation of these elementary gates and show that it is feasible with current technology. With these elementary gates many important qudit quantum gates can be synthesized conveniently. We provide efficient methods for the synthesis of various kinds of controlled qudit gates and greatly simplify the synthesis of existing generic multi-valued quantum circuits. Moreover, we generalize the quantum Shannon decomposition (QSD), the most powerful technique for the synthesis of generic qubit circuits, to the qudit case. A comparison of ququart (d=4) circuits and qubit circuits reveals that using ququart circuits may have an advantage over the qubit circuits in the synthesis of quantum circuits.

  14. All-electric control of donor nuclear spin qubits in silicon

    Science.gov (United States)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  15. A class of quantum gate entanglers

    International Nuclear Information System (INIS)

    Heydari, Hoshang

    2010-01-01

    We construct quantum gate entanglers for different classes of multipartite states based on the definition of W and GHZ concurrence classes. First, we review the basic construction of concurrence classes based on the orthogonal complement of a positive operator valued measure (POVM) on quantum phase. Then, we construct quantum gate entanglers for different classes of multi-qubit states. In particular, we show that these operators can entangle multipartite states if they satisfy some conditions for W and GHZ classes of states. Finally, we explicitly give the W class and GHZ classes of quantum gate entanglers for four-qubit states.

  16. Resonantly driven CNOT gate for electron spins

    Science.gov (United States)

    Zajac, D. M.; Sigillito, A. J.; Russ, M.; Borjans, F.; Taylor, J. M.; Burkard, G.; Petta, J. R.

    2018-01-01

    To build a universal quantum computer—the kind that can handle any computational task you throw at it—an essential early step is to demonstrate the so-called CNOT gate, which acts on two qubits. Zajac et al. built an efficient CNOT gate by using electron spin qubits in silicon quantum dots, an implementation that is especially appealing because of its compatibility with existing semiconductor-based electronics (see the Perspective by Schreiber and Bluhm). To showcase the potential, the authors used the gate to create an entangled quantum state called the Bell state.

  17. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  18. A single-atom quantum memory.

    Science.gov (United States)

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  19. Embedding qubits into fermionic Fock space: Peculiarities of the four-qubit case

    Science.gov (United States)

    Lévay, Péter; Holweck, Frédéric

    2015-06-01

    We give a fermionic Fock space description of embedded entangled qubits. Within this framework the problem of classification of pure state entanglement boils down to the problem of classifying spinors. The usual notion of separable states turns out to be just a special case of the one of pure spinors. By using the notion of single, double and mixed occupancy representation with intertwiners relating them a natural physical interpretation of embedded qubits is found. As an application of these ideas one can make a physical sound meaning of some of the direct sum structures showing up in the context of the so-called black-hole/qubit correspondence. We discuss how the usual invariants for qubits serving as measures of entanglement can be obtained from invariants for spinors in an elegant manner. In particular a detailed case study for recovering the invariants for four-qubits within a spinorial framework is presented. We also observe that reality conditions on complex spinors defining Majorana spinors for embedded qubits boil down to self-conjugate states under the Wootters spin flip operation. Finally we conduct a study on the explicit structure of Spin(16 ,C ) invariant polynomials related to the structure of possible measures of entanglement for fermionic systems with eight modes. Here we find an algebraically independent generating set of the generalized stochastic local operations and classical communication invariants and calculate their restriction to the dense orbit. We point out the special role the largest exceptional group E8 is playing in these considerations.

  20. Tuning decoherence in superconducting transmon qubits by mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Jan; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey; Lisenfeld, Juergen [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    Two-level tunneling systems (TLS) are formed by structural defects in disordered materials. They gained recent attention as an important decoherence source in superconducting qubits, where they appear on surface oxides and at film interfaces. Although the most advanced qubits do not show avoided level crossings arising from a strong coupling to individual TLS, they commonly display a pronounced frequency dependence of relaxation rates, with distinguishable peaks that may point towards weak resonant coupling to single TLS. Previously, we have shown that TLS are tunable via an applied mechanical strain. Here, we employ this method to test whether the characteristic decoherence spectrum of a transmon qubit sample responds to changes in the applied strain, as it can be expected when the decohering bath is formed of atomic TLS. In our experiment, we will employ a highly coherent X-mon qubit sample and tune the strain by bending the qubit chip via a piezo actuator. Our latest results will be presented.

  1. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.

    Science.gov (United States)

    Namekata, Naoto; Adachi, Shunsuke; Inoue, Shuichiro

    2009-04-13

    We report a telecom-band single-photon detector for gigahertz clocked quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 1.5 GHz. A quantum efficiency of 10.8 % at 1550 nm was obtained with a dark count probability per gate of 6.3 x 10(-7) and an afterpulsing probability of 2.8 %. Moreover, the maximum detection rate of the detector is 20 MHz.

  2. Complete 3-Qubit Grover search on a programmable quantum computer.

    Science.gov (United States)

    Figgatt, C; Maslov, D; Landsman, K A; Linke, N M; Debnath, S; Monroe, C

    2017-12-04

    The Grover quantum search algorithm is a hallmark application of a quantum computer with a well-known speedup over classical searches of an unsorted database. Here, we report results for a complete three-qubit Grover search algorithm using the scalable quantum computing technology of trapped atomic ions, with better-than-classical performance. Two methods of state marking are used for the oracles: a phase-flip method employed by other experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly equivalent to the state marking scheme required to perform a classical search. We also report the deterministic implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%, respectively.

  3. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    neutral atoms prepared in coherent population trap (CPT) states. It is shown in this paper that such systems can be easily prepared and manipulated and it is possible to build one- qubit and two-qubit gates using them. Since CPT states are 'dark states' of the atom–light interaction, the atoms prepared in such states will not ...

  4. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    A scheme is proposed for achieving a controlled phase gate using interaction between atomic spin dipoles. Further, the spin states are prepared in coherent population trap states (CPTs), which are robust against perturbations, laser fluctuations etc. We show that one-qubit and two-qubit operations can easily be obtained in ...

  5. Decoherence of superconducting qubits caused by quasiparticle tunneling

    Science.gov (United States)

    Catelani, G.; Nigg, S. E.; Girvin, S. M.; Schoelkopf, R. J.; Glazman, L. I.

    2012-11-01

    In superconducting qubits, the interaction of the qubit degree of freedom with quasiparticles defines a fundamental limitation for the qubit coherence. We develop a theory of the pure dephasing rate Γϕ caused by quasiparticles tunneling through a Josephson junction and of the inhomogeneous broadening due to changes in the occupations of Andreev states in the junction. To estimate Γϕ, we derive a master equation for the qubit dynamics. The tunneling rate of free quasiparticles is enhanced by their large density of states at energies close to the superconducting gap. Nevertheless, we find that Γϕ is small compared to the rates determined by extrinsic factors in most of the current qubit designs (phase and flux qubits, transmon, fluxonium). The split transmon, in which a single junction is replaced by a SQUID loop, represents an exception that could make possible the measurement of Γϕ. Fluctuations of the qubit frequency leading to inhomogeneous broadening may be caused by the fluctuations in the occupation numbers of the Andreev states associated with a phase-biased Josephson junction. This mechanism may be revealed in qubits with small-area junctions, since the smallest relative change in frequency it causes is of the order of the inverse number of transmission channels in the junction.

  6. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.

    Science.gov (United States)

    Schuster, D I; Wallraff, A; Blais, A; Frunzio, L; Huang, R-S; Majer, J; Girvin, S M; Schoelkopf, R J

    2005-04-01

    We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape with measurement power is observed and theoretically explained. For weak measurement a long intrinsic dephasing time of T2>200 ns of the qubit is found.

  7. How to implement a quantum algorithm on a large number of qubits by controlling one central qubit

    Science.gov (United States)

    Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco

    2010-03-01

    It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).

  8. Analytical modeling of parametrically modulated transmon qubits

    Science.gov (United States)

    Didier, Nicolas; Sete, Eyob A.; da Silva, Marcus P.; Rigetti, Chad

    2018-02-01

    Building a scalable quantum computer requires developing appropriate models to understand and verify its complex quantum dynamics. We focus on superconducting quantum processors based on transmons for which full numerical simulations are already challenging at the level of qubytes. It is thus highly desirable to develop accurate methods of modeling qubit networks that do not rely solely on numerical computations. Using systematic perturbation theory to large orders in the transmon regime, we derive precise analytic expressions of the transmon parameters. We apply our results to the case of parametrically modulated transmons to study recently implemented, parametrically activated entangling gates.

  9. Protocol for counterfactually transporting an unknown qubit

    Directory of Open Access Journals (Sweden)

    Hatim eSalih

    2016-01-01

    Full Text Available Quantum teleportation circumvents the uncertainty principle using dual channels: a quantum one consisting of previously-shared entanglement, and a classical one, together allowing the disembodied transport of an unknown quantum state over distance. It has recently been shown that a classical bit can be counterfactually communicated between two parties in empty space, Alice and Bob. Here, by using our dual version of the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose a protocol for transporting an unknown qubit counterfactually, that is without any physical particles travelling between Alice and Bob—no classical channel and no previously-shared entanglement.

  10. Tunable Hybrid Qubit in a Triple Quantum Dot

    Science.gov (United States)

    Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Hu, Xuedong; Jiang, Hong-Wen; Guo, Guo-Ping

    2017-12-01

    We experimentally demonstrate quantum-coherent dynamics of a triple-dot-based multielectron hybrid qubit. Pulsed experiments show that this system can be conveniently initialized, controlled, measured electrically, and has a good ratio Q ˜29 between the coherence time and gate time. Furthermore, the current multielectron hybrid qubit has an operation frequency that is tunable in a wide range, from 2 to about 15 GHz. We also provide a qualitative understanding of the experimental observations by mapping them onto a three-electron system. The demonstration of the high tunability in a triple dot system could be potentially useful for future quantum control.

  11. Manipulation of qubits in non-orthogonal collective storage modes

    DEFF Research Database (Denmark)

    Refsgaard, Jonas; Mølmer, Klaus

    2012-01-01

    We present an analysis of transfer of quantum information between the collective spin degrees of freedom of a large ensemble of two-level systems and a single central qubit. The coupling between the central qubit and the individual ensemble members may be varied and thus provides access to more......, for concreteness, we study the transfer of quantum states between a single electron spin and an ensemble of nuclear spins in a quantum dot....

  12. Flow rate calibration II: a clinical evaluation study using PanLeucoGating as a single-platform protocol.

    Science.gov (United States)

    Storie, Ian; Sawle, Alex; Whitby, Liam; Goodfellow, Karen; Granger, Vivian; Reilly, John T; Barnett, David

    2003-09-01

    CD4(+) T-lymphocyte enumeration is vital for monitoring disease progression in individuals positive for the human immunodeficiency virus (HIV), and as a result, there is a need to develop cost-effective protocols that provide accuracy, precision, and affordability. Recently, PanLeucoGating has been shown to fulfill these requirements; however, although comparable to state-of-the-art single-platform protocols (SP), there is still a requirement for an accurate total white cell count. To overcome this limitation, we recently developed a flow-rate based calibration method that enables the PanLeucoGating protocol to be used as a SP approach, and in this study show that this approach can be used for CD4(+) T-lymphocyte enumeration. A total of 113 HIV samples were analyzed using three protocols: (a) state-of-the art SP bead-based method (MultiSet; predicate protocol), (b) PanLeucoGating protocol used as a dual-platform (DP) approach, and (c) the newly developed flow rate-based SP approach. We demonstrate that flow rate calibration can be achieved easily and that the method is highly comparable to the state-of-the-art SP method. A high correlation was observed between the predicate protocol and the SP PanLeucoGating approach over the whole range of CD4 counts tested (r(2) = 0.9928; bias 8 cells/microl), including the clinically relevant range (e.g., 0-200 CD4 cells/microl; bias 0 cells/microl). For batched samples, the cost of providing a CD4(+) T-lymphocyte count was reduced to approximately US $1. The SP PanLeucoGating is a cost-effective approach to CD4(+) T-lymphocyte enumeration that maintains accuracy and precision. Copyright 2003 Wiley-Liss, Inc.

  13. Property of electrocardiogram gated single photon emission tomography by sup 99m Tc-methoxy isobutyl isonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Kamon; Nishio, Yukari; Araki, Yasushi; Saito, Satoshi; Ozawa, Yukio; Yasugi, Tadao; Hagiwara, Kazuo; Kamata, Rikisaburo (Nihon Univ., Tokyo (Japan). School of Medicine)

    1992-06-01

    {sup 99m}Tc-methoxy isobutyl isonitrile (MIBI) is a new developed myocardial perfusion imaging agent. Because this compound has higher photon energy than thallium (Tl), electrocardiogram gated single photon emission tomography (SPECT): end-diastolic (ED) and end-systolic (ES) short axis (SA) images could be taken. To investigate property of gated MIBI SPECT, MIBI myocardial scintigraphy, Tl scintigraphy (TMS) and analysis of left ventricular wall motion were performed in 6 patients with myocardial infarction. Left ventricule was divided into 8 segments. Perfusion defect (PD) was scored: '0' (normal), '1' (hypo-perfusion), '2' (defect). Wall motion abnormality (WMA) was also scored: '0' (normo-kinesis), '1' (hypo-kinesis), '2' (a-, dys-kinesis). Severity and extent of PD and WMA were calculated. Severity of WMA was 3.0{+-}2.0 (M{+-}SD), severity of PD was 3.3{+-}1.7 in TMS, 3.7{+-}1.3 in no-gated MIBI, 5.0{+-}0.6 in ES-MIBI, 7.3{+-}2.0 in ED-MIBI. Extent of WMA was 2.3{+-}1.0. Extent of PD was 2.5{+-}1.3 in TMS, 3.0{+-}1.6 in no-gated MIBI, 3.5{+-}0.8 in ES-MIBI, 4.8{+-}1.0 in ED-MIBI. Compared with wall motion abnormality, severity and extent of PD in ED-MIBI was larger. From our data, it is concluded that perfusion defect in ED-MIBI was overestimated significantly. When we evaluate gated MIBI image, we must consider this property. (author).

  14. Implementation of Dynamically Corrected Gates on a Single Electron Spin in Diamond

    Science.gov (United States)

    Rong, Xing; Geng, Jianpei; Wang, Zixiang; Zhang, Qi; Ju, Chenyong; Shi, Fazhan; Duan, Chang-Kui; Du, Jiangfeng

    2014-02-01

    Precise control of an open quantum system is critical to quantum information processing but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally a type of dynamically corrected gates using only bounded-strength pulses on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by a nuclear-spin bath is reduced from being the second order to the sixth order of the noise-to-control-field ratio, which offers greater efficiency in reducing infidelity. The quantum gates have been protected to the limit essentially set by the spin-lattice relaxation time T1. Our work marks an important step towards fault-tolerant quantum computation in realistic systems.

  15. Improved generation lifetime model for the electrical characterization of single- and double-gate SOI nMOSFETs

    International Nuclear Information System (INIS)

    Galeti, M; Martino, J A; Simoen, E; Claeys, C

    2008-01-01

    This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single-gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 µm SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation

  16. Gate-tunable quantum dot in a high quality single layer MoS2 van der Waals heterostructure

    Science.gov (United States)

    Pisoni, Riccardo; Lei, Zijin; Back, Patrick; Eich, Marius; Overweg, Hiske; Lee, Yongjin; Watanabe, Kenji; Taniguchi, Takashi; Ihn, Thomas; Ensslin, Klaus

    2018-03-01

    We have fabricated an encapsulated monolayer MoS2 device with metallic ohmic contacts through a pre-patterned hexagonal boron nitride (hBN) layer. In the bulk, we observe an electron mobility as high as 3000 cm2/Vs at a density of 7 × 1012 cm-2 at a temperature of 1.7 K. Shubnikov-de Haas oscillations start at magnetic fields as low as 3.3 T. By realizing a single quantum dot gate structure on top of hBN, we are able to confine electrons in MoS2 and observe the Coulomb blockade effect. By tuning the middle gate voltage, we reach a double dot regime where we observe the standard honeycomb pattern in the charge stability diagram.

  17. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  18. Experiments with double-SQUID qubits

    Energy Technology Data Exchange (ETDEWEB)

    Doerling, Bernhard; Poletto, Stefano; Ustinov, Alexey V. [Karlsruher Institut fuer Technologie (Germany); Castellano, Maria Gabriella; Chiarello, Fabio [Instituto Fotonica e Nanotecnologie, CNR, Roma (Italy)

    2010-07-01

    A double-SQUID qubit (flash-qubit) allows the manipulation of quantum states by very short pulses of magnetic flux, without using microwaves. It consists of an rf-SQUID with a dc-SQUID replacing the single Josephson junction. The energy potential profile is controllable by dc bias fluxes threading the two loops. The initial qubit state in a double well is prepared by applying a dc flux pulse to one loop, thereby tilting the double well so that only one of the two states remains stable. To manipulate the state of the qubit a dc flux pulse is applied to the other loop to change the potential into a single well, where coherent Larmor oscillations between the two lowest eigenstates take place. Reading out the state is once again performed in the double well situation, where our readout dc-SQUID is able to discriminate between the two computational states due to their flux difference. We hope to present measurements done on a new sample, fabricated using shadow evaporation of aluminium and silicon nitride as the dielectric.

  19. Nonlinearities in the quantum measurement process of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Ioana

    2008-05-15

    phase-space methods, a modified version of the WKB approximation and the Caldeira-Leggett approach. Returning to the application of the JBA as a qubit detector, chapter 7 describes the relaxation of the qubit in contact with its detector. The last chapter is concerned with optimal control of a qubit in the presence of a two level fluctuator. The two level fluctuator represents e. g. a resonator in the amorphous material of a Josephson junction. The theory of optimal control is applied to a qubit Z gate. The optimization takes into account the environment represented by the fluctuator and thus expands the limits of coherent control for solid state qubits. (orig.)

  20. Nonlinearities in the quantum measurement process of superconducting qubits

    International Nuclear Information System (INIS)

    Serban, Ioana

    2008-05-01

    phase-space methods, a modified version of the WKB approximation and the Caldeira-Leggett approach. Returning to the application of the JBA as a qubit detector, chapter 7 describes the relaxation of the qubit in contact with its detector. The last chapter is concerned with optimal control of a qubit in the presence of a two level fluctuator. The two level fluctuator represents e. g. a resonator in the amorphous material of a Josephson junction. The theory of optimal control is applied to a qubit Z gate. The optimization takes into account the environment represented by the fluctuator and thus expands the limits of coherent control for solid state qubits. (orig.)

  1. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  2. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.

    Science.gov (United States)

    Lee, W; Su, P

    2009-02-11

    This paper systematically presents controlled single-electron effects in multiple-gate silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with various gate lengths, fin widths, gate bias and temperature. Our study indicates that using the non-overlapped gate to source/drain structure as an approach to the single-electron transistor (SET) in MOSFETs is promising. Combining the advantage of gate control and the constriction of high source/drain resistances, single-electron effects are further enhanced using the multiple-gate architecture. From the presented results, downsizing multiple-gate SOI MOSFETs is needed for future room-temperature SET applications. Besides, the tunnel barriers and access resistances may need to be further optimized. Since the Coulomb blockade oscillation can be achieved in state-of-the-art complementary metal-oxide-semiconductor (CMOS) devices, it is beneficial to build SETs in low-power CMOS circuits for ultra-high-density purposes.

  3. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates

    Science.gov (United States)

    Bravyi, Sergey; Gosset, David

    2016-06-01

    We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates.

  4. Protection of qubit-coherence on a Bloch sphere

    Science.gov (United States)

    Zong, Xiao-Lan; Chu, Wen-Jing; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang

    2017-07-01

    Single qubit pure state is a fundamental resource in quantum information and quantum computation. Therefore, it is of great importance to protect the coherence of single qubits against decoherence. In this letter, we demonstrate that decoherence caused by spontaneous emission can be effectively suppressed by adding a universal static external field. In order to have an intuitive view to the protection effects and its physical mechanisms, we study the coherence evolution of a single qubit on a Bloch sphere. We can clearly see that different external resonant drivings can rotate the Bloch vector around different axes, and the steady-state solution of the master equation (under protection) are visualized on the Bloch sphere. Furthermore, the frequency detuning between the qubit system and the driving is taken into account, and the results show that our protection scheme still works fine in the detuned cases and the smaller the detuning is, the better the protection effect is. In addition, this protocol can protect the coherence of single qubit states with a wide range of driving parameters, and help people to design simple coherence protection schemes for qubit states. The simplicity and the abundance of the current scheme may warrant its experimental realization.

  5. Single Event Gate Rupture in 130-nm CMOS Transistor Arrays Subjected to X-Ray Irradiation

    CERN Document Server

    Silvestri, M; Gerardin, Simone; Faccio, Federico; Paccagnella, Alessandro

    2010-01-01

    We present new experimental results on heavy ion-induced gate rupture on deep submicron CMOS transistor arrays. Through the use of dedicated test structures, composed by a large number of 130-nm MOSFETs connected in parallel, we show the response to heavy ion irradiation under high stress voltages of devices previously irradiated with X-rays. We found only a slight impact on gate rupture critical voltage at a LET of 32 MeV cm(2) mg(-1) for devices previously irradiated up to 3 Mrad(SiO2), and practically no change for 100 Mrad(SiO2) irradiation, dose of interest for the future super large hadron collider (SLHC).

  6. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  7. Silicon photonic processor of two-qubit entangling quantum logic

    Science.gov (United States)

    Santagati, R.; Silverstone, J. W.; Strain, M. J.; Sorel, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-11-01

    Entanglement is a fundamental property of quantum mechanics, and is a primary resource in quantum information systems. Its manipulation remains a central challenge in the development of quantum technology. In this work, we demonstrate a device which can generate, manipulate, and analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement, and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our source can produce a range of entangled and separable states, and how our switchable controlled-Z gate operates on them, entangling them or making them separable depending on its configuration.

  8. Beneficial effect of coronary artery bypass grafting as assessed by quantitative gated single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hida, Satoshi; Chikamori, Taishiro; Hirayama, Tetsuzo; Usui, Yasuhiro; Yanagisawa, Hidefumi; Morishima, Takayuki; Ishimaru, Shin; Yamashina, Akira [Tokyo Medical Coll. (Japan)

    2003-06-01

    The development of quantitative gated single-photon emission computed tomography (SPECT) has enabled the assessment of left ventricular perfusion, function and wall thickness in a single examination. Accordingly, the present study used gated SPECT to assess the benefit of coronary artery bypass grafting (CABG) in patients with coronary artery disease; 47 of those patients were evaluated before and 5 months after CABG. As a result of coronary revascularization, a significant improvement was observed in global ejection fraction (50{+-}12{yields}53{+-}11%; p<0.05). In 107 revascularized territories, the average regional reversible defect score (0.8{+-}0.5{yields}0.2{+-}0.3; p<0.0001), average regional perfusion score at rest (0.6{+-}0.6{yields}0.3{+-}0.4; p<0.0001), average regional wall motion score (0.9{+-}0.7{yields}0.7{+-}0.5; p<0.05), and end-diastolic wall thickness (8.1{+-}1.3{yields}8.6{+-}1.5 mm; p<0.0005) all improved significantly. Even in 34 non-revascularized territories, the average regional reversible defect score (0.5{+-}0.7{yields}0.2{+-}0.5; p<0.03), average regional wall motion score (0.8{+-}1.1{yields}0.5{+-}1.0; p<0.03) and end-diastolic wall thickness (8.0{+-}1.4{yields}9.1{+-}2.0 mm; p<0.03) all improved significantly. These results indicate that improvement in myocardial ischemia, hibernation and left ventricular function with CABG can be assessed in detail with gated SPECT. (author)

  9. Coherent control and detection of spin qubits in semiconductor with magnetic field engineering

    Science.gov (United States)

    Tokura, Yasuhiro

    2012-02-01

    Electrical control and detection of the spin qubits in semiconductor quantum dots (QDs) are among the major rapidly progressing fields for possible implementation of scalable quantum information processing. Coherent control of one-[1-3] and two-[4,5] spin qubits by electrical means had been demonstrated with various approaches. We have used an engineered magnetic field structure realized with proximal micro-magnets to transduce the spin and charge degrees of freedom and to selectively address one of the two spins [3]. We have demonstrated an all-electrical two-qubit gate consisting of single-spin rotations and interdot spin exchange in double QDs. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. Our calculations taking into account of the nuclear spin fluctuation show the degree of entanglement. Non-uniform magnetic field also enables spin selective photon-assisted tunneling in double QDs, which then constitutes non-demolition spin read-out system in combination with a near-by charge detector [6]. [4pt] In collaboration with R. Brunner, Inst. of Phys., Montanuniversitaet Leoben, 8700, Austria, M. Pioro-Ladrière, D'ep. de Phys., Universit'e de Sherbrooke, Sherbrooke, Qu'ebec, J1K-2R1, Canada, T. Kubo, Y. -S. Shin, T. Obata, and S. Tarucha, ICORP-JST and Dep. of Appl. Phys., Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.[4pt] [1] F. H. Koppens, et al., Nature 442, 766 (2006).[0pt] [2] K. C. Nowack, et al., Science 318, 1430 (2007).[0pt] [3] M. Pioro-Ladrière, et al., Nature Physics 4, 776 (2008).[0pt] [4] J. R. Petta, et al., Science 309, 2180 (2005).[0pt] [5] R. Brunner, et al., Phys. Rev. Lett. 107, 146801 (2011).[0pt] [6] Y. -S. Shin, et al., Phys. Rev. Lett. 104, 046802 (2010).

  10. A quantum Fredkin gate.

    Science.gov (United States)

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  11. Qubit compatible superconducting interconnects

    Science.gov (United States)

    Foxen, B.; Mutus, J. Y.; Lucero, E.; Graff, R.; Megrant, A.; Chen, Yu; Quintana, C.; Burkett, B.; Kelly, J.; Jeffrey, E.; Yang, Yan; Yu, Anthony; Arya, K.; Barends, R.; Chen, Zijun; Chiaro, B.; Dunsworth, A.; Fowler, A.; Gidney, C.; Giustina, M.; Huang, T.; Klimov, P.; Neeley, M.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2018-01-01

    We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the three dimensional integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1 K), limited by the aluminum. These interconnects have an average critical current of 26.8 mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.

  12. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    has photon loss in the optical fibre would appear has an effective T1 process and destroy any entanglement. 2.2.3 TEMPORAL MODE FILTER FUNCTION To...SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer) project proposes to build a novel electro- optic system which can...exchange quantum information between optical qubits at telecom frequencies and superconducting qubits. A direct quantum information transfer between

  13. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  14. Quasi-lattices of qubits for generating inequivalent multipartite entanglements

    Science.gov (United States)

    Ian, Hou

    2016-06-01

    The mesoscopic scale of superconducting qubits makes their inter-spacings comparable to the scale of wavelength of a circuit cavity field to which they commonly couple. This comparability results in inhomogeneous coupling strengths for each qubit and hence asynchronous Rabi excitation cycles among the qubits that form a quasi-lattice. We find that such inhomogeneous coupling benefits the formation of multi-photon resonances between the single-mode cavity field and the quasi-lattice. The multi-photon resonances lead, in turn, to the simultaneous generation of inequivalent |\\text{GHZ}> and |W> types of multipartite entanglement states, which are not transformable to each other through local operations with classical communications. Applying the model on the 3-qubit quasi-lattice and using the entanglement measures of both concurrence and 3-tangle, we verify that the inhomogeneous coupling specifically promotes the generation of the totally inseparable |\\text{GHZ}> state.

  15. Silicon quantum processor with robust long-distance qubit couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.

  16. Transformed composite sequences for improved qubit addressing

    Science.gov (United States)

    Merrill, J. True; Doret, S. Charles; Vittorini, Grahame; Addison, J. P.; Brown, Kenneth R.

    2014-10-01

    Selective laser addressing of a single atom or atomic ion qubit can be improved using narrow-band composite pulse sequences. We describe a Lie-algebraic technique to generalize known narrow-band sequences and introduce sequences related by dilation and rotation of sequence generators. Our method improves known narrow-band sequences by decreasing both the pulse time and the residual error. Finally, we experimentally demonstrate these composite sequences using 40Ca+ ions trapped in a surface-electrode ion trap.

  17. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions

    International Nuclear Information System (INIS)

    Li, C; Mishchenko, A; Li, Z; Pobelov, I; Wandlowski, Th; Li, X Q; Wuerthner, F; Bagrets, A; Evers, F

    2008-01-01

    We report a scanning tunneling microscopy (STM) experiment in an electrochemical environment which studies a prototype molecular switch. The target molecules were perylene tetracarboxylic acid bisimides modified with pyridine (P-PBI) and methylthiol (T-PBI) linker groups and with bulky tert-butyl-phenoxy substituents in the bay area. At a fixed bias voltage, we can control the transport current through a symmetric molecular wire Au|P-PBI(T-PBI)|Au by variation of the electrochemical 'gate' potential. The current increases by up to two orders of magnitude. The conductances of the P-PBI junctions are typically a factor 3 larger than those of T-PBI. A theoretical analysis explains this effect as a consequence of shifting the lowest unoccupied perylene level (LUMO) in or out of the bias window when tuning the electrochemical gate potential VG. The difference in on/off ratios reflects the variation of hybridization of the LUMO with the electrode states with the anchor groups. I T -E S(T) curves of asymmetric molecular junctions formed between a bare Au STM tip and a T-PBI (P-PBI) modified Au(111) electrode in an aqueous electrolyte exhibit a pronounced maximum in the tunneling current at -0.740, which is close to the formal potential of the surface-confined molecules. The experimental data were explained by a sequential two-step electron transfer process

  18. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits

    Science.gov (United States)

    Kiktenko, E. O.; Fedorov, A. K.; Strakhov, A. A.; Man'ko, V. I.

    2015-07-01

    Design of a large-scale quantum computer has paramount importance for science and technologies. We investigate a scheme for realization of quantum algorithms using noncomposite quantum systems, i.e., systems without subsystems. In this framework, n artificially allocated "subsystems" play a role of qubits in n-qubits quantum algorithms. With focus on two-qubit quantum algorithms, we demonstrate a realization of the universal set of gates using a d = 5 single qudit state. Manipulation with an ancillary level in the systems allows effective implementation of operators from U(4) group via operators from SU(5) group. Using a possible experimental realization of such systems through anharmonic superconducting many-level quantum circuits, we present a blueprint for a single qudit realization of the Deutsch algorithm, which generalizes previously studied realization based on the virtual spin representation (Kessel et al., 2002 [9]).

  19. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    Science.gov (United States)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  20. Dual-Input AND Gate From Single-Channel Thin-Film FET

    Science.gov (United States)

    Miranda, F. A.; Pinto, N. J.; Perez, R.; Mueller, C. H.

    2008-01-01

    A regio-regular poly(3-hexylthiophene) (RRP3HT) thin-film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. RRP3HT is a semiconducting polymer that has a carrier mobility and on/off ratio when used in a field effect transistor (FET) configuration. This commercially available polymer is very soluble in common organic solvents and is easily processed to form uniform thin films. The most important polymer-based device fabricated and studied is the FET, since it forms the building block in logic circuits and switches for active matrix (light-emitting-diode) (LED) displays, smart cards, and radio frequency identification (RFID) cards.

  1. Robust and Addressable Control of Atomic Qubits and Qudits

    Science.gov (United States)

    Jessen, Poul

    2014-03-01

    The standard paradigm for quantum computation and simulation with neutral atoms assumes that constituent atoms can be used as individually addressable qubits. To accomplish this in optical lattices with sub-micron atom separation, we have developed a resonance addressing scheme that combines a position dependent light shift of the qubit transition with resonant microwave (μw) pulses. In a proof-of-principle experiment, we show that numerically optimized composite pulses can implement quantum gates on Cs qubits at targeted lattice sites, with minimal cross-talk to neighboring sites and significant robustness against uncertainty in the atom position. Coherence is verified through two-pulse experiments, and the average gate fidelity is measured to be 95 +/-3%. Because most atoms have more than two accessible levels, one might also consider if the existing toolbox for qubit control can be extended to d-level systems (qudits). Over the past several years we have used the 16-dimensional ground hyperfine manifold of cold, untrapped Cs atoms as an experimental testbed for such work. Driving the atoms with a combination of phase modulated radio frequency (rf) and μw magnetic fields, we use numerical optimization techniques to design control waveforms (rf and μw phases as function of time) that accomplish a wide range of control tasks, from quantum state-to-state maps to full unitary transformations, with average fidelities that vary from >99% for the former to ~ 98% for the latter. We further show that tools for inhomogeneous control and dynamical decoupling can be generalized to qudits, allowing transformations that are robust to static as well as dynamic perturbations, and thus in principle compatible with optical traps and the resonance addressing scheme demonstrated for qubits.

  2. Influence of external fields and environment on the dynamics of a phase-qubit-resonator system

    International Nuclear Information System (INIS)

    Berman, G. P.; Chumak, A. A.

    2011-01-01

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive, -bath, and -qubit interaction. The renormalization of the resonator frequency caused by the qubit-resonator interaction is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during measurement time on the fidelity of a single-shot measurement is studied. The relation between fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state toward its stationary value is derived. The possibility of controlling this state by varying the amplitude and frequency of drive is shown.

  3. Quantum coherence and entanglement preservation in Markovian and non-Markovian dynamics via additional qubits

    Science.gov (United States)

    Behzadi, Naghi; Ahansaz, Bahram; Faizi, Esfandyar

    2017-11-01

    In this paper, we investigate preservation of quantum coherence of a single-qubit interacting with a zero-temperature reservoir through the addition of non-interacting qubits in the reservoir. Moreover, we extend this scheme to preserve quantum entanglement between two and three distant qubits, each of which interacts with a dissipative reservoir independently. At the limit t → ∞, we obtained analytical expressions for the coherence measure and the concurrence of two and three qubits in terms of the number of additional qubits. It is observed that, by increasing the number of additional qubits in each reservoir, the initial coherence and the respective entanglements are completely protected in both Markovian and non-Markovian regimes. Interestingly, the protection of entanglements occurs even under the individually different behaviors of the reservoirs.

  4. Superconducting Qubits and Quantum Resonators

    NARCIS (Netherlands)

    Forn-Díaz, P.

    2010-01-01

    Superconducting qubits are fabricated "loss-free" electrical circuits on a chip with size features of tens of nanometers. If cooled to cryogenic temperatures below -273 °C they behave as quantum elements, similar to atoms and molecules. Such a qubit can be manipulated by fast-oscillating magnetic

  5. Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction.

    Science.gov (United States)

    Didier, Nicolas; Bourassa, Jérôme; Blais, Alexandre

    2015-11-13

    We show how to realize fast and high-fidelity quantum nondemolition qubit readout using longitudinal qubit-oscillator interaction. This is accomplished by modulating the longitudinal coupling at the cavity frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive on the cavity, a situation that is fundamentally different from the standard dispersive case. Single-mode squeezing can be exploited to exponentially increase the signal-to-noise ratio of this readout protocol. We present an implementation of this longitudinal parametric readout in circuit quantum electrodynamics and a possible multiqubit architecture.

  6. Characterizing Ensembles of Superconducting Qubits

    Science.gov (United States)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  7. Adiabatic quantum computing with spin qubits hosted by molecules.

    Science.gov (United States)

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  8. Autonomous stabilization of an entangled state of two transmon qubits

    Science.gov (United States)

    Shankar, S.; Leghtas, Z.; Hatridge, M.; Narla, A.; Vool, U.; Girvin, S. M.; Mirrahimi, M.; Devoret, M. H.

    2013-03-01

    Recent circuit QED (cQED) experiments on superconducting transmon qubits have shown good progress towards measurement-based quantum feedback, that should allow the stabilization of interesting quantum states, such as an entangled state of two qubits. These experiments crucially depend on fast, high-fidelity, quantum non-demolition qubit readout using superconducting parametric amplifiers as well as high-speed room-temperature electronics. We describe an alternate autonomous-feedback strategy to stabilize two qubits dispersively coupled to a single cavity into an entangled state, while obviating the need for an optimized measurement chain. The system Hamiltonian is designed to be in the strong dispersive cQED regime where the dispersive shifts of the two qubits are tuned to be equal (χ / 2 π = 5 MHz) and larger than the cavity linewidth (κ / 2 π = 1 . 5 MHz). By applying continuous microwave drives at the cavity and qubit frequencies, the system is forced into the desired quantum state. The stabilization rate of this scheme is of order κ which can be made much faster than all decoherence rates 1/T1, 1/Tϕ that take the system out of the entangled state. We will discuss initial experimental progress towards the goal of autonomous high-fidelity entanglement. Work supported by IARPA, ARO, and NSF.

  9. Electromagnetically induced interference in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Du lingjie; Yu Yang; Lan Dong

    2013-01-01

    Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.

  10. Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity

    International Nuclear Information System (INIS)

    Ren, Bao-Cang; Wei, Hai-Rui; Deng, Fu-Guo

    2013-01-01

    To date, all work concerning the construction of quantum logic gates, an essential part of quantum computing, has focused on operating in one degree of freedom (DOF) for quantum systems. Here, we investigate the possibility of achieving scalable photonic quantum computing based on two DOFs for quantum systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating in both the spatial mode and polarization DOFs for a photon pair simultaneously, using the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a one-side optical microcavity as a result of cavity quantum electrodynamics. With this hyper-CNOT gate and linear optical elements, two-photon four-qubit cluster entangled states can be prepared and analyzed, which give an application to manipulate more information with less resources. We analyze the experimental feasibility of this hyper-CNOT gate and show that it can be implemented with current technology. (letter)

  11. Effects of Ambient Air and Temperature on Ionic Gel Gated Single-Walled Carbon Nanotube Thin-Film Transistor and Circuits.

    Science.gov (United States)

    Li, Huaping; Zhou, Lili

    2015-10-21

    Single-walled carbon nanotube thin-film transistor (SWCNT TFT) and circuits were fabricated by fully inkjet printing gold nanoparticles as source/drain electrodes, semiconducting SWCNT thin films as channel materials, PS-PMMA-PS/EMIM TFSI composite gel as gate dielectrics, and PEDOT/PSS as gate electrodes. The ionic gel gated SWCNT TFT shows reversible conversion from p-type transistor behavior in air to ambipolar features under vacuum due to reversible oxygen doping in semiconducting SWCNT thin films. The threshold voltages of ionic gel gated SWCNT TFT and inverters are largely shifted to the low value (0.5 V for p-region and 1.0 V for n-region) by vacuum annealing at 140 °C to exhausively remove water that is incorporated in the ionic gel as floating gates. The vacuum annealed ionic gel gated SWCNT TFT shows linear temperature dependent transconductances and threshold voltages for both p- and n-regions. The strong temperature dependent transconductances (0.08 μS/K for p-region, 0.4 μS/K for n-region) indicate their potential application in thermal sensors. In the other hand, the weak temperature dependent threshold voltages (-1.5 mV/K for p-region, -1.1 mV/K for n-region) reflect their excellent thermal stability.

  12. Multi-party quantum key agreement with five-qubit brown states

    Science.gov (United States)

    Cai, Tao; Jiang, Min; Cao, Gang

    2018-05-01

    In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

  13. Evaluation of left ventricular function and volume in patients with dilated cardiomyopathy: Gated myocardial single-photon emission tomography (SPECT) versus echocardiography

    International Nuclear Information System (INIS)

    Berk, Fatma; Isgoren, S.; Demir, H.; Kozdag, G.; Ural, D.; Komsuoglu, B.

    2005-01-01

    Left ventricular function, volumes and regional wall motion provide valuable diagnostic information and are of long-term prognostic importance in patients with dilated cardiomyopathy (DCM). This study was designed to compare the effectiveness of 2D-echocardiography and gated single-photon emission tomography (SPECT) for evaluation of these parameters in patients with DCM. Gated SPECT and 2D-echocardiography were performed in 33 patients having DCM. Gated SPECT data, including left ventricular ejection fraction (LVEF), were processed using an automated algorithm. Standard technique was used for 2D-echocardiography. Regional wall motion was evaluated using both modalities and was scored by two independent observers using a 16-sement model with a 5-point scoring system. The overall agreement between the two imaging modalities for the assessment of regional wall motion was 56% (298/528 segments). With gated SPECT, LEVF, end-diastolic volume (EDV), and end-diastolic volume (EDV), and end-systolic volume (ESV) were 27+-9%, 217+-73mL, respectively, and 30.8%, 195+-58mL and, 137+-48 mL with echocardiography. The correlation between gated SPECT and 2-D-echocardiography was good (r=0.76, P<0.01) for the assessment of LVEF. The correlation for EDV and ESV were also good, but with wider limits of agreement (r=0.72, P<0.01 and r=0.73, P<0.01, respectively) and significantly higher values were obtained with gated SPECT (P<0.01). Gated SPECT and 2D-echocardiography correlate well for the assessment of LV function and LV volumes. Like 2D-echocardiography, gated SPECT provides reliable information about LV function and dimension with the additional advantage of perfusion data. (author)

  14. Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study

    Science.gov (United States)

    Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin

    2018-04-01

    A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.

  15. Progress toward coupled flux qubits with high connectivity and long coherence times

    Science.gov (United States)

    Weber, Steven; Hover, David; Rosenberg, Danna; Samach, Gabriel; Yoder, Jonilyn; Kerman, Andrew; Oliver, William

    The ability to engineer interactions between qubits is essential to all areas of quantum information science. The capability to tune qubit-qubit couplings in situ is desirable for gate-based quantum computing and analog quantum simulation and necessary for quantum annealing. Consequently, tunable coupling has been the subject of several experimental efforts using both transmon qubits and flux qubits. Recently, our group has demonstrated robust and long-lived capacitively shunted (C-shunt) flux qubits. Here, we discuss our efforts to develop architectures for tunably coupling these qubits. In particular, we focus on optimizing the RF SQUID coupler to achieve high connectivity. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  16. Robust Deterministic Controlled Phase-Flip Gate and Controlled-Not Gate Based on Atomic Ensembles Embedded in Double-Sided Optical Cavities

    Science.gov (United States)

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou

    2018-02-01

    We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.

  17. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Science.gov (United States)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  18. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Directory of Open Access Journals (Sweden)

    Stephan Welte

    2018-02-01

    Full Text Available Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2  μs. We show an entangling operation between the two atoms by generating a Bell state with 76(2% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  19. Assessment of the effect of revascularization early after CABG using ECG-gated perfusion single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shigeto; Tadamura, Eiji; Kudoh, Takashi; Inubushi, Masayuki; Konishi, Junji [Dept. of Nuclear Medicine and Diagnostic Imaging, Kyoto University Graduate (Japan); Ikeda, Tadashi; Koshiji, Takaaki; Nishimura, Kazunobu; Komeda, Masashi [Dept. of Cardiovascular Surgery, Kyoto University (Japan); Tamaki, Nagara [Dept. of Nuclear Medicine, Hokkaido University, Sapporo (Japan)

    2001-02-01

    When an arterial graft is used, reversible perfusion defects on single-photon emission tomography (SPET) perfusion images are occasionally observed early after coronary artery bypass graft surgery (CABG), owing to the restricted flow capacity. The purpose of this study was to determine whether the functional information obtained with electrocardiography (ECG)-gated perfusion SPET could be helpful in evaluating the effect of revascularization early after CABG. Twenty-three patients (18 men and 5 women, mean age 65{+-}9 years) underwent stress/re-injection thallium-201 ECG-gated SPET before and 4 weeks after CABG (13 with exercise and 10 with dipyridamole). Patency of all grafts was confirmed by coronary angiography 1 month after CABG. Cardiac functional data including the left ventricular ejection fraction (LVEF) and the transient ischaemic dilatation (TID) ratio were analysed using a commercially available automated program. The conventional stress and re-injection tomograms were interpreted by means of a five-point scoring system in a nine-segment model. Stress-induced reversible {sup 201}Tl perfusion defects were present in 64% of the myocardial segments bypassed by patent arterial grafts, in contrast to 42% of the myocardial segments bypassed by patent venous grafts ({chi}{sup 2}=7.8, P=0.005). Of the 23 patients, 12 showed improvement in summed ischaemic scores (group 1), while 11 had no change or deterioration (group 2), although all grafts were patent on postoperative catheterization. The TID ratio improved in both group 1 and group 2 before and after CABG (1.14{+-}0.13 vs 0.99{+-}0.07, P=0.001 and 1.09{+-}0.07 vs 0.94{+-}0.05, P=0.002, respectively). However, LVEF did not significantly improve in group 1 or group 2 after CABG (42.5%{+-}9.9% vs 47.5%{+-}11.8%, and 52.1%{+-}7.5% vs 53.1%{+-}5.9%, respectively). Perfusion imaging or LVEF assessment is of limited value early after CABG. The TID ratio obtained with ECG-gated perfusion SPET may be a useful marker

  20. Multi-Qubit Algorithms in Josephson Phase Qubits

    Science.gov (United States)

    2015-12-15

    state measurement in superconducting qubits, ( ) Josh Mutus, Ted White, Rami Barends, Yu Chen, Zijun Chen, Ben Chiaro, Andrew Dunsworth, Evan...Wenner, Yi Yin, Yu Chen, Rami Barends, Ben Chiaro, Evan Jeffrey, Julian Kelly, Anthony Megrant, Josh Mutus, Charles Neill, Peter O’Malley, Pedram...UCSB nal report for the CSQ program:Review of decoherence and materials physics for superconducting qubits, Unknown (07 2015) John M. Martinis, Rami

  1. More efficient purifying scheme via controlled-controlled NOT gate

    International Nuclear Information System (INIS)

    Metwally, N.; Obada, A.-S.

    2006-01-01

    A new modified version of the Oxford purification protocol is proposed. This version is based on the controlled-controlled NOT gate instead of controlled NOT in the original one. Comparisons between the results of the new version and the original and an earlier modification are given. It is found that the new version converges faster and consumes fewer initial qubit pairs of low fidelity per final qubit pair of high fidelity

  2. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    Science.gov (United States)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  3. Investigation of the Semicoa 2N7616 and 2N7425 and the Microsemi 2N7480 for Single-Event Gate Rupture and Single-Event Burnout

    Science.gov (United States)

    Scheick, Leif

    2014-01-01

    Single-event-effect test results for hi-rel total-dose-hardened power MOSFETs are presented in this report. The 2N7616 and the 2N7425 from Semicoa and the 2N7480 from International Rectifier were tested to NASA test condition standards and requirements. The 2N7480 performed well and the data agree with the manufacture's data. The 2N7616 and 2N7425 were entry parts from Semicoa using a new device architecture. Unfortunately, the device performed poorly and Semicoa is withdrawing power MOSFETs from it line due to these data. Vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) are the most commonly used power transistor. MOSFETs are typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single-event gate rupture (SEGR) or single-event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. See [1] through [5] for more information. The objective of this effort was to investigate the SEGR and SEB responses of two power MOSFETs recently produced. These tests will serve as a limited verification of these parts. It is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  4. Deterministic doping and the exploration of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T.; Weis, C. D.; Persaud, A. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lo, C. C. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720 (United States); London Centre for Nanotechnology (United Kingdom); Chakarov, I. [Global Foundries, Malta, NY 12020 (United States); Schneider, D. H. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bokor, J. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720 (United States)

    2015-01-09

    Deterministic doping by single ion implantation, the precise placement of individual dopant atoms into devices, is a path for the realization of quantum computer test structures where quantum bits (qubits) are based on electron and nuclear spins of donors or color centers. We present a donor - quantum dot type qubit architecture and discuss the use of medium and highly charged ions extracted from an Electron Beam Ion Trap/Source (EBIT/S) for deterministic doping. EBIT/S are attractive for the formation of qubit test structures due to the relatively low emittance of ion beams from an EBIT/S and due to the potential energy associated with the ions' charge state, which can aid single ion impact detection. Following ion implantation, dopant specific diffusion mechanisms during device processing affect the placement accuracy and coherence properties of donor spin qubits. For bismuth, range straggling is minimal but its relatively low solubility in silicon limits thermal budgets for the formation of qubit test structures.

  5. Left ventricular function assessed by multi-gated blood pool single photon emission computed tomography with [sup 99m]Tc

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Ken-ichi; Narita, Michihiro; Kurihara, Tadashi (Sumitomo Hospital, Osaka (Japan))

    1992-01-01

    To evaluate the usefulness of gated blood pool single photon emission computed tomography with [sup 99m]Tc (gated SPECT) for assessing left ventricular (LV) function, we performed gated SPECT in 2 normal subjects and 18 patients including 13 with ischemic heart disease, 3 with hypertrophic cardiomyopathy and 2 with dilated cardiomyopathy. LV end-diastolic volume (LVEDV), LV ejection fraction (LVEF) and regional wall motion obtained by gated SPECT were compared with the results of contrast left ventriculography (contrast LVG), echocardiography and planar multigated blood pool imaging (planar blood pool). After the patients' red blood cells were labelled with 30 mCi (1,110 MBq) [sup 99m]Tc in vivo, gated SPECT was performed in each of 32 projections through a 360 degree arc for each of the cardiac cycle divided into 16. From these images, the left ventricular vertical long-axis image, the horizontal long-axis and short-axis images were reconstructed. To calculate LVEDV, we used serial short-axis images which were composed of LV. To define LV and left atrial borders, we used amplitude images and cinematic displays of the vertical long-axis image. The level of the optimal cut for delineating the LV border was determined from the volume-cut-level-graph at each background activity, which was constructed by a phantom study. LV wall motion by gated SPECT was compared with the results of contrast LVG according to segmental analysis. LVEDV obtained by gated SPECT showed an excellent linear correlation with LVEDV calculated by echocardiography (r=0.98) and by contrast LVG (r=0.89). LVEF as determined by gated SPECT correlated well with the results obtained by the planar blood pool (r=0.94) and by contrast LVG (r=0.94). The visual interpretation of regional wall motion according to gated SPECT agreed with that determined by contrast LVG. We concluded that gated SPECT is a reliable method for assessing LV function. (author).

  6. NASA Electronic Parts and Packaging Field Programmable Gate Array Single Event Effects Test Guideline Update

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2018-01-01

    The following are updated or new subjects added to the FPGA SEE Test Guidelines manual: academic versus mission specific device evaluation, single event latch-up (SEL) test and analysis, SEE response visibility enhancement during radiation testing, mitigation evaluation (embedded and user-implemented), unreliable design and its affects to SEE Data, testing flushable architectures versus non-flushable architectures, intellectual property core (IP Core) test and evaluation (addresses embedded and user-inserted), heavy-ion energy and linear energy transfer (LET) selection, proton versus heavy-ion testing, fault injection, mean fluence to failure analysis, and mission specific system-level single event upset (SEU) response prediction. Most sections within the guidelines manual provide information regarding best practices for test structure and test system development. The scope of this manual addresses academic versus mission specific device evaluation and visibility enhancement in IP Core testing.

  7. Palladium gates for reproducible quantum dots in silicon.

    Science.gov (United States)

    Brauns, Matthias; Amitonov, Sergey V; Spruijtenburg, Paul-Christiaan; Zwanenburg, Floris A

    2018-04-09

    We replace the established aluminium gates for the formation of quantum dots in silicon with gates made from palladium. We study the morphology of both aluminium and palladium gates with transmission electron microscopy. The native aluminium oxide is found to be formed all around the aluminium gates, which could lead to the formation of unintentional dots. Therefore, we report on a novel fabrication route that replaces aluminium and its native oxide by palladium with atomic-layer-deposition-grown aluminium oxide. Using this approach, we show the formation of low-disorder gate-defined quantum dots, which are reproducibly fabricated. Furthermore, palladium enables us to further shrink the gate design, allowing us to perform electron transport measurements in the few-electron regime in devices comprising only two gate layers, a major technological advancement. It remains to be seen, whether the introduction of palladium gates can improve the excellent results on electron and nuclear spin qubits defined with an aluminium gate stack.

  8. High-sensitivity pH sensor using separative extended-gate field-effect transistors with single-walled carbon-nanotube networks

    Science.gov (United States)

    Pyo, Ju-Young; Cho, Won-Ju

    2018-04-01

    We fabricate high-sensitivity pH sensors using single-walled carbon-nanotube (SWCNT) network thin-film transistors (TFTs). The sensing and transducer parts of the pH sensor are composed of separative extended-sensing gates (ESGs) with SnO2 ion-sensitive membranes and double-gate structure TFTs with thin SWCNT network channels of ∼1 nm and AlO x top-gate insulators formed by the solution-deposition method. To prevent thermal process-induced damages on the SWCNT channel layer due to the post-deposition annealing process and improve the electrical characteristics of the SWCNT-TFTs, microwave irradiation is applied at low temperatures. As a result, a pH sensitivity of 7.6 V/pH, far beyond the Nernst limit, is obtained owing to the capacitive coupling effect between the top- and bottom-gate insulators of the SWCNT-TFTs. Therefore, double-gate structure SWCNT-TFTs with separated ESGs are expected to be highly beneficial for high-sensitivity disposable biosensor applications.

  9. Single trap in liquid gated nanowire FETs: Capture time behavior as a function of current

    Science.gov (United States)

    Gasparyan, F.; Zadorozhnyi, I.; Vitusevich, S.

    2015-05-01

    The basic reason for enhanced electron capture time, τ c , of the oxide single trap dependence on drain current in the linear operation regime of p+-p-p+ silicon field effect transistors (FETs) was established, using a quantum-mechanical approach. A strong increase of τ c slope dependence on channel current is explained using quantization and tunneling concepts in terms of strong field dependence of the oxide layer single trap effective cross-section, which can be described by an amplification factor. Physical interpretation of this parameter deals with the amplification of the electron cross-section determined by both decreasing the critical field influence as a result of the minority carrier depletion and the potential barrier growth for electron capture. For the NW channel of n+-p-n+ FETs, the experimentally observed slope of τ c equals (-1). On the contrary, for the case of p+-p-p+ Si FETs in the accumulation regime, the experimentally observed slope of τ c equals (-2.8). It can be achieved when the amplification factor is about 12. Extraordinary high capture time slope values versus current are explained by the effective capture cross-section growth with decreasing electron concentration close to the nanowire-oxide interface.

  10. Universal Barenco quantum gates via a tunable noncollinear interaction

    Science.gov (United States)

    Shi, Xiao-Feng

    2018-03-01

    The Barenco gate (B ) is a type of two-qubit quantum gate based on which alone universal quantum computation can be achieved. Each B is characterized by three angles (α , θ , and ϕ ), though it works in a two-qubit Hilbert space. Here we design B via a noncollinear interaction V | r1r2> is a state that can be excited from a qubit state and V is adjustable. We present two protocols for B . The first (second) protocol consists of two (six) pulses and one (two) wait period(s), where the former causes rotations between qubit states and excited states, and the latter induces gate transformation via the noncollinear interaction. In the first protocol, the variable ϕ can be tuned by varying the phases of external controls, and the other two variables α and θ , tunable via adjustment of the wait duration, have a linear dependence on each other. Meanwhile, the first protocol can give rise to cnot and controlled-y gates. In the second protocol, α ,θ , and ϕ can be varied by changing the interaction amplitudes and wait durations, and the latter two are dependent on α nonlinearly. Both protocols can also lead to another universal gate when {α ,ϕ }={1 /4 ,1 /2 }π with appropriate parameters. Implementation of these universal gates is analyzed based on the van der Waals interaction of neutral Rydberg atoms.

  11. Time complexity and gate complexity

    International Nuclear Information System (INIS)

    Koike, Tatsuhiko; Okudaira, Yosuke

    2010-01-01

    We formulate and investigate the simplest version of time-optimal quantum computation theory (TO-QCT), where the computation time is defined by the physical one and the Hamiltonian contains only one- and two-qubit interactions. This version of TO-QCT is also considered as optimality by sub-Riemannian geodesic length. The work has two aims: One is to develop a TO-QCT itself based on a physically natural concept of time, and the other is to pursue the possibility of using TO-QCT as a tool to estimate the complexity in conventional gate-optimal quantum computation theory (GO-QCT). In particular, we investigate to what extent is true the following statement: Time complexity is polynomial in the number of qubits if and only if gate complexity is also. In the analysis, we relate TO-QCT and optimal control theory (OCT) through fidelity-optimal computation theory (FO-QCT); FO-QCT is equivalent to TO-QCT in the limit of unit optimal fidelity, while it is formally similar to OCT. We then develop an efficient numerical scheme for FO-QCT by modifying Krotov's method in OCT, which has a monotonic convergence property. We implemented the scheme and obtained solutions of FO-QCT and of TO-QCT for the quantum Fourier transform and a unitary operator that does not have an apparent symmetry. The former has a polynomial gate complexity and the latter is expected to have an exponential one which is based on the fact that a series of generic unitary operators has an exponential gate complexity. The time complexity for the former is found to be linear in the number of qubits, which is understood naturally by the existence of an upper bound. The time complexity for the latter is exponential in the number of qubits. Thus, both the targets seem to be examples satisfyng the preceding statement. The typical characteristics of the optimal Hamiltonians are symmetry under time reversal and constancy of one-qubit operation, which are mathematically shown to hold in fairly general situations.

  12. Re-Verification of the IRHN57133SE and IRHN57250SE for Single Event Gate Rupture and Single Event Burnout

    Science.gov (United States)

    Scheick, Leif

    2010-01-01

    The vertical metal oxide semiconductor field-effect transistor (MOSFET) is a widely used power transistor onboard a spacecraft. The MOSFET is typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single event gate rupture (SEGR) or single event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. These radiation hardened devices are not immune to SEGR or SEB but, rather, can exhibit them at a much more damaging ion than their non-radiation hardened counterparts. See [1] through [5] for more information.This effort was to investigate the SEGR and SEB responses of two power MOSFETs from IR(the IRHN57133SE and the IRHN57250SE) that have recently been produced on a new fabrication line. These tests will serve as a limited verification of these parts, but it is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  13. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  14. Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mazhar

    2009-07-13

    This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference

  15. Exercise-induced stunning continues for at least one hour: evaluation with quantitative gated single-photon emission tomography

    International Nuclear Information System (INIS)

    Paul, A.K.; Hasegawa, Shinji; Yoshioka, Jun; Tsujimura, Eiichiro; Yamaguchi, Hitoshi; Tokita, Naoki; Maruyama, Atsushi; Xiuli, Mu; Nishimura, Tsunehiko

    1999-01-01

    To elucidate the after-effect of exercise on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated at 1 h after exercise and at rest by technetium-99m tetrofosmin gated myocardial single-photon emission tomography (SPET) using an automated program in 53 subjects. The subjects were grouped as follows: normal scan (n = 16), ischaemia (n = 19) and infarction (n = 18), based on the interpretation of perfusion images. Postexercise LVEF did not differ from resting LVEF in the groups with normal scan and infarction. In patients with ischaemia, postexercise EDV (90±17 ml, mean ±SD) and ESV (44±15 ml) were significantly higher than EDV (84±15 ml, P = 0.001) and ESV (36±14 ml, P<0.0005) at rest. LVEF was significantly depressed 1 h after exercise (53%±9% vs 58%±9%, P<0.0001). In ischaemic patients with depressed postexercise LVEF, LVEF difference between rest and postexercise showed a significant correlation with the sum of defect scores, which were reversible from exercise to rest perfusion images (r = 0.92, P<0.0001). These results indicate that exercise-induced LV dysfunction (myocardial stunning) continues for at least 1 h in ischaemic patients and that the extent of LVEF depression is determined by the severity of ischaemia. (orig.)

  16. Exercise-induced stunning continues for at least one hour: evaluation with quantitative gated single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.K.; Hasegawa, Shinji; Yoshioka, Jun; Tsujimura, Eiichiro; Yamaguchi, Hitoshi; Tokita, Naoki; Maruyama, Atsushi; Xiuli, Mu; Nishimura, Tsunehiko [Division of Tracer Kinetics, Biomedical Research Center, Osaka University Medical School, Suita, Osaka (Japan)

    1999-04-29

    To elucidate the after-effect of exercise on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated at 1 h after exercise and at rest by technetium-99m tetrofosmin gated myocardial single-photon emission tomography (SPET) using an automated program in 53 subjects. The subjects were grouped as follows: normal scan (n = 16), ischaemia (n = 19) and infarction (n = 18), based on the interpretation of perfusion images. Postexercise LVEF did not differ from resting LVEF in the groups with normal scan and infarction. In patients with ischaemia, postexercise EDV (90{+-}17 ml, mean {+-}SD) and ESV (44{+-}15 ml) were significantly higher than EDV (84{+-}15 ml, P = 0.001) and ESV (36{+-}14 ml, P<0.0005) at rest. LVEF was significantly depressed 1 h after exercise (53%{+-}9% vs 58%{+-}9%, P<0.0001). In ischaemic patients with depressed postexercise LVEF, LVEF difference between rest and postexercise showed a significant correlation with the sum of defect scores, which were reversible from exercise to rest perfusion images (r = 0.92, P<0.0001). These results indicate that exercise-induced LV dysfunction (myocardial stunning) continues for at least 1 h in ischaemic patients and that the extent of LVEF depression is determined by the severity of ischaemia. (orig.) With 7 figs., 19 refs.

  17. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.

    Science.gov (United States)

    Ramesh, Palanisamy; Itkis, Mikhail E; Bekyarova, Elena; Wang, Feihu; Niyogi, Sandip; Chi, Xiaoliu; Berger, Claire; de Heer, Walt; Haddon, Robert C

    2010-10-20

    We report the effect of electrochemical oxidation in nitric acid on the electronic properties of epitaxial graphene (EG) grown on silicon carbide substrates; we demonstrate the availability of an additional reaction channel in EG, which is not present in graphite but which facilitates the introduction of the reaction medium into the graphene galleries during electro-oxidation. The device performance of the chemically processed graphene was studied by patterning the EG wafers with two geometrically identical macroscopic channels; the electro-oxidized channel showed a logarithmic increase of resistance with decreasing temperature, which is ascribed to the scattering of charge carriers in a two-dimensional electronic gas, rather than the presence of an energy gap at the Fermi level. Field-effect transistors were fabricated on the electro-oxidized and pristine graphene channels using single-walled carbon nanotube thin film top gate electrodes, thereby allowing the study of the effect of oxidative chemistry on the transistor performance of EG. The electro-oxidized channel showed higher values for the on-off ratio and the mobility of the graphene field-effect transistor, which we ascribe to the availability of high-quality internal graphene layers after electro-oxidation of the more defective top layers. Thus, the present oxidative process provides a clear contrast with previously demonstrated covalent chemistry in which sp(3) hybridized carbon atoms are introduced into the graphitic transport layer of the lattice by carbon-carbon bond formation, thereby opening an energy gap.

  18. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    International Nuclear Information System (INIS)

    Comandar, L. C.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Lucamarini, M.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2015-01-01

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with an increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns

  19. Josephson quartic oscillator as a superconducting phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Rome (Italy)

    2010-07-01

    Due to interplay between the cosine Josephson potential and parabolic magnetic-energy potential the radio-frequency SQUID with the screening parameter value {beta}{sub L} {identical_to}(2{pi}/{phi}{sub 0})LI{sub c} {approx}1 presents an oscillator circuit which energy well can dramatically change its shape. Ultimately, the magnetic flux bias of half flux quantum {phi}{sub e}={phi}{sub 0}/2 leads to the quartic polynomial shape of the well and, therefore, to significant anharmonicity of oscillations (> 30%). We show that the two lowest eigenstates in this symmetric global minimum perfectly suit for designing the qubit which is inherently insensitive to the charge variable, always biased in the optimal point and allows efficient dispersive and bifurcation-based readouts. Moreover, in the case of a double-SQUID configuration (dc SQUID instead of a single junction) the transition frequency in this Josephson phase qubit can be easy tuned within an appreciable range allowing variable qubit-qubit and qubit-resonator couplings.

  20. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  1. Characterization of classical static noise via qubit as probe

    Science.gov (United States)

    Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif

    2018-03-01

    The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.

  2. Asymptotic properties of entanglement polytopes for large number of qubits

    Science.gov (United States)

    Maciążek, Tomasz; Sawicki, Adam

    2018-02-01

    Entanglement polytopes have been recently proposed as a way of witnessing the stochastic local operations and classical communication (SLOCC) multipartite entanglement classes using single particle information. We present first asymptotic results concerning the feasibility of this approach for a large number of qubits. In particular, we show that entanglement polytopes of the L-qubit system accumulate in the distance O(\\frac{1}{\\sqrt{L}}) from the point corresponding to the maximally mixed reduced one-qubit density matrices. This implies existence of a possibly large region where many entanglement polytopes overlap, i.e. where the witnessing power of entanglement polytopes is weak. Moreover, we argue that the witnessing power cannot be strengthened by any entanglement distillation protocol, as for large L the required purity is above current capability.

  3. Shaping the Spontaneous Emission Pulse from a Superconducting Qubit

    Science.gov (United States)

    Srinivasan, Srikanth; Liu, Yanbing; Zhang, Gengyan; Yu, Terri; Gambetta, Jay; Girvin, Steven; Houck, Andrew

    2013-03-01

    We report on measurements of spontaneous emission in a circuit quantum electrodynamics system. A superconducting qubit with tunable coupling to a coplanar waveguide cavity is operated in a regime where the qubit relaxation time, and consequently the spontaneous emission rate, is dominated by the interaction strength. This fast control knob on the coupling strength is used to shape the emitted single photon's wavepacket. The independent control over the coupling allows the dressed qubit frequency to remain truly constant during the emission. The wavepacket shape becomes important in experiments where quantum information needs to be transported between various nodes in a quantum network. The transfer can happen with a very high fidelity if the wavepacket is time-symmetric, since emission by the source and absorption by the destination become time reversed processes. Authors would like to thank IARPA for their generous support.

  4. Room Temperature Memory for Few Photon Polarization Qubits

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  5. Quantum behavior of a SQUID qubit manipulated with fast pulses

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele; Messina, Antonino; Napoli, Anna [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, 90123 Palermo (Italy); Castellano, Maria Gabriella; Chiarello, Fabio [Istituto Fotonica e Nanotecnologie - CNR, Roma (Italy); Migliore, Rosanna [Institute of Biophysics, National Research Council, via Ugo La Malfa 153, 90146 Palermo (Italy)

    2013-07-01

    A SQUID qubit manipulated with fast variation of the energy potential is analyzed. Varying the potential shape from a single to a double-well configuration, quantum behaviors are brought into light and discussed. We show that the presence of quantum coherences in the initial state of the system plays a central role in the appearance of these quantum effects.

  6. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.

    Science.gov (United States)

    Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien

    2018-01-25

    Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

  7. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  8. Evaluation of left ventricular function and volumes in patients with ischaemic cardiomyopathy: gated single-photon emission computed tomography versus two-dimensional echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Vourvouri, E.C.; Poldermans, D.; Sianos, G.; Sozzi, F.B.; Schinkel, A.F.L.; Sutter, J. de; Roelandt, J.R.T.C. [Dept. of Cardiology, Erasmus Medical Center Rotterdam (Netherlands); Bax, J.J. [Dept. of Cardiology, Leiden Univ. Medical Center (Netherlands); Parcharidis, G. [Dept. of Cardiology, AHEPA Univ. Hospital, Thessaloniki (Greece); Valkema, R. [Dept. of Nuclear Medicine, Erasmus Medical Center Rotterdam (Netherlands)

    2001-11-01

    The objective of this study was to perform a head-to-head comparison between two-dimensional (2D) echocardiography and gated single-photon emission computed tomography (SPET) for the evaluation of left ventricular (LV) function and volumes in patients with severe ischaemic LV dysfunction. Thirty-two patients with chronic ischaemic LV dysfunction [mean LV ejection fraction (EF) 25%{+-}6%] were studied with gated SPET and 2D echocardiography. Regional wall motion was evaluated by both modalities and scored by two independent observers using a 16-segment model with a 5-point scoring system (1= normokinesia, 2= mild hypokinesia, 3= severe hypokinesia, 4= akinesia and 5= dyskinesia). LVEF and LV end-diastolic and end-systolic volumes were evaluated by 2D echocardiography using the Simpson's biplane discs method. The same parameters were calculated using quantitative gated SPET software (QGS, Cedars-Sinai Medical Center). The overall agreement between the two imaging modalities for assessment of regional wall motion was 69%. The correlations between gated SPET and 2D echocardiography for the assessment of end-diastolic and end-systolic volumes were excellent (r=0.94, P<0.01, and r=0.96, P<0.01, respectively). The correlation for LVEF was also good (r=0.83, P<0.01). In conclusion: in patients with ischaemic cardiomyopathy, close and significant relations between gated SPET and 2D echocardiography were observed for the assessment of regional and global LV function and LV volumes; gated SPET has the advantage that it provides information on both LV function/dimensions and perfusion. (orig.)

  9. Remote state preparation of spatial qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2011-01-01

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  10. A balanced, superconducting multiplier circuit for fast-switching and multiplexed qubit readout: Design and modeling

    Science.gov (United States)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Brad A.; Kerckhoff, Joseph; Lehnert, K. W.

    Superconducting qubits hold great promise for the development of new quantum-information technology. Coherence times of individual transmon qubits in microwave cavities are consistently improving. While qubits are becoming well developed tools, scaling qubit readout for many-qubit architectures remains prohibitively complex and expensive. Here, we present a concept for a multipurpose device that enables time or code domain multiplexing of qubit readout. It is a two-port, microwave device that can be switched rapidly between three modes of operation: transmission, reflection and inversion. The design is based on a Wheatstone bridge-like structure of tunable inductors, which we realize with arrays of SQUIDs. A single bias line modulates the flux through the SQUIDs, and hence the imbalance of the bridge, putting the device in one of its three modes of operation. This talk will discuss the theory, design and layout behind the device and its potential use for multiplexing of qubit networks. The device is designed to operate over a broad bandwidth (4-8 GHz), and to have low dissipation, appropriate for integration with superconducting qubit networks.

  11. The four-gate transistor

    Science.gov (United States)

    Mojarradi, M. M.; Cristoveanu, S.; Allibert, F.; France, G.; Blalock, B.; Durfrene, B.

    2002-01-01

    The four-gate transistor or G4-FET combines MOSFET and JFET principles in a single SOI device. Experimental results reveal that each gate can modulate the drain current. Numerical simulations are presented to clarify the mechanisms of operation. The new device shows enhanced functionality, due to the combinatorial action of the four gates, and opens rather revolutionary applications.

  12. Gate errors in solid-state quantum-computer architectures

    International Nuclear Information System (INIS)

    Hu Xuedong; Das Sarma, S.

    2002-01-01

    We theoretically consider possible errors in solid-state quantum computation due to the interplay of the complex solid-state environment and gate imperfections. In particular, we study two examples of gate operations in the opposite ends of the gate speed spectrum, an adiabatic gate operation in electron-spin-based quantum dot quantum computation and a sudden gate operation in Cooper-pair-box superconducting quantum computation. We evaluate quantitatively the nonadiabatic operation of a two-qubit gate in a two-electron double quantum dot. We also analyze the nonsudden pulse gate in a Cooper-pair-box-based quantum-computer model. In both cases our numerical results show strong influences of the higher excited states of the system on the gate operation, clearly demonstrating the importance of a detailed understanding of the relevant Hilbert-space structure on the quantum-computer operations

  13. Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires.

    Science.gov (United States)

    Modepalli, Vijayakumar; Jin, Mi-Jin; Park, Jungmin; Jo, Junhyeon; Kim, Ji-Hyun; Baik, Jeong Min; Seo, Changwon; Kim, Jeongyong; Yoo, Jung-Woo

    2016-04-26

    Electrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins. The magnetic transition temperature of the studied ZnO NWs was estimated to be well above room temperature. The in situ UV confocal photoluminescence (PL) study confirmed oxygen vacancy mediated ferromagnetism in the studied ZnO NW FET devices. Both the estimated carrier concentration and temperature-dependent conductivity reveal the studied ZnO NWs are at the crossover of the metal-insulator transition. In particular, gate-induced modulation of the carrier concentration in the ZnO NW FET significantly alters carrier-mediated exchange interactions, which causes even inversion of magnetoresistance (MR) from negative to positive values. Upon sweeping the gate bias from -40 to +50 V, the MRs estimated at 2 K and 2 T were changed from -11.3% to +4.1%. Detailed analysis on the gate-dependent MR behavior clearly showed enhanced spin splitting energy with increasing carrier concentration. Gate-voltage-dependent PL spectra of an individual NW device confirmed the localization of oxygen vacancy-induced spins, indicating that gate-tunable indirect exchange coupling between localized magnetic moments played an important role in the remarkable change of the MR.

  14. Single-crystal C60 needle/CuPc nanoparticle double floating-gate for low-voltage organic transistors based non-volatile memory devices.

    Science.gov (United States)

    Chang, Hsuan-Chun; Lu, Chien; Liu, Cheng-Liang; Chen, Wen-Chang

    2015-01-07

    Low-voltage organic field-effect transistor memory devices exhibiting a wide memory window, low power consumption, acceptable retention, endurance properties, and tunable memory performance are fabricated. The performance is achieved by employing single-crystal C60 needles and copper phthalocyanine nanoparticles to produce an ambipolar (hole/electron) trapping effect in a double floating-gate architecture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  16. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  17. 1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit.

    Science.gov (United States)

    Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2017-12-15

    InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. The gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing the module size are important challenges for the design of such a detector system. Here we present for the first time, to the best of our knowledge, an InGaAs/InP SPD with 1.25 GHz sine wave gating (SWG) using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15  mm×15  mm and implements the miniaturization of avalanche extraction for high-frequency SWG. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of the MIRC, and the SPD exhibits excellent performance with 27.5% photon detection efficiency, a 1.2 kcps dark count rate, and 9.1% afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.

  18. Microresonators for electron spin qubits

    International Nuclear Information System (INIS)

    Suter, D.; Stonies, R.; Voges, E.

    2005-01-01

    Full text: The traditional high-Q EPR resonators are optimized for large samples. For small samples and individual qubits, it is possible to design different resonators that have much better power handling properties, create less interference with other peripheral lines and, if they are used for detection, have better sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimizing its size and thus increasing the filling factor. In contrast to cavity type resonators, microcoils can be made much smaller than the operation wavelength. For this type of resonator, it has been established theoretically and experimentally that the sensitivity varies inversely with its linear dimensions. Moreover, the planar coil geometry is ideal to be manufactured in a small size by means of standard microtechnology. It also offers advantages for the excitation of electron spins in prototype quantum computer systems. High microwave power to the magnetic field conversion factor of the microresonator allows to achieve 24 ns L/2 - pulses with less than 20 mW of incident power. Within the QIPDDF-ROSES project, we are using such resonators to measure the EPR parameters of monolayer molecular films of N at C60 and for excitation of the single electron spin in a defect center in diamond. The microresonator prototypes consisting of a 200 μm planar microcoil tuned and matched at 14 GHz with distributed elements have been fabricated on Si substrate. The sensitivity tests with a DPPH samples resulted in the sensitivity value 10E9 spins/G/Hz1/2 at 300 K. The designed layouts of the microresonator can be scaled down up to a tens of micrometers, and with a different microwave coupling approach hundreds of nanometers could be achieved, allowing the operation frequency up to 100 THz (author)

  19. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  20. Experimental Pauli-frame randomization on a superconducting qubit

    Science.gov (United States)

    Ware, Matthew; Ribeill, Guilhem; Riste, Diego; Ryan, Colm; Johnson, Blake; da Silva, Marcus P.

    Coherent errors can interfere, and in this manner, conspire to be much more damaging than stochastic errors of similar infidelity. One technique to deal with such errors is Pauli-frame randomization, which works by randomizing computational gates so that the effective errors becomes incoherent, and therefore, less damaging. In this talk we describe the practical implementation of Pauli-frame randomization on a transmon qubit (including its automation), as well as how to rigorously test Pauli-frame randomization through the use of gate set tomography. This effort is supported in part by the U.S. Army Research Office under contract W911NF-14-C-0048. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

  1. Heralded noiseless amplification of a photon polarization qubit

    Science.gov (United States)

    Kocsis, S.; Xiang, G. Y.; Ralph, T. C.; Pryde, G. J.

    2013-01-01

    Photons are the best long-range carriers of quantum information, but the unavoidable absorption and scattering in a transmission channel places a serious limitation on viable communication distances. Signal amplification will therefore be an essential feature of quantum technologies, with direct applications to quantum communication, metrology and fundamental tests of quantum theory. Non-deterministic noiseless amplification of a single mode can circumvent the challenges related to amplifying a quantum signal, such as the no-cloning theorem and the minimum noise cost for deterministic quantum state amplification. However, existing devices are not suitable for amplifying the fundamental optical quantum information carrier: a qubit coherently encoded across two optical modes. Here, we construct a coherent two-mode amplifier to demonstrate the first heralded noiseless linear amplification of a qubit encoded in the polarization state of a single photon. In doing so, we increase the transmission fidelity of a realistic qubit channel by up to a factor of five. Qubit amplifiers promise to extend the range of secure quantum communication and other quantum information science and technology protocols.

  2. Extraction of contact resistance and channel parameters from the electrical characteristics of a single bottom-gate/top-contact organic transistor

    Science.gov (United States)

    Takagaki, Shunsuke; Yamada, Hirofumi; Noda, Kei

    2016-03-01

    A parameter extraction procedure for staggered-type organic field-effect transistors (OFETs), in which only the electrical characteristics of a single device are needed, was newly considered. The existing differential method and the transition voltage method for evaluating contact and channel parameters in OFETs were complementarily combined. The calibration of the total resistance between the source and the drain was also incorporated to compensate discrepancies in the total resistances calculated from output and transfer characteristics, caused by the existence of nonignorable contact resistance and carrier traps. By using our proposed method, gate-voltage-dependent contact resistance and channel mobility in the linear regime were evaluated for bottom-gate/top-contact pentacene thin-film transistors, and the channel-length dependence of these parameters was investigated. A series of results of parameter extraction confirm the validity of our proposed method, which is advantageous in avoiding the influences of characteristic variations that are frequently observed in practical OFET devices.

  3. Remote entanglement of transmon qubits

    Science.gov (United States)

    Hatridge, M.; Sliwa, K.; Narla, A.; Shankar, S.; Leghtas, Z.; Mirrahimi, M.; Girvin, S. M.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    An open challenge in quantum information processing with superconducting circuits is to entangle distant (non-nearest neighbor) qubits. This can be accomplished by entangling the qubits with flying microwave oscillators (traveling pulses), and then performing joint operations on a pair of these oscillators. Remarkably, such a process is embedded in the act of phase-preserving amplification, which transforms two input modes (termed signal and idler) into a two-mode squeezed output state. For an ideal system, this process generates heralded, perfectly entangled states between remote qubits with a fifty percent success rate. For an imperfect system, the loss of information from the flying states degrades the purity of the entanglement. We show data on such a protocol involving two transmon qubits imbedded in superconducting cavities connected to the signal and idler inputs of a Josephson Parametric Converter (JPC) operated as a nearly-quantum limited phase-preserving amplifier. Strategies for optimizing performance will also be discussed. Work supported by: IARPA, ARO, and NSF.

  4. Experimental implementation of optimal linear-optical controlled-unitary gates

    Czech Academy of Sciences Publication Activity Database

    Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan

    2015-01-01

    Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015

  5. Sharing of Nonlocality of a Single Member of an Entangled Pair of Qubits Is Not Possible by More than Two Unbiased Observers on the Other Wing

    Directory of Open Access Journals (Sweden)

    Shiladitya Mal

    2016-07-01

    Full Text Available We address the recently posed question as to whether the nonlocality of a single member of an entangled pair of spin 1 / 2 particles can be shared among multiple observers on the other wing who act sequentially and independently of each other. We first show that the optimality condition for the trade-off between information gain and disturbance in the context of weak or non-ideal measurements emerges naturally when one employs a one-parameter class of positive operator valued measures (POVMs. Using this formalism we then prove analytically that it is impossible to obtain violation of the Clauser-Horne-Shimony-Holt (CHSH inequality by more than two Bobs in one of the two wings using unbiased input settings with an Alice in the other wing.

  6. Piezophototronic Effect in Single-Atomic-Layer MoS 2 for Strain-Gated Flexible Optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenzhuo [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Wang, Lei [Department of Electrical Engineering, Columbia University, New York NY 10027 USA; Yu, Ruomeng [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Liu, Yuanyue [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Wei, Su-Huai [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Hone, James [Department of Mechanical Engineering, Columbia University, New York NY 10027 USA; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing China

    2016-08-03

    Strain-gated flexible optoelectronics are reported based on monolayer MoS2. Utilizing the piezoelectric polarization created at metal-MoS2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics.

  7. Loss of entanglement after propagation in a quantum noisy channel modeled by a canonical unitary operation in two qubits

    International Nuclear Information System (INIS)

    Alves de Brito, Wellington; Viana Ramos, Rubens

    2006-01-01

    In this work, we analyze the loss of entanglement of bipartite states after propagation in a noisy channel modeled by the interaction between the bipartite state and the environment through a canonical unitary form of a two-qubit gate. An analytic expression for the entanglement loss is found

  8. Fault-tolerant architectures for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    DiVincenzo, David P [IBM Research Division, Thomas J Watson Research Center, Yorktown Heights, NY 10598 (United States)], E-mail: divince@watson.ibm.com

    2009-12-15

    In this short review, I draw attention to new developments in the theory of fault tolerance in quantum computation that may give concrete direction to future work in the development of superconducting qubit systems. The basics of quantum error-correction codes, which I will briefly review, have not significantly changed since their introduction 15 years ago. But an interesting picture has emerged of an efficient use of these codes that may put fault-tolerant operation within reach. It is now understood that two-dimensional surface codes, close relatives of the original toric code of Kitaev, can be adapted as shown by Raussendorf and Harrington to effectively perform logical gate operations in a very simple planar architecture, with error thresholds for fault-tolerant operation simulated to be 0.75%. This architecture uses topological ideas in its functioning, but it is not 'topological quantum computation'-there are no non-abelian anyons in sight. I offer some speculations on the crucial pieces of superconducting hardware that could be demonstrated in the next couple of years that would be clear stepping stones towards this surface-code architecture.

  9. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout.

    Science.gov (United States)

    Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D

    2017-12-01

    The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250  ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

  10. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator

    Science.gov (United States)

    Zhang, J.; Pagano, G.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Kaplan, H.; Gorshkov, A. V.; Gong, Z.-X.; Monroe, C.

    2017-11-01

    A quantum simulator is a type of quantum computer that controls the interactions between quantum bits (or qubits) in a way that can be mapped to certain quantum many-body problems. As it becomes possible to exert more control over larger numbers of qubits, such simulators will be able to tackle a wider range of problems, such as materials design and molecular modelling, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. Here we use a quantum simulator composed of up to 53 qubits to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions. We observe a dynamical phase transition after a sudden change of the Hamiltonian, in a regime in which conventional statistical mechanics does not apply. The qubits are represented by the spins of trapped ions, which can be prepared in various initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with an efficiency of nearly 99 per cent. Such high efficiency means that arbitrary many-body correlations between qubits can be measured in a single shot, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long-range interactions and high connectivity between qubits.

  11. Observing quantum jumps of a transmon qubit with a Josephson parametric converter

    Science.gov (United States)

    Shankar, S.; Hatridge, M.; Schackert, F.; Geerlings, K.; Brecht, T.; Sliwa, K.; Abdo, B.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2012-02-01

    A high fidelity linear quantum non-demolition (QND) readout of a superconducting qubit opens up the possibility of observing quantum jumps and is a prerequisite for quantum feedback and error correction. This readout is challenging since the qubit, the readout resonator and the following amplifier chain have to be simultaneously optimized to achieve the desired performance. We fabricated a superconducting transmon qubit at 5.7 GHz coupled to a compact resonator at 7.5 GHz, designed to produce a dispersive shift (χ) of 6 MHz of the resonator frequency when the qubit is excited. The resonator linewidth matches χ to produce maximum readout contrast in a transmission measurement, while maintaining a Purcell limited T1 of about 3 μs. Using a Josephson parametric converter that is tuned to match the resonator frequency, we achieved a system noise temperature of the following amplifier chain of about 0.5 K, roughly thrice the standard quantum limit. Using these optimized parameters, we measured the qubit state with about 5 photons in the readout resonator and observed quantum jumps with fidelity above 90 %. Further, by looking at the statistics of the jumps and the evolution of the qubit population in single shot traces, we find that the average qubit T1 during the readout matches the Purcell limited T1, as expected for a QND measurement.

  12. Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation

    Science.gov (United States)

    Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues

    2018-03-01

    Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated—time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.

  13. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    Coherent population trap; quantum computation; controlled phase gate. PACS Nos 42.50.Ex; 32.80.Qk; 32.90+a; 03.67.Lx. Conventional computers handle information in the form of bits – which take up values 0 or. 1. Quantum computers on the other hand, use quantum bits (qubits), which can be prepared in states 0, 1 or ...

  14. Effects of low-dose dobutamine on left ventricular function in normal subjects as assessed by gated single-photon emission tomography myocardial perfusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Everaert, H.; Vanhove, C.; Franken, P.R. [Div. of Nuclear Medicine, University Hospital, Free University of Brussels (Belgium)

    1999-10-01

    Electrocardiography gated single-photon emission tomography (gated SPET) allows the assessment of regional perfusion and function simultaneously and in full spatial congruency. In this study changes in global and regional left ventricular function in response to dobutamine infusion were assessed in ten healthy volunteers using sequential gated SPET myocardial perfusion acquisitions. Four consecutive gated SPET images were recorded 60 min after injection of 925 MBq technetium-99m tetrofosmin on a three-head camera equipped with focussing collimators. Two acquisitions were made at rest (baseline 1 and 2), and the third and fourth acquisitions were started 5 min after the beginning of the infusion of 5 and 10 {mu}g kg{sup -1} min{sup -1} dobutamine, respectively. Systolic wall thickening (WT) was quantified using a method based on circumferential profile analysis. Left ventricular ejection fraction (LVEF) and volumes were calculated automatically using the Cedars-Sinai program. Nine of the ten subjects presented a definite increase in WT during dobutamine infusion. WT increased on average from 46%{+-}14% at baseline to 71%{+-}23% (range: 37%-106%; P<0.05) during 5 {mu}g kg{sup -1} min{sup -1} dobutamine infusion and to 85%{+-}25% (range: 62%-123%; P<0.05 with respect to WT at 5 {mu}g kg{sup -1} min{sup -1}) during 10 {mu}g kg{sup -1} min{sup -1} dobutamine infusion. Apical segments showed the largest WT at baseline. The average WT response to dobutamine was similar for all parts of the myocardium. It is concluded that changes in WT induced by infusion of low-dose dobutamine can be assessed by sequential gated SPET myocardial perfusion studies. The ''stress gated SPET'' protocol proposed in this study might be helpful to distinguish viable from scar tissue in patients with coronary artery disease, by demonstrating a preserved inotropic response in hypoperfused myocardium. (orig.)

  15. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    two spin-1/2 symmetric states which belong to a subspace spanned by the angular momentum basis. {|j = 1,μ〉; μ = +1, 0, −1}. Our technique relies on the decomposition of a Hamiltonian in terms of SU(3) basis matrices. In this context, we define a set of linearly independent, traceless, Hermitian operators which provides an ...

  16. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    states from some suitably chosen initial separable states in terms of their entangling power. Keywords. Quantum entanglement; SU(3) generators; entangling power. PACS No. 03.65.Ud. 1. Introduction. In the last few years, there has been considerable increase in experimental activity aiming to create entangled quantum ...

  17. Two-axis control of a coupled quantum dot - donor qubit in Si-MOS

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Jacobson, Tobias; Wendt, Joel; Pluym, Tammy; Dominguez, Jason; Ten-Eyck, Greg; Lilly, Mike; Carroll, Malcolm

    Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  18. Real-time digital processing of qubit readout and feedback control

    Science.gov (United States)

    Liu, Y.; Ofek, N.; Geerlings, K.; Hatridge, M.; Schoelkopf, R. J.; Devoret, M. H.

    2013-03-01

    Rapid progress in high fidelity readout of superconducting qubits paves the way for measurement-based feedback control of quantum systems and error correction protocols. A traditional data acquisition and processing setup, consisting of separate digitizer card for qubit readout, PC for processing and commercial arbitrary waveform generator (AWG) for qubit control, however, can have latency of at least several milliseconds and cannot meet the timing requirement of quantum feedback experiments. We have implemented an all-in-one system that contains a digitizer, a demodulator, a qubit-state estimator and an AWG on a commercial field-programmable-gate-array (FPGA) board. The FPGA system shows superior performance in terms of throughput, timing stability and on-the-fly programmability compared to traditional technology. Latency of the FPGA system can be on the order of only hundreds of nanoseconds. Results from our project of integrating the real-time processing power of the FPGA with a qubit + amplifier system will be shown. Work supported by IARPA, ARO and NSF.

  19. Enhancement mode single electron transistor in pure silicon

    Science.gov (United States)

    Hu, Binhui; Yang, C. H.; Jones, G. M.; Yang, M. J.

    2007-03-01

    Solid state implementations of lateral qubits offer the advantage of being scalable and can be easily integrated by existing main stream IC technologies. In addition, the two Zeeman states of an electron spin in a quantum dot (QD) provide a promising candidate for a qubit. Spins in lateral QDs in the GaAs/AlGaAs single electron transistors (SETs) have been intensively investigated. In contrast, Si provides a number of advantages, including long spin coherence time, large g-factor, and small spin-orbit coupling effect. We have demonstrated Si SET in the few electron regime.* In this talk, we will report the isolation of a single electron in a Si QD using a fabrication technique that incorporates the standard Al/SiO2/Si system with an enhancement mode SET structure. Our SET is built in highly resistive Si substrates with bilayer gates. The high purity Si minimizes the potential disorder from impurities. The top gate induces 2D electrons, and several side gates help define the tunneling barriers, fine tune the shape of the QD, and control the number of electrons in it. We will discuss the operating principle, computer simulation, and low temperature transport data. *APPLIED PHYSICS LETTERS 89, 073106 (2006)

  20. Security and gain improvement of a practical quantum key distribution using a gated single-photon source and probabilistic photon-number resolution

    International Nuclear Information System (INIS)

    Horikiri, Tomoyuki; Sasaki, Hideki; Wang, Haibo; Kobayashi, Takayoshi

    2005-01-01

    We propose a high security quantum key distribution (QKD) scheme utilizing one mode of spontaneous parametric downconversion gated by a photon number resolving detector. This photon number measurement is possible by using single-photon detectors operating at room temperature and optical fibers. By post selection, the multiphoton probability in this scheme can be reduced to lower than that of a scheme using an attenuated coherent light resulting in improvement of security. Furthermore, if distillation protocol (error correction and privacy amplification) is performed, the gain will be increased. Hence a QKD system with higher security and bit rate than the laser-based QKD system can be attained using present available technologies

  1. A New Analytical Subthreshold Behavior Model for Single-Halo, Dual-Material Gate Silicon-on-Insulator Metal Oxide Semiconductor Field Effect Transistor

    Science.gov (United States)

    Chiang, Te-Kuang

    2008-11-01

    On the basis of the exact solution of the two-dimensional Poisson equation, a new analytical subthreshold behavior model consisting of the two-dimensional potential, threshold voltage, and subthreshold current for the single-halo, dual-material gate (SHDMG) silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) is developed. The model is verified by the good agreement with a numerical simulation using the device simulator MEDICI. The model not only offers a physical insight into device physics but is also an efficient device model for the circuit simulation.

  2. Comparison of single point normalized and modified Gate's method for measurement of glomerular filtration rate by nuclear medicine

    International Nuclear Information System (INIS)

    Fonseca, L.M.B. da; Fonseca, N.M.; Martins, E.; Pereira, E.

    1992-01-01

    Glomerular filtration rate was measured in 22 patients (mean age 30 years) using a noninvasive modified Gates method and the results were compared to the one point normalized technique. The values obtained were 74-11.7 and 82-11.09 ml/min., respectively. The advantages of the method are its reliability, easy adaptation to small laboratories and the avoidance of blood and urine sampling. (author)

  3. Single Event Test Methodologies and System Error Rate Analysis for Triple Modular Redundant Field Programmable Gate Arrays

    Science.gov (United States)

    Allen, Gregory; Edmonds, Larry D.; Swift, Gary; Carmichael, Carl; Tseng, Chen Wei; Heldt, Kevin; Anderson, Scott Arlo; Coe, Michael

    2010-01-01

    We present a test methodology for estimating system error rates of Field Programmable Gate Arrays (FPGAs) mitigated with Triple Modular Redundancy (TMR). The test methodology is founded in a mathematical model, which is also presented. Accelerator data from 90 nm Xilins Military/Aerospace grade FPGA are shown to fit the model. Fault injection (FI) results are discussed and related to the test data. Design implementation and the corresponding impact of multiple bit upset (MBU) are also discussed.

  4. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  5. Bound states and magnetic field induced valley splitting in gate-tunable graphene quantum dots

    Science.gov (United States)

    Recher, Patrik; Nilsson, Johan; Burkard, Guido; Trauzettel, Björn

    2009-02-01

    The magnetic field dependence of energy levels in gapped single-layer and bilayer graphene quantum dots (QDs) defined by electrostatic gates is studied analytically in terms of the Dirac equation. Due to the absence of sharp edges in these types of QDs, the valley degree of freedom is a good quantum number. We show that its degeneracy is efficiently and controllably broken by a magnetic field applied perpendicular to the graphene plane. This opens up a feasible route to create well-defined and well-controlled spin and valley qubits in graphene QDs. We also point out the similarities and differences in the spectrum between single-layer and bilayer graphene quantum dots. Striking in the case of bilayer graphene is the anomalous bulk Landau level (LL) that crosses the gap, which results in crossings of QD states with this bulk LL at large magnetic fields in stark contrast to the single-layer case where this LL is absent. The tunability of the gap in the bilayer case allows us to observe different regimes of level spacings directly related to the formation of a pronounced “sombrero” in the bulk band structure. We discuss the applicability of such QDs to control and measure the valley isospin and their potential use for hosting and controlling spin qubits.

  6. Manipulating the sudden death of entanglement in two-qubit atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor [COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-10-15

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider {sigma}{sub x} and bath switching operations that change the disentanglement time from finite to infinite.

  7. Manipulating the sudden death of entanglement in two-qubit atomic systems

    International Nuclear Information System (INIS)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor

    2011-01-01

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider σ x and bath switching operations that change the disentanglement time from finite to infinite.

  8. One-qubit fingerprinting schemes

    International Nuclear Information System (INIS)

    Beaudrap, J. Niel de

    2004-01-01

    Fingerprinting is a technique in communication complexity in which two parties (Alice and Bob) with large data sets send short messages to a third party (a referee), who attempts to compute some function of the larger data sets. For the equality function, the referee attempts to determine whether Alice's data and Bob's data are the same. In this paper, we consider the extreme scenario of performing fingerprinting where Alice and Bob both send either one bit (classically) or one qubit (in the quantum regime) messages to the referee for the equality problem. Restrictive bounds are demonstrated for the error probability of one-bit fingerprinting schemes, and show that it is easy to construct one-qubit fingerprinting schemes which can outperform any one-bit fingerprinting scheme. The author hopes that this analysis will provide results useful for performing physical experiments, which may help to advance implementations for more general quantum communication protocols

  9. Black holes, qubits and octonions

    Energy Technology Data Exchange (ETDEWEB)

    Borsten, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: leron.borsten@imperial.ac.uk; Dahanayake, D. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: duminda.dahanayake@imperial.ac.uk; Duff, M.J. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: m.duff@imperial.ac.uk; Ebrahim, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Theory Group, Martin Fisher School of Physics, Brandeis University, MS057, 415 South Street, Waltham, MA 02454 (United States)], E-mail: hebrahim@brandeis.edu; Rubens, W. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: william.rubens06@imperial.ac.uk

    2009-02-15

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)]{sup 3} invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T{sup 6} provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E{sub 7} contains [SL(2)]{sup 7} invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E{sub 7} has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of

  10. Qubit-based memcapacitors and meminductors

    OpenAIRE

    Shevchenko, Sergey N.; Pershin, Yuriy V.; Nori, Franco

    2016-01-01

    It is shown that superconducting charge and phase qubits are quantum versions of memory capacitive and inductive systems, respectively. We demonstrate that such quantum memcapacitive and meminductive devices offer remarkable and rich response functionalities. In particular, when subjected to periodic input, qubit-based memcapacitors and meminductors exhibit unusual hysteresis curves. Our work not only extends the set of known memcapacitive and meminductive systems to qubit-based quantum devic...

  11. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  12. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    Science.gov (United States)

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  13. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  14. Analysis and synthesis of multi-qubit, multi-mode quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Solgun, Firat

    2015-03-27

    In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.

  15. Asymptotically optimal purification and dilution of mixed qubit and Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, Peter; Guta, Madalin; Adesso, Gerardo [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-08-15

    Given an ensemble of mixed qubit states, it is possible to increase the purity of the constituent states using a procedure known as state purification. The reverse operation, which we refer to as dilution, produces a larger ensemble, while reducing the purity level of the systems. In this paper we find asymptotically optimal procedures for purification and dilution of an ensemble of independently and identically distributed mixed qubit states, for some given input and output purities and an asymptotic output rate. Our solution involves using the statistical tool of local asymptotic normality, which recasts the qubit problem in terms of attenuation and amplification of a single-mode displaced Gaussian state. Therefore, to obtain the qubit solutions, we must first solve the analogous problems in the Gaussian setup. We provide full solutions to all of the above for the (global) trace-norm figure of merit.

  16. Novel Approaches to Quantum Computation Using Solid State Qubits

    National Research Council Canada - National Science Library

    Averin, D. V; Han, S; Likharev, K. K; Lukens, J. E; Semenov, V. K

    2007-01-01

    ...: the design of sophisticated instrumentation for the control and measurements of superconductor flux qubits, the refinement of qubit fabrication technology, the demonstration of coherent operation...

  17. Logical error rates and resource overheads of non-transversal, magic-less gates

    Science.gov (United States)

    Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.

    A non-transversal gate is required for a quantum error correcting code to perform universal computation. Gate teleportation using magic states is one way to perform the necessary operation, albeit with large overhead. Several constructions of logical gates have been proposed without magic states, but little work has been done to evaluate logical error rates and resource overheads of the gates, and compare them to magic states. In this work, we calculate logical error rates of controlled-controlled- Z (CCZ) gates on 5-qubit code and 7-qubit code implemented with the recently proposed pieceably fault-tolerant construction, which uses neither magic states nor additional ancilla qubits other than those used for error correction. Alongside transversal gates on these codes, CCZ is enough for universal computation. We also calculate the error rate of performing CCZ by state injection. Despite being much more costly in terms of space and time, state injection is no less error-prone than pieceable constructions. Our result also serves as motivation to investigate different choices of universal gate sets other than the conventional one, Clifford gates + T gate.

  18. Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates

    Science.gov (United States)

    Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar

    2017-05-01

    We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.

  19. FoCuS-point: software for STED fluorescence correlation and time-gated single photon counting

    DEFF Research Database (Denmark)

    Waithe, Dominic; Clausen, Mathias P; Sezgin, Erdinc

    2016-01-01

    microscopy (STED-FCS). Specifically, the use of gated detection has shown great potential for enhancing STED-FCS, but has also created a demand for software which is efficient and also implements the latest algorithms. Prior to this study, no open software has been available which would allow practical time...... to be established quickly and efficiently. AVAILABILITY AND IMPLEMENTATION: FoCuS-point is written in python and is available through the github repository: https://github.com/dwaithe/FCS_point_correlator. Furthermore, compiled versions of the code are available as executables which can be run directly in Linux...

  20. Classical chaos and its correspondence in superconducting qubits

    Science.gov (United States)

    Neill, C.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fang, M.; Hoi, I.; Kelly, J.; Megrant, A.; O'Malley, P.; Quintana, C.; Vainsencher, A.; Wenner, J.; White, T.; Barends, R.; Chen, Yu; Fowler, A.; Jeffrey, E.; Mutus, J.; Roushan, P.; Sank, D.; Martinis, J. M.

    2015-03-01

    Advances in superconducting qubits have made it possible to experimentally investigate quantum-classical correspondence by constructing quantum systems with chaotic classical limits. We study the quantum equivalent of a classical spinning top using three fully coupled qubits that behave as a single spin-3/2 and subject the spin to a sequence of non-linear rotations. The resulting entanglement bears a striking resemblance to the classical phase space, including bifurcation, and suggests that classical chaos manifests itself as quantum entanglement. Studying the orientation of the spin-3/2 reveals that the rotations which generate chaos and entanglement are at the same time the source of disagreement between the quantum and classical trajectories. Our experiment highlights the correspondence between classical non-linear dynamics and interacting quantum systems.

  1. Geometric inductance effects in the spectrum of split transmon qubits

    Science.gov (United States)

    Brierley, R. T.; Blumoff, J.; Chou, K.; Schoelkopf, R. J.; Girvin, S. M.

    2014-03-01

    The low-energy spectra of transmon superconducting qubits in a cavity can be accurately calculated using the black-box quantization approach. This method involves finding the normal modes of the circuit with a linearized Josephson junction and using these as the basis in which to express the non-linear terms. A split transmon qubit consists of two Josephson junctions in a SQUID loop. This configuration allows the Josephson energy to be tuned by applying external flux. Ideally, the system otherwise behaves as a conventional transmon with a single effective Josephson junction. However, the finite geometric inductance of the SQUID loop causes deviations from the simplest ideal description of a split transmon. This alters both the linearized and non-linear behaviour of the Josephson junctions in the superconducting circuit. We study how these changes can be incorporated into the black-box quantization approach and their effects on the low-energy spectrum of the split transmon.

  2. Graphene antidot lattices: Designed defects and spin qubits

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Flindt, Christian; Pedersen, Jesper Goor

    2008-01-01

    similar phenomenology, but within a much more favorable energy scale, a consequence of the Dirac fermion nature of the states around the Fermi level. Further, by leaving out some of the holes one can create defect states, or pairs of coupled defect states, which can function as hosts for electron spin......Antidot lattices, defined on a two-dimensional electron gas at a semiconductor heterostructure, are a well-studied class of man-made structures with intriguing physical properties. We point out that a closely related system, graphene sheets with regularly spaced holes ("antidots"), should display...... qubits. We present a detailed study of the energetics of periodic graphene antidot lattices, analyze the level structure of a single defect, calculate the exchange coupling between a pair of spin qubits, and identify possible avenues for further developments....

  3. Towards a spin-ensemble quantum memory for superconducting qubits

    Science.gov (United States)

    Grezes, Cécile; Kubo, Yuimaru; Julsgaard, Brian; Umeda, Takahide; Isoya, Junichi; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Nakamura, Kazuo; Diniz, Igor; Auffeves, Alexia; Jacques, Vincent; Roch, Jean-François; Vion, Denis; Esteve, Daniel; Moelmer, Klaus; Bertet, Patrice

    2016-08-01

    This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV (as in nitrogen vacancy) center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins. xml:lang="fr"

  4. 3-qubit entanglement: A Jordan algebraic perspective

    Science.gov (United States)

    Borsten, L.

    2014-09-01

    It is by now well known that three qubits can be totally entangled in two physically distinct ways. Here we review work classifying the physically distinct forms of 3-qubit entanglement using the elegant framework of Jordan algebras, Freudenthal-Kantor triple systems and groups of type E7. In particular, it is shown that the four Freudenthal-Kantor ranks correspond precisely to the four 3-qubit entanglement classes: (1) Totally separable A-B-C, (2) Biseparable A-BC, B-CA, C-AB, (3) Totally entangled W, (4) Totally entangled GHZ. The rank 4 GHZ class is regarded as maximally entangled in the sense that it has non-vanishing quartic norm, the defining invariant of the Freudenthal-Kantor triple system. While this framework is specific to three qubits, we show here how the essential features may be naturally generalised to an arbitrary number of qubits.

  5. 3-qubit entanglement: A Jordan algebraic perspective

    International Nuclear Information System (INIS)

    Borsten, L

    2014-01-01

    It is by now well known that three qubits can be totally entangled in two physically distinct ways. Here we review work classifying the physically distinct forms of 3-qubit entanglement using the elegant framework of Jordan algebras, Freudenthal-Kantor triple systems and groups of type E 7 . In particular, it is shown that the four Freudenthal-Kantor ranks correspond precisely to the four 3-qubit entanglement classes: (1) Totally separable A-B-C, (2) Biseparable A-BC, B-CA, C-AB, (3) Totally entangled W, (4) Totally entangled GHZ. The rank 4 GHZ class is regarded as maximally entangled in the sense that it has non-vanishing quartic norm, the defining invariant of the Freudenthal-Kantor triple system. While this framework is specific to three qubits, we show here how the essential features may be naturally generalised to an arbitrary number of qubits.

  6. Joint and weak measurements on qubit systems

    International Nuclear Information System (INIS)

    O'Brien, J.L.; Pryde, G.J.; Bartlett, S.D.; Ralph, T.C.; Wiseman, H.M.; White, A.G.

    2005-01-01

    Full text: Along with the well-known concept of projective measurements, quantum mechanics allows various kinds of generalized measurement operators. Two important examples are: joint measurements on two or more quantum systems that cannot be achieved by local operations (LOCC); and weak measurements that obtain less information about a system than does a projective measurement, but with correspondingly less disturbance. Unlike the result of a strong measurement, the average value of a weak measurement of an observable (its weak value), when followed by projective postselection in a complementary basis, can lie outside the range of eigenvalues. This discrepancy is not observed in analogous classical measurements. Weak values aid the resolution of quantum paradoxes, and can simplify analysis of weakly coupled systems. We use a generalized measurement device to measure the weak value of a photon's polarization in the horizontal/vertical basis (the Stokes operator S1 = |H> weak up to 47, outside the usual range -1 ≤ S1 ≤ 1. Unlike previous observations of weak values, our measurement works by entangling two separate systems, and thus can only be described by quantum theory, not a classical wave theory. Also, we have used a two-qubit joint measurement based on a controlled-NOT gate by which certain twoqubit unentangled states can be more reliably distinguished than by using LOCC. We quantify this using a payoff function, for which the optimal LOCC measurement attains 2/3, and our experimental measurement attains 0.72 ± 0.02, close to the global optimum of 3/4. (author)

  7. Localized qubits in curved spacetimes

    Science.gov (United States)

    Palmer, Matthew C.; Takahashi, Maki; Westman, Hans F.

    2012-04-01

    We provide a systematic and self-contained exposition of the subject of localized qubits in curved spacetimes. This research was motivated by a simple experimental question: if we move a spatially localized qubit, initially in a state |ψ1>, along some spacetime path Γ from a spacetime point x1 to another point x2, what will the final quantum state |ψ2> be at point x2? This paper addresses this question for two physical realizations of the qubit: spin of a massive fermion and polarization of a photon. Our starting point is the Dirac and Maxwell equations that describe respectively the one-particle states of localized massive fermions and photons. In the WKB limit we show how one can isolate a two-dimensional quantum state which evolves unitarily along Γ. The quantum states for these two realizations are represented by a left-handed 2-spinor in the case of massive fermions and a four-component complex polarization vector in the case of photons. In addition we show how to obtain from this WKB approach a fully general relativistic description of gravitationally induced phases. We use this formalism to describe the gravitational shift in the Colella-Overhauser-Werner 1975 experiment. In the non-relativistic weak field limit our result reduces to the standard formula in the original paper. We provide a concrete physical model for a Stern-Gerlach measurement of spin and obtain a unique spin operator which can be determined given the orientation and velocity of the Stern-Gerlach device and velocity of the massive fermion. Finally, we consider multipartite states and generalize the formalism to incorporate basic elements from quantum information theory such as quantum entanglement, quantum teleportation, and identical particles. The resulting formalism provides a basis for exploring precision quantum measurements of the gravitational field using techniques from quantum information theory.

  8. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  9. Nonlocality and entanglement in qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Batle, J [Departament de Fisica, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain); Casas, M, E-mail: vdfsjbv4@uib.es [Departament de Fisica and IFISC-CSIC, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain)

    2011-11-04

    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, Gisin's Theorem), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R = 1/Tr({rho}{sup 2}) or their maximum eigenvalue {lambda}{sub max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so-called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four-qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed. (paper)

  10. Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: Comparison with contrast-enhanced MRA

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, J. [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Blondin, D., E-mail: blondin@med.uni-duesseldorf.de [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Schmitt, P. [Siemens AG, Healthcare Sector, Erlangen (Germany); Bi, X. [Siemens Healthcare, Chicago, IL (United States); Sansone, R. [Department of Cardiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Wittsack, H.-J.; Kroepil, P.; Quentin, M.; Kuhlemann, J.; Miese, F. [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Heiss, C.; Kelm, M. [Department of Cardiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Antoch, G.; Lanzman, R.S. [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany)

    2012-05-15

    Aim: To evaluate electrocardiogram (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) for nonenhanced assessment of peripheral artery occlusive disease (PAOD) using contrast-enhanced MRA (CE-MRA) as the reference standard. Materials and methods: Twenty-seven patients (mean age 66.6 {+-} 10.8 years) with PAOD were included in the study. QISS-MRA and CE-MRA of the lower extremity were performed using a 1.5 T MR scanner. In each patient, subjective image quality and the degree of stenosis were evaluated on a four-point scale for 15 predefined arterial segments. Results: Twenty-five of the 27 patients were considered for analysis. Subjective image quality of QISS-MRA was significantly lower for the distal aorta, pelvic arteries, and femoral arteries as compared to CE-MRA (p < 0.01), while no significant difference was found for other vascular segments. The degree of stenosis was overestimated with QISS-MRA in 23 of 365 (6.3%) segments and underestimated in two of 365 (0.5%) segments. As compared to CE-MRA, QISS-MRA had a high sensitivity (98.6%), specificity (96%) as well as positive and negative predictive value (88.7 and 99.6%, respectively) for the detection of significant stenosis ({>=}50%). Conclusion: ECG-gated QISS-MRA is a promising imaging technique for reliable assessment of PAOD without the use of contrast material.

  11. Contact effects analyzed by a parameter extraction method based on a single bottom-gate/top-contact organic thin-film transistor

    Science.gov (United States)

    Takagaki, Shunsuke; Yamada, Hirofumi; Noda, Kei

    2018-03-01

    Contact effects in organic thin-film transistors (OTFTs) were examined by using our previously proposed parameter extraction method from the electrical characteristics of a single staggered-type device. Gate-voltage-dependent contact resistance and channel mobility in the linear regime were evaluated for bottom-gate/top-contact (BGTC) pentacene TFTs with active layers of different thicknesses, and for pentacene TFTs with contact-doped layers prepared by coevaporation of pentacene and tetrafluorotetracyanoquinodimethane (F4TCNQ). The extracted parameters suggested that the influence of the contact resistance becomes more prominent with the larger active-layer thickness, and that contact-doping experiments give rise to a drastic decrease in the contact resistance and a concurrent considerable improvement in the channel mobility. Additionally, the estimated energy distributions of trap density in the transistor channel probably reflect the trap filling with charge carriers injected into the channel regions. The analysis results in this study confirm the effectiveness of our proposed method, with which we can investigate contact effects and circumvent the influences of characteristic variations in OTFT fabrication.

  12. Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: Comparison with contrast-enhanced MRA

    International Nuclear Information System (INIS)

    Klasen, J.; Blondin, D.; Schmitt, P.; Bi, X.; Sansone, R.; Wittsack, H.-J.; Kröpil, P.; Quentin, M.; Kuhlemann, J.; Miese, F.; Heiss, C.; Kelm, M.; Antoch, G.; Lanzman, R.S.

    2012-01-01

    Aim: To evaluate electrocardiogram (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) for nonenhanced assessment of peripheral artery occlusive disease (PAOD) using contrast-enhanced MRA (CE-MRA) as the reference standard. Materials and methods: Twenty-seven patients (mean age 66.6 ± 10.8 years) with PAOD were included in the study. QISS-MRA and CE-MRA of the lower extremity were performed using a 1.5 T MR scanner. In each patient, subjective image quality and the degree of stenosis were evaluated on a four-point scale for 15 predefined arterial segments. Results: Twenty-five of the 27 patients were considered for analysis. Subjective image quality of QISS-MRA was significantly lower for the distal aorta, pelvic arteries, and femoral arteries as compared to CE-MRA (p < 0.01), while no significant difference was found for other vascular segments. The degree of stenosis was overestimated with QISS-MRA in 23 of 365 (6.3%) segments and underestimated in two of 365 (0.5%) segments. As compared to CE-MRA, QISS-MRA had a high sensitivity (98.6%), specificity (96%) as well as positive and negative predictive value (88.7 and 99.6%, respectively) for the detection of significant stenosis (≥50%). Conclusion: ECG-gated QISS-MRA is a promising imaging technique for reliable assessment of PAOD without the use of contrast material.

  13. Silicon qubit performance in the presence of inhomogeneous strain

    Science.gov (United States)

    Jacobson, N. Tobias; Ward, Daniel R.; Baczewski, Andrew D.; Gamble, John K.; Montano, Ines; Rudolph, Martin; Nielsen, Erik; Carroll, Malcolm

    While gate electrode voltages largely define the potential landscape experienced by electrons in quantum dot (QD) devices, mechanical strain also plays a role. Inhomogeneous strain established over the course of device fabrication, followed by mismatched contraction under cooling to cryogenic temperatures, may significantly perturb this potential. A recent investigation by Thorbeck & Zimmerman suggests that unintentional QDs may form as a result of the latter thermal contraction mismatch mechanism. In this work, we investigate the effects of inhomogeneous strain on QD tunnel barriers and other properties, from the perspective of QD and donor-based qubit performance. Through semiconductor process simulation, we estimate the relative magnitude of strain established during fabrication as compared with thermal expansion coefficient mismatch. Combining these predictions with multi-valley effective mass theory modeling of qubit characteristics, we identify whether strain effects may compel stricter than expected constraints on device dimensions. Finally, we investigate the degree to which strain and charge disorder effects may be distinguished. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  14. Multi-valued logic circuits using hybrid circuit consisting of three gates single-electron transistors (TG-SETs) and MOSFETs.

    Science.gov (United States)

    Shin, SeungJun; Yu, YunSeop; Choi, JungBum

    2008-10-01

    New multi-valued logic (MVL) families using the hybrid circuits consisting of three gates single-electron transistors (TG-SETs) and a metal-oxide-semiconductor field-effect transistor (MOSFET) are proposed. The use of SETs offers periodic literal characteristics due to Coulomb oscillation of SET, which allows a realization of binary logic (BL) circuits as well as multi-valued logic (MVL) circuits. The basic operations of the proposed MVL families are successfully confirmed through SPICE circuit simulation based on the physical device model of a TG-SET. The proposed MVL circuits are found to be much faster, but much larger power consumption than a previously reported MVL, and they have a trade-off between speed and power consumption. As an example to apply the newly developed MVL families, a half-adder is introduced.

  15. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  16. Thermodynamics of a periodically driven qubit

    Science.gov (United States)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  17. Quantum state transfer between hybrid qubits in a circuit QED

    Science.gov (United States)

    Feng, Zhi-Bo

    2012-01-01

    In this Brief Report, we propose a theoretical scheme to transfer quantum states between superconducting charge qubits and semiconductor spin qubits in a circuit QED device. Under dispersive conditions, resonator-assisted state transfer between qubits can be performed controllably only by addressing the flux bias applied to the charge qubits. The low infidelity and existing advantages show that the proposal may provide an effective route toward scalable quantum-information transfer with solid-state hybrid qubits.

  18. Single-charge tunneling in ambipolar silicon quantum dots

    NARCIS (Netherlands)

    Müller, Filipp

    2015-01-01

    Spin qubits in coupled quantum dots (QDs) are promising for future quantum information processing (QIP). A quantum bit (qubit) is the quantum mechanical analogon of a classical bit. In general, each quantum mechanical two-level system can represent a qubit. For the spin of a single charge carrier

  19. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  20. Violation of Bell's inequality in Josephson phase qubits.

    Science.gov (United States)

    Ansmann, Markus; Wang, H; Bialczak, Radoslaw C; Hofheinz, Max; Lucero, Erik; Neeley, M; O'Connell, A D; Sank, D; Weides, M; Wenner, J; Cleland, A N; Martinis, John M

    2009-09-24

    The measurement process plays an awkward role in quantum mechanics, because measurement forces a system to 'choose' between possible outcomes in a fundamentally unpredictable manner. Therefore, hidden classical processes have been considered as possibly predetermining measurement outcomes while preserving their statistical distributions. However, a quantitative measure that can distinguish classically determined correlations from stronger quantum correlations exists in the form of the Bell inequalities, measurements of which provide strong experimental evidence that quantum mechanics provides a complete description. Here we demonstrate the violation of a Bell inequality in a solid-state system. We use a pair of Josephson phase qubits acting as spin-1/2 particles, and show that the qubits can be entangled and measured so as to violate the Clauser-Horne-Shimony-Holt (CHSH) version of the Bell inequality. We measure a Bell signal of 2.0732 +/- 0.0003, exceeding the maximum amplitude of 2 for a classical system by 244 standard deviations. In the experiment, we deterministically generate the entangled state, and measure both qubits in a single-shot manner, closing the detection loophole. Because the Bell inequality was designed to test for non-classical behaviour without assuming the applicability of quantum mechanics to the system in question, this experiment provides further strong evidence that a macroscopic electrical circuit is really a quantum system.

  1. The gradiometer flux qubit without an external flux bias

    International Nuclear Information System (INIS)

    Wu, C E; Liu, Y; Chi, C C

    2006-01-01

    We analyse the potential of the gradiometer flux qubit (GFQ), which should be insensitive to flux noise because of the nature of the gradiometer structure. However, to enjoy the benefit of such a design, we must be careful in choosing the initial condition. In the fluxoid quantization condition the flux integer n, which is set to zero in the usual single-loop flux qubit analysis, plays an important role in the GFQ potential. We found that it is impossible to construct a double-well potential if we choose the wrong initial condition. For a qubit application, n must be a small odd integer and the best choice would be n = 1. We also provide a precise and efficient numerical method for calculating the energy spectrum of the arbitrary GFQ potential; this will become useful in designing the circuitry parameters. The state control and read-out schemes are also optimized to a situation where a minimum requirement for using electronics is possible, which reduces noise from instruments directly

  2. A tunable rf SQUID manipulated as flux and phase qubits

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Carelli, P [Dipartimento di Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de

    2009-12-15

    We report on two different manipulation procedures of a tunable rf superconducting quantum interference device (SQUID). First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.

  3. Optimal attacks on qubit-based Quantum Key Recycling

    Science.gov (United States)

    Leermakers, Daan; Škorić, Boris

    2018-03-01

    Quantum Key Recycling (QKR) is a quantum cryptographic primitive that allows one to reuse keys in an unconditionally secure way. By removing the need to repeatedly generate new keys, it improves communication efficiency. Škorić and de Vries recently proposed a QKR scheme based on 8-state encoding (four bases). It does not require quantum computers for encryption/decryption but only single-qubit operations. We provide a missing ingredient in the security analysis of this scheme in the case of noisy channels: accurate upper bounds on the required amount of privacy amplification. We determine optimal attacks against the message and against the key, for 8-state encoding as well as 4-state and 6-state conjugate coding. We provide results in terms of min-entropy loss as well as accessible (Shannon) information. We show that the Shannon entropy analysis for 8-state encoding reduces to the analysis of quantum key distribution, whereas 4-state and 6-state suffer from additional leaks that make them less effective. From the optimal attacks we compute the required amount of privacy amplification and hence the achievable communication rate (useful information per qubit) of qubit-based QKR. Overall, 8-state encoding yields the highest communication rates.

  4. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  5. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  6. Environmental Effects on Two-Qubit Correlation in the Dispersive Jaynes-Cummings Model

    Science.gov (United States)

    Ban, Masashi

    2018-02-01

    Total, classical and quantum correlations as well as entanglement are studied for a two-qubit system, where each qubit is placed in a micro cavity described by the dispersive Jaynes-Cummings model. Not only the loss of cavity photons but also the effect of the qubit-photon interaction on the loss is taken into account. The two-qubit system is initially prepared in a Bell diagonal state with a single mixing parameter and the cavity photon is either in a superposition of vacuum and single-photon states or in a weak coherent state. It is shown that more correlation of the two qubits can survive as an initial value of the cavity photon number is smaller. There is a threshold value of the cavity photon number, below which the stationary state becomes inseparable. Furthermore it is found that the external environment which causes the cavity loss has two effects; one brings about the decay of the correlations and the other suppresses the decay.

  7. A graphene quantum dot with a single electron transistor as an integrated charge sensor

    Science.gov (United States)

    Wang, Lin-Jun; Cao, Gang; Tu, Tao; Li, Hai-Ou; Zhou, Cheng; Hao, Xiao-Jie; Su, Zhan; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2010-12-01

    A quantum dot (QD) with an integrated charge sensor is becoming a common architecture for a spin or charge based solid state qubit. To implement such a structure in graphene, we have fabricated a twin-dot structure in which the larger dot serves as a single electron transistor (SET) to read out the charge state of the nearby gate controlled small QD. A high SET sensitivity of 10-3e/√Hz allowed us to probe Coulomb charging as well as excited state spectra of the QD, even in the regime where the current through the QD is too small to be measured by conventional transport means.

  8. Gated 99mTc-MIBI single-photon emission computed tomography for the evaluation of left ventricular ejection fraction. Comparison with three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Lipiec, P.; Wejner-Mik, P.; Krzeminska-Pakula, M.; Kapusta, A.; Kasprzak, J.D.; Kusmierek, J.; Plachcinska, A.; Szuminski, R.

    2008-01-01

    Parameters of left ventricular systolic function directly influence the management of patients with suspected coronary artery disease (CAD). Quantitative gated single-photon emission computed tomography (QGS; Cedars-Sinai Medical Center, Los Angeles, CA, USA) allows the computation of left ventricular ejection fraction (LVEF) from myocardial perfusion imaging studies which are frequently performed on patients with suspected CAD. Three-dimensional (3D) echocardiography is considered to be the echocardiographic ''gold standard'' for the quantification of LVEF. We sought to compare QGS with 3D echocardiography in the evaluation of EF in patients with suspected CAD. Ninety-one consecutive patients with suspected CAD, scheduled for coronary angiography, underwent rest electrocardiographic-gated technetium-99m methoxyisobutylisonitrile SPECT (G-SPECT) with measurement of LVEF by QGS and transthoracic 3D echocardiography with off-line measurement of LVEF (Tomtec 4D LV Analysis 1.1). The diagnosis of CAD was based on coronary angiography, performed on every patient. Nine patients were excluded from the analysis owing to unsuitability for 3D echocardiography (8 patients) or G-SPECT (1 patient). In the remaining group of 82 patients, 71 (87%) had significant CAD, 34 (42%) had a history of myocardial infarction, and 50 (61%) had perfusion defects at rest G-SPECT images. The mean LVEF measured by QGS and 3D echocardiography was 53±13% and 53±10%, respectively. The mean difference in LVEF between 3D echocardiography and QGS was 0.1±6.0% (P=0.87), and the correlation between the values obtained by both methods was high (r=0.88, P< 0.001). The largest discrepancies were observed in patients with small ventricular volumes. In patients undergoing diagnostic work-up for CAD, the measurement of LVEF by QGS algorithm provides high correlation and satisfactory agreement with the results of reference ultrasound method- 3D echocardiography. (author)

  9. Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements

    OpenAIRE

    Huang, L.Y.; Moran, N.; Ehrenstein, G.

    1984-01-01

    We have observed the opening and closing of single batrachotoxin (BTX)-modified sodium channels in neuroblastoma cells using the patch-clamp method. The conductance of a single BTX-modified channel is approximately 10 pS. At a given membrane potential, the channels are open longer than are normal sodium channels. As is the case for normal sodium channels, the open dwell times become longer as the membrane is depolarized. For membrane potentials more negative than about -70 mV, histograms of b...

  10. Incremental value of regional wall motion analysis immediately after exercise for the detection of single-vessel coronary artery disease. Study by separate acquisition, dual-isotope ECG-gated single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yoda, Shunichi; Sato, Yuichi; Matsumoto, Naoya; Tani, Shigemasa; Takayama, Tadateru; Uchiyama, Takahisa; Saito, Satoshi

    2005-01-01

    Although the detection of wall motion abnormalities gives incremental value to myocardial perfusion single-photon emission computed tomography (SPECT) in the diagnosis of extensive coronary artery disease (CAD) and high-grade single-vessel CAD, whether or not it is useful in the diagnosis of mild, single-vessel CAD has not been studied previously. Separate acquisition, dual isotope electrocardiogram (ECG)-gated SPECT was performed in 97 patients with a low likelihood of CAD (Group 1) and 46 patients with single-vessel CAD (Group 2). Mild CAD was defined by stenosis of 50-75% (Group 2a, n=22) and moderate to severe CAD was defined by stenosis ≥76% (Group 2b, n=24). Myocardial perfusion and wall motion were graded by a 5 point-scale, 20-segment model. The sensitivity of myocardial perfusion alone was 50% for Group 2a, 83% for Group 2b and 67% for Group 2 as a whole. The overall specificity was 90%. When the wall motion analysis was combined, the sensitivity was increased to 82% in Group 2a and 92% in Group 2b. The ability to detect a wall motion abnormality immediately after exercise gives incremental diagnostic value to myocardial perfusion SPECT in the identification of mild, single-vessel CAD. (author)

  11. GATE: Improving the computational efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Staelens, S. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium)]. E-mail: steven.staelens@ugent.be; De Beenhouwer, J. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium); Kruecker, D. [Institute of Medicine-Forschungszemtrum Juelich, D-52425 Juelich (Germany); Maigne, L. [Departement de Curietherapie-Radiotherapie, Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Rannou, F. [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile, Santiago (Chile); Ferrer, L. [INSERM U601, CHU Nantes, F-44093 Nantes (France); D' Asseler, Y. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium); Buvat, I. [INSERM U678 UPMC, CHU Pitie-Salpetriere, F-75634 Paris (France); Lemahieu, I. [UGent-ELIS, St-Pietersnieuwstraat, 41, B-9000 Gent (Belgium)

    2006-12-20

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable.

  12. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  13. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    Science.gov (United States)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  14. NASA Electronic Parts and Packaging (NEPP) Field Programmable Gate Array (FPGA) Single Event Effects (SEE) Test Guideline Update

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2018-01-01

    The following are updated or new subjects added to the FPGA SEE Test Guidelines manual: academic versus mission specific device evaluation, single event latch-up (SEL) test and analysis, SEE response visibility enhancement during radiation testing, mitigation evaluation (embedded and user-implemented), unreliable design and its affects to SEE Data, testing flushable architectures versus non-flushable architectures, intellectual property core (IP Core) test and evaluation (addresses embedded and user-inserted), heavy-ion energy and linear energy transfer (LET) selection, proton versus heavy-ion testing, fault injection, mean fluence to failure analysis, and mission specific system-level single event upset (SEU) response prediction. Most sections within the guidelines manual provide information regarding best practices for test structure and test system development. The scope of this manual addresses academic versus mission specific device evaluation and visibility enhancement in IP Core testing.

  15. Design and realization of a quantum Controlled NOT gate using optical implementation

    Science.gov (United States)

    Biswas, K. K.; Sajeed, Shihan

    2012-06-01

    In this work an optical implementation technique of a Controlled-NOT (CNOT) gate has been designed, realized and simulated. The polarization state of a photon is used as qubit. The interaction required between two qubits for realizing the CNOT operation was achieved by converting the qubits from polarization encoding to spatial encoding with the help of a Polarizing Beam Splitter (PBS) and half wave plate (HWP) oriented at 45 Degree.After the nonlinear interference was achieved the spatially encoded qubits were converted back into polarization encoding and thus the CNOT operation was realized. The whole design methodology was simulated using the simulation software OptiSystem and the results were verified using the built-in instruments polarization analyzer, polarization meter, optical spectrum analyzer, power meters etc.

  16. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    Science.gov (United States)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  17. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  18. Controlled Bidirectional Hybrid of Remote State Preparation and Quantum Teleportation via Seven-Qubit Entangled State

    Science.gov (United States)

    Wu, Hao; Zha, Xin-Wei; Yang, Yu-Quan

    2018-01-01

    We propose a new protocol of implementing four-party controlled joint remote state preparation and meanwhile realizing controlled quantum teleportation via a seven-qubit entangled state. That is to say, Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of supervisors Fred and David. Compared with previous studies for the schemes of solely bidirectional quantum teleportation and remote state preparation, the new protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose.

  19. Coherence Times of Dressed States of a Superconducting Qubit under Extreme Driving

    Science.gov (United States)

    Wilson, C. M.; Duty, T.; Persson, F.; Sandberg, M.; Johansson, G.; Delsing, P.

    2007-06-01

    We measure longitudinal dressed states of a superconducting qubit, the single Cooper-pair box, and an intense microwave field. The dressed states represent the hybridization of the qubit and photon degrees of freedom and appear as avoided level crossings in the combined energy diagram. By embedding the circuit in an rf oscillator, we directly probe the dressed states. We measure their dressed gap as a function of photon number and microwave amplitude, finding good agreement with theory. In addition, we extract the relaxation and dephasing rates of these states.

  20. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    Energy Technology Data Exchange (ETDEWEB)

    Curilef, S [Departamento de Fisica, Universidad Catolica del Norte, Antofagasta (Chile); Zander, C; Plastino, A R [Physics Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: arplastino@maple.up.ac.za

    2008-11-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time {tau} required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.

  1. Quantum memories. A review based on the European integrated project ``Qubit Applications (QAP)''

    Science.gov (United States)

    Simon, C.; Afzelius, M.; Appel, J.; Boyer de La Giroday, A.; Dewhurst, S. J.; Gisin, N.; Hu, C. Y.; Jelezko, F.; Kröll, S.; Müller, J. H.; Nunn, J.; Polzik, E. S.; Rarity, J. G.; de Riedmatten, H.; Rosenfeld, W.; Shields, A. J.; Sköld, N.; Stevenson, R. M.; Thew, R.; Walmsley, I. A.; Weber, M. C.; Weinfurter, H.; Wrachtrup, J.; Young, R. J.

    2010-05-01

    We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU integrated project “Qubit Applications”. We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in “Qubit Applications” in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria.

  2. Spin qubits in antidot lattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger

    2008-01-01

    We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional electron gas as an alternative approach to electron spin based quantum information processing in the solid-state using conventional gate-defined quantum dots. We calculate the band structure a...... electron transport between distant defect states in the lattice, and for a tunnel coupling of neighboring defect states with corresponding electrostatically controllable exchange coupling between different electron spins.......We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional electron gas as an alternative approach to electron spin based quantum information processing in the solid-state using conventional gate-defined quantum dots. We calculate the band structure...

  3. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Wagstaff, Anne W. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Rhodes College, Memphis, TN (United States); University of Alabama at Birmingham School of Medicine, Birmingham, AL (United States); Smeltzer, Matthew P. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); University of Memphis, Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, Memphis, TN (United States); Krafft, Axel J. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); University Hospital Center Freiburg, Department of Radiology, Freiburg (Germany); Hankins, Jane S. [St. Jude Children' s Research Hospital, Department of Hematology, Memphis, TN (United States)

    2017-01-15

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  4. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    International Nuclear Information System (INIS)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M.; Wagstaff, Anne W.; Smeltzer, Matthew P.; Krafft, Axel J.; Hankins, Jane S.

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  5. Manipulations with qubit states by short control pulses: the interpolation method for evolution operator and fidelity

    Science.gov (United States)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-01-01

    In this article the dynamics of the qubits states based on solution of the time-dependent Schrödinger equation is investigated. Using the Magnus method we obtain an explicit interpolation representation for the propagator, which allows to find wave function at an arbitrary time. To illustrate the effectiveness of the approach, the population of the levels a single and two coupled qubits have been calculated by applying the Magnus propagator and the result have been compared with the numerical solution of the Schrödinger equation. As a measure of the approximation of the wave function, we calculate fidelity, which indicates proximity when the exact and approximate evolution operator acts on the initial state. We discuss the possibility of extending the developed methods to multi-qubits system, when high-speed calculation methods of the operators of evolution is particularly relevant.

  6. Simple scheme for encoding and decoding a qubit in unknown state for various topological codes

    Science.gov (United States)

    Łodyga, Justyna; Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał

    2015-03-01

    We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem.

  7. Implementation of Basic and Universal Gates In a single Circuit Based On Quantum-dot Cellular Automata Using Multi-Layer Crossbar Wire

    Science.gov (United States)

    Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim

    2017-08-01

    Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.

  8. Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    NARCIS (Netherlands)

    De Groot, P.C.; Ashhab, S.; Lupascu, A.; DiCarlo, L.; Nori, F.; Harmans, C.J.P.M.; Mooij, J.E.

    2012-01-01

    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we have recently proposed and demonstrated, consists of driving two transversely coupled quantum bits (qubits) with a driving field that is resonant with one

  9. Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-01-01

    We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.

  10. Transcriptome-Wide Single Nucleotide Polymorphisms (SNPs for Abalone (Haliotis midae: Validation and Application Using GoldenGate Medium-Throughput Genotyping Assays

    Directory of Open Access Journals (Sweden)

    Rouvay Roodt-Wilding

    2013-09-01

    Full Text Available Haliotis midae is one of the most valuable commercial abalone species in the world, but is highly vulnerable, due to exploitation, habitat destruction and predation. In order to preserve wild and cultured stocks, genetic management and improvement of the species has become crucial. Fundamental to this is the availability and employment of molecular markers, such as microsatellites and Single Nucleotide Polymorphisms (SNPs . Transcriptome sequences generated through sequencing-by-synthesis technology were utilized for the in vitro and in silico identification of 505 putative SNPs from a total of 316 selected contigs. A subset of 234 SNPs were further validated and characterized in wild and cultured abalone using two Illumina GoldenGate genotyping assays. Combined with VeraCode technology, this genotyping platform yielded a 65%−69% conversion rate (percentage polymorphic markers with a global genotyping success rate of 76%−85% and provided a viable means for validating SNP markers in a non-model species. The utility of 31 of the validated SNPs in population structure analysis was confirmed, while a large number of SNPs (174 were shown to be informative and are, thus, good candidates for linkage map construction. The non-synonymous SNPs (50 located in coding regions of genes that showed similarities with known proteins will also be useful for genetic applications, such as the marker-assisted selection of genes of relevance to abalone aquaculture.

  11. Implementing a noise protected logical qubit in methyl groups via microwave irradiation

    Science.gov (United States)

    Annabestani, Razieh; Cory, David G.

    2018-02-01

    We propose a proof-of-principle experiment to encode one logical qubit in noise protected subspace of three identical spins in a methyl group. The symmetry analysis of the wavefunction shows that this fermionic system exhibits a symmetry correlation between the spatial degree of freedom and the spin degree of freedom. We show that one can use this correlation to populate the noiseless subsystem by relying on the interaction between the electric dipole moment of the methyl group with a circularly polarized microwave field. Logical gates are implemented by controlling both the intensity and phase of the applied field.

  12. Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation.

    Science.gov (United States)

    Reed, M D; Maune, B M; Andrews, R W; Borselli, M G; Eng, K; Jura, M P; Kiselev, A A; Ladd, T D; Merkel, S T; Milosavljevic, I; Pritchett, E J; Rakher, M T; Ross, R S; Schmitz, A E; Smith, A; Wright, J A; Gyure, M F; Hunter, A T

    2016-03-18

    We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in comparison to operation near a charge-state anticrossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations.

  13. 3D Integration for Superconducting Qubits

    Science.gov (United States)

    Rosenberg, Danna; Kim, David; Yost, Donna-Ruth; Mallek, Justin; Yoder, Jonilyn; Das, Rabindra; Racz, Livia; Hover, David; Weber, Steven; Kerman, Andrew; Oliver, William

    Superconducting qubits are a prime candidate for constructing a large-scale quantum processor due to their lithographic scalability, speed, and relatively long coherence times. Moving beyond the few qubit level, however, requires the use of a three-dimensional approach for routing control and readout lines. 3D integration techniques can be used to construct a structure where the sensitive qubits are shielded from a potentially-lossy readout and interconnect chip by an intermediate chip with through-substrate vias, with indium bump bonds providing structural support and electrical conductivity. We will discuss our work developing 3D-integrated coupled qubits, focusing on the characterization of 3D integration components and the effects on qubit performance and design. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  14. ECG-gated quiescent-interval single-shot MR angiography of the lower extremities: Initial experience at 3 T

    International Nuclear Information System (INIS)

    Knobloch, G.; Gielen, M.; Lauff, M.-T.; Romano, V.C.; Schmitt, P.; Rick, M.; Kröncke, T.J.; Huppertz, A.; Hamm, B.; Wagner, M.

    2014-01-01

    Aim: To evaluate the feasibility of unenhanced electrocardiography (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) of the lower extremities at 3 T. Materials and methods: Twenty-five patients with known or suspected peripheral arterial disease underwent ECG-gated QISS-MRA and contrast-enhanced MRA (CE-MRA) at 3 T. Two independent readers performed a per-segment evaluation of the MRA datasets. Image quality was rated on a four-point scale (1 = excellent to 4 = non-diagnostic; presented as medians with interquartile range). Diagnostic performance of QISS-MRA was evaluated using CE-MRA as the reference standard. Results: QISS-MRA and CE-MRA of all patients were considered for analysis, resulting in 807 evaluated vessel segments for each MRA technique. Readers 1 and 2 rated image quality of QISS-MRA as diagnostic in 97.3% and 97% of the vessel segments, respectively. CE-MRA was rated diagnostic in all vessel segments. Image quality of the proximal vessel segments, including the infrarenal aorta, iliac arteries, and common femoral artery, was significantly lower on QISS-MRA compared to CE-MRA [image quality score across readers: 2 (1,3) versus 1 (1,1) p < 0.001]. In the more distal vessel segments, image quality of QISS-MRA was excellent and showed no significant difference compared to CE-MRA [image quality score across readers: 1 (1,1) versus 1 (1,1) p = 0.036]. Diagnostic performance of QISS-MRA was as follows (across readers): sensitivity: 87.5% (95% CI: 80.2–92.4%); specificity: 96.1% (95% CI: 93.6–97.6%); diagnostic accuracy: 94.9% (95% CI: 92.6–96.5%). Conclusions: QISS-MRA of the lower extremities is feasible at 3 T and provides high image quality, especially in the distal vessel segments

  15. Four-qubit entanglement classification from string theory.

    Science.gov (United States)

    Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W

    2010-09-03

    We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.

  16. Parametric amplification by coupled flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Rehák, M.; Neilinger, P.; Grajcar, M. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Institute of Physics, Slovak Academy of Science, 845 11 Bratislava (Slovakia); Oelsner, G.; Hübner, U.; Meyer, H.-G. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Il' ichev, E. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Novosibirsk State Technical University, 20 K. Marx Ave., 630092 Novosibirsk (Russian Federation)

    2014-04-21

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  17. Adiabatic Motion of Fault Tolerant Qubits

    Science.gov (United States)

    Drummond, David Edward

    This work proposes and analyzes the adiabatic motion of fault tolerant qubits in two systems as candidates for the building blocks of a quantum computer. The first proposal examines a pair of electron spins in double quantum dots, finding that the leading source of decoherence, hyperfine dephasing, can be suppressed by adiabatic rotation of the dots in real space. The additional spin-orbit effects introduced by this motion are analyzed, simulated, and found to result in an infidelity below the error-correction threshold. The second proposal examines topological qubits formed by Majorana zero modes theorized to exist at the ends of semiconductor nanowires coupled to conventional superconductors. A model is developed to design adiabatic movements of the Majorana bound states to produce entangled qubits. Analysis and simulations indicate that these adiabatic operations can also be used to demonstrate entanglement experimentally by testing Bell's theorem.

  18. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    Science.gov (United States)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    Quantum mechanics is the most ground-breaking and fascinating theoretical concept developed in physics during the past century. Much of our present understanding of the microscopic world and its extension into the macroscopic world, including modern technical applications, is based upon quantum mechanics. We have experienced a remarkable development of information and communication technology during the past two decades, to a large extent depending upon successful fabrication of smaller and smaller components and circuits. However, we are finally approaching the physical limits of component miniaturization as we enter a microscopic world ruled by quantum mechanics. Present technology is mainly based upon classical physics such as mechanics and electromagnetism. We now face a similar paradigm shift as was experienced two hundred years ago, at the time of the industrial revolution. Engineered construction of systems is currently increasingly based on quantum physics instead of classical physics, and quantum information is replacing much of classical communication. Quantum computing is one of the most exciting sub-fields of this revolution. Individual quantum systems can be used to store and process information. They are called quantum bits, or qubits for short. A quantum computer could eventually be constructed by combining a number of qubits that act coherently. Important computations can be performed much more quickly than by classical computers. However, while we control and measure a qubit, it must be sufficiently isolated from its environment to avoid noise that causes decoherence at the same time. Currently, low temperature is generally needed to obtain sufficiently long decoherence times. Single qubits of many different kinds can be built and manipulated; some research groups have managed to successfully couple qubits and perform rudimentary logic operations. However, the fundamental problems, such as decoherence, entanglement, quantum measurements and error

  19. Dependence of transmon qubit relaxation rate on readout drive power

    Science.gov (United States)

    Mundhada, S. O.; Shankar, S.; Narla, A.; Zalys-Geller, E.; Girvin, S. M.; Devoret, M. H.

    In circuit QED experiments, microwave drives are applied to the readout mode for qubit measurement, control and to realize various multi-photon processes. These microwave drives have been observed to detrimentally affect the qubit mode by increasing the qubit relaxation rates for both upward and downward transitions. These transitions demolish the qubit state during a measurement, limiting the maximum measurement strength and thus the readout fidelity and speed. Here, we experimentally investigate this effect for transmon qubits coupled to different realizations of the readout mode: 3-dimensional microwave cavities, strip-line resonators and nonlinear readout modes in a waveguide. Work supported by: NSF, ARO, AFOSR and YINQE.

  20. Generation of cluster states with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng, Xiao-Hu; Dong, Ping; Xue, Zheng-Yuan; Cao, Zhuo-Liang

    2007-01-01

    A scheme for the generation of the cluster states based on the Josephson charge qubits is proposed. The two-qubit generation case is introduced first, and then generalized to multi-qubit case. The successful probability and fidelity of current multi-qubit cluster state are both 1.0. The scheme is simple and can be easily manipulated, because any two charge qubits can be selectively and effectively coupled by a common inductance. More manipulations can be realized before decoherence sets in. All the devices in the scheme are well within the current technology

  1. Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field

    Science.gov (United States)

    Luthi, F.; Stavenga, T.; Enzing, O. W.; Bruno, A.; Dickel, C.; Langford, N. K.; Rol, M. A.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; DiCarlo, L.

    2018-03-01

    We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1 /f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.

  2. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond

    Science.gov (United States)

    Zhu, Xiaobo; Saito, Shiro; Kemp, Alexander; Kakuyanagi, Kosuke; Karimoto, Shin-Ichi; Nakano, Hayato; Munro, William J.; Tokura, Yasuhiro; Everitt, Mark S.; Nemoto, Kae; Kasu, Makoto; Mizuochi, Norikazu; Semba, Kouichi

    2012-02-01

    We have experimentally demonstrated coherent strong coupling between a single macroscopic superconducting artificial atom (a gap tunable flux qubit [1]) and an ensemble of electron spins in the form of nitrogen--vacancy color centres in diamond. We have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3.0*10^7 NV- centers [2]. This is the first step towards the realization of a long-lived quantum memory and hybrid devices coupling microwave and optical systems. [1] Coherent operation of a gap-tunable flux qubit X. B. Zhu, A. Kemp, S. Saito, K. Semba, APPLIED PHYSICS LETTERS, Volume: 97, Issue: 10 pp. 102503 (2010) [2] Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond Xiaobo Zhu, Shiro Saito, Alexander Kemp, Kosuke Kakuyanagi, Shin-ichi Karimoto, Hayato Nakano, William J. Munro, Yasuhiro Tokura, Mark S. Everitt, Kae Nemoto, Makoto Kasu, Norikazu Mizuochi, and Kouichi Semba, Nature, Volume: 478, 221-224 (2011)

  3. Validation of the Gate simulation platform in single photon emission computed tomography and application to the development of a complete 3-dimensional reconstruction algorithm; Validation de la plate-forme de simulation GATE en tomographie a emission monophotonique et application au developpement d'un algorithme de reconstruction 3D complete

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, D

    2003-10-01

    Monte Carlo simulations are currently considered in nuclear medical imaging as a powerful tool to design and optimize detection systems, and also to assess reconstruction algorithms and correction methods for degrading physical effects. Among the many simulators available, none of them is considered as a standard in nuclear medical imaging: this fact has motivated the development of a new generic Monte Carlo simulation platform (GATE), based on GEANT4 and dedicated to SPECT/PET (single photo emission computed tomography / positron emission tomography) applications. We participated during this thesis to the development of the GATE platform within an international collaboration. GATE was validated in SPECT by modeling two gamma cameras characterized by a different geometry, one dedicated to small animal imaging and the other used in a clinical context (Philips AXIS), and by comparing the results obtained with GATE simulations with experimental data. The simulation results reproduce accurately the measured performances of both gamma cameras. The GATE platform was then used to develop a new 3-dimensional reconstruction method: F3DMC (fully 3-dimension Monte-Carlo) which consists in computing with Monte Carlo simulation the transition matrix used in an iterative reconstruction algorithm (in this case, ML-EM), including within the transition matrix the main physical effects degrading the image formation process. The results obtained with the F3DMC method were compared to the results obtained with three other more conventional methods (FBP, MLEM, MLEMC) for different phantoms. The results of this study show that F3DMC allows to improve the reconstruction efficiency, the spatial resolution and the signal to noise ratio with a satisfactory quantification of the images. These results should be confirmed by performing clinical experiments and open the door to a unified reconstruction method, which could be applied in SPECT but also in PET. (author)

  4. Mølmer-Sørensen entangling gate for cavity QED systems

    Science.gov (United States)

    Takahashi, Hiroki; Nevado, Pedro; Keller, Matthias

    2017-10-01

    The Mølmer-Sørensen gate is a state-of-the-art entangling gate in ion trap quantum computing where the gate fidelity can exceed 99%. Here we propose an analogous implementation in the setting of cavity QED. The cavity photon mode acts as the bosonic degree of freedom in the gate in contrast to that played by the phonon mode in ion traps. This is made possible by utilising cavity assisted Raman transitions interconnecting the logical qubit states embedded in a four-level energy structure, making the ‘anti-Jaynes-Cummings’ term available under the rotating-wave approximation. We identify practical sources of infidelity and discuss their effects on the gate performance. Our proposal not only demonstrates an alternative entangling gate scheme but also sheds new light on the relationship between ion traps and cavity QED, in the sense that many techniques developed in the former are transferable to the latter through our framework.

  5. Mølmer–Sørensen entangling gate for cavity QED systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Nevado, Pedro; Keller, Matthias

    2017-01-01

    The Mølmer–Sørensen gate is a state-of-the-art entangling gate in ion trap quantum computing where the gate fidelity can exceed 99%. Here we propose an analogous implementation in the setting of cavity QED. The cavity photon mode acts as the bosonic degree of freedom in the gate in contrast to that played by the phonon mode in ion traps. This is made possible by utilising cavity assisted Raman transitions interconnecting the logical qubit states embedded in a four-level energy structure, making the ‘anti-Jaynes–Cummings’ term available under the rotating-wave approximation. We identify practical sources of infidelity and discuss their effects on the gate performance. Our proposal not only demonstrates an alternative entangling gate scheme but also sheds new light on the relationship between ion traps and cavity QED, in the sense that many techniques developed in the former are transferable to the latter through our framework. (paper)

  6. Dependence of transmon qubit relaxation rate on cavity photon population

    Science.gov (United States)

    Mundhada, S. O.; Shankar, S.; Liu, Y.; Hatridge, M.; Narla, A.; Sliwa, K. M.; Girvin, S. M.; Devoret, M. H.

    2015-03-01

    In circuit QED experiments, a qubit is dispersively coupled to a cavity such that the cavity frequency depends on the qubit state. This dispersive shift enables quantum non-demolition readout of the qubit by exciting the cavity with a microwave pulse and detecting the phase shift of the reflected signal. However, this cavity excitation has been observed in experiments to increase the qubit relaxation rate, hence demolishing the qubit state and limiting the maximum measurement strength. Here we experimentally study this effect in a transmon qubit coupled to a three-dimensional superconducting cavity. We also explore alternate qubit circuits designed to mitigate this demolition effect. Work supported by: IARPA, ARO, and NSF.

  7. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    Science.gov (United States)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  8. Frame independent nonlocality for three qubit state

    OpenAIRE

    Moradi, Shahpoor; Aghaee, Mohsen

    2012-01-01

    Bell's inequality is investigated for the three qubit GHZ state in relativistic regime. Two different relativistic spin operator are considered. One of them is defined by Lee, and the other is the Pauli-Lubanski pseudovector used by Kim \\textit{et al}. It is shown that for both spin operator Bell's inequality is still maximally violated in a Lorentz-boosted frame.

  9. Projective Ring Line Encompassing Two-Qubits

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Planat, M.; Pracna, Petr

    2008-01-01

    Roč. 155, č. 3 (2008), s. 905-913 ISSN 0040-5779 R&D Projects: GA AV ČR 1ET400400410 Institutional research plan: CEZ:AV0Z40400503 Keywords : two-qubits * projective ring line * generalized quadrangle of order two Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.721, year: 2008

  10. Weak measurements with a qubit meter

    DEFF Research Database (Denmark)

    Wu, Shengjun; Mølmer, Klaus

    2009-01-01

    We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...

  11. Geometric quantum gates in liquid-state NMR based on a cancellation of dynamical phases

    Science.gov (United States)

    Ota, Yukihiro; Goto, Yoshito; Kondo, Yasushi; Nakahara, Mikio

    2009-11-01

    A proposal for applying nonadiabatic geometric phases to quantum computing, called double-loop method [S.-L. Zhu and Z. D. Wang, Phys. Rev. A 67, 022319 (2003)], is demonstrated in a liquid-state nuclear magnetic-resonance quantum computer. Using a spin-echo technique, the original method is modified so that quantum gates are implemented in a standard high-precision nuclear magnetic-resonance system for chemical analysis. We show that a dynamical phase is successfully eliminated and a one-qubit quantum gate is realized although the gate fidelity is not high.

  12. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Directory of Open Access Journals (Sweden)

    A. Narla

    2016-09-01

    Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  13. Coherent Processing of a Qubit Using One Squeezed State

    Directory of Open Access Journals (Sweden)

    Allan Tameshtit

    2017-11-01

    Full Text Available In a departure from most work in quantum information utilizing Gaussian states, we use a single such state to represent a qubit and model environmental noise with a class of quadratic dissipative equations. A benefit of this single Gaussian representation is that with one deconvolution, we can eliminate noise. In this deconvolution picture, a basis of squeezed states evolves to another basis of such states. One of the limitations of our approach is that noise is eliminated only at a privileged time. We suggest that this limitation may actually be used advantageously to send information securely: the privileged time is only known to the sender and the receiver, and any intruder accessing the information at any other time encounters noisy data.

  14. A silicon-based single-electron interferometer coupled to a fermionic sea

    Science.gov (United States)

    Chatterjee, Anasua; Shevchenko, Sergey N.; Barraud, Sylvain; Otxoa, Rubén M.; Nori, Franco; Morton, John J. L.; Gonzalez-Zalba, M. Fernando

    2018-01-01

    We study Landau-Zener-Stückelberg-Majorana (LZSM) interferometry under the influence of projective readout using a charge qubit tunnel-coupled to a fermionic sea. This allows us to characterize the coherent charge-qubit dynamics in the strong-driving regime. The device is realized within a silicon complementary metal-oxide-semiconductor (CMOS) transistor. We first read out the charge state of the system in a continuous nondemolition manner by measuring the dispersive response of a high-frequency electrical resonator coupled to the quantum system via the gate. By performing multiple fast passages around the qubit avoided crossing, we observe a multipassage LZSM interferometry pattern. At larger driving amplitudes, a projective measurement to an even-parity charge state is realized, showing a strong enhancement of the dispersive readout signal. At even larger driving amplitudes, two projective measurements are realized within the coherent evolution resulting in the disappearance of the interference pattern. Our results demonstrate a way to increase the state readout signal of coherent quantum systems and replicate single-electron analogs of optical interferometry within a CMOS transistor.

  15. Coronary CT angiography with single-source and dual-source CT: comparison of image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated protocols.

    Science.gov (United States)

    Sabarudin, Akmal; Sun, Zhonghua; Yusof, Ahmad Khairuddin Md

    2013-09-30

    This study is conducted to investigate and compare image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated coronary CT angiography (CCTA) with the use of single-source CT (SSCT) and dual-source CT (DSCT). A total of 209 patients who underwent CCTA with suspected coronary artery disease scanned with SSCT (n=95) and DSCT (n=114) scanners using prospective ECG-triggered and retrospective ECG-gated protocols were recruited from two institutions. The image was assessed by two experienced observers, while quantitative assessment was performed by measuring the image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). Effective dose was calculated using the latest published conversion coefficient factor. A total of 2087 out of 2880 coronary artery segments were assessable, with 98.0% classified as of sufficient and 2.0% as of insufficient image quality for clinical diagnosis. There was no significant difference in overall image quality between prospective ECG-triggered and retrospective gated protocols, whether it was performed with DSCT or SSCT scanners. Prospective ECG-triggered protocol was compared in terms of radiation dose calculation between DSCT (6.5 ± 2.9 mSv) and SSCT (6.2 ± 1.0 mSv) scanners and no significant difference was noted (p=0.99). However, the effective dose was significantly lower with DSCT (18.2 ± 8.3 mSv) than with SSCT (28.3 ± 7.0 mSv) in the retrospective gated protocol. Prospective ECG-triggered CCTA reduces radiation dose significantly compared to retrospective ECG-gated CCTA, while maintaining good image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. A realistic 3-D gated cardiac phantom for quality control of gated myocardial perfusion SPET: the Amsterdam gated (AGATE) cardiac phantom

    NARCIS (Netherlands)

    Visser, Jacco J. N.; Sokole, Ellinor Busemann; Verberne, Hein J.; Habraken, Jan B. A.; van de Stadt, Huybert J. F.; Jaspers, Joris E. N.; Shehata, Morgan; Heeman, Paul M.; van Eck-Smit, Berthe L. F.

    2004-01-01

    A realistic 3-D gated cardiac phantom with known left ventricular (LV) volumes and ejection fractions (EFs) was produced to evaluate quantitative measurements obtained from gated myocardial single-photon emission tomography (SPET). The 3-D gated cardiac phantom was designed and constructed to fit

  17. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    Science.gov (United States)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  18. Quantum teleportation and information splitting via four-qubit cluster state and a Bell state

    Science.gov (United States)

    Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai

    2017-10-01

    Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.

  19. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth; Kim, Hak

    2014-01-01

    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  20. Extending the coherence of a quantum dot hybrid qubit

    Science.gov (United States)

    Thorgrimsson, Brandur; Kim, Dohun; Yang, Yuan-Chi; Smith, L. W.; Simmons, C. B.; Ward, Daniel R.; Foote, Ryan H.; Corrigan, J.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    2017-08-01

    Identifying and ameliorating dominant sources of decoherence are important steps in understanding and improving quantum systems. Here, we show that the free induction decay time (T2*) and the Rabi decay rate (ΓRabi) of the quantum dot hybrid qubit can be increased by more than an order of magnitude by appropriate tuning of the qubit parameters and operating points. By operating in the spin-like regime of this qubit, and choosing parameters that increase the qubit's resilience to charge noise (which we show is presently the limiting noise source for this qubit), we achieve a Ramsey decay time T2* of 177 ns and a Rabi decay time 1/ΓRabi exceeding 1 μs. We find that the slowest ΓRabi is limited by fluctuations in the Rabi frequency induced by charge noise and not by fluctuations in the qubit energy itself.

  1. Measurement strategy for spatially encoded photonic qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2010-01-01

    We propose a measurement strategy which can, probabilistically, reproduce the statistics of any observable for spatially encoded photonic qubits. It comprises the implementation of a two-outcome positive operator-valued measure followed by a detection in a fixed transverse position, making the displacement of the detection system unnecessary, unlike previous methods. This strategy generalizes a scheme recently demonstrated by one of us and co-workers, restricted to measurement of observables with equatorial eigenvectors only. The method presented here can be implemented with the current technology of programmable multipixel liquid-crystal displays. In addition, it can be straightforwardly extended to high-dimensional qudits and may be a valuable tool in optical implementations of quantum information protocols with spatial qubits and qudits.

  2. Experimental evaluation of quantum computing elements (qubits) made of electrons trapped over a liquid helium film; Evaluation experimentale d'elements de calcul quantique (qubit) formes d'electrons pieges sur l'helium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, E

    2006-12-15

    An electron on helium presents a quantized energy spectrum. The interaction with the environment is considered sufficiently weak in order to allow the realization of a quantum bit (qubit) by using the first two energy levels. The first stage in the realization of this qubit was to trap and control a single electron. This is carried out thanks to a set of micro-fabricated electrodes defining a well of potential in which the electron is trapped. We are able with such a sample to trap and detect a variables number of electrons varying between one and around twenty. This then allowed us to study the static behaviour of a small number of electrons in a trap. They are supposed to crystallize and form structures called Wigner molecules. Such molecules have not yet been observed yet with electrons above helium. Our results bring circumstantial evidence for of Wigner crystallization. We then sought to characterize the qubit more precisely. We sought to carry out a projective reading (depending on the state of the qubit) and a measurement of the relaxation time. The results were obtained by exciting the electron with an incoherent electric field. A clean measurement of the relaxation time would require a coherent electric field. The conclusion cannot thus be final but it would seem that the relaxation time is shorter than calculated theoretically. That is perhaps due to a measurement of the relaxation between the oscillating states in the trap and not between the states of the qubit. (author)

  3. Parallel quantum computing in a single ensemble quantum computer

    International Nuclear Information System (INIS)

    Long Guilu; Xiao, L.

    2004-01-01

    We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to perform 'single-instruction-multidata' type of parallel computation. Parallel quantum computing can provide additional speedup in Grover's algorithm and Shor's algorithm. In addition, it also makes a fuller use of qubit resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized

  4. RF Control and Measurement of Superconducting Qubits

    Science.gov (United States)

    2015-02-14

    Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity, Physical Review Letters, (10 2010): 0. doi: 10.1103/PhysRevLett.105.173601...unwanted classical backaction. We have realized a microwave quantum-limited amplifier that is directional and can therefore function without the...high fidelity qubit state measurement in circuit quantum electrodynamics , in the book Fluctuating Nonlinear Oscillators. From nanomechanics to quantum

  5. Teleportation of charge qubits via superradiance

    International Nuclear Information System (INIS)

    Chen, Y.N.; Li, C.M.; Chuu, D.S.; Brandes, T.

    2005-01-01

    Full text: Quantum entanglement has achieved a prime position in current research due to its central role in quantum information science, e.g., in quantum cryptography, quantum computing, and teleportation. Many efforts have been devoted to the study of entanglement induced by a direct interaction between the individual subsystems. Very recently, attention has been focused on 'reservoir-induced' entanglement with the purpose of shedding light on the generation of entangled qubits at remote separation. Entangled states can also be generated via sub- and superradiance, i.e. the collective spontaneous decay first introduced by Dicke. For the simplest case of two identical two level atoms interacting with the vacuum fluctuations of a common photon reservoir, entanglement naturally appears in the two intermediate states. An experimental demonstration of two-ion collective decay as a function of inter-ion separation was shown by Devoe and Brewer in 1996. Experiments of teleportation have already been realized in NMR, photonic, and atomic systems. Turning to solid state systems, however, experimental demonstration of teleportation in charge qubits is still lacking, and only few theoretical schemes are proposed. In this work, we propose a teleportation scheme for atomic and solid state qubits. First of all, singlet entangled state between two qubits is generated by superradiance. The unknown state in the third dot is then collective recombined with the exciton in one of the previous two dots. Successful teleportation is examined directly from the detection of a subradiant photon with long lifetime. In contrast to usual schemes, the remarkable feature of our proposal is the 'one-pass' teleportation by a joint measurement, and deserved to be tested with present technologies. (author)

  6. 133 Ba+: a new ion qubit

    Science.gov (United States)

    Christensen, Justin; Hucul, David; Campbell, Wesley; Hudson, Eric

    2017-04-01

    133 Ba+ combines many of the advantages of commonly used trapped ion qubits. 133Ba+ has a nuclear spin 1/2, allowing for a robust hyperfine qubit with simple state preparation and readout. The existence of long-lived metastable D-states and a lack of low-lying F-states simplifies shelving, which will allow high fidelity state detection. The visible wavelength optical transitions enable the use of high-power lasers, low-loss fibers, high quantum efficiency detectors, and other optical technologies developed for visible wavelength light. Furthermore, background-free qubit readout, where the readout is insensitive to laser scatter, is possible in 133Ba+, and simplifies its use in small ion traps and the study of ions near surfaces. We report progress on realizing this qubit. We load barium ions into an ion trap using thermal ionization from a platinum ribbon. We experimentally demonstrate the isotopic purification of large numbers of barium ions using laser heating and cooling along with mass filtering to produce isotopically pure chains of any naturally-occurring barium isotope. This purification process has allowed us to laser cool rare, naturally-occurring barium isotopes 132Ba+and130Ba+, and we report the isotope shifts from 138Ba+ of the P1/2 to D3/2 transitions near 650 nm for the first time. In addition, we have developed an ion gun to produce high luminosity ion beams with adjustable mean kinetic energy by combining a surface ionization source and ion optics.

  7. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    Science.gov (United States)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  8. Entanglement and the power of one qubit

    International Nuclear Information System (INIS)

    Datta, Animesh; Flammia, Steven T.; Caves, Carlton M.

    2005-01-01

    The 'power of one qubit' refers to a computational model that has access to only one pure bit of quantum information, along with n qubits in the totally mixed state. This model, though not as powerful as a pure-state quantum computer, is capable of performing some computational tasks exponentially faster than any known classical algorithm. One such task is to estimate with fixed accuracy the normalized trace of a unitary operator that can be implemented efficiently in a quantum circuit. We show that circuits of this type generally lead to entangled states, and we investigate the amount of entanglement possible in such circuits, as measured by the multiplicative negativity. We show that the multiplicative negativity is bounded by a constant, independent of n, for all bipartite divisions of the n+1 qubits, and so becomes, when n is large, a vanishingly small fraction of the maximum possible multiplicative negativity for roughly equal divisions. This suggests that the global nature of entanglement is a more important resource for quantum computation than the magnitude of the entanglement

  9. Driven Nonlinear Dynamics of Two Coupled Exchange-Only Qubits

    Directory of Open Access Journals (Sweden)

    Arijeet Pal

    2014-01-01

    Full Text Available Inspired by the creation of a fast exchange-only qubit [Medford et al., Phys. Rev. Lett. 111, 050501 (2013], we develop a theory describing the nonlinear dynamics of two such qubits that are capacitively coupled, when one of them is driven resonantly at a frequency equal to its level splitting. We include conditions of strong driving, where the Rabi frequency is a significant fraction of the level splitting, and we consider situations where the splitting for the second qubit may be the same as or different than the first. We demonstrate that coupling between qubits can be detected by reading the response of the second qubit, even when the coupling between them is only of about 1% of their level splittings, and we calculate entanglement between qubits. Patterns of nonlinear dynamics of coupled qubits and their entanglement are strongly dependent on the geometry of the system, and the specific mechanism of interqubit coupling deeply influences dynamics of both qubits. In particular, we describe the development of irregular dynamics in a two-qubit system, explore approaches for inhibiting it, and demonstrate the existence of an optimal range of coupling strength maintaining stability during the operational time.

  10. Superconducting tunable flux qubit with direct readout scheme

    International Nuclear Information System (INIS)

    Chiarello, Fabio; Castellano, Maria Gabriella; Leoni, Roberto; Torrioli, Guido; Carelli, Pasquale; Cosmelli, Carlo; Gangemi, Lorenzo; Poletto, Stefano; Simeone, Daniela

    2005-01-01

    We describe a simple and efficient scheme for the readout of a tunable flux qubit, and present preliminary experimental tests for the preparation, manipulation and final readout of the qubit state, performed in the incoherent regime at liquid helium temperature. The tunable flux qubit is realized by a double SQUID with an extra Josephson junction inserted in the large superconducting loop, and the readout is performed by applying a current ramp to the junction and recording the value for which there is a voltage response, depending on the qubit state. This preliminary work indicates the feasibility and efficiency of the scheme

  11. Quantum dynamics of a two-atom-qubit system

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Bich Ha; Le Thi Ha Linh

    2009-01-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  12. Memory coherence of a sympathetically cooled trapped-ion qubit

    International Nuclear Information System (INIS)

    Home, J. P.; McDonnell, M. J.; Szwer, D. J.; Keitch, B. C.; Lucas, D. M.; Stacey, D. N.; Steane, A. M.

    2009-01-01

    We demonstrate sympathetic cooling of a 43 Ca + trapped-ion 'memory' qubit by a 40 Ca + 'coolant' ion sufficiently near the ground state of motion for fault-tolerant quantum logic, while maintaining coherence of the qubit. This is an essential ingredient in trapped-ion quantum computers. The isotope shifts are sufficient to suppress decoherence and phase shifts of the memory qubit due to the cooling light which illuminates both ions. We measure the qubit coherence during ten cycles of sideband cooling, finding a coherence loss of 3.3% per cooling cycle. The natural limit of the method is O(10 -4 ) infidelity per cooling cycle.

  13. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin -{1/2} Chain Model

    Science.gov (United States)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-03-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  14. Probabilistic Broadcast-Based Multiparty Remote State Preparation scheme via Four-Qubit Cluster State

    Science.gov (United States)

    Zhou, Yun-Jing; Tao, Yuan-Hong

    2018-02-01

    In this letter,we propose a broadcast-based multiparty remote state preparation scheme which realizes the process among three participants. It allows two distant receivers to obtain the arbitrary single-qubit states separately and simultaneously, and the success probability is {d2}/{1+d2}, thus generalize the results in Yu et al. (Quantum. Inf. Process 16(2), 41, 2017).

  15. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  16. Fault-tolerant quantum computation with nondeterministic entangling gates

    Science.gov (United States)

    Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.

    2018-03-01

    Performing entangling gates between physical qubits is necessary for building a large-scale universal quantum computer, but in some physical implementations—for example, those that are based on linear optics or networks of ion traps—entangling gates can only be implemented probabilistically. In this work, we study the fault-tolerant performance of a topological cluster state scheme with local nondeterministic entanglement generation, where failed entangling gates (which correspond to bonds on the lattice representation of the cluster state) lead to a defective three-dimensional lattice with missing bonds. We present two approaches for dealing with missing bonds; the first is a nonadaptive scheme that requires no additional quantum processing, and the second is an adaptive scheme in which qubits can be measured in an alternative basis to effectively remove them from the lattice, hence eliminating their damaging effect and leading to better threshold performance. We find that a fault-tolerance threshold can still be observed with a bond-loss rate of 6.5% for the nonadaptive scheme, and a bond-loss rate as high as 14.5% for the adaptive scheme.

  17. New gate opening hours

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  18. Energy spectrum, exchange interaction, and gate crosstalk in a system with a pair of double quantum dots: A molecular-orbital calculation

    Science.gov (United States)

    Yang, Xu-Chen; Wang, Xin

    2017-05-01

    We present a theoretical study of a four-electron four-quantum-dot system based on molecular-orbital methods, which hosts a pair of singlet-triplet spin qubits. We took into account the admixture of electron wave functions in all dots, and we found that this mixing of wave functions has consequences to the energy spectrum, exchange interaction, and gate crosstalk of the system. Specifically, we found that when the two singlet-triplet qubits are close enough, some of the states are no longer dominated by the computational basis states, and the exchange interaction cannot simply be understood as the energy difference between the singlet and triplet states. Using the Hund-Mulliken calculation of the Hubbard parameters, we characterized the effective exchange interaction of the system, and we found good agreement with results calculated by taking energy differences where applicable. We studied the two commonly conceived schemes coupling two qubits, namely the exchange and capacitive coupling, and we found that when the interqubit distance is at certain intermediate values, the two kinds of coupling are comparable in strength, complicating the analyses of the evolution of the two qubits. We also investigated the gate crosstalk in the system due to the quantum-mechanical mixing of electron states, and we found that while this effect is typically very weak, it should not be ignored if the spacing between the qubits is similar to or less than the distance between the double dots that constitute the qubit.

  19. Dephasing of a qubit due to quantum and classical noise

    Indian Academy of Sciences (India)

    The qubit (or a system of two quantum dots) has become a standard paradigm for studying quantum information processes. Our focus is decoherence due to interaction of the qubit with its environment, leading to noise. We consider quantum noise generated by a dissipative quantum bath. A detailed comparative study with ...

  20. Towards long lived tunable transmon qubit in microstrip geometry

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Radtke, Lucas; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany)

    2013-07-01

    Qubits constitute the main building blocks of a prospective quantum computer. One main challenge is given by short decoherence times. In this work we investigate a transmon qubit based on a superconducting charge qubit with reduced sensitivity to charge noise. This is achieved by operating the qubit at a Josephson to charging energy ratio of about 100. At the same time, a sufficiently large anharmonicity of the energy levels is preserved. The qubit is realized in a 2D geometry based on large capacitor pads being connected by two Josephson junctions in parallel. This split Josephson junction allows the qubit to be tunable in Josephson energy and therefore in resonance frequency. The large area capacitor pads mainly coupled through the substrate and a backside metalization reduce the surface loss contribution. Manipulation and readout of the qubit is mediated by a microstrip resonator coupled to a feedline. We present resonator and qubit designs together with respective microwave simulations. Preliminary results on circuit fabrication and low temperature measurements are also discussed.

  1. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  2. Entanglement-based linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel

    2013-01-01

    Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  3. Optimisation and validation of a 3D reconstruction algorithm for single photon emission computed tomography by means of GATE simulation platform

    International Nuclear Information System (INIS)

    El Bitar, Ziad

    2006-12-01

    Although time consuming, Monte-Carlo simulations remain an efficient tool enabling to assess correction methods for degrading physical effects in medical imaging. We have optimized and validated a reconstruction method baptized F3DMC (Fully 3D Monte Carlo) in which the physical effects degrading the image formation process were modelled using Monte-Carlo methods and integrated within the system matrix. We used the Monte-Carlo simulation toolbox GATE. We validated GATE in SPECT by modelling the gamma-camera (Philips AXIS) used in clinical routine. Techniques of threshold, filtering by a principal component analysis and targeted reconstruction (functional regions, hybrid regions) were used in order to improve the precision of the system matrix and to reduce the number of simulated photons as well as the time consumption required. The EGEE Grid infrastructures were used to deploy the GATE simulations in order to reduce their computation time. Results obtained with F3DMC were compared with the reconstruction methods (FBP, ML-EM, MLEMC) for a simulated phantom and with the OSEM-C method for the real phantom. Results have shown that the F3DMC method and its variants improve the restoration of activity ratios and the signal to noise ratio. By the use of the grid EGEE, a significant speed-up factor of about 300 was obtained. These results should be confirmed by performing studies on complex phantoms and patients and open the door to a unified reconstruction method, which could be used in SPECT and also in PET. (author)

  4. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  5. Two-Party Quantum Private Comparison with Five-Qubit Entangled States

    Science.gov (United States)

    Ye, Tian-Yu; Ji, Zhao-Xu

    2017-05-01

    In this paper, a two-party quantum private comparison (QPC) protocol is proposed by using five-qubit entangled states as the quantum resource. The proposed protocol needs the help from a semi-honest third party (TP), who is allowed to misbehave on his own but not allowed to conspire with the adversary including the dishonest user. The proposed protocol has the following distinct features: (1) One five-qubit entangled state can be used to achieve the equality comparison of two bits in each round of comparison; (2) Neither unitary operations nor quantum entanglement swapping technology is needed, both of which may consume expensive quantum devices; (3) Only Bell measurements and single-particle measurements are employed, both of which can be realized with current quantum technologies; (4) The security toward both the outside attack and the participant attack can be guaranteed; (5) The private information of two parties is not leaked out to TP.

  6. Background Noise Analysis in a Few-Photon-Level Qubit Memory

    Science.gov (United States)

    Mittiga, Thomas; Kupchak, Connor; Jordaan, Bertus; Namazi, Mehdi; Nolleke, Christian; Figeroa, Eden

    2014-05-01

    We have developed an Electromagnetically Induced Transparency based polarization qubit memory. The device is composed of a dual-rail probe field polarization setup colinear with an intense control field to store and retrieve any arbitrary polarization state by addressing a Λ-type energy level scheme in a 87Rb vapor cell. To achieve a signal-to-background ratio at the few photon level sufficient for polarization tomography of the retrieved state, the intense control field is filtered out through an etalon filtrating system. We have developed an analytical model predicting the influence of the signal-to-background ratio on the fidelities and compared it to experimental data. Experimentally measured global fidelities have been found to follow closely the theoretical prediction as signal-to-background decreases. These results suggest the plausibility of employing room temperature memories to store photonic qubits at the single photon level and for future applications in long distance quantum communication schemes.

  7. Tracking errors of a logical qubit comprised of superpositions of cat states in a superconducting resonator

    Science.gov (United States)

    Petrenko, A.; Ofek, N.; Heeres, R.; Reinhold, P.; Liu, Y.; Leghtas, Z.; Vlastakis, B.; Frunzio, L.; Jiang, Liang; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J.

    QEC schemes involve redundantly encoding a qubit into a larger space of states that has symmetry properties that allow one to measure error syndromes. Traditional approaches involve encodings that employ large numbers of physical qubits, enhancing decay rates significantly and requiring considerable hardware overhead to realize. A hardware-efficient proposal, which we term the cat code, sheds much of this complexity by encoding a qubit in superpositions of cat states in a superconducting resonator, which has one dominant error syndrome: single photon loss. As these cat states are eigenstates of photon number parity, the loss of a photon changes the parity without corrupting the encoded information. In a superconducting cQED architecture, we demonstrate that we track these errors in real-time with repeated single shot parity measurements and map their occurrence onto applications of a unitary rotation of an arbitrary encoded state in the logical space. Our results illustrate the utility of long-lived resonators in the context of a full QEC system by highlighting the advantages of employing the cat code to suppress decoherence.

  8. Fully connected network of superconducting qubits in a cavity

    International Nuclear Information System (INIS)

    Tsomokos, Dimitris I; Ashhab, Sahel; Nori, Franco

    2008-01-01

    A fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick (SK) spin glasses, with superconducting qubit networks.

  9. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  10. Quantum gambling using mesoscopic ring qubits

    International Nuclear Information System (INIS)

    Pakula, Ireneusz

    2007-01-01

    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  12. Numerical simulation of a quantum controlled-not gate implemented on four-spin molecules at room temperature

    CERN Document Server

    López, G V; Berman, G P; Doolen, G D; Tsifrinovich, V I

    2003-01-01

    We study numerically the non-resonant effects on four-spin molecules at room temperature with the implemented quantum controlled-not gate and using the 2 pi k method. The four nuclear spins in each molecule represent a four-qubit register. The qubits interact with each other through Ising-type interaction which is characterized by the coupling constant J sub a sub , sub b. We study the errors on the reduced density matrix as a function of the Rabi frequency, OMEGA, using the 2 pi k method and when all the coupling constants are equal or when one of them is different from the others.

  13. A Single Amino Acid Substitution in the Third Transmembrane Region Has Opposite Impacts on the Selectivity of the Parasiticides Fluralaner and Ivermectin for Ligand-Gated Chloride Channels.

    Science.gov (United States)

    Nakata, Yunosuke; Fuse, Toshinori; Yamato, Kohei; Asahi, Miho; Nakahira, Kunimitsu; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2017-11-01

    Fluralaner (Bravecto) is a recently marketed isoxazoline ectoparasiticide. This compound potently inhibits GABA-gated chloride channels (GABACls) and less potently glutamate-gated chloride channels (GluCls) in insects. The mechanism underlying this selectivity is unknown. Therefore, we sought to identify the amino acid residues causing the low potency of fluralaner toward GluCls. We examined the fluralaner sensitivity of mutant housefly ( Musca domestica ) GluCls in which amino acid residues in the transmembrane subunit interface were replaced with the positionally equivalent amino acids of Musca GABACls. Of these amino acids, substitution of an amino acid (Leu315) in the third transmembrane region (TM3) with an aromatic amino acid dramatically enhanced the potency of fluralaner in the GluCls. In stark contrast to the enhancement of fluralaner potency, this mutation eliminated the activation of currents and the potentiation but not the antagonism of glutamate responses that are otherwise all elicited by the macrolide parasiticide ivermectin (IVM). Our findings indicate that the amino acid Leu315 in Musca GluCls plays significant roles in determining the selectivity of fluralaner and IVM for these channels. Given the high sequence similarity of TM3, this may hold true more widely for the GluCls and GABACls of other insect species. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. An Algorithm of Quantum Restricted Boltzmann Machine Network Based on Quantum Gates and Its Application

    Directory of Open Access Journals (Sweden)

    Peilin Zhang

    2015-01-01

    Full Text Available We present an algorithm of quantum restricted Boltzmann machine network based on quantum gates. The algorithm is used to initialize the procedure that adjusts the qubit and weights. After adjusting, the network forms an unsupervised generative model that gives better classification performance than other discriminative models. In addition, we show how the algorithm can be constructed with quantum circuit for quantum computer.

  15. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  16. Economic scheme for remote preparation of an arbitrary five-qubit ...

    Indian Academy of Sciences (India)

    Abstract. A scheme for remotely preparing an arbitrary five-qubit Brown state by using three three-qubit GHZ states as the quantum channel is proposed. It is shown that, after the sender per- forms two different three-qubit projective measurements, the receiver should introduce two auxiliary qubits and employ suitable ...

  17. Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer

    Science.gov (United States)

    Sisodia, Mitali; Shukla, Abhishek; Pathak, Anirban

    2017-12-01

    A scheme for distributed quantum measurement that allows nondestructive or indirect Bell measurement was proposed by Gupta et al [1]. In the present work, Gupta et al.'s scheme is experimentally realized using the five-qubit super-conductivity-based quantum computer, which has been recently placed in cloud by IBM Corporation. The experiment confirmed that the Bell state can be constructed and measured in a nondestructive manner with a reasonably high fidelity. A comparison of the outcomes of this study and the results obtained earlier in an NMR-based experiment (Samal et al. (2010) [10]) has also been performed. The study indicates that to make a scalable SQUID-based quantum computer, errors introduced by the gates (in the present technology) have to be reduced considerably.

  18. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    Science.gov (United States)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-09-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  19. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    International Nuclear Information System (INIS)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-01-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  20. Suspended graphene devices with local gate control on an insulating substrate

    International Nuclear Information System (INIS)

    Ong, Florian R; Cui, Zheng; Vojvodin, Cameron; Papaj, Michał; Deng, Chunqing; Bal, Mustafa; Lupascu, Adrian; Yurtalan, Muhammet A; Orgiazzi, Jean-Luc F X

    2015-01-01

    We present a fabrication process for graphene-based devices where a graphene monolayer is suspended above a local metallic gate placed in a trench. As an example we detail the fabrication steps of a graphene field-effect transistor. The devices are built on a bare high-resistivity silicon substrate. At temperatures of 77 K and below, we observe the field-effect modulation of the graphene resistivity by a voltage applied to the gate. This fabrication approach enables new experiments involving graphene-based superconducting qubits and nano-electromechanical resonators. The method is applicable to other two-dimensional materials. (paper)