Coherent optoelectronics with single quantum dots
Energy Technology Data Exchange (ETDEWEB)
Zrenner, A; Ester, P; Michaelis de Vasconcellos, S; Huebner, M C; Lackmann, L; Stufler, S [Universitaet Paderborn, Department Physik, Warburger Strasse 100, D-33098 Paderborn (Germany); Bichler, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)], E-mail: zrenner@mail.upb.de
2008-11-12
The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.
Symmetry breaking by quantum coherence in single electron attachment
Krishnakumar, E.; Prabhudesai, Vaibhav S.; Mason, Nigel J.
2018-02-01
Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by the interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n = 2) + H- is asymmetric about the inter-nuclear axis, whereas the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes, and demonstrates the role of coherent effects in electron-induced chemistry.
Probing quantum coherence in single-atom electron spin resonance
Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.
2018-01-01
Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211
Probing quantum coherence in single-atom electron spin resonance.
Willke, Philip; Paul, William; Natterer, Fabian D; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J; Lutz, Christoper P
2018-02-01
Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T 2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T 2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins.
Quantum key distribution with a single photon from a squeezed coherent state
International Nuclear Information System (INIS)
Matsuoka, Masahiro; Hirano, Takuya
2003-01-01
Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation
Fundamental limits to single-photon detection determined by quantum coherence and backaction
Young, Steve M.; Sarovar, Mohan; Léonard, François
2018-03-01
Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.
Macroscopic quantum coherence in a single molecular magnet and Kondo effect of electron transport
International Nuclear Information System (INIS)
Chang, Bo; Wang, Qiang; Xie, Haiqing; Liang, J.-Q.
2011-01-01
We report a Kondo-effect study of electron transport through a quantum dot with embedded biaxial single-molecule magnet based on slave boson mean-field theory and non-equilibrium Green-function technique. It is found the macroscopic quantum coherence of molecule-magnet results in the Kondo peak split of differential conductance due to interaction between electron and molecular magnet. It is also demonstrated that both the peak height and position can be controlled by the sweeping magnetic field and polarization of ferromagnetic electrodes. The characteristic peak split may be used to identify the macroscopic quantum coherence and develop molecule devices. -- Highlights: → Splits of Kondo peak are induced by the single molecular magnet. → Kondo effect can be controlled by magnetic field and its sweeping speed in our model. → The suppression and broadening of Kondo peaks is also observed with increase of temperature. → The peaks height and position is sensitive to polarization of the electrode.
Cohering power of quantum operations
Energy Technology Data Exchange (ETDEWEB)
Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)
2017-05-18
Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
Energy Technology Data Exchange (ETDEWEB)
Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2017-04-25
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.
Coherent properties of single quantum dot transitions and single photon emission
Energy Technology Data Exchange (ETDEWEB)
Ester, Patrick
2008-04-23
In this work, the properties and the different dephasing mechanisms of single QD transitions are analyzed. In addition, some applications are presented which arise due to the properties of the confined exciton. The isolation of a single QD out of the ensemble is achieved via near field shadow masks, which restricts excitation and QD luminescence to a single QD. The integration of a QD-layer into a diode structure allows for an analysis of various dephasing mechanisms of a confined electron hole pair. The single QD is characterized regarding the energy of nearly all possible transitions, e.g. the ground state, excited states, charged states, multiple occupations, and phonon assisted absorptions. A very important issue in this content is the voltage dependence of the transition energy and thereby the ability of tunneling processes of charge carriers in and out of the QD. The QD-states, which are subject of investigation here, are the single exciton ground state, the first excited state (p-shell), and the (GaAs-) LO (longitudinal optical) phonon assisted absorption. By applying a suitable voltage, the resonantly excited ground state exciton is able to decay by a tunneling process, which reflects the transition energy in the photocurrent spectra. The p-shell transition decays by a relaxation process into the ground state, followed by an optical recombination process. The phonon assisted absorption differs from the p-shell transition. The resonant excitation energy fits to the exciton ground state energy plus the energy of a GaAs LO phonon. In this case, the single exciton (ground state) is generated as well as a GaAs LO phonon. These three states are investigated in different respects, such as different applied voltages, excitation polarizations, excitation intensities, and coherent properties. The LO-assisted absorption shows also a saturation behavior. The exciton in the QD is able to interfere with the second laser pulse due to the storage of the phase information
Quantifying quantum coherence with quantum Fisher information.
Feng, X N; Wei, L F
2017-11-14
Quantum coherence is one of the old but always important concepts in quantum mechanics, and now it has been regarded as a necessary resource for quantum information processing and quantum metrology. However, the question of how to quantify the quantum coherence has just been paid the attention recently (see, e.g., Baumgratz et al. PRL, 113. 140401 (2014)). In this paper we verify that the well-known quantum Fisher information (QFI) can be utilized to quantify the quantum coherence, as it satisfies the monotonicity under the typical incoherent operations and the convexity under the mixing of the quantum states. Differing from most of the pure axiomatic methods, quantifying quantum coherence by QFI could be experimentally testable, as the bound of the QFI is practically measurable. The validity of our proposal is specifically demonstrated with the typical phase-damping and depolarizing evolution processes of a generic single-qubit state, and also by comparing it with the other quantifying methods proposed previously.
Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F
2013-06-21
The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.
Quantum fluctuations and coherence in high-precision single-electron capture.
Kashcheyevs, Vyacheslavs; Timoshenko, Janis
2012-11-21
The phase of a single quantum state is undefined unless the history of its creation provides a reference point. Thus, quantum interference may seem hardly relevant for the design of deterministic single-electron sources which strive to isolate individual charge carriers quickly and completely. We provide a counterexample by analyzing the nonadiabatic separation of a localized quantum state from a Fermi sea due to a closing tunnel barrier. We identify the relevant energy scales and suggest ways to separate the contributions of quantum nonadiabatic excitation and back tunneling to the rare noncapture events. In the optimal regime of balanced decay and nonadiabaticity, our simple electron trap turns into a single-lead Landau-Zener back tunneling interferometer, revealing the dynamical phase accumulated between the particle capture and leakage. The predicted "quantum beats in back tunneling" may turn the error of a single-electron source into a valuable signal revealing essentially nonadiabatic energy scales of a dynamic quantum dot.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Coherent states in the quantum multiverse
Robles-Pérez, S.; Hassouni, Y.; González-Díaz, P. F.
2010-01-01
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
Coherent states in the quantum multiverse
Energy Technology Data Exchange (ETDEWEB)
Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)
2010-01-11
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Manipulating Quantum Coherence in Solid State Systems
Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"
2007-01-01
The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...
Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km.
Yoshida, Masato; Hirooka, Toshihiko; Kasai, Keisuke; Nakazawa, Masataka
2016-01-11
We demonstrate the first 40 Gbit/s single-channel polarization-multiplexed, 5 Gsymbol/s, 16 QAM quantum noise stream cipher (QNSC) transmission over 480 km by incorporating ASE quantum noise from EDFAs as well as the quantum shot noise of the coherent state with multiple photons for the random masking of data. By using a multi-bit encoded scheme and digital coherent transmission techniques, secure optical communication with a record data capacity and transmission distance has been successfully realized. In this system, the signal level received by Eve is hidden by both the amplitude and the phase noise. The highest number of masked signals, 7.5 x 10(4), was achieved by using a QAM scheme with FEC, which makes it possible to reduce the output power from the transmitter while maintaining an error free condition for Bob. We have newly measured the noise distribution around I and Q encrypted data and shown experimentally with a data size of as large as 2(25) that the noise has a Gaussian distribution with no correlations. This distribution is suitable for the random masking of data.
Quantum Interference and Coherence Theory and Experiments
Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald
2005-01-01
For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.
Asymmetry and coherence weight of quantum states
Bu, Kaifeng; Anand, Namit; Singh, Uttam
2018-03-01
The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.
Coherent control of quantum dots
DEFF Research Database (Denmark)
Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher
In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...
Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots
National Research Council Canada - National Science Library
Steel, Duncan
2002-01-01
.... These features include optically induced and detected quantum entanglement of two exciton states as well as a demonstration of a classical Bell state, a Rabi oscillations corresponding to full...
Coherent manipulation of single spins in semiconductors.
Hanson, Ronald; Awschalom, David D
2008-06-19
During the past few years, researchers have gained unprecedented control over spins in the solid state. What was considered almost impossible a decade ago, in both conceptual and practical terms, is now a reality: single spins can be isolated, initialized, coherently manipulated and read out using both electrical and optical techniques. Progress has been made towards full control of the quantum states of single and coupled spins in a variety of semiconductors and nanostructures, and towards understanding the mechanisms through which spins lose coherence in these systems. These abilities will allow pioneering investigations of fundamental quantum-mechanical processes and provide pathways towards applications in quantum information processing.
Coherence in Magnetic Quantum Tunneling
Fernandez, Julio F.
2001-03-01
Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.
Quantum coherence of relic neutrinos.
Fuller, George M; Kishimoto, Chad T
2009-05-22
We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.
Coherence and dephasing in self-assembled quantum dots
DEFF Research Database (Denmark)
Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan
2003-01-01
We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....
Photoelectric converters with quantum coherence
Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can
2016-05-01
Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.
Efficient quantum computing using coherent photon conversion.
Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A
2011-10-12
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting
Some remarks on quantum coherence theory
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)
Coherence and measurement in quantum thermodynamics.
Kammerlander, P; Anders, J
2016-02-26
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
Quantum communication with coherent states of light
Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd
2017-06-01
Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.
Colloquium: Quantum coherence as a resource
Streltsov, Alexander; Adesso, Gerardo; Plenio, Martin B.
2017-10-01
The coherent superposition of states, in combination with the quantization of observables, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics. In recent years, research on the presence and functional role of quantum coherence in biological systems has also attracted considerable interest. Despite the fundamental importance of quantum coherence, the development of a rigorous theory of quantum coherence as a physical resource has been initiated only recently. This Colloquium discusses and reviews the development of this rapidly growing research field that encompasses the characterization, quantification, manipulation, dynamical evolution, and operational application of quantum coherence.
Spectral coherent-state quantum cryptography.
Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi
2008-11-01
A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.
Quantum learning of coherent states
Energy Technology Data Exchange (ETDEWEB)
Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)
2015-12-15
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)
Hamid, Arian Zad
2016-12-01
We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.
Classical Trajectories from Coherent Quantum Oscillations
Kadin, Alan
2013-03-01
In the conventional Copenhagen interpretation of quantum mechanics, classical behavior arises from microscopic coherent quantum systems only in the presence of decoherence on the macroscopic scale. On the contrary, we derive classical Hamiltonian trajectories for a confined quantum wave directly from coherent phase evolution on the microscopic scale, without decoherence or wavefunction collapse (see also). This suggests that the basis for classical macroscopic physics, including relativity, lies in the microscopic behavior of coherently oscillating quantum fields. An outline of such a theory will be presented, which resolves longstanding paradoxes involving wave-particle duality, quantum entanglement, and the quantum-to-classical transition.
Laser-Limited Signatures of Quantum Coherence
Tempelaar, Roel; Halpin, Alexei; Johnson, Philip J. M.; Cai, Jianxin; Murphy, R. Scott; Knoester, Jasper; Miller, R. J. Dwayne; Jansen, Thomas L. C.
2016-01-01
Quantum coherence is proclaimed to promote efficient energy collection by light-harvesting complexes and prototype organic photovoltaics. However, supporting spectroscopic studies are hindered by the problem of distinguishing between the excited state and ground state origin of coherent spectral
Mesoscopic quantum coherence in an optical lattice
Haycock; Alsing; Deutsch; Grondalski; Jessen
2000-10-16
We observe the quantum coherent dynamics of atomic spinor wave packets in the double-well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of the ground doublet, and at certain times the wave packet corresponds to a coherent superposition of these mesoscopically distinct quantum states. The atom/optical double-well potential is a flexible and powerful system for further study of quantum coherence, quantum control, and the quantum/classical transition.
International Nuclear Information System (INIS)
Zhu, Ka-Di; Li, Wai-Sang
2003-01-01
The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly
Blind quantum computing with weak coherent pulses.
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-18
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
Blind Quantum Computing with Weak Coherent Pulses
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Coherent transport through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hiltscher, Bastian
2012-10-05
the linear-conductance regime. The second work deals with the ratio of coherent processes in transport through quantum dots. To this end, a quantum dot is embedded in one of the arms of an Aharonov-Bohm interferometer. In former theoretical as well as experimental works it has been observed that an important source of decoherence are cotunneling processes that flip the dot's spin. In order to elucidate the role of spin in more detail, we assume one of the leads to be ferromagnetic and the other one to be normal. The main motivations of our work are the two questions: (1) What fraction of the total current through a single-level quantum dot weakly coupled to the electrodes is coherent? (2) How and under which circumstances can this fraction be extracted from a current measurement in an Aharonov-Bohm setup? The measurable quantity in such an experiment is the magnetic-flux dependent ratio of the total current. It turns out that the answers of the two questions strongly depend on the dot level position, the polarization of the ferromagnet, and the transport direction. Especially the flux-dependent and the coherent ratios are not necessarily the same. The main motivation of the third work is to identify crossed Andreev reflection in quantum dots, that is, a Cooper pair splits into two single electrons, which are transferred into different quantum dots in one coherent process. We consider a setup, where two quantum dots are tunnel coupled to the same superconductor and each dot is additionally coupled to a normal conductor. In previous works a bias voltage has been applied between the superconductor and the normal conductors. Then, three processes sustain transport. Beside crossed Andreev reflection also local Andreev reflection, where both electrons of the Cooper pair tunnel into the same dot, and single-particle tunneling occur. This complicates the identification of crossed Andreev reflection. Therefore, we propose the transport mechanism of adiabatic pumping in
Coherent transport through interacting quantum dots
International Nuclear Information System (INIS)
Hiltscher, Bastian
2012-01-01
the linear-conductance regime. The second work deals with the ratio of coherent processes in transport through quantum dots. To this end, a quantum dot is embedded in one of the arms of an Aharonov-Bohm interferometer. In former theoretical as well as experimental works it has been observed that an important source of decoherence are cotunneling processes that flip the dot's spin. In order to elucidate the role of spin in more detail, we assume one of the leads to be ferromagnetic and the other one to be normal. The main motivations of our work are the two questions: (1) What fraction of the total current through a single-level quantum dot weakly coupled to the electrodes is coherent? (2) How and under which circumstances can this fraction be extracted from a current measurement in an Aharonov-Bohm setup? The measurable quantity in such an experiment is the magnetic-flux dependent ratio of the total current. It turns out that the answers of the two questions strongly depend on the dot level position, the polarization of the ferromagnet, and the transport direction. Especially the flux-dependent and the coherent ratios are not necessarily the same. The main motivation of the third work is to identify crossed Andreev reflection in quantum dots, that is, a Cooper pair splits into two single electrons, which are transferred into different quantum dots in one coherent process. We consider a setup, where two quantum dots are tunnel coupled to the same superconductor and each dot is additionally coupled to a normal conductor. In previous works a bias voltage has been applied between the superconductor and the normal conductors. Then, three processes sustain transport. Beside crossed Andreev reflection also local Andreev reflection, where both electrons of the Cooper pair tunnel into the same dot, and single-particle tunneling occur. This complicates the identification of crossed Andreev reflection. Therefore, we propose the transport mechanism of adiabatic pumping in the
Quantum optics with single quantum dot devices
International Nuclear Information System (INIS)
Zwiller, Valery; Aichele, Thomas; Benson, Oliver
2004-01-01
A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots
Quantum Processes Which Do Not Use Coherence
Directory of Open Access Journals (Sweden)
Benjamin Yadin
2016-11-01
Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.
Coherent Control of a Single Trapped Rydberg Ion
Higgins, Gerard; Pokorny, Fabian; Zhang, Chi; Bodart, Quentin; Hennrich, Markus
2017-12-01
Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.
arXiv Quantum coherence of cosmological perturbations
Giovannini, Massimo
2017-10-26
In this paper, the degrees of quantum coherence of cosmological perturbations of different spins are computed in the large-scale limit and compared with the standard results holding for a single mode of the electromagnetic field in an optical cavity. The degree of second-order coherence of curvature inhomogeneities (and, more generally, of the scalar modes of the geometry) reproduces faithfully the optical limit. For the vector and tensor fluctuations, the numerical values of the normalized degrees of second-order coherence in the zero time-delay limit are always larger than unity (which is the Poisson benchmark value) but differ from the corresponding expressions obtainable in the framework of the single-mode approximation. General lessons are drawn on the quantum coherence of large-scale cosmological fluctuations.
Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.
Optical Coherence and Quantum Optics
Mandel, Leonard
1995-01-01
This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi
Coherent states for quantum compact groups
Jurco, B
1996-01-01
Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}
Quantum oscillators in the canonical coherent states
International Nuclear Information System (INIS)
Rodrigues, R. de Lima; Lima, A.F. de; Ferreira, K. de Araujo; Vaidya, A.N.
2001-11-01
The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)
Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard
2011-05-12
The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.
Quantum coherence behaviors of fermionic system in non-inertial frame
Huang, Zhiming; Situ, Haozhen
2018-04-01
In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.
The origins of macroscopic quantum coherence in high temperature superconductivity
Energy Technology Data Exchange (ETDEWEB)
Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)
2015-08-15
Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new
A coherent quantum annealer with Rydberg atoms
Glaetzle, A. W.; van Bijnen, R. M. W.; Zoller, P.; Lechner, W.
2017-06-01
There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller (LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints. This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a bipartite optical lattice involving laser-dressed Rydberg-Rydberg interactions, which are several orders of magnitude larger than the relevant decoherence rates. This makes the exploration of coherent quantum enhanced optimization protocols accessible with state-of-the-art atomic physics experiments.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.
2014-01-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classic...
Role of coherence during classical and quantum decoherence
Hou, Jin-Xing; Liu, Si-Yuan; Wang, Xiao-Hui; Yang, Wen-Li
2017-10-01
The total correlation in a bipartite quantum system is measured by the quantum mutual information I , which consists of quantum discord and classical correlation. However, recent results in quantum information show that coherence, which is a part of total correlation, is more general and more fundamental. The role of coherence in quantum resource theory is worthwhile to investigate. We first study the relationship between quantum discord and coherence by decreasing the difference between them. Then, we consider the dynamics of quantum discord, classical correlation, and quantum coherence under incoherent quantum channels. It is found that coherence indicates the behavior of quantum discord (classical correlation) for times t t ¯ . Moreover, the coherence freeze and decay characterize the quantum discord and classical correlation freeze and decay, respectively.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond
Energy Technology Data Exchange (ETDEWEB)
Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.
2017-10-01
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.
2015-02-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.
Phase-controlled coherent population trapping in superconducting quantum circuits
International Nuclear Information System (INIS)
Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi
2015-01-01
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)
Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng, Guang-Ling; Wang, Yi-Ping; Chen, Ai-Xi
2015-04-01
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11165008 and 11365009), the Foundation of Young Scientist of Jiangxi Province, China (Grant No. 20142BCB23011), and the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ13348).
Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures
Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W.
1999-11-01
A fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum-well systems is developed. The resulting many-body hierarchy for the correlation functions is truncated using a dynamical decoupling scheme leading to coupled semiconductor luminescence and Bloch equations. For incoherent excitation conditions, the theory is used to describe nonlinear excitonic emission properties of single-quantum wells, optically coupled multiple quantum-well systems, and quantum wells in a microcavity. Resonant coherent optical excitation leads to a direct coupling between the induced coherent polarization and photoluminescence. The resulting quantum corrections to the semiclassical semiconductor Bloch equations and the coherent contributions to the semiconductor luminescence equations are discussed. The secondary emission in directions deviating from the coherent excitation direction after femtosecond-pulse excitation is studied. Coherent control and quadrature squeezing for the light emission are analyzed.
Modeling coherent errors in quantum error correction
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Quantum Communication Using Coherent Rejection Sampling
Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul
2017-09-01
Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.
Coherent states in quantum mechanics; Estados coerentes em mecanica quantica
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica
2001-12-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)
Quantum State Engineering Via Coherent-State Superpositions
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Interpreting quantum coherence through a quantum measurement process
Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.
2017-11-01
Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.
Performance of quantum cloning and deleting machines over coherence
Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis
2017-10-01
Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.
Symmetric configurations highlighted by collective quantum coherence
Energy Technology Data Exchange (ETDEWEB)
Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)
2017-11-15
Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)
Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field
International Nuclear Information System (INIS)
Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang
2016-01-01
In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.
A toy model of a macroscopic quantum coherent system
International Nuclear Information System (INIS)
Muñoz-Vega, R; Flores-Godoy, J J; Fernández-Anaya, G; Salinas-Hernández, E
2013-01-01
This paper deals with macroscopic quantum coherence while using only basic quantum mechanics. A square double well is used to illustrate Leggett–Caldeira oscillations. The effect of thermal radiation on two-level systems is discussed. The concept of decoherence is introduced at an elementary level. Reference values are deduced for the energy, temperature and time scales involved in macroscopic quantum coherence. (paper)
Robust Multiple-Range Coherent Quantum State Transfer
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-01-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891
Quantum Communication Using Coherent Rejection Sampling.
Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul
2017-09-22
Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995)PLRAAN1050-294710.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); CMPHAY0010-361610.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); PRLTAO0031-900710.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009)PRLAAZ1364-502110.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.
Coherent semiclassical states for loop quantum cosmology
International Nuclear Information System (INIS)
Corichi, Alejandro; Montoya, Edison
2011-01-01
The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.
Spectroscopy and coherent manipulation of single and coupled flux qubits
International Nuclear Information System (INIS)
Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning
2013-01-01
Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)
Hybrid entanglement concentration assisted with single coherent state
International Nuclear Information System (INIS)
Guo Rui; Zhou Lan; Sheng Yu-Bo; Gu Shi-Pu; Wang Xing-Fu
2016-01-01
Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. (paper)
Long lived coherence in self-assembled quantum dots
DEFF Research Database (Denmark)
Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher
2001-01-01
We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps, demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....
Long coherence times in self-assembled semiconductor quantum dots
DEFF Research Database (Denmark)
Birkedal, Dan; Leosson, K.; Hvam, Jørn Märcher
2002-01-01
We report measurements of ultra-long coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mueV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....
Single quantum dots fundamentals, applications, and new concepts
2003-01-01
This book reviews recent advances in the exciting and rapid growing field of semiconductor quantum dots by contributions from some of the most prominent researchers in the field. Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons. Single Quantum Dots also addresses various growth techniques as well as potential device applications such as quantum dot lasers, and new concepts like a single-photon source, and a single quantum dot laser.
Quantum coherence of two-qubit over quantum channels with memory
Guo, You-neng; Tian, Qing-long; Zeng, Ke; Li, Zheng-da
2017-12-01
Using the axiomatic definition of the quantum coherence measure, such as the l1 norm and the relative entropy, we study the phenomena of two-qubit system quantum coherence through quantum channels where successive uses of the channels are memory. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels effect on quantum coherence have been discussed in detail. The results show that quantum channels with memory can efficiently protect coherence from noisy channels. Particularly, as channels with perfect memory, quantum coherence is unaffected by the phase damping as well as depolarizing channels. Besides, we also investigate the cohering and decohering power of quantum channels with memory.
Coherence enhanced quantum metrology in a nonequilibrium optical molecule
Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin
2018-03-01
We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.
Quantum nonlinear lattices and coherent state vectors
DEFF Research Database (Denmark)
Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth
1999-01-01
for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... state vectors, and accounts for the quantum correlations of the lattice sites that develop during the time evolution of the systems. (C) 1999 Elsevier Science B.V. All rights reserved....
Quantum mechanics in coherent algebras on phase space
International Nuclear Information System (INIS)
Lesche, B.; Seligman, T.H.
1986-01-01
Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)
Single-photon-level quantum memory at room temperature.
Reim, K F; Michelberger, P; Lee, K C; Nunn, J; Langford, N K; Walmsley, I A
2011-07-29
Room-temperature, easy-to-operate quantum memories are essential building blocks for future long distance quantum information networks operating on an intercontinental scale, because devices like quantum repeaters, based on quantum memories, will have to be deployed in potentially remote, inaccessible locations. Here we demonstrate controllable, broadband and efficient storage and retrieval of weak coherent light pulses at the single-photon level in warm atomic cesium vapor using the robust far off-resonant Raman memory scheme. We show that the unconditional noise floor of this technically simple quantum memory is low enough to operate in the quantum regime, even in a room-temperature environment.
Quantum logic gates using coherent population trapping states
Indian Academy of Sciences (India)
Coherent population trap; quantum computation; controlled phase gate. PACS Nos 42.50.Ex; 32.80.Qk; 32.90+a; 03.67.Lx. Conventional computers handle information in the form of bits – which take up values 0 or. 1. Quantum computers on the other hand, use quantum bits (qubits), which can be prepared in states 0, 1 or ...
International Conference on Coherence and Quantum Optics
RECENT DEVELOPMENTS IN QUANTUM OPTICS
1993-01-01
This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...
Quantum nonlinear cavity quantum electrodynamics with coherently prepared atoms
Yang, Guoqing; Gu, Wen-ju; Li, Gaoxiang; Zou, Bichen; Zhu, Yifu
2015-09-01
We propose a method to study the quantum nonlinearity and observe the multiphoton transitions in a multiatom cavity quantum electrodynamics (CQED) system. We show that by inducing simultaneously destructive quantum interference for the single-photon and two-photon excitations in the CQED system, it is possible to observe the direct three-photon excitation of the higher-order ladder states of the CQED system. We report an experiment with cold Rb atoms confined in an optical cavity and demonstrate such interference control of the multiphoton excitations of the CQED system. The observed nonlinear excitation of the CQED ladder states agrees with a theoretical analysis based on a fully quantized treatment of the CQED system, but disagrees with the semiclassical analysis of the CQED system. Thus it represents a direct observation of the quantum nature of the multiatom CQED system and opens new ways to explore quantum nonlinearity and its applications in quantum optical systems in which multiple absorbers or emitters are coupled with photons in confined cavity structures.
Coherence-generating power of quantum dephasing processes
Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.
Optical generation and control of quantum coherence in semiconductor nanostructures
Slavcheva, Gabriela
2010-01-01
The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal
Fault-tolerant linear optical quantum computing with small-amplitude coherent States.
Lund, A P; Ralph, T C; Haselgrove, H L
2008-01-25
Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.
Coherence-enhanced efficiency of feedback-driven quantum engines
Brandner, Kay; Bauer, Michael; Schmid, Michael T.; Seifert, Udo
2015-06-01
A genuine feature of projective quantum measurements is that they inevitably alter the mean energy of the observed system if the measured quantity does not commute with the Hamiltonian. Compared to the classical case, Jacobs proved that this additional energetic cost leads to a stronger bound on the work extractable after a single measurement from a system initially in thermal equilibrium (2009 Phys. Rev. A 80 012322). Here, we extend this bound to a large class of feedback-driven quantum engines operating periodically and in finite time. The bound thus implies a natural definition for the efficiency of information to work conversion in such devices. For a simple model consisting of a laser-driven two-level system, we maximize the efficiency with respect to the observable whose measurement is used to control the feedback operations. We find that the optimal observable typically does not commute with the Hamiltonian and hence would not be available in a classical two level system. This result reveals that periodic feedback engines operating in the quantum realm can exploit quantum coherences to enhance efficiency.
Cell Microtubules as Cavities Quantum Coherence and Energy Transfer?
Mavromatos, Nikolaos E
2000-01-01
A model is presented for dissipationless energy transfer in cell microtubules due to quantum coherent states. The model is based on conjectured (hydrated) ferroelectric properties of microtubular arrangements. Ferroelectricity is essential in providing the necessary isolation against thermal losses in thin interior regions, full of ordered water, near the tubulin dimer walls of the microtubule. These play the role of cavity regions, which are similar to electromagnetic cavities of quantum optics. As a result, the formation of (macroscopic) quantum coherent states of electric dipoles on the tubulin dimers may occur. Some experiments, inspired by quantum optics, are suggested for the falsification of this scenario.
Critical components for diamond-based quantum coherent devices
International Nuclear Information System (INIS)
Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven
2006-01-01
The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided
Laser coherent control of quantum dynamics at the CSIR: NLC
CSIR Research Space (South Africa)
Botha, L
2010-09-01
Full Text Available Coherent control of quantum dynamics in optical, molecular and biological systems is a rapidly advancing field with many possible applications. This field of study was originally motivated by the goal of steering photoreactions into specific...
Exciton coherence in semiconductor quantum dots
International Nuclear Information System (INIS)
Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Sasaki, Masahide; Kujiraoka, Mamiko; Ema, Kazuhiro
2009-01-01
The coherent dynamics of excitons in InAs quantum dots (QDs) was investigated in the telecommunication wavelength range using a transient four-wave mixing technique. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to fabricate a 150-layer stacked QD structure for obtaining a high S/N in the four-wave mixing measurements, although no high-sensitive heterodyne detection was carried out. The dephasing time and transition dipole moment were precisely estimated from the polarization dependence of signals, taking into account their anisotropic properties. The population lifetimes of the excitons were also measured by using a polarization-dependent pumpprobe technique. A quantitative comparison of these anisotropies demonstrates that in our QDs, non-radiative population relaxation, polarization relaxation and pure dephasing are considerably smaller than the radiative relaxation. A comparison of the results of the four-wave mixing and pump-probe measurements revealed that the pure dephasing could be directly estimated with an accuracy of greater than 0.1 meV by comparing the results of four-wave mixing and pump-probe measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Experimental demonstration of macroscopic quantum coherence in Gaussian states
DEFF Research Database (Denmark)
Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.
2007-01-01
space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...
Electron transport and coherence in semiconductor quantum dots and rings
Van der Wiel, W.G.
2002-01-01
A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that
Quantum Detection and Invisibility in Coherent Nanostructures
Energy Technology Data Exchange (ETDEWEB)
Fransson, J.
2010-04-28
We address quantum invisibility in the context of electronics in nanoscale quantum structures. In analogy with metamaterials, we use the freedom of design that quantum corrals provide and show that quantum mechanical objects can be hidden inside the corral, with respect to inelastic electron scattering spectroscopy in combination with scanning tunneling microscopy, and we propose a design strategy. A simple illustration of the invisibility is given in terms of an elliptic quantum corral containing a molecule, with a local vibrational mode, at one of the foci. Our work has implications to quantum information technology and presents new tools for nonlocal quantum detection and distinguishing between different molecules.
Quantum superposition counterintuitive consequences of coherence, entanglement, and interference
Silverman, M P
2007-01-01
Coherence, entanglement, and interference arise from quantum superposition, the most distinctive and puzzling feature of quantum physics. Silverman, whose extensive experimental and theoretical work has helped elucidate these processes, presents a clear and engaging discussion of the role of quantum superposition in diverse quantum phenomena such as the wavelike nature of particle propagation, indistinguishability of identical particles, nonlocal interactions of correlated particles, topological effects of magnetic fields, and chiral asymmetry in nature. He also examines how macroscopic quantum coherence may be able to extricate physics from its most challenging quandary, the collapse of a massive degenerate star to a singularity in space in which the laws of physics break down. Explained by a physicist with a concern for clarity and experimental achievability, the extraordinary nature of quantum superposition will fascinate the reader not only for its apparent strangeness, but also for its comprehensibility.
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm
Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.
2017-11-01
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
Coherently driven semiconductor quantum dot at a telecommunication wavelength.
Takagi, Hiroyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Arakawa, Yasuhiko
2008-09-01
We proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 microm through Rabi oscillation. The telecom-band exciton-qubit system incorporates standard optical fibers and fiber optic devices. The coherent manipulation of the two-level system compatible with flexible and stable fiber network paves the way toward practical optical implementation of quantum information processing devices.
Coherent interaction of single molecules and plasmonic nanowires
Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg
2017-09-01
Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.
Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System
Lee, Kenneth William, III
A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no
Coherent states in quaternionic quantum mechanics
Adler, Stephen L.; Millard, Andrew C.
1997-05-01
We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.
Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence
Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Coherent states in quaternionic quantum mechanics
International Nuclear Information System (INIS)
Adler, S.L.; Millard, A.C.
1997-01-01
We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics
A Numerical Approach to Optimal Coherent Quantum LQG Controller Design Using Gradient Descent
Sichani, Arash Kh.; Vladimirov, Igor G.; Petersen, Ian R.
2016-01-01
This paper is concerned with coherent quantum linear quadratic Gaussian (CQLQG) control. The problem is to find a stabilizing measurement-free quantum controller for a quantum plant so as to minimize a mean square cost for the fully quantum closed-loop system. The plant and controller are open quantum systems interconnected through bosonic quantum fields. In comparison with the observation-actuation structure of classical controllers, coherent quantum feedback is less invasive to the quantum ...
Promoting Conceptual Coherence in Quantum Learning through Computational Models
Lee, Hee-Sun
2012-02-01
In order to explain phenomena at the quantum level, scientists use multiple representations in verbal, pictorial, mathematical, and computational forms. Conceptual coherence among these multiple representations is used as an analytical framework to describe student learning trajectories in quantum physics. A series of internet-based curriculum modules are designed to address topics in quantum mechanics, semiconductor physics, and nano-scale engineering applications. In these modules, students are engaged in inquiry-based activities situated in a highly interactive computational modeling environment. This study was conducted in an introductory level solid state physics course. Based on in-depth interviews with 13 students, methods for identifying conceptual coherence as a function of students' level of understanding are presented. Pre-post test comparisons of 20 students in the course indicate a statistically significant improvement in students' conceptual coherence of understanding quantum phenomena before and after the course, Effect Size = 1.29 SD. Additional analyses indicate that students who responded to the modules more coherently improved their conceptual coherence to a greater extent than those who did less to the modules after controlling for their course grades.
Experimental Demonstration of Coherent Control in Quantum Chaotic Systems
Bitter, M.; Milner, V.
2017-01-01
We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.
Coherent pulse position modulation quantum cipher
International Nuclear Information System (INIS)
Sohma, Masaki; Hirota, Osamu
2014-01-01
On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption
Multiconfigurational quantum propagation with trajectory-guided generalized coherent states
Energy Technology Data Exchange (ETDEWEB)
Grigolo, Adriano, E-mail: agrigolo@ifi.unicamp.br; Aguiar, Marcus A. M. de, E-mail: aguiar@ifi.unicamp.br [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 777 Sérgio Buarque de Holanda, 13083-859 Campinas (Brazil); Viscondi, Thiago F., E-mail: viscondi@if.usp.br [Instituto de Física, Universidade de São Paulo, 1371 Rua do Matão, 05508-090 São Paulo (Brazil)
2016-03-07
A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.
Spin storage in quantum dot ensembles and single quantum dots
Energy Technology Data Exchange (ETDEWEB)
Heiss, Dominik
2009-10-15
} in the microsecond range, therefore, comparable with electron spin lifetimes. The longest measured value is T{sub 1}{sup h} =270 {mu}s at B=1.5 T and T=8 K. Based on this spin detection technique in small ensembles, electron spin resonance experiments with the goal to study coherence properties were attempted. After optical charge generation and storage, a spin-conditional absorption of a circularly polarized light pulse tuned to the singly charged quantum dot s-shell absorption converts the spin information of the resident electron to charge information. Subsequently, time-gated photoluminescence directly reveals the charge state of the quantum dot (1e, 2e) and, therefore, the spin orientation of the resident electron. Schottky diode devices suitable for this single dot spin readout scheme were fabricated and characterized with time-gated photoluminescence. The electric field regimes applicable for reset, optical charging and reliable charge storage were identified. Furthermore, the fidelity of charge readout was investigated as a function of excitation wavelength, applied electric field and optical excitation power. Additional measurements using resonant excitation showed that a single quantum dot can be selectively charged with a single electron via optical excitation in its p-shell. The tunneling escape of this optically initialized electron has been determined, proving the feasibility of reliable charge detection in time-resolved measurements. Extrapolated to reasonable storage fields F=20 kV/cm the tunneling time of the electron exceeds seconds. The electron spin relaxation in a single quantum dot has been determined as a function of temperature at B=12 T. (orig.)
Spin storage in quantum dot ensembles and single quantum dots
International Nuclear Information System (INIS)
Heiss, Dominik
2009-01-01
electron spin lifetimes. The longest measured value is T 1 h =270 μs at B=1.5 T and T=8 K. Based on this spin detection technique in small ensembles, electron spin resonance experiments with the goal to study coherence properties were attempted. After optical charge generation and storage, a spin-conditional absorption of a circularly polarized light pulse tuned to the singly charged quantum dot s-shell absorption converts the spin information of the resident electron to charge information. Subsequently, time-gated photoluminescence directly reveals the charge state of the quantum dot (1e, 2e) and, therefore, the spin orientation of the resident electron. Schottky diode devices suitable for this single dot spin readout scheme were fabricated and characterized with time-gated photoluminescence. The electric field regimes applicable for reset, optical charging and reliable charge storage were identified. Furthermore, the fidelity of charge readout was investigated as a function of excitation wavelength, applied electric field and optical excitation power. Additional measurements using resonant excitation showed that a single quantum dot can be selectively charged with a single electron via optical excitation in its p-shell. The tunneling escape of this optically initialized electron has been determined, proving the feasibility of reliable charge detection in time-resolved measurements. Extrapolated to reasonable storage fields F=20 kV/cm the tunneling time of the electron exceeds seconds. The electron spin relaxation in a single quantum dot has been determined as a function of temperature at B=12 T. (orig.)
Average subentropy, coherence and entanglement of random mixed quantum states
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)
2017-02-15
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.
Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides
Moody, Galan
2016-03-14
Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Generation of optical coherent state superpositions for quantum information processing
DEFF Research Database (Denmark)
Tipsmark, Anders
2012-01-01
I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...
Quantum coherent control of the vibrational dynamics of a ...
Indian Academy of Sciences (India)
2014-02-12
Feb 12, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 2. Quantum coherent ... H J Strydom. Contributed Papers Volume 82 Issue 2 February 2014 pp 249-253 ... A second laser would then allow for mode selective chemistry to interact selectively with the excited population. Alternatively the ...
Extended SUSY quantum mechanics, intertwining operators and coherent states
International Nuclear Information System (INIS)
Bagarello, F.
2008-01-01
We propose an extension of supersymmetric quantum mechanics which produces a family of isospectral Hamiltonians. Our procedure slightly extends the idea of intertwining operators. Several examples of the construction are given. Further, we show how to build up vector coherent states of the Gazeau-Klauder type associated to our Hamiltonians
Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
Harrison, Neil [Santa Fe, NM; Singleton, John [Los Alamos, NM; Migliori, Albert [Santa Fe, NM
2008-08-05
A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.
Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry
Zanardi, Paolo; Campos Venuti, Lorenzo
2018-01-01
We establish a direct connection between the power of a unitary map in d-dimensions (d algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.
Quantum coherence and entanglement control for atom-cavity systems
Shu, Wenchong
Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have
Coherence time of over a second in a telecom-compatible quantum memory storage material
Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.
2018-01-01
Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.
Viola, Lorenza; Tannor, David
2011-08-01
Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance
Large phase coherence effects in GaMnAs-based nanostructures: Towards a quantum spintronics
International Nuclear Information System (INIS)
Giraud, R.; Vila, L.; Lemaitre, A.; Faini, G.
2007-01-01
Quantum coherent transport of spin-polarized carriers is observed on a very unusual large scale within epitaxial nanowires of GaMnAs, a diluted ferromagnetic semiconductor. From the analysis of the amplitude of strong universal conductance fluctuations, an effective phase coherence length of about 100 nm is inferred at T=100 mK, which is one order of magnitude larger than in a granular 3d-metal ferromagnets. Together with the temperature and bias dependence of these reproducible fluctuations, their wire-length dependence is studied in single-domain sub-micron long nanowires with a perprendicular anisotropy. In particular, variations for two equivalent probe configurations are shown when the length becomes comparable to the actual phase coherence length. This result forecasts the possible observation of non-local voltage drops in GaMnAs nanostructures smaller than about 200 nm. Generally speaking, this research contributes to pave the way towards the realization of quantum spintronics devices
Behzadi, Naghi; Ahansaz, Bahram; Faizi, Esfandyar
2017-11-01
In this paper, we investigate preservation of quantum coherence of a single-qubit interacting with a zero-temperature reservoir through the addition of non-interacting qubits in the reservoir. Moreover, we extend this scheme to preserve quantum entanglement between two and three distant qubits, each of which interacts with a dissipative reservoir independently. At the limit t → ∞, we obtained analytical expressions for the coherence measure and the concurrence of two and three qubits in terms of the number of additional qubits. It is observed that, by increasing the number of additional qubits in each reservoir, the initial coherence and the respective entanglements are completely protected in both Markovian and non-Markovian regimes. Interestingly, the protection of entanglements occurs even under the individually different behaviors of the reservoirs.
Quantum mechanical coherence, resonance, and mind
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Quantum mechanical coherence, resonance, and mind
International Nuclear Information System (INIS)
Stapp, H.P.
1995-01-01
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species
On-chip generation of high-dimensional entangled quantum states and their coherent control.
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-28
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Coherent and conventional gravidynamic quantum 1/f noise
Handel, Peter H.; George, Thomas F.
2008-04-01
Quantum 1/f noise is a fundamental fluctuation of currents, physical cross sections or process rates, caused by infrared coupling of the current carriers to very low frequency (soft) quanta, also known as infraquanta. The latter are soft gravitons in the gravidynamic case with the coupling constant g= pGM2/Nch considered here -- soft photons in the electrodynamic case and soft transversal piezo-phonons in the lattice-dynamical case. Here p=3.14 and F=psi. Quantum 1/f noise is a new aspect of quantum mechanics expressed mainly through the coherent quantum 1/f effect 2g/pf derived here for large systems, and mainly through the conventional quantum 1/f effect for small systems or individual particles. Both effects are present in general, and their effects are superposed in a first approximation with the help of a coherence (weight) parameter s" that will be derived elsewhere for the gravitational case. The spectral density of fractional fluctuations S(dj/j,f) for j=e(hk/2pm)|F|2 is S(F2,f)/ = S(j,f)/2 = [4ps"/(1+s")]GM2/pfNch = 4.4 10E9 M2/(pfNgram2). Here s" = 2N'GM/c2=N'rs, where N' is the number of particles of mass M per unit length of the current, rs their Schwarzschild radius, and s" is our coherence (weight) parameter giving the ratio of coherent to conventional quantum 1/f contributions.
Kumar, Parvendra; Nakajima, Takashi
2015-01-01
We demonstrate the coherent population trapping in a single quantum dot and an ensemble of negatively charged quantum dots using a train of femtosecond pulses. Particularly in an ensemble of quantum dots, we show that the detrimental effects due to the inhomogeneous distribution of their properties can be minimized by appropriately choosing the pulse-train parameters and the magnetic-field strength in such a way that the electron-Zeeman splitting is an integer multiple of the pulse repetition...
DEFF Research Database (Denmark)
Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher
1999-01-01
Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...... investigate a MBE-grown GaAs sample with a sequence of 15 single quantum wells having a successive increase of 1 monolayer in width ranging from 62 A to 102 A and with AlGaAs barriers of 17 Å....
Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing
2018-04-01
We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.; Faist, J.
2014-02-01
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ˜ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
International Nuclear Information System (INIS)
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.; Faist, J.
2014-01-01
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
Directory of Open Access Journals (Sweden)
Naoki Yamamoto
2014-11-01
Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
Quantum memory receiver for superadditive communication using binary coherent states.
Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2016-11-12
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011 , 106 , 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.
Unconditional quantum cloning of coherent states with linear optics
International Nuclear Information System (INIS)
Leuchs, G.; Andersen, U.L.; Josse, V.
2005-01-01
Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)
Scheme of 2-dimensional atom localization for a three-level atom via quantum coherence
Zafar, Sajjad; Ahmed, Rizwan; Khan, M. Khalid
2013-01-01
We present a scheme for two-dimensional (2D) atom localization in a three-level atomic system. The scheme is based on quantum coherence via classical standing wave fields between the two excited levels. Our results show that conditional position probability is significantly phase dependent of the applied field and frequency detuning of spontaneously emitted photons. We obtain a single localization peak having probability close to unity by manipulating the control parameters. The effect of ato...
Hybrid entanglement concentration assisted with single coherent state
Rui, Guo; Lan, Zhou; Shi-Pu, Gu; Xing-Fu, Wang; Yu-Bo, Sheng
2016-03-01
Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, the Natural Science Foundation of Jiangsu Higher Education Institutions, China (Grant No. 15KJA120002), and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.
Coherent states and parasupersymmetric quantum mechanics
Debergh, Nathalie
1992-01-01
It is well known that Parafermi and Parabose statistics are natural extensions of the usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones. Due to this generalization, positive parameters appear: the so-called orders of paraquantization p (= 1, 2, 3, ...) and h sub 0 (= 1/2, 1, 3/2, ...), respectively, the first value leading in each case to the usual statistics. The superpostion of the parabosonic and parafermionic operators gives rise to parasupermultiplets for which mixed trilinear relations have already been studied leading to two (nonequivalent) sets: the relative Parabose and the relative Parafermi ones. For the specific values p = 1 = 2h sub 0, these sets reduce to the well known supersymmetry. Coherent states associated with this last model have been recently put in evidence through the annihilation operator point of view and the group theoretical approach or displacement operator context. We propose to realize the corresponding studies within the new context p = 2 = 2h sub 0, being then directly extended to any order of paraquantization.
Sadeghi, S M
2014-09-01
When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.
Quantum Coherence Quantifiers Based on Rényi α-Relative Entropy
Shao, Lian-He; Li, Yong-Ming; Luo, Yu; Xi, Zheng-Jun
2017-06-01
The resource theories of quantum coherence attract a lot of attention in recent years. Especially, the monotonicity property plays a crucial role here. In this paper we investigate the monotonicity property for the coherence measures induced by the Rényi α-relative entropy, which present in [Phys. Rev. A 94 (2016) 052336]. We show that the Rényi α-relative entropy of coherence does not in general satisfy the monotonicity requirement under the subselection of measurements condition and it also does not satisfy the extension of monotonicity requirement, which presents in [Phys. Rev. A 93 (2016) 032136]. Due to the Rényi α-relative entropy of coherence can act as a coherence monotone quantifier, we examine the trade-off relations between coherence and mixedness. Finally, some properties for the single qubit of Rényi 2-relative entropy of coherence are derived. Supported by by National Natural Science Foundation of China under Grant Nos. 11271237, 11671244, 61671280, and the Higher School Doctoral Subject Foundation of Ministry of Education of China under Grant No. 20130202110001, and Fundamental Research Funds for the Central Universities (GK201502004 and 2016CBY003), and the Academic Leaders and Academic Backbones, Shaanxi Normal University under Grant No. 16QNGG013
Report on single beam stability - coherent effects
International Nuclear Information System (INIS)
Brouzet, E.; Gareyte, J.; Hofmann, A.; Laclare, J.C.; Leleux, G.; Miles, J.; Schindl, K.H.
1980-01-01
Group 1A was concerned with single beam stability, coherent effects. Theory is available. Most of the material for this work was drawn from F.J. Sacherer theory which has been left in reasonably good shape in the sense that given any coupling impedance, its effect on the beam can be estimated. The EBI computer program was extensively used in this respect. We still lack thorough knowledge of the SPS coupling impedance. Accordingly our results rest on a model. This model should be too unrealistic since it originates from various data of the SPS and other machines. Nevertheless any complementary information about the SPS impedance would be welcome. Broad-band impedance and parasitic effects on transverse and longitudinal motions will be reviewed. We shall mainly focus on the 270 GeV case with six equidistant bunches and 10 11 particles per bunch. For other schemes results can be obtained in a similar fashion. Some relevant figures will be given for the situation at injection. (orig.)
Parallel quantum computing in a single ensemble quantum computer
International Nuclear Information System (INIS)
Long Guilu; Xiao, L.
2004-01-01
We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to perform 'single-instruction-multidata' type of parallel computation. Parallel quantum computing can provide additional speedup in Grover's algorithm and Shor's algorithm. In addition, it also makes a fuller use of qubit resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized
Quantum Coherence and Random Fields at Mesoscopic Scales
Energy Technology Data Exchange (ETDEWEB)
Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.
Novel single photon sources for new generation of quantum communications
2017-06-13
state single photon sources that was published in Nature Photonics in October 2016. 15. SUBJECT TERMS diamond color center, diamond, AOARD 16. SECURITY...platform for quantum emitters. We developed means to increase their density, developed basic methods to engineer them, and demonstrate coupling to...manipulation of a silicon vacancy color cent er in a nanodiamond. We demonstrate ultra fast coherent control of a photon, that make s this defect
Coherent creation of photon pairs and generation of time-bin entangled photons from a quantum dot
International Nuclear Information System (INIS)
Harishankar, J.
2013-01-01
Semiconductor quantum dots are proven sources of single photons and entangled photon pairs. They are compact sources with the potential to find applications in quantum information processing. In this present work photon pairs were coherently created through resonant two-photon excitation of a biexciton in a single self-assembled semiconductor quantum dot. Emitted photons were collected in single mode fibers and correlation measurements were performed to determine the photon statistics. Measurements showed that the generated photons were anti-bunched with complete suppression of multi-photon emission. This excitation process was used to generate time-bin entangled photons from a single quantum dot. The existence of the entanglement was confirmed through two-photon interferometry based quantum state tomography. (author)
Coherent control of diamond defects for quantum information science and quantum sensing
Maurer, Peter
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells
International Nuclear Information System (INIS)
Shen Jianqi; Zeng Ruixi
2017-01-01
Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)
Optimal secure quantum teleportation of coherent states of light
Liuzzo-Scorpo, Pietro; Adesso, Gerardo
2017-08-01
We investigate quantum teleportation of ensembles of coherent states of light with a Gaussian distributed displacement in phase space. Recently, the following general question has been addressed in [P. Liuzzo-Scorpo et al., arXiv:1705.03017]: Given a limited amount of entanglement and mean energy available as resources, what is the maximal fidelity that can be achieved on average in the teleportation of such an alphabet of states? Here, we consider a variation of this question, where Einstein-Podolsky-Rosen steering is used as a resource rather than plain entanglement. We provide a solution by means of an optimisation within the space of Gaussian quantum channels, which allows for an intuitive visualisation of the problem. We first show that not all channels are accessible with a finite degree of steering, and then prove that practical schemes relying on asymmetric two-mode Gaussian states enable one to reach the maximal fidelity at the border with the inaccessible region. Our results provide a rigorous quantitative assessment of steering as a resource for secure quantum teleportation beyond the so-called no-cloning threshold. The schemes we propose can be readily implemented experimentally by a conventional Braunstein-Kimble continuous variable teleportation protocol involving homodyne detections and corrective displacements with an optimally tuned gain. These protocols can be integrated as elementary building blocks in quantum networks, for reliable storage and transmission of quantum optical states.
Coherent excitation of a single atom to a Rydberg state
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles
2010-01-01
We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...
Quantum coherent control of the vibrational dynamics of a ...
Indian Academy of Sciences (India)
2014-02-12
Feb 12, 2014 ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... The objective was to show that an arbitrarily chosen upper vibrational level, in the ground electronic state ... 2. Theory. A model was developed to describe the kinetics of a single vibrational mode of a poly-.
Resonance fluorescence and quantum interference of a single NV center
Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.
2017-11-01
The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
International Nuclear Information System (INIS)
Mendonca, Fabio Alencar; Ramos, Rubens Viana
2008-01-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
Mendonça, Fábio Alencar; Ramos, Rubens Viana
2008-02-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
Energy Technology Data Exchange (ETDEWEB)
Noiri, A. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoneda, J.; Nakajima, T.; Otsuka, T.; Delbecq, M. R.; Takeda, K.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Amaha, S.; Allison, G. [RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.
The high-order quantum coherence of thermal light
Chen, Hui
Thermal light, such as sunlight, is usually considered classical light. In a macroscopic picture, classical theory successfully explained the first-order coherence phenomena of thermal light. The macroscopic theory, based on the statistical behavior of light intensity fluctuations, however, can only phenomenologically explain the second- or higher-order coherence phenomena of thermal light. This thesis introduces a microscopic quantum picture, based on the interferences of a large number of randomly distributed and randomly radiated subfields, wavepackets or photons, to the study of high-order coherence of thermal light. This thesis concludes that the second-order intensity fluctuation correlation is caused by nonlocal interference: a pair of wavepackets, which are randomly paired together, interferes with the pair itself at two distant space-time coordinates. This study has the following practical motivations: (1) to simulate N-qbits. Practical quantum computing requires quantum bits(qubits) of N-digit to represent all possible integers from 0 to 2N-1 simultaneously. A large number of independent particles can be prepared to represent a large set of N orthogonal |0> and |1> bits. In fact, based on our recent experiments of simulating the high-order correlation of entangled photons, thermal radiation is suggested as a promising source for quantum information processing. (2) to achieve sunlight ghost imaging. Ghost imaging has three attractive non-classical features: (a) the ghost camera can "see" targets that can never be seen by a classic camera; (2) it is turbulence-free; and (3) its spatial resolution is mainly determined by the angular diameter of the light source. For example, a sunlight ghost image of an object on earth may achieve a spatial resolution of 200 micrometer because the angular diameter of sun is 0.53 degree with respect to Earth. Although ghost imaging has been experimental demonstrated by using entangled photon pairs and "pseudo-thermal light
Quantum Coherent Multielectron Processes in an Atomic Scale Contact
DEFF Research Database (Denmark)
Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen
2017-01-01
The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacti...... coherently via a localized plasmon-polariton mode reproduces the experimental data, in particular, the kinks in the spectra at eV and 2eV as well as the scaling of the intensity at low and intermediate conductances....
Second-Harmonic Coherent Driving of a Spin Qubit in a Si/SiGe Quantum Dot
Scarlino, P.; Kawakami, E.; Ward, D.R.; Savage, D.E.; Lagally, M.G.; Friesen, M.; Coppersmith, S.N.; Eriksson, M.A.; Vandersypen, L.M.K.
2015-01-01
We demonstrate coherent driving of a single electron spin using second-harmonic excitation in a Si/SiGe quantum dot. Our estimates suggest that the anharmonic dot confining potential combined with a gradient in the transverse magnetic field dominates the second-harmonic response. As expected, the
Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory
Lee, Jong-Chan; Park, Kwang-Kyoon; Cho, Young-Wook; Kim, Yoon-Ho
2013-10-01
We report on the preservation of transverse spatial coherence of an optical pulse stored in atomic vapor quantum memory. The high visibility Young-type spatial fringes formed by interference between the retrieved and the delayed optical pulses clearly demonstrate that the atomic vapor quantum memory based on electromagnetically induced transparency preserves transverse spatial coherence. This demonstration has important implications in quantum imaging and multimode quantum information processing.
8th Rochester Conference on Coherence and Quantum Optics
2001-01-01
The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that sym...
Coherent Zeeman resonance from electron spin coherence in a mixed-type GaAs/AlAs quantum well.
O'Leary, Shannon; Wang, Hailin; Prineas, John P
2007-03-01
Coherent Zeeman resonance from electron spin coherence is demonstrated in a Lambda-type three-level system, coupling electron spin states via trions. The optical control of electron density that is characteristic of a mixed-type quantum-well facilitates the study of trion formation as well as the effects of many-body interactions on the manifestation of electron spin coherence in the nonlinear optical response.
Quantum cryptography using coherent states: Randomized encryption and key generation
Corndorf, Eric
objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.
Quantum-classical interface based on single flux quantum digital logic
McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.
2018-04-01
We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.
3D versus 1D quantum confinement in coherently strained CdS/ZnS quantum structures
DEFF Research Database (Denmark)
Woggon, U.; Gindele, F.; Petri, W.
1998-01-01
Monolayer fluctuations in ultrathin, coherently strained CdS/ZnS quantum structures result in a very strong localization of excitons. The deepest localized excitons can be considered as individual, decoupled and three-dimensionally confined. Consequently, fingerprints of zero-dimensionality are f......-dimensionality are found in the optical spectra like single, ultranarrow luminescence lines in micro-photoluminescence and spectrally broad optical gain in the deep blue spectral range. The exchange splitting is proven and a strong enhancement over the bulk value is observed....
Sadeghi, S M; Hood, B; Patty, K D; Mao, C-B
2013-08-20
We use quantum coherence in a system consisting of one metallic nanorod and one semi-conductor quantum dot to investigate a plasmonic nanosensor capable of digital optical detection and recognition of single biological molecules. In such a sensor the adsorption of a specific molecule to the nanorod turns off the emission of the system when it interacts with an optical pulse having a certain intensity and temporal width. The proposed quantum sensors can count the number of molecules of the same type or differentiate between molecule types with digital optical signals that can be measured with high certainty. We show that these sensors are based on the ultrafast upheaval of coherent dynamics of the system and the removal of coherent blockage of energy transfer from the quantum dot to the nanorod once the adsorption process has occurred.
Quantum coherence in the reflection of above barrier wavepackets.
Petersen, Jakob; Pollak, Eli
2018-02-21
The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩ R and ⟨t⟩ T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩ R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the
Quantum coherence in the reflection of above barrier wavepackets
Petersen, Jakob; Pollak, Eli
2018-02-01
The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩R and ⟨t⟩T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier
The role of quantum coherence in dimer and trimer excitation energy transfer
Bengtson, Charlotta; Sjöqvist, Erik
2017-11-01
Recent progress in resource theory of quantum coherence has resulted in measures to quantify coherence in quantum systems. Especially, the l 1-norm and relative entropy of coherence have been shown to be proper quantifiers of coherence and have been used to investigate coherence properties in different operational tasks. Since long-lasting quantum coherence has been experimentally confirmed in a number of photosynthetic complexes, it has been debated if and how coherence is connected to the known efficiency of population transfer in such systems. In this study, we investigate quantitatively the relationship between coherence, as quantified by l 1-norm and relative entropy of coherence, and efficiency, as quantified by fidelity, for population transfer between end-sites in a network of two-level quantum systems. In particular, we use the coherence averaged over the duration of the population transfer in order to carry out a quantitative comparison between coherence and fidelity. Our results show that although coherence is a necessary requirement for population transfer, there is no unique relation between coherence and the efficiency of the transfer process.
Coherent backscattering and forward-scattering peaks in the quantum kicked rotor
Lemarié, G.; Müller, Cord A.; Guéry-Odelin, D.; Miniatura, C.
2017-04-01
We propose and analyze an experimental scheme using the quantum kicked rotor to observe the newly predicted coherent forward-scattering peak together with its long-known twin brother, the coherent backscattering peak. Contrary to coherent backscattering, which arises already under weak-localization conditions, coherent forward scattering is only triggered by Anderson or strong localization. So far, coherent forward scattering has not been observed in conservative systems with elastic scattering by spatial disorder. We propose to turn to the quantum kicked rotor, which has a long and successful history as an accurate experimental platform to observe dynamical localization, i.e., Anderson localization in momentum space. We analyze the coherent forward-scattering effect for the quantum kicked rotor by extensive numerical simulations, both in the orthogonal and unitary class of disordered quantum systems, and show that an experimental realization involving phase-space rotation techniques is within reach of state-of-the-art cold-atom experiments.
International Nuclear Information System (INIS)
Zhang, Z. D.; Wang, J.
2014-01-01
We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy
Multi-state discrimination below the quantum noise limit at the single-photon level
Ferdinand, A. R.; DiMario, M. T.; Becerra, F. E.
2017-10-01
Measurements approaching the ultimate quantum limits of sensitivity are central in quantum information processing, quantum metrology, and communication. Quantum measurements to discriminate multiple states at the single-photon level are essential for optimizing information transfer in low-power optical communications and quantum communications, and can enhance the capabilities of many quantum information protocols. Here, we theoretically investigate and experimentally demonstrate the discrimination of multiple coherent states of light with sensitivities surpassing the quantum noise limit (QNL) at the single-photon level under realistic conditions of loss and noise based on strategies implementing globally-optimized adaptive measurements with single photon counting and displacement operations. These discrimination strategies can provide realistic advantages to enhance information transfer at low powers, and are compatible with photon number resolving detection, which provides robustness at high powers, thus allowing for surpassing the QNL at arbitrary input power levels under realistic conditions.
Spectrally tunable mollow triplet emission from a coherently excited quantum dot in a microcavity
DEFF Research Database (Denmark)
Ulrich, Sven M.; Ates, Serkan; Reitzenstein, Stephan
2010-01-01
Resonance fluorescence of excitonic s-shell emission from a coherently pumped single InGaAs/GaAs quantum dot inside a micropillar cavity has been investigated in dependence on optical pump power and laser detuning, respectively. For strong purely resonant excitation, Mollow triplet spectra with l...... with large Rabi splittings of j~j » 60¹eV have been observed. Laser detuning-dependent series revealed the pronounced asymmetry of the emission triplet as predicted by theory. From our data, an electrical dipole moment of ¹ » 17:8§0:5 Debye could be derived for the excitonic state....
Coherence properties of a single-mode polariton laser
Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Deng, Hui; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Hofling, Sven; Univ of Michigan-Ann Arbor Collaboration; Univ of Wuerzberg Collaboration
2016-05-01
Exciton-polariton condensation is a promising low threshold coherent light source, namely a polariton laser. However, first- and second-order coherences of a polariton laser has been poor and not well understood in two dimensional microcavity systems. Here, we show experimentally that full second-order coherence is established in a single-mode polariton laser and maintained far above the lasing threshold. The coherence time of first-order coherence functions increases initially and then reduces as the number of polaritons in a ground state increases due to the polariton-polariton interaction. Moreover, a transition in spectral lineshape from Lorentzian to Gaussian was observed as the occupation number increases as a result of the large interaction energy. These results are in very good agreement with a single-mode atom laser theory. The single-mode polariton laser was realized by designing a subwavelength grating (SWG) mirror which provides strong lateral confinement for discrete polariton states and polarization-selective reflectance for lifted spin-degeneracy. The results would be important for making fully coherent polariton lasers, as well as nonlinear polariton devices.
Single-ion quantum lock-in amplifier.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee
2011-05-05
Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved
Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states
Aragone, C.; Mundarain, D.
1993-01-01
We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.
Quantum identity authentication with single photon
Hong, Chang ho; Heo, Jino; Jang, Jin Gak; Kwon, Daesung
2017-10-01
Quantum identity authentication with single photons is proposed in the paper. It can verify a user's identity without exposing to an authentication key information. The protocol guarantees high efficiency in that it can verify two bits of authentication information using just a single photon. The security of our authentication scheme is analyzed and confirmed in the case of a general attack. Moreover, the proposed protocol is practicable with current technology. Our quantum identity authentication protocol does not require quantum memory registration and any entangled photon sources.
Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.
Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can
2017-12-21
We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.
Coherent manipulation of three-qubit states in a molecular single-ion magnet
Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.
2017-02-01
We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.
Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus
2015-05-14
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
DEFF Research Database (Denmark)
Iles-Smith, Jake; McCutcheon, Dara; Mørk, Jesper
2016-01-01
find that the sideband resulting from non-Markovian relaxation of the phonon environment leads to a fundamental limit to the fraction of coherently scattered light and to the visibility of two-photon coalescence at weak driving, both of which are absent for atomic systems or within simpler Markovian......The desire to produce high-quality single photons for applications in quantum information science has lead to renewed interest in exploring solid-state emitters in the weak excitation regime. Under these conditions it is expected that photons are coherently scattered, and so benefit from...
Single-photon-level quantum image memory based on cold atomic ensembles.
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2013-01-01
A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories.
Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.
Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel
2013-05-24
Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.
Quantum - coherent dynamics in photosynthetic charge separation revealed by wavelet analysis
Romero, Elisabet; Prior, Javier; Chin, Alex W.; Morgan, Sarah E.; Novoderezhkin, Vladimir I.; Plenio, Martin B.; van Grondelle, Rienk
2017-01-01
Experimental/theoretical evidence for sustained vibration-assisted electronic (vibronic) coherence in the Photosystem II Reaction Center (PSII RC) indicates that photosynthetic solar-energy conversion might be optimized through the interplay of electronic and vibrational quantum dynamics. This
Single Molecule Applications of Quantum Dots
DEFF Research Database (Denmark)
Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.
2013-01-01
Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows:...... experiments held together with the prospects in localization microscopy and single molecule manipulation experiments gave QDs a promising future in single molecule research....
Quantum secure direct communication of digital and analog signals using continuum coherent states
Guerra, Antônio Geovan de Araújo Holanda; Rios, Francisco Franklin Sousa; Ramos, Rubens Viana
2016-11-01
In this work, we present optical schemes for secure direct quantum communication of digital and analog signals using continuum coherent states and frequency-dependent phase modulation. The main advantages of the proposed schemes are that they do not use entangled states and they can be implemented with today technology. The theory of quantum interference of continuum coherent state is described, and the optical setups for secure direct communication are presented and their securities are discussed.
Quantum transport through single molecules
Osorio Oliveros, E.A.
2009-01-01
This thesis describes three-terminal transport measurements through single molecules. The interest in this field stems from the dream that single molecules will form the building blocks for future nanoscale electronic devices. The advantages are their small size -nanometers-, and their synthetic
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo
2018-02-01
The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
7th Rochester Conference on Coherence and Quantum Optics
Mandel, Leonard; Wolf, Emil
1996-01-01
The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take ...
International Nuclear Information System (INIS)
Chemla, D.S.
1993-01-01
This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells
Distributed quantum computing with single photon sources
International Nuclear Information System (INIS)
Beige, A.; Kwek, L.C.
2005-01-01
Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)
Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.
2016-07-01
We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.
International Nuclear Information System (INIS)
Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D
2016-01-01
We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)
Tahan, Charles; Friesen, Mark; Joynt, Robert; Eriksson, M. A.
2003-03-01
Although electron spin qubits in semiconductors are attractive from the viewpoint of low environmental coupling and long coherence times, spin readout remains a challenge for quantum dot quantum computing. Unfortunately, promising schemes based on spin-charge transduction introduce external couplings in the form of reference qubits or Coulomb blockade leads. Here, we propose a twist on the spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot (QD). The same QD can be used for initialization, gating, and readout, without unnecessary external couplings. We present detailed investigations into such a scheme in both SiGe and GaAs systems: simulations, including capacitive coupling to a RF-SET, calculations of coherent oscillation times which determine the read-out speed, and calculations of electron spin relaxation times which determine the initialization speed. We find that both initialization and readout can be performed within the same architecture. Work supported by NSF-QuBIC and MRSEC programs, ARDA, and NSA.
International Nuclear Information System (INIS)
Wei, L.F.; Nori, Franco
2003-01-01
Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed
Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.
Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q
2017-07-12
A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.
Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons
Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas
2018-04-01
Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
Single Photon Experiments and Quantum Complementarity
Directory of Open Access Journals (Sweden)
Georgiev D. D.
2007-04-01
Full Text Available Single photon experiments have been used as one of the most striking illustrations of the apparently nonclassical nature of the quantum world. In this review we examine the mathematical basis of the principle of complementarity and explain why the Englert-Greenberger duality relation is not violated in the configurations of Unruh and of Afshar.
Mixed biexcitons in single quantum wells
DEFF Research Database (Denmark)
Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1999-01-01
Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Delta(h) = 4.8 meV and Delta(m)= 2.8 meV is identified by polarization...
Optimal discrimination of M coherent states with a small quantum computer
International Nuclear Information System (INIS)
Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary
2014-01-01
The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies
Coherent Ising machines—optical neural networks operating at the quantum limit
Yamamoto, Yoshihisa; Aihara, Kazuyuki; Leleu, Timothee; Kawarabayashi, Ken-ichi; Kako, Satoshi; Fejer, Martin; Inoue, Kyo; Takesue, Hiroki
2017-12-01
In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.
Coherent control of single electrons: a review of current progress.
Bäuerle, Christopher; Christian Glattli, D; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier
2018-01-22
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
Coherent control of single electrons: a review of current progress
Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier
2018-05-01
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
Single-charge tunneling in ambipolar silicon quantum dots
Müller, Filipp
2015-01-01
Spin qubits in coupled quantum dots (QDs) are promising for future quantum information processing (QIP). A quantum bit (qubit) is the quantum mechanical analogon of a classical bit. In general, each quantum mechanical two-level system can represent a qubit. For the spin of a single charge carrier
Quantum control and coherence of interacting spins in diamond
De Lange, G.
2012-01-01
The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum
Opto-electronics on Single Nanowire Quantum Dots
Van Kouwen, M.P.
2010-01-01
An important goal for nanoscale opto-electronics is the transfer of single electron spin states into single photon polarization states (and vice versa), thereby interfacing quantum transport and quantum optics. Such an interface enables new experiments in the field of quantum information processing. Single and entangled photon-pair generation can be used for quantum cryptography. Furthermore, photons can be used in the readout of a quantum computer based on electron spins. Semiconducting nano...
International Nuclear Information System (INIS)
Cai Congbo; Chen Zhong; Cai Shuhui; Zhong Jianhui
2005-01-01
In this paper, behaviors of single-quantum coherences and inter-molecular multiple-quantum coherences under restricted diffusion in nuclear magnetic resonance experiments were investigated. The propagator formalism based on the loss of spin phase memory during random motion was applied to describe the diffusion-induced signal attenuation. The exact expression of the signal attenuation under the short gradient pulse approximation for restricted diffusion between two parallel plates was obtained using this propagator method. For long gradient pulses, a modified formalism was proposed. The simulated signal attenuation under the effects of gradient pulses of different width based on the Monte Carlo method agrees with the theoretical predictions. The propagator formalism and computer simulation can provide convenient, intuitive and precise methods for the study of the diffusion behaviors
Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States
Directory of Open Access Journals (Sweden)
Hirota Osamu
2017-12-01
Full Text Available Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011. This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.
Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States
Hirota, Osamu
2017-12-01
Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.
Description of quantum coherence in thermodynamic processes requires constraints beyond free energy
Lostaglio, Matteo; Jennings, David; Rudolph, Terry
2015-01-01
Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774
Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions
Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.
Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.
International Nuclear Information System (INIS)
Huh, Yoonjung; Roy, Pierre-Nicholas
2006-01-01
Inversion symmetry is included in the operator formulation of the centroid molecular dynamics (CMD). This work involves the development of a symmetry-adapted CMD (SA-CMD), here particularly for symmetrization and antisymmetrization projections. A symmetry-adapted quasidensity operator, as defined by Blinov and Roy [J. Chem. Phys. 115, 7822 (2001)], is employed to obtain the centroid representation of quantum mechanical operators. Numerical examples are given for a single particle confined to one-dimensional symmetric quartic and symmetric double-well potentials. Two SA-CMD simulations are performed separately for both projections, and centroid position autocorrelation functions are obtained. For each projection, the quality of the approximation as well as the accuracy are similar to those of regular CMD. It is shown that individual trajectories from two separate SA-CMD simulations can be properly combined to recover trajectories for Boltzmann statistics. Position autocorrelation functions are compared to the exact quantum mechanical ones. This explicit account of inversion symmetry provides a qualitative improvement on the conventional CMD approach and allows the recovery of some quantum coherence
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J; Treutlein, Philipp
2017-08-11
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66 GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50 ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp
2017-08-01
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.
The quantum coherence of disordered dipolar bosonic gas
International Nuclear Information System (INIS)
Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui
2013-01-01
We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)
Observation of quantum state collapse and revival due to the single-photon Kerr effect.
Kirchmair, Gerhard; Vlastakis, Brian; Leghtas, Zaki; Nigg, Simon E; Paik, Hanhee; Ginossar, Eran; Mirrahimi, Mazyar; Frunzio, Luigi; Girvin, S M; Schoelkopf, R J
2013-03-14
To create and manipulate non-classical states of light for quantum information protocols, a strong, nonlinear interaction at the single-photon level is required. One approach to the generation of suitable interactions is to couple photons to atoms, as in the strong coupling regime of cavity quantum electrodynamic systems. In these systems, however, the quantum state of the light is only indirectly controlled by manipulating the atoms. A direct photon-photon interaction occurs in so-called Kerr media, which typically induce only weak nonlinearity at the cost of significant loss. So far, it has not been possible to reach the single-photon Kerr regime, in which the interaction strength between individual photons exceeds the loss rate. Here, using a three-dimensional circuit quantum electrodynamic architecture, we engineer an artificial Kerr medium that enters this regime and allows the observation of new quantum effects. We realize a gedanken experiment in which the collapse and revival of a coherent state can be observed. This time evolution is a consequence of the quantization of the light field in the cavity and the nonlinear interaction between individual photons. During the evolution, non-classical superpositions of coherent states (that is, multi-component 'Schrödinger cat' states) are formed. We visualize this evolution by measuring the Husimi Q function and confirm the non-classical properties of these transient states by cavity state tomography. The ability to create and manipulate superpositions of coherent states in such a high-quality-factor photon mode opens perspectives for combining the physics of continuous variables with superconducting circuits. The single-photon Kerr effect could be used in quantum non-demolition measurement of photons, single-photon generation, autonomous quantum feedback schemes and quantum logic operations.
Single-quadrature continuous-variable quantum key distribution
DEFF Research Database (Denmark)
Gehring, Tobias; Jacobsen, Christian Scheffmann; Andersen, Ulrik Lund
2016-01-01
Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two...... commercialization of continuous-variable quantum key distribution, provided that the low noise requirement can be achieved....
Near-field strong coupling of single quantum dots.
Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert
2018-03-01
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.
Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.
2018-03-01
We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.
Quantum coherence dynamics of a three-level atom in a two-mode field
International Nuclear Information System (INIS)
Solovarov, N. K.
2008-01-01
The correlated dynamics of a three-level atom resonantly coupled to an electromagnetic cavity field is calculated (Λ, V, and L models). A diagrammatic representation of quantum dynamics is proposed for these models. As an example, Λ-atom dynamics is examined to demonstrate how the use of conventional von Neumann's reduction leads to internal decoherence (disentanglement-induced decoherence) and to the absence of atomic coherence under multiphoton excitation. The predicted absence of atomic coherence is inconsistent with characteristics of an experimentally observed atom-photon entangled state. It is shown that the correlated reduction of a composite quantum system proposed in [18] qualitatively predicts the occurrence and evolution of atomic coherence under multiphoton excitation if a seed coherence is introduced into any subsystem (the atom or a cavity mode)
Directory of Open Access Journals (Sweden)
Annepu Venkata Naga Vamsi
2016-01-01
Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.
Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities
DEFF Research Database (Denmark)
Madsen, Kristian Høeg
In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light......-matter interaction in the micropiller caivty is so strong that we measure non-Markovian dynamics of the quantum dot, and we compare to the Jaynes-Cummings model with all parameters independently determined. We find an excellent agreement when comparing the dynamics, but the emission spectra show significant...... deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...
Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication
Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert
As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.
Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert
We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.
Quantum coherence effects in electromagnetic radiation in the case of interaction with electrons
Gazazian, A. D.; Sherman, B. G.
1989-07-01
A study is made of electron dynamics in a monochromatic quantum field whose state is represented in different forms. Wave functions of the system are obtained, and it is shown that electron motion in a linearly polarized coherent quantum field leads to the formation of the compressed photon state. The coherent state is formed in the case of the circular polarization of the external field. The compressed photon state is also formed in the case of electron interaction with individual linearly polarized vacuum modes in a finite volume. Formulas are obtained for the classical field emission and Compton effect.
Experimental quantum tossing of a single coin
International Nuclear Information System (INIS)
Nguyen, A T; Frison, J; Massar, S; Huy, K Phan
2008-01-01
The cryptographic protocol of coin tossing consists of two parties, Alice and Bob, who do not trust each other, but want to generate a random bit. If the parties use a classical communication channel and have unlimited computational resources, one of them can always cheat perfectly. If the parties use a quantum communication channel, there exist protocols such that neither party can cheat perfectly, although they may be able to significantly bias the coin. Here, we analyze in detail how the performance of a quantum coin tossing experiment should be compared to classical protocols, taking into account the inevitable experimental imperfections. We then report an all-optical fiber experiment in which a single coin is tossed whose randomness is higher than achievable by any classical protocol and present some easily realizable cheating strategies by Alice and Bob
Integrated generation of complex optical quantum states and their coherent control
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-01-01
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.
Monogamy relations of quantum entanglement for partially coherently superposed states
Shi, Xian
2017-12-01
Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.
Opto-electronics on Single Nanowire Quantum Dots
Van Kouwen, M.P.
2010-01-01
An important goal for nanoscale opto-electronics is the transfer of single electron spin states into single photon polarization states (and vice versa), thereby interfacing quantum transport and quantum optics. Such an interface enables new experiments in the field of quantum information processing.
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-03-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
Coherent control of quantum chaotic diffusion: Diatomic molecules in a pulsed microwave field
Gong, Jiangbin; Brumer, Paul
2001-08-01
Extensive phase control of quantum chaotic diffusion is demonstrated for diatomic molecules periodically kicked with microwave pulses. In particular, both complete suppression of chaotic diffusion as well as its enhancement can be achieved by varying the phase of the initial superposition state. The origin of this control in deviations from random matrix theory is also discussed. The results should motivate experiments that are relevant to both coherent control and to quantum chaos.
Spin quantum tunneling via entangled states in a dimer of exchange coupled single-molecule magnets
Tiron, R.; Wernsdorfer, W.; Aliaga-Alcalde, N.; Foguet-Albiol, D.; Christou, G.
2004-03-01
A new family of supramolecular, antiferromagnetically exchange-coupled dimers of single-molecule magnets (SMMs) has recently been reported [W. Wernsdorfer, N. Aliaga-Alcalde, D.N. Hendrickson, and G. Christou, Nature 416, 406 (2002)]. Each SMM acts as a bias on its neighbor, shifting the quantum tunneling resonances of the individual SMMs. Hysteresis loop measurements on a single crystal of SMM-dimers have now established quantum tunneling of the magnetization via entangled states of the dimer. This shows that the dimer really does behave as a quantum-mechanically coupled dimer. The transitions are well separated, suggesting long coherence times compared to the time scale of the energy splitting. This result is of great importance if such systems are to be used for quantum computing. It also allows the measurement of the longitudinal and transverse superexchange coupling constants [Phys. Rev. Lett. 91, 227203 (2003)].
Tunable single-photon multi-channel quantum router based on an optomechanical system
Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-01-01
Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.
Process tomography via sequential measurements on a single quantum system
CSIR Research Space (South Africa)
Bassa, H
2015-09-01
Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...
Entanglement and quantum superposition induced by a single photon
Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying
2018-03-01
We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.
Behzadi, Naghi; Ahansaz, Bahram; Shojaei, Saeid
2013-01-01
New scheme for generating genuine three-partite entanglement among three quantum dots (QDs) is proposed. The QDs are trapped in an one-dimensional (1D) array of three equidistance single-mode coupled cavities. Photon hopping is considered to be responsible for coupling between the cavities. The effective dynamics of the system leads to generate genuine three-partite entangled coherent excitonic states in QDs. The entanglement of these states, after encoding as three-qubit system, can be detected by entanglement witnesses (EWs) based on GHZ-states. It is shown that the generated entangled states can be arbitrarily very close to the GHZ-states.
Quantum coherence-driven self-organized criticality and nonequilibrium light localization.
Tsakmakidis, Kosmas L; Jha, Pankaj K; Wang, Yuan; Zhang, Xiang
2018-03-01
Self-organized criticality emerges in dynamical complex systems driven out of equilibrium and characterizes a wide range of classical phenomena in physics, geology, and biology. We report on a quantum coherence-controlled self-organized critical transition observed in the light localization behavior of a coherence-driven nanophotonic configuration. Our system is composed of a gain-enhanced plasmonic heterostructure controlled by a coherent drive, in which photons close to the stopped-light regime interact in the presence of the active nonlinearities, eventually synchronizing their dynamics. In this system, on the basis of analytical and corroborating full-wave Maxwell-Bloch computations, we observe quantum coherence-controlled self-organized criticality in the emergence of light localization arising from the synchronization of the photons. It is associated with two first-order phase transitions: one pertaining to the synchronization of the dynamics of the photons and the second pertaining to an inversionless lasing transition by the coherent drive. The so-attained light localization, which is robust to dissipation, fluctuations, and many-body interactions, exhibits scale-invariant power laws and absence of finely tuned control parameters. We also found that, in this nonequilibrium dynamical system, the effective critical "temperature" of the system drops to zero, whereupon one enters the quantum self-organized critical regime.
From atomic to mesoscale the role of quantum coherence in systems of various complexities
Novikova, Irina
2015-01-01
This volume presents the latest advancements and future developments of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to studies of a wide range of quantum systems, with an emphasis on understanding of quantum coherence and other quantum phenomena originated from light-matter interactions. The book intends to survey the current research landscape and to highlight major scientific trends in AMO physics as well as those interfacing with interdisciplinary sciences. The volume may be particularly useful for young researchers working on establishing their scientific interests and goals.
Duality relation between coherence and path information in the presence of quantum memory
Bu, Kaifeng; Li, Lu; Wu, Junde; Fei, Shao-Ming
2018-02-01
Wave-particle duality demonstrates a competition relation between wave and particle behavior for a particle going through an interferometer. This duality can be formulated as an inequality, which upper bounds the sum of interference visibility and path information. However, if the particle is entangled with a quantum memory, then the bound may decrease. Here, we find the duality relation between coherence and path information for a particle going through a multipath interferometer in the presence of a quantum memory, offering an upper bound on the duality relation which is directly connected with the amount of entanglement between the particle and the quantum memory.
Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography.
Pirandola, Stefano; Braunstein, Samuel L; Lloyd, Seth
2008-11-14
We provide a simple description of the most general collective Gaussian attack in continuous-variable quantum cryptography. In the scenario of such general attacks, we analyze the asymptotic secret-key rates which are achievable with coherent states, joint measurements of the quadratures and one-way classical communication.
Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement
Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor
2018-01-01
We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.
Quantum coherent control of the vibrational dynamics of a ...
Indian Academy of Sciences (India)
2014-02-12
Feb 12, 2014 ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser pulse by means of a 4f-spatial light modulator in order to selectively excite the rovibrational modes of a polyatomic molecule. We preferentially populate an arbitrarily chosen upper rovibrational level by only ...
Quantum logic gates using coherent population trapping states
Indian Academy of Sciences (India)
neutral atoms prepared in coherent population trap (CPT) states. It is shown in this paper that such systems can be easily prepared and manipulated and it is possible to build one- qubit and two-qubit gates using them. Since CPT states are 'dark states' of the atom–light interaction, the atoms prepared in such states will not ...
Quantum logic gates using coherent population trapping states
Indian Academy of Sciences (India)
A scheme is proposed for achieving a controlled phase gate using interaction between atomic spin dipoles. Further, the spin states are prepared in coherent population trap states (CPTs), which are robust against perturbations, laser ﬂuctuations etc. We show that one-qubit and two-qubit operations can easily be obtained in ...
Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.
Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola
2014-11-01
Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
A Study on the Applications of Quantum Optical Coherence to Nano-Optics
Hakami, Jabir Wali
Optically controlled dipole-dipole interaction at submicrometers and subwavelength scales leads to many interesting phenomenon and remarkable potential applications in quantum optics, condensed matter physics, and today's micro-devices. In this dissertation, we study the applications of quantum optical coherence to nano-optics in the following systems and aspects. On the one hand, chiral metamaterials has been previously reported as excellent candidates to realize both attractive and repulsive Casimir forces, where the existence of a repulsive Casimir force depends upon the strength of the chirality. On the other hand, nanoscale integration of metal nanoparticles and semiconductors is particularly interesting because the strengths of both materials are combined in such a hybrid system. In the first part of this work, we proposed a technical scheme to coherently control of the Casimir interaction energy with two identical chirality mediums. We took explicit caution regarding the requirements of passivity and causal response of the materials, since these requirements are essential for the application of the Lifshitz formula. The rare-earth metals' atomic species, for instance, dysprosium, is proposed as an applicable medium for the forthcoming studies of possible experimental implementation of our technique. Secondly, we fully investigated the coherent control of the quantum optical properties of spontaneous emission spectra of a semiconductor quantum dot coupled to a metallic nanoparticle. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. In
The quantum potential and ''causal'' trajectories for stationary states and for coherent states
International Nuclear Information System (INIS)
Barut, A.O.; Bozic, M.
1988-07-01
We show for stationary states in a central potential that the quantum action S is only a part of the classical action W and derive an expression for the ''quantum potential'' U Q in terms of the other part. The association of momenta of some ''particles'' in the causal interpretation of quantum mechanics by p-vector=∇S and by dp-vector'/dt=-∇(V+U Q ) gives for stationary states very different orbits which have no relation to classical orbits but express some flow properties of the quantum mechanical current. For coherent states, on the other hand, p-vector and p-vector' as well as the quantum mechanical average p-vector and classical momenta, all four, lead to essentially the same trajectories except for different integration constants. The spinning particle is also considered. (author). 27 refs, 2 figs
Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.
Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria
2018-01-26
Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.
International Nuclear Information System (INIS)
Molotkov, S N; Potapova, T A
2015-01-01
The problem of quantum key distribution security in channels with large losses is still open. Quasi-single-photon sources of quantum states with losses in the quantum communication channel open up the possibility of attacking with unambiguous state discrimination (USD) measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting the classic reference pulses. Conservation of the number of counts of intense coherent pulses makes it impossible to conduct USD measurements. Moreover, the losses in the communication channel are considered to be unknown in advance and are subject to change throughout the series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the protocol makes it possible to carry out a complete analysis of its security. (letter)
Coherent versus incoherent dynamics in InAs quantum-dot active wave guides
DEFF Research Database (Denmark)
Borri, Paola; Langbein, W.; Hvam, Jørn Märcher
2001-01-01
Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure......Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies....... The measurements are performed with heterodyne detection on quantum-dot active wave guides to enhance the light-matter interaction length. An elastic nature of the measured dephasing is revealed which is independent of the dot energy level scheme....
Spectroscopy of Single Free Standing Quantum Wells
International Nuclear Information System (INIS)
Williams, M D; Hollars, C W; Huser, T; Jallow, N; Cochran, A; Bryant, R
2006-01-01
We investigated the interaction of quantum confined exciton states GaAs quantum wells with native surface states. Single molecule photoluminescence (PL) spectroscopy, developed by T. Huser at LLNL was used to probe the unique bare quantum wells in the free standing quantum well structure. The latter was developed by the M. D. Williams at Clark Atlanta University. The goals of the project during this budget cycle were to procure samples containing GaAs free standing QWs, identify suitable regions for PL analysis at Lawrence Livermore, analyze the structures at room temperature and at liquid nitrogen temperatures. The specific regions of interest on the sample structures were identified by scanning electron microscopy at Clark Atlanta prior to transport to LLNL. Previous attempts at other facilities using NSOM, cathodoluminescence, and conventional PL showed little luminescence activity at room temperature from the 200 (angstrom) thick wells. This suggested either excess recombination due to surface states in the quantum well region or insufficient absorption length for photoluminescence. The literature suggested that the effect of the defects could be eliminated by reducing the sample temperature below their associated activation energies. In our previous subcontract work with LLNL, a significant amount of effort was expended to modify the apparatus to allow low temperature measurements. The modifications were not successful and we concluded that in order to do the measurements at low temperature we would need to purchase a commercial optical cryostat to get reliable results. Ms. Rochelle Bryant worked during the summer as an intern at LLNL on the project under the supervision of C. Hollars and in collaboration with T. Huser and found that PL emission could be obtained at room temperature. This was a surprising result as the literature and our experience shows that there is no PL emission from GaAs at room temperature. We speculate that this is due to the small
Quantum private comparison employing single-photon interference
Liu, Bin; Xiao, Di; Huang, Wei; Jia, Heng-Yue; Song, Ting-Ting
2017-07-01
As a typical quantum cryptographic task between distrustful participants, quantum private comparison (QPC) has attracted a lot of attention in recent years. Here we propose two QPC protocols employing single-photon interference, a typical and interesting technology for quantum communications. Compared with the previous QPC protocols employing normal single states or entangled states, the proposed protocols achieve lower communication complexity utilizing the characteristics of single-photon interference. And we also proved the security of the proposed protocols in theory.
Energy Technology Data Exchange (ETDEWEB)
Huebner, Marc C.
2009-10-15
Recently, the public has become aware of keywords like ''Quantum computer'' or ''Quantum cryptography''. Regarding their potential application in solid state based quantum information processing and their overall benefit in fundamental research quantum dots have gained more and more public interest. In this context, quantum dots are often referred to as ''artificial atoms'', a term subsuming their physical properties quite nicely and emphasizing the huge potential for further investigations. The basic mechanism to be considered is the theoretical model of a two-level system. A quantum dot itself represents this kind of system quite nicely, provided that only the presence or absence of a single exciton in the ground state of that structure is regarded. This concept can also be expanded to the presence of two excitons (bi-exciton). Transitions between the relevant levels can be induced by optical stimulation. When integrating quantum dots in diode like structures measurements of this phenomena can be accomplished regarding photo currents. This means of detection is highly sensitive and allows for tuning of the energy levels with respect to the energy of an exciting laser utilizing the Stark effect (via an external electric field). The photo current then shows narrow resonances representing those transitions. By this, the system can be used as a highly sensitive nano-spectrometer. The examination of coherent interactions between quantum dots and an electromagnetic field uses laser pulses that are much shorter than the dephasing time of the system (2 ps). The basic study to be done on two level systems is the measurement of Rabi oscillations allowing for the selection of an arbitrary superposition of states. In this work, the existing setup was improved regarding the possibility to control the temperature of the sample. Up to now, only investigations at 4,2 K have been possible. Even at 70 K Rabi oscillations
Universal quantum gates for Single Cooper Pair Box based quantum computing
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Identification of single-input-single-output quantum linear systems
Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin
2017-03-01
The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.
Energy Technology Data Exchange (ETDEWEB)
Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)
2016-06-07
We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.
Fractional revivals of coherence in quantum mechanical oscillators
Ross, J.C.; Capel, H.W.
2000-01-01
A case study is made of the delocalisation and revival dynamics of a continuously driven quantum pendulum in integrable and near integrable regimes, utilising the Husimi phase-space distribution function, and an entropy function which measures the degree of localisation. The numerical results can be
Theory of coherent dynamic nuclear polarization in quantum dots
DEFF Research Database (Denmark)
Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand
2014-01-01
We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...
Effects of Oscillatory Deformations on the Coherent and Incoherent Quantum Transport
Behzadi, Naghi; Ahansaz, Bahram
2017-11-01
Inspired by the works of Caruso (New J. Phys. 16, 055015 (2014) and Scholak et al. (J. Phys. B: At. Mol. Opt. Phys. 44, 184012 2011), which state that for a large class of complex noisy networks, the optimal efficiency of quantum transport is universally obtained by mixing coherent (Hamiltonian) and incoherent (noisy) parts where the contribution of the coherent part is strictly more than the incoherent one, we examine the effect of oscillatory deformations on two simple prototypes in order to study their effects on the efficiency of coherent and incoherent energy transport. The prototypes are interchangeable to each other only by a simple phase modulation, such that the dynamics for the first type is only coherent, while for the second one the coherent evolution is completely suppressed and the evolution of the system is only incoherent (noisy). In this regard, it is shown that there exist a special deformation by which the efficiency of incoherent transport becomes better than the coherent one. This result suggests that in the noisy networks with collective harmonic motions, the optimality of transport can be occurred in such a way that the contribution of incoherent term is more than the coherent one.
Photoluminescence studies of single InGaAs quantum dots
DEFF Research Database (Denmark)
Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher
1999-01-01
Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....
Ryan, Robert G; Stacey, Alastair; O'Donnell, Kane M; Ohshima, Takeshi; Johnson, Brett C; Hollenberg, Lloyd C L; Mulvaney, Paul; Simpson, David A
2018-04-18
Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp 2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.
Blumrich, Matthias A.; Salapura, Valentina
2010-11-02
An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.
Quantum transport of the single metallocene molecule
Yu, Jing-Xin; Chang, Jing; Wei, Rong-Kai; Liu, Xiu-Ying; Li, Xiao-Dong
2016-10-01
The Quantum transport of three single metallocene molecule is investigated by performing theoretical calculations using the non-equilibrium Green's function method combined with density functional theory. We find that the three metallocen molecules structure become stretched along the transport direction, the distance between two Cp rings longer than the other theory and experiment results. The lager conductance is found in nickelocene molecule, the main transmission channel is the electron coupling between molecule and the electrodes is through the Ni dxz and dyz orbitals and the s, dxz, dyz of gold. This is also confirmed by the highest occupied molecular orbital resonance at Fermi level. In addition, negative differential resistance effect is found in the ferrocene, cobaltocene molecules, this is also closely related with the evolution of the transmission spectrum under applied bias.
Extending the coherence of a quantum dot hybrid qubit
Thorgrimsson, Brandur; Kim, Dohun; Yang, Yuan-Chi; Smith, L. W.; Simmons, C. B.; Ward, Daniel R.; Foote, Ryan H.; Corrigan, J.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.
2017-08-01
Identifying and ameliorating dominant sources of decoherence are important steps in understanding and improving quantum systems. Here, we show that the free induction decay time (T2*) and the Rabi decay rate (ΓRabi) of the quantum dot hybrid qubit can be increased by more than an order of magnitude by appropriate tuning of the qubit parameters and operating points. By operating in the spin-like regime of this qubit, and choosing parameters that increase the qubit's resilience to charge noise (which we show is presently the limiting noise source for this qubit), we achieve a Ramsey decay time T2* of 177 ns and a Rabi decay time 1/ΓRabi exceeding 1 μs. We find that the slowest ΓRabi is limited by fluctuations in the Rabi frequency induced by charge noise and not by fluctuations in the qubit energy itself.
Quantum correlations between each two-level system in a pair of atoms and general coherent fields
Directory of Open Access Journals (Sweden)
S. Abdel-Khalek
Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy
Coherent-light-boosted, sub-shot noise, quantum interferometry
Energy Technology Data Exchange (ETDEWEB)
Plick, William N; Dowling, Jonathan P [Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Agarwal, Girish S, E-mail: bplick@yahoo.co [Department of Physics, Oklahoma State University, Stillwater, OK 74078 (United States)
2010-08-15
We present in this paper a new scheme for optical interferometry. We utilize coherent-beam-stimulated two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before detection. Our theoretical device has the potential to reach far below the shot-noise limit in phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating the required resource. Furthermore, our scheme requires no complicated detection protocol, relying instead only on simple intensity measurement. Also, bright, coherent sources 'boost' squeezed light, creating a very sensitive device. This hybrid scheme relies on no unknown components and can be constructed with current technology. In this paper, we present our analysis of this relatively straightforward device, using the operator propagation method. We derive the phase sensitivity and provide a simple numerical example of the power of our new proposal. Sensitivity to unknown phase shifts scales as a shot-noise-limited Mach-Zehnder interferometer, multiplied by a sub-Heisenberg contribution from the squeezed light.
Coherent-light-boosted, sub-shot noise, quantum interferometry
International Nuclear Information System (INIS)
Plick, William N; Dowling, Jonathan P; Agarwal, Girish S
2010-01-01
We present in this paper a new scheme for optical interferometry. We utilize coherent-beam-stimulated two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before detection. Our theoretical device has the potential to reach far below the shot-noise limit in phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating the required resource. Furthermore, our scheme requires no complicated detection protocol, relying instead only on simple intensity measurement. Also, bright, coherent sources 'boost' squeezed light, creating a very sensitive device. This hybrid scheme relies on no unknown components and can be constructed with current technology. In this paper, we present our analysis of this relatively straightforward device, using the operator propagation method. We derive the phase sensitivity and provide a simple numerical example of the power of our new proposal. Sensitivity to unknown phase shifts scales as a shot-noise-limited Mach-Zehnder interferometer, multiplied by a sub-Heisenberg contribution from the squeezed light.
International Nuclear Information System (INIS)
Shen Yong; Yang Jian; Guo Hong
2009-01-01
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics
International Nuclear Information System (INIS)
Axt, V M; Kuhn, T
2004-01-01
The application of femtosecond spectroscopy to the study of ultrafast dynamics in semiconductor materials and nanostructures is reviewed with particular emphasis on the physics that can be learned from it. Excitation with ultrashort optical pulses in general results in the creation of coherent superpositions and correlated many-particle states. The review comprises a discussion of the dynamics of this correlated many-body system during and after pulsed excitation as well as its analysis by means of refined measurements and advanced theories. After an introduction of basic concepts-such as coherence, correlation and quantum kinetics-a brief overview of the most important experimental techniques and theoretical approaches is given. The remainder of this paper is devoted to specific results selected in order to highlight how femtosecond spectroscopy gives access to the physics of coherences, correlations and quantum kinetics involving charge, spin and lattice degrees of freedom. First examples deal with the dynamics of basic laser-induced coherences that can be observed, e.g. in quantum beat spectroscopy, in coherent control measurements or in experiments using few-cycle pulses. The phenomena discussed here are basic in the sense that they can be understood to a large extent on the mean-field level of the theory. Nevertheless, already on this level it is found that semiconductors behave substantially differently from atomic systems. Subsequent sections report on the occurrence of coherences and correlations beyond the mean-field level that are mediated either by carrier-phonon or carrier-carrier interactions. The corresponding analysis gives deep insight into fundamental issues such as the energy-time uncertainty, pure dephasing in quantum dot structures, the role of two-pair or even higher correlations and the build-up of screening. Finally results are presented concerning the ultrafast dynamics of resonantly coupled excitations, where a combination of different
Near-field optical spectroscopy of single quantum wires
Harris, T. D.; Gershoni, D.; Grober, R. D.; Pfeiffer, L.; West, K.; Chand, N.
1996-02-01
Low temperature near-field scanning optical microscopy is used for spectroscopic studies of single, nanometer dimension, cleaved edge overgrown quantum wires. A direct experimental comparison between a two dimensional system and a single genuinely one dimensional quantum wire system, inaccessible to conventional far field optical spectroscopy, is enabled by the enhanced spatial resolution. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of 3 absorption enhancement for these wires compared to the wells is concluded from the photoluminescence excitation data.
Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout
Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali
2017-09-01
Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.
Ge, Wenchao; Bhattacharya, M.
2016-10-01
Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.
Quantum dual signature scheme based on coherent states with entanglement swapping
Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying
2016-08-01
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).
Quantum dual signature scheme based on coherent states with entanglement swapping
International Nuclear Information System (INIS)
Liu Jia-Li; Shi Rong-Hua; Shi Jin-Jing; Lv Ge-Li; Guo Ying
2016-01-01
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. (paper)
International Nuclear Information System (INIS)
Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali
2012-01-01
Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.
The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite
Energy Technology Data Exchange (ETDEWEB)
Habib, K. M. Masum, E-mail: khabib@ee.ucr.edu; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521-0204 (United States); Ge, Supeng [Department of Physics and Astronomy, University of California, Riverside, California 92521-0204 (United States)
2013-12-09
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm{sup 2}. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.
The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite
International Nuclear Information System (INIS)
Habib, K. M. Masum; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K.; Ge, Supeng
2013-01-01
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm 2 . For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described
Delteil, Aymeric; Gao, Wei-bo; Fallahi, Parisa; Miguel-Sanchez, Javier; Imamoǧlu, Atac
2014-03-01
Single-shot readout of individual qubits is typically the slowest process among the elementary single- and two-qubit operations required for quantum information processing. Here, we use resonance fluorescence from a single-electron charged quantum dot to read out the spin-qubit state in 800 nanoseconds with a fidelity exceeding 80%. Observation of the spin evolution on longer time scales reveals quantum jumps of the spin state: we use the experimentally determined waiting-time distribution to characterize the quantum jumps.
Theory of Transport Phenomena in Coherent Quantum Hall Bilayers
MacDonald, Allan H.; Chen, Hua; Sodemann, Inti
2015-03-01
We will describe a theory that allows to understand the anomalous transport properties of the excitonic condensate state occurring in quantum quantum Hall bilayers in terms of a picture in which the condensate phase is nearly uniform across the sample, and the strength of condensate coupling to interlayer tunneling processes is substantially reduced compared to the predictions of disorder-free microscopic mean-field theory. These ingredients provide a natural explanation for recently established I-V characteristics which feature a critical current above which the tunneling resistance abruptly increases and a non-local interaction between interlayer tunneling at the inner and outer edges of Corbino rings. We propose a microscopic picture in which disorder is the main agent responsible for the reduction of the effective interlayer tunneling strength. IS is supported by the Pappalardo Fellowship in Physics. HC and AHM are supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03- 02ER45958 and Welch Foundation Grant TBF1473.
DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.
1999-01-01
Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve t...
Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers
International Nuclear Information System (INIS)
Assaf, Ohad; Ben-Aryeh, Yacob
2002-01-01
In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
Wallraff, A; Schuster, D I; Blais, A; Frunzio, L; Huang, R- S; Majer, J; Kumar, S; Girvin, S M; Schoelkopf, R J
2004-09-09
The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.
International Nuclear Information System (INIS)
Sadeghi, S.M.; Patty, K.D.
2014-01-01
In the presence of metallic nanoparticles the nature of the optical excitations (pumping) of semiconductor quantum dots can be determined by their molecular states and resonances formed via coherent coupling of excitons and plasmons. We show that the spontaneous emission of such quantum dots can provide key information regarding formation and characteristics of such molecular properties. This includes an ultra-fast switching process associated with optical transition between the molecular states of the quantum dot-metallic nanoparticle system or its plasmonic meta-resonance when the intensity of the laser field responsible for the exciton–plasmon coupling reaches a critical value. We also show that by varying the intensity of this laser, the spontaneous emission exhibits characteristic features indicating tunability of the molecular resonances and excitation-power dependence of plasmonic fields of the metallic nanoparticles. - Highlights: • Investigation of collective molecular properties of quantum dot-metallic nanoparticle systems. • Impact of such collective properties on the optical excitation of quantum dots. • Effects of exciton–plasmon coupling in the spontaneous emission of the quantum dots. • Signatures of plasmonic meta-resonances in the fluorescence of quantum dots
Optical bistability induced by quantum coherence in a negative index atomic medium
International Nuclear Information System (INIS)
Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju
2013-01-01
Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Quantum-coherent dynamics in photosynthetic charge separation revealed by wavelet analysis
Romero, Elisabet; Prior, Javier; Chin, Alex W.; Morgan, Sarah E.; Novoderezhkin, Vladimir I.; Plenio, Martin B.; van Grondelle, Rienk
2017-01-01
Experimental/theoretical evidence for sustained vibration-assisted electronic (vibronic) coherence in the Photosystem II Reaction Center (PSII RC) indicates that photosynthetic solar-energy conversion might be optimized through the interplay of electronic and vibrational quantum dynamics. This evidence has been obtained by investigating the primary charge separation process in the PSII RC by two-dimensional electronic spectroscopy (2DES) and Redfield modeling of the experimental data. However...
Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K
2012-12-03
We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.
Coherent states for canonical quantum general relativity and the infinite tensor product extension
International Nuclear Information System (INIS)
Sahlmann, H.; Thiemann, T.; Winkler, O.
2001-01-01
We summarize a recently proposed concrete programme for investigating the (semi)classical limit of canonical, Lorentzian, continuum quantum general relativity in four spacetime dimensions. The analysis is based on a novel set of coherent states labelled by graphs. These fit neatly together with an Infinite Tensor Product (ITP) extension of the currently used Hilbert space. The ITP construction enables us to give rigorous meaning to the infinite volume (thermodynamic) limit of the theory which has been out of reach so far
Security proof of continuous-variable quantum key distribution using three coherent states
Brádler, Kamil; Weedbrook, Christian
2018-02-01
We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.
Directory of Open Access Journals (Sweden)
Hideki Gotoh
2014-10-01
Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.
Atzori, Matteo; Tesi, Lorenzo; Morra, Elena; Chiesa, Mario; Sorace, Lorenzo; Sessoli, Roberta
2016-02-24
Here we report the investigation of the magnetic relaxation and the quantum coherence of vanadyl phthalocyanine, VOPc, a multifunctional and easy-processable potential molecular spin qubit. VOPc in its pure form (1) and its crystalline dispersions in the isostructural diamagnetic host TiOPc in different stoichiometric ratios, namely VOPc:TiOPc 1:10 (2) and 1:1000 (3), were investigated via a multitechnique approach based on the combination of alternate current (AC) susceptometry, continuous wave, and pulsed electron paramagnetic resonance (EPR) spectroscopy. AC susceptibility measurements revealed a linear increase of the relaxation rate with temperature up to 20 K, as expected for a direct mechanism, but τ remains slow over a very wide range of applied static field values (up to ∼5 T). Pulsed EPR spectroscopy experiments on 3 revealed quantum coherence up to room temperature with T(m) ∼1 μs at 300 K, representing the highest value obtained to date for molecular electronic spin qubits. Rabi oscillations are observed in this nuclear spin-active environment ((1)H and (14)N nuclei) at room temperature also for 2, indicating an outstanding robustness of the quantum coherence in this molecular semiconductor exploitable in spintronic devices.
International Nuclear Information System (INIS)
Huang, Zhiming; Situ, Haozhen
2017-01-01
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)
2017-02-15
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.
Quantum heat engine power can be increased by noise-induced coherence.
Scully, Marlan O; Chapin, Kimberly R; Dorfman, Konstantin E; Kim, Moochan Barnabas; Svidzinsky, Anatoly
2011-09-13
Laser and photocell quantum heat engines (QHEs) are powered by thermal light and governed by the laws of quantum thermodynamics. To appreciate the deep connection between quantum mechanics and thermodynamics we need only recall that in 1901 Planck introduced the quantum of action to calculate the entropy of thermal light, and in 1905 Einstein's studies of the entropy of thermal light led him to introduce the photon. Then in 1917, he discovered stimulated emission by using detailed balance arguments. Half a century later, Scovil and Schulz-DuBois applied detailed balance ideas to show that maser photons were produced with Carnot quantum efficiency (see Fig. 1A). Furthermore, Shockley and Quiesser invoked detailed balance to obtain the efficiency of a photocell illuminated by "hot" thermal light (see Fig. 2A). To understand this detailed balance limit, we note that in the QHE, the incident light excites electrons, which can then deliver useful work to a load. However, the efficiency is limited by radiative recombination in which the excited electrons are returned to the ground state. But it has been proven that radiatively induced quantum coherence can break detailed balance and yield lasing without inversion. Here we show that noise-induced coherence enables us to break detailed balance and get more power out of a laser or photocell QHE. Surprisingly, this coherence can be induced by the same noisy (thermal) emission and absorption processes that drive the QHE (see Fig. 3A). Furthermore, this noise-induced coherence can be robust against environmental decoherence.Fig. 1.(A) Schematic of a laser pumped by hot photons at temperature T(h) (energy source, blue) and by cold photons at temperature T(c) (entropy sink, red). The laser emits photons (green) such that at threshold the laser photon energy and pump photon energy is related by Carnot efficiency (4). (B) Schematic of atoms inside the cavity. Lower level b is coupled to the excited states a and β. The laser power
Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.
Meair, Jonathan; Jacquod, Philippe
2013-02-27
We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.
Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2017-12-01
Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.
Classical and quantum ABCD-transformations and the propagation of coherent and Gaussian beams
International Nuclear Information System (INIS)
Ogura, Akihiro
2009-01-01
We develop the mathematical properties of the ABCD-transformation from the classical and quantum mechanical points of view. First, we list the four types of generating function which generate the ABCD-transformation in classical mechanics. Second, we introduce the unitary operator of the ABCD-transformation. Next, we calculate the normal ordering of this unitary operator and derive the kernels in coordinate-momentum phase space. The kernels are comprised of the generating functions, which generate the ABCD-transformation in classical mechanics. This reveals a new correspondence between classical and quantum mechanics. As an application of these kernels, we show the propagation of coherent and Gaussian beams in the context of quantum optics which corresponds to the ABCD-transformation in matrix optics.
Single-molecule tracking in living cells using single quantum dot applications.
Baba, Koichi; Nishida, Kohji
2012-01-01
Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes.
Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot
DEFF Research Database (Denmark)
Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal
2016-01-01
We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offe...
Single-photon superradiance from a quantum dot
DEFF Research Database (Denmark)
Tighineanu, Petru; Daveau, Raphaël Sura; Lehmann, Tau Bernstorff
2016-01-01
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and t...
High-resolution photoluminescence studies of single semiconductor quantum dots
DEFF Research Database (Denmark)
Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis
2000-01-01
developed in the study of single quantum dots, characterized by sharp atomic-like transition lines revealing their zero-dimensional density of states. Substantial information about the fundamental properties of individual quantum dots, as well as their interactions with other dots and the host lattice, can...
Wang, Yi-Yan; Xu, Sheng; Sun, Lin-Lin; Xia, Tian-Long
2018-02-01
Dirac semimetals, which host Dirac fermions and represent a new state of quantum matter, have been studied intensively in condensed-matter physics. The exploration of new materials with topological states is important in both physics and materials science. We report the synthesis and the transport properties of high-quality single crystals of YbMnSb2. YbMnSb2 is a new compound with metallic behavior. Quantum oscillations, including Shubnikov-de Haas (SdH) oscillation and de Haas-van Alphen-type oscillation, have been observed at low temperature and high magnetic field. Small effective masses and nontrivial Berry phase are extracted from the analyses of quantum oscillations, which provide the transport evidence for the possible existence of Dirac fermions in YbMnSb2. The measurements of angular-dependent interlayer magnetoresistance indicate that the interlayer transport is coherent. The Fermi surface of YbMnSb2 possesses a quasi-two-dimensional characteristic as determined by the angular dependence of SdH oscillation frequency. These findings suggest that YbMnSb2 is a new candidate of topological Dirac semimetals.
1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar
Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao
2015-02-01
A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.
Stassi, Roberto; Nori, Franco
2018-03-01
Quantum systems are affected by interactions with their environments, causing decoherence through two processes: pure dephasing and energy relaxation. For quantum information processing it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms. We show theoretically that if the coupling between these qubits and a cavity field is longitudinal and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We also use an auxiliary atomic level to store and retrieve quantum information.
International Nuclear Information System (INIS)
Slavcheva, G.; Hess, O.
2005-01-01
We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms
Magnetic resonance spectroscopy of single centers in silicon quantum wells
Energy Technology Data Exchange (ETDEWEB)
Bagraev, Nikolay T., E-mail: impurity.dipole@mail.ioffe.r [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Klyachkin, Leonid E.; Kudryavtsev, Andrey A.; Malyarenko, Anna M. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation)
2009-12-15
We present the new optically detected magnetic resonance (ODMR) technique which reveals single point defects in silicon quantum wells embedded in microcavities within frameworks of the excitonic normal-mode coupling (NMC) without the external cavity and the hf source.
Non-Markovian spontaneous emission from a single quantum dot
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke
2011-01-01
We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....
Optical Studies of Single Quantum Dots
National Research Council Canada - National Science Library
Gammon, Daniel; Steel, Duncan G
2002-01-01
...: the atomlike entities known as quantum dots (QDs). Measuring 1-100 nm across, QDs are semiconductor structures in which the electron wavefunction is confined in all three dimensions by the potential energy barriers that form the QD's boundaries...
Propagation of superconducting coherence via chiral quantum-Hall edge channels.
Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong
2017-09-08
Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.
Operating single quantum emitters with a compact Stirling cryocooler.
Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S
2015-01-01
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.
Chen, Aixi
2014-11-03
In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Two-Way Communication with a Single Quantum Particle
Del Santo, Flavio; Dakić, Borivoje
2018-02-01
In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.
Quantum Privacy Amplification for a Sequence of Single Qubits
International Nuclear Information System (INIS)
Deng Fuguo; Long Guilu
2006-01-01
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.
Solar axion experiments using coherent Primakoff conversion in single crystals
International Nuclear Information System (INIS)
Avignone, F.T.; Abriola, D.; Brodzinski, R.L.; Collar, J.I.; Creswick, R.J.; DiGregorio, D.E.; Farach, H.A.; Gattone, A.O.; Guerard, C.K.; Hasenbalg, F.; Huck, H.; Miley, H.S.; Morales, A.; Morales, J.; Nussinov, S.; Ortiz de Solorzano, A.; Reeves, J.H.; Villar, J.A.; Zioutas, K.
1999-01-01
The results of a 1.94 kg · y pilot search for solar axions with an ultralow background Ge detector are reviewed. The detection method is based on Bragg-coherent Primakoff conversion of axions into photons when the momentum vectors of the axion and photon satisfy the Bragg condition. The theory of the experiment are presented for Ge and Te0 2 crystals. Future prospects of large volume experiments are discussed
Two-electron double quantum dot coupled to coherent photon and phonon fields
Sato, Yuya; Chen, Jason C. H.; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa
2017-09-01
Two-electron states of a double quantum dot (DQD) under irradiation of coherent boson (photon and phonon) fields are studied by measuring spin-flip tunneling current in the Pauli spin blockade regime. This measurement scheme allows us to investigate Rabi splitting and associated boson dressed states particularly in the deep dispersive regime where the detuning δ ≡ℏ ω -EAB between the boson energy ℏ ω and energy spacing EAB of the two-level system is significantly large (δ ˜ℏ ω ), where the permanent dipole moment in the DQD plays a significant role in the hybridization.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)
2015-02-15
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.
International Nuclear Information System (INIS)
Chen, Yuan; Deng, Li; Chen, Aixi
2015-01-01
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device
International Nuclear Information System (INIS)
Barut, A.O.
1990-06-01
For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs
Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output
Directory of Open Access Journals (Sweden)
Robert S. Whitney
2016-05-01
Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.
Tuning Single Quantum Dot Emission with a Micromirror.
Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul
2018-02-14
The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.
Measurement of quantum noise in a single-electron transistor near the quantum limit
Xue, W. W.; Ji, Z.; Pan, Feng; Stettenheim, Joel; Blencowe, M. P.; Rimberg, A. J.
2009-09-01
Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction. A simultaneous measurement of our S-SET's charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results.
Room temperature excitation spectroscopy of single quantum dots
Directory of Open Access Journals (Sweden)
Christian Blum
2011-08-01
Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.
Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong
2018-01-01
In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.
Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders
Kaila, M M
2013-01-01
This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...
COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,
ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA
Atzori, Matteo; Morra, Elena; Tesi, Lorenzo; Albino, Andrea; Chiesa, Mario; Sorace, Lorenzo; Sessoli, Roberta
2016-09-07
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations
Chowdhury, Sutirtha N.; Huo, Pengfei
2017-12-01
We introduce the coherent-state mapping ring polymer molecular dynamics (CS-RPMD), a new method that accurately describes electronic non-adiabatic dynamics with explicit nuclear quantization. This new approach is derived by using coherent-state mapping representation for the electronic degrees of freedom (DOF) and the ring-polymer path-integral representation for the nuclear DOF. The CS-RPMD Hamiltonian does not contain any inter-bead coupling term in the state-dependent potential and correctly describes electronic Rabi oscillations. A classical equation of motion is used to sample initial configurations and propagate the trajectories from the CS-RPMD Hamiltonian. At the time equivalent to zero, the quantum Boltzmann distribution (QBD) is recovered by reweighting the sampled distribution with an additional phase factor. In a special limit that there is one bead for mapping variables and multiple beads for nuclei, CS-RPMD satisfies detailed balance and preserves an approximate QBD. Numerical tests of this method with a two-state model system show very good agreement with exact quantum results over a broad range of electronic couplings.
Semi-quantum Dialogue Based on Single Photons
Ye, Tian-Yu; Ye, Chong-Qiang
2018-02-01
In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party's randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party' classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party's randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party' classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.
Measurements of the hydrogen 2s-2p coherence using the quantum-beat technique
International Nuclear Information System (INIS)
DeSerio, R.; Gonzalez-Lepera, C.; Gibbons, J.P.; Burgdoerfer, J.; Sellin, I.A.
1988-01-01
We have measured Lyman-α quantum beats from coherently excited hydrogen atoms produced in 85--235-keV proton collisions with a thin helium jet target. Intensity measurements of the radiation emitted at 90 0 to the beam direction as a function of distance downstream from the target in electric fields both parallel and antiparallel to the beam axis allow extraction of the coherence between the s and p states by Eck's method [Phys. Rev. Lett. 31, 270 (1973)]. Because the jet target allows the collisions to occur in the applied field, we have eliminated the problems associated with field inhomogeneities when gas target cells are used. A strong-intensity peak emitted by excited helium in the target allows a determination of the starting point of the evolution in the field as well as a determination of the effects of experimental averaging. We present the s-p coherence parameters as a function of the projectile energy and compare them with recent theoretical calculations
Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons
Mineo, Hirobumi; Fujimura, Yuichi
2017-12-01
We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.
International Nuclear Information System (INIS)
Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong
2014-01-01
By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced
Stable Luminescence of Single Quantum Emitters: Applications in Quantum Optics
Directory of Open Access Journals (Sweden)
Naumov A.V.
2015-01-01
Full Text Available Abstract. In our work, we demonstrate the advantages and drawbacks of the methods for generating nonclassical light using single luminescent molecules in solid matrices at cryogenic temperatures when excitation of zero-phonon spectral lines is possible. It is shown that for certain impurity-matrix systems it is possible to guarantee the following: single-photon generation at a rate of up to tens-hundreds MHz, allocation of an extremely narrow generation band (a few MHz, wavelength tuning over a wide range (tens of nanometers, generation of biphoton radiation, high photostability and absence of a stochastic spectral dynamics.
International Nuclear Information System (INIS)
Chen, Haixia; Zhang, Jing
2007-01-01
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning
Macroscopic quantum coherence in a magnetic nanoparticle above the surface of a superconductor
Chudnovsky; Friedman
2000-12-11
We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.
Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor
Energy Technology Data Exchange (ETDEWEB)
Chudnovsky, Eugene M.; Friedman, Jonathan R.
2000-12-11
We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.
Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor
International Nuclear Information System (INIS)
Chudnovsky, Eugene M.; Friedman, Jonathan R.
2000-01-01
We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed
Interaction-induced effects in the nonlinear coherent response of quantum-well excitons
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner
1999-01-01
Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...
Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs.
Chia, A; Tan, K C; Pawela, Ł; Kurzyński, P; Paterek, T; Kaszlikowski, D
2016-03-01
Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-02
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.
Designing single-qutrit quantum gates via tripod adiabatic passage
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2014-04-01
Full Text Available In this paper, we use stimulated Raman adiabatic passage technique to implement single-qutrit quantum gates in tripod systems. It is shown by using the Morris-Shore (MS transformation, the six-state problem with 5 pulsed fields can be reduced to a basis that decouples two states from the others. This imposes three pulses not connected to the initial condition with have the same shape. Using this method, the six-state penta-pod system is reduced to a tripod system. We can design single-qutrit quantum gates by ignoring the fragile dynamical phase, and by suitable design of Rabi frequencies of the effective Hamiltonian
Single electron-spin memory with a semiconductor quantum dot
International Nuclear Information System (INIS)
Young, Robert J; Dewhurst, Samuel J; Stevenson, R Mark; Atkinson, Paola; Bennett, Anthony J; Ward, Martin B; Cooper, Ken; Ritchie, David A; Shields, Andrew J
2007-01-01
We show storage of the circular polarization of an optical field, transferring it to the spin-state of an individual electron confined in a single semiconductor quantum dot. The state is subsequently read out through the electronically-triggered emission of a single photon. The emitted photon shares the same polarization as the initial pulse but has a different energy, making the transfer of quantum information between different physical systems possible. With an applied magnetic field of 2 T, spin memory is preserved for at least 1000 times more than the exciton's radiative lifetime
Study on the coherence degree of magnetization reversal in Permalloy single-domain nano-ellipses
International Nuclear Information System (INIS)
Júnior, D.S. Vieira; Leonel, S.A.; Toscano, D.; Sato, F.; Coura, P.Z.; Dias, R.A.
2017-01-01
Numerical simulations have been performed to study the magnetization reversal in Permalloy nano-ellipses, under combined in-plane magnetic fields along the longitudinal and the transverse directions. We have considered nano-ellipses with two different aspect ratios and five thicknesses: 220×80×t nm 3 and 70×50×t nm 3 , where t ranging from 5 to 25 nm in steps of 5 nm. We found that the mechanism of magnetization reversal is not only dependent on the parameters of the magnetic field pulse but also related to the ellipse dimensions. It is known that the reversal time is related to the mechanism behind the magnetization reversal. In particular, ultrafast magnetization reversals occur by coherent rotation, when applying a field oriented mainly perpendicular to the initial magnetization. In order to evaluate the degree of coherence of the magnetization reversal we have introduced a quantity called “coherence index”. Besides complementing the previous studies by including the effect of the thickness on the magnetization reversal, our results indicate that it is possible to obtain magnetization reversals with high degree of coherence in small nano-ellipses by adjusting the geometric factors of the ellipse and the parameters of the magnetic field pulse simultaneously. - Highlights: • Magnetization reversals in single-domain nano-ellipses were investigated. • A parameter to evaluate the degree of coherence of the magnetization reversal was proposed. • A higher coherence index indicates a complete, coherent, rotation of the magnetization.
Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.
2017-12-01
The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.
Quantum non demolition measurement of a single nuclear spin in a room temperature solid
Energy Technology Data Exchange (ETDEWEB)
Neumann, Phillip; Beck, Johannes; Steiner, Matthias; Rathgen, Helmut; Rempp, Florian; Zarrabi, Navid; Dolde, Florian; Jelezko, Fedor; Wrachtrup, Joerg [Universitaet Stuttgart (Germany); Hemmer, Philip [A and M University, Texas (United States)
2010-07-01
The measurement process and its interpretation are in the focus of quantum mechanics since its early days. Today's ability to isolate single quantum objects allows experimental demonstration of former ''gedankenexperiments'' like measurement induced quantum state collaps. Rapidly growing quantum technologies explore fundamental aspects of measurements in quantum computing, however for solid state systems such experiments require operation at very low temperatures. Here we show that projective quantum measurement can be performed on a single nuclear spin in diamond under ambient conditions. Using quantum non demolition (QND) readout we are able to detect quantum jumps and the quantum Zeno effect emphasising the addressability of fundamental questions of quantum mechanics in solids. Single shot measurements with fidelities exceeding 0.9 enable efficient state initialization, quantum error correction and entanglement pumping that is crucial for quantum information processing including measurement based schemes and distributed quantum networks.
International Nuclear Information System (INIS)
Ebert, D.; Yarunin, V.S.
1994-01-01
This paper presents new examples of the functional-integral description of nonrelativistic quantum processes. The main point is the development and application of a functional-integral version which gives an adequate representation of the coherent dynamics of short impulses of light in media. An exact correspondence is received between the physical picture and functional-integral trajectories as the solutions of Euler-Lagrange equations with given initial and final conditions. The observed examples demonstrate the powerfulness of the path-integral method in the functional treatment and will promote the non-operator representation of quantum mechanics and quantum statistics. (orig.)
Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays
International Nuclear Information System (INIS)
Song Changyong; Jiang Huaidong; Mancuso, Adrian; Amirbekian, Bagrat; Miao Jianwei; Peng Li; Sun Ren; Shah, Sanket S.; Zhou, Z. Hong; Ishikawa, Tetsuya
2008-01-01
We report the recording and reconstruction of x-ray diffraction patterns from single, unstained viruses, for the first time. By separating the diffraction pattern of the virus particles from that of their surroundings, we performed quantitative and high-contrast imaging of a single virion. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative x-ray imaging of a broad range of specimens from protein machineries and viruses to cellular organelles. Moreover, our experiment is directly transferable to the use of x-ray free electron lasers, and represents an experimental milestone towards the x-ray imaging of large protein complexes
Wigger, D.; Mermillod, Q.; Jakubczyk, T.; Fras, F.; Le-Denmat, S.; Reiter, D. E.; Höfling, S.; Kamp, M.; Nogues, G.; Schneider, C.; Kuhn, T.; Kasprzak, J.
2017-10-01
The exact optical response of quantum few-level systems depends crucially on the exact choice of the incoming pulse areas. We use four-wave mixing (FWM) spectroscopy to infer the coherent response and dynamics of single InAs quantum dots (QDs) and study their pulse area dependence. By combining atomic force microscopy with FWM hyperspectral imaging, we show that the retrieved FWM signals originate from individual QDs enclosed in natural photonic defects. The optimized light-matter coupling in these defects allows us to perform our studies in a wide range of driving field amplitudes. When varying the pulse areas of the exciting laser pulses, Rabi rotations of microscopic interband coherences can be resolved by the two-pulse FWM technique. We investigate these Rabi coherence rotations within two- and three-level systems, both theoretically and experimentally, and explain their damping by the coupling to acoustic phonons. To highlight the importance of the pulse area influence, we show that the phonon-induced dephasing of QD excitons depends on the pulse intensity.
Quantum delayed-choice experiment with a single neutral atom.
Li, Gang; Zhang, Pengfei; Zhang, Tiancai
2017-10-01
We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.
Calhoun, Tessa R; Ginsberg, Naomi S; Schlau-Cohen, Gabriela S; Cheng, Yuan-Chung; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R
2009-12-24
The near-unity efficiency of energy transfer in photosynthesis makes photosynthetic light-harvesting complexes a promising avenue for developing new renewable energy technologies. Knowledge of the energy landscape of these complexes is essential in understanding their function, but its experimental determination has proven elusive. Here, the observation of quantum coherence using two-dimensional electronic spectroscopy is employed to directly measure the 14 lowest electronic energy levels in light-harvesting complex II (LHCII), the most abundant antenna complex in plants containing approximately 50% of the world's chlorophyll. We observe that the electronically excited states are relatively evenly distributed, highlighting an important design principle of photosynthetic complexes that explains the observed ultrafast intracomplex energy transfer in LHCII.
Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide
Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle
2016-01-01
We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516
Single-passage read-out of atomic quantum memory
DEFF Research Database (Denmark)
Fiurasek, J; Sherson, J; Opatrny, T
2005-01-01
Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb.......Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb....
Multi-Color Single Particle Tracking with Quantum Dots
DEFF Research Database (Denmark)
Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.
2012-01-01
Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...
Rapid single flux quantum logic in high temperature superconductor technology
Shunmugavel, K.
2006-01-01
A Josephson junction is the basic element of rapid single flux quantum logic (RSFQ) circuits. A high operating speed and low power consumption are the main advantages of RSFQ logic over semiconductor electronic circuits. To realize complex RSFQ circuits in HTS technology one needs a reproducible
Quantum sensors based on single diamond defects
International Nuclear Information System (INIS)
Jelezko Fedor
2014-01-01
NV centers in diamond are promising sensors able to detect electric and magnetic fields at nanoscale. Here we report on the detection of biomolecules using magnetic noise induced by their electron and nuclear spins. Presented results show first steps towards establishing novel sensing technology for visualizing single proteins and study of their dynamics. (author)
A Single Molecule Investigation of the Photostability of Quantum Dots
DEFF Research Database (Denmark)
Christensen, Eva Arnspang; Kulatunga, Pasad; Lagerholm, B. Christoffer
2012-01-01
Quantum dots (QDs) are very attractive probes for multi-color fluorescence applications. We report here however that single QDs that are subject to continuous blue excitation from a 100W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a per...... is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination....
Coherent states, wavelets, and their generalizations
Ali, Syed Twareque; Gazeau, Jean-Pierre
2014-01-01
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altoget...
Control and Coherence of the Optical Transition of Single Nitrogen Vacancy Centers in Diamond
Robledo, L.M.; Bernien, H.; Van Weperen, I.; Hanson, R.
2010-01-01
We demonstrate coherent control of the optical transition of single nitrogen-vacancy defect centers in diamond. On applying short resonant laser pulses, we observe optical Rabi oscillations with a half period as short as 1 ns, an order of magnitude shorter than the spontaneous emission time. By
Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control
Witte, S.; Baclayon, M.; Peterman, E.J.G.; Toonen, R.F.G.; Mansvelder, H.D.; Groot, M.L.
2009-01-01
We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed
Coherent chemical kinetics as quantum walks. II. Radical-pair reactions in Arabidopsis thaliana
Chia, A.; Górecka, A.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.
2016-03-01
We apply the quantum-walk approach proposed in the preceding paper [A. Chia et al., preceding paper, Phys. Rev. E 93, 032407 (2016), 10.1103/PhysRevE.93.032407] to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibits strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the time scale of the reaction but not necessarily its population dynamics.
Quantum fluctuations and the single-junction Coulomb blockade
Energy Technology Data Exchange (ETDEWEB)
Girvin, S.M. (Department of Physics, Indiana University, Bloomington, IN (USA)); Glazman, L.I. (Institute of Microelectronics Technology and High Purity Materials, U.S.S.R. Academy of Science, Moscow District (U.S.S.R.)); Jonson, M. (Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN (USA)); Penn, D.R.; Stiles, M.D. (National Institute of Standards and Technology, Gaithersburg, MD (USA))
1990-06-25
We investigate the effect of quantum fluctuations on the Coulomb blockade in a single tunnel junction coupled to its environment by a transmission line of arbitrary impedance {ital Z}({omega}). The quantized oscillation modes of the transmission line are suddenly displaced when an electron tunnels through the junction. For small {ital Z} (relative to the quantum of resitance), a weak power-law zero-bias anomaly occurs associated with the infrared-divergent shakeup of low-frequency transmission-line modes. For large {ital Z}, the full blockade is recovered. Comparison with recent experiments is made.
Single-cell atomic quantum memory for light
International Nuclear Information System (INIS)
Opatrny, Tomas
2006-01-01
Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided
Vacuum Rabi spectra of a single quantum emitter.
Ota, Yasutomo; Ohta, Ryuichi; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko
2015-04-10
We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We use a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences from those measured by detecting the cavity photon leakage. Moreover, we observe an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission.
Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac
2017-04-28
Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.
International Nuclear Information System (INIS)
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)
Study on the coherence degree of magnetization reversal in Permalloy single-domain nano-ellipses
Energy Technology Data Exchange (ETDEWEB)
Júnior, D.S. Vieira [Departamento Acadêmico de Matemática, Física, e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais – Campus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Leonel, S.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Sato, F.; Coura, P.Z.; Dias, R.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)
2017-03-15
Numerical simulations have been performed to study the magnetization reversal in Permalloy nano-ellipses, under combined in-plane magnetic fields along the longitudinal and the transverse directions. We have considered nano-ellipses with two different aspect ratios and five thicknesses: 220×80×t nm{sup 3} and 70×50×t nm{sup 3}, where t ranging from 5 to 25 nm in steps of 5 nm. We found that the mechanism of magnetization reversal is not only dependent on the parameters of the magnetic field pulse but also related to the ellipse dimensions. It is known that the reversal time is related to the mechanism behind the magnetization reversal. In particular, ultrafast magnetization reversals occur by coherent rotation, when applying a field oriented mainly perpendicular to the initial magnetization. In order to evaluate the degree of coherence of the magnetization reversal we have introduced a quantity called “coherence index”. Besides complementing the previous studies by including the effect of the thickness on the magnetization reversal, our results indicate that it is possible to obtain magnetization reversals with high degree of coherence in small nano-ellipses by adjusting the geometric factors of the ellipse and the parameters of the magnetic field pulse simultaneously. - Highlights: • Magnetization reversals in single-domain nano-ellipses were investigated. • A parameter to evaluate the degree of coherence of the magnetization reversal was proposed. • A higher coherence index indicates a complete, coherent, rotation of the magnetization.
DEFF Research Database (Denmark)
Gehring, Tobias; Haendchen, Vitus; Duhme, Joerg
2015-01-01
implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible......-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our...... with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components....
Multi-group dynamic quantum secret sharing with single photons
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2016-07-15
In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.
Single-copy entanglement in critical quantum spin chains
International Nuclear Information System (INIS)
Eisert, J.; Cramer, M.
2005-01-01
We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results--which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains--are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ∼(1/6)log 2 (L), and contrast it with the block entropy
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit
International Nuclear Information System (INIS)
Castellano, Maria Gabriella; Chiarello, Fabio; Leoni, Roberto; Torrioli, Guido; Carelli, Pasquale; Cosmelli, Carlo; Khabipov, Marat; Zorin, Alexander B; Balashov, Dmitri
2007-01-01
We report on the development and test of an integrated system composed of a flux qubit and a rapid single-flux quantum (RSFQ) circuit that allows qubit manipulation. The goal is to demonstrate the feasibility of control electronics integrated on the same chip as the qubit, in view of the application in quantum computation with superconducting devices. RSFQ logic relies on the storage and transmission of magnetic flux quanta and can be profitably used with superconducting qubits because of the speed, scalability, compatibility with the qubit fabrication process and low temperature environment. While standard RSFQ circuitry is well assessed, the application to quantum computing requires a complete rescaling of parameter values, in order to preserve the qubit coherence and reduce the power dissipation. In the system presented in this paper, the qubit role is played by a superconducting loop interrupted by a small dc SQUID, usually called a double SQUID, which behaves as a tunable rf-SQUID. Its energy potential has the shape of a double well, with the barrier between the wells controlled by magnetic flux applied to the inner dc SQUID. Here for the first time we report measurements at a base temperature of 370 mK in which flux control pulses with desired characteristics were supplied by a RSFQ circuit fabricated using non-standard parameters in the same chip as the qubit
Characterization of coherent quantum frequency combs using electro-optic phase modulation
Imany, Poolad; Odele, Ogaga D.; Jaramillo-Villegas, Jose A.; Leaird, Daniel E.; Weiner, Andrew M.
2018-01-01
We demonstrate a two-photon interference experiment for phase coherent biphoton frequency combs (BFCs), created through spectral amplitude filtering of biphotons with a continuous broadband spectrum. By using an electro-optic phase modulator, we project the BFC lines into sidebands that overlap in frequency. The resulting high-visibility interference patterns provide an approach to verify frequency-bin entanglement even with slow single-photon detectors; we show interference patterns with visibilities that surpass the classical threshold for qubit and qutrit states. Additionally, we show that with entangled qutrits, two-photon interference occurs even with projections onto different final frequency states. Finally, we show the versatility of this scheme for weak-light measurements by performing a series of two-dimensional experiments at different signal-idler frequency offsets to measure the dispersion of a single-mode fiber.
Single-cell magnetic imaging using a quantum diamond microscope.
Glenn, D R; Lee, K; Park, H; Weissleder, R; Yacoby, A; Lukin, M D; Lee, H; Walsworth, R L; Connolly, C B
2015-08-01
We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.
Single cell magnetic imaging using a quantum diamond microscope
Park, H.; Weissleder, R.; Yacoby, A.; Lukin, M. D.; Lee, H.; Walsworth, R. L.; Connolly, C. B.
2015-01-01
We apply a quantum diamond microscope to detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and two orders of magnitude larger field of view (~1 mm2) than previous NV imaging technologies, enabling practical applications. To illustrate, we quantify cancer biomarkers expressed by rare tumor cells in a large population of healthy cells. PMID:26098019
Rapid single flux quantum logic in high temperature superconductor technology
Shunmugavel, K.
2006-01-01
A Josephson junction is the basic element of rapid single flux quantum logic (RSFQ) circuits. A high operating speed and low power consumption are the main advantages of RSFQ logic over semiconductor electronic circuits. To realize complex RSFQ circuits in HTS technology one needs a reproducible fabrication of Josephson junctions with low parameter spread. High quality HTS junctions require a fully epitaxial multilayer structure with clean interfaces and a smooth surface morphology. Neodymium...
Shi, Lei; Luo, Jun Wen; Xue, Yang; Wei, Jiahua
2017-10-01
In order to improve the detection efficiency in QKD system, this paper has put forward a new quantum key distribution scheme based on the single photon frequency up-conversion detection technology and decoy-state BB84 protocol. A long wavelength pump light is adopted in single photon detector (SPD) to avoid the noise caused by spontaneous parametric down conversion (SPDC), thus an overall 28% detection efficiency is achieved which is five times of 4.5% in conventional InGaAs-based detectors. Moreover, the propagating distances has reached 90km and 150km with weak coherent pulse (WCP) and decoy weak coherent pulse (DWCP) respectively, which is 1.3 times and 1.05 times of the conventional InGaAs-based detectors of 70km and 140km.
Purchase, R L; de Groot, H J M
2015-06-06
This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We
Quantum optics with single nanodiamonds flying over gold films: Towards a Robust quantum plasmonics
Energy Technology Data Exchange (ETDEWEB)
Mollet, O.; Drezet, A.; Huant, S. [Institut Néel, CNRS and Université Joseph Fourier, BP 166, F-38042 Grenoble (France)
2013-12-04
A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.
From quantum physics to digital communication: Single sideband continuous phase modulation
Farès, Haïfa; Christian Glattli, D.; Louët, Yves; Palicot, Jacques; Moy, Christophe; Roulleau, Preden
2018-01-01
In the present paper, we propose a new frequency-shift keying continuous phase modulation (FSK-CPM) scheme having, by essence, the interesting feature of single-sideband (SSB) spectrum providing a very compact frequency occupation. First, the original principle, inspired from quantum physics (levitons), is presented. Besides, we address the problem of low-complexity coherent detection of this new waveform, based on orthonormal wave functions used to perform matched filtering for efficient demodulation. Consequently, this shows that the proposed modulation can operate using existing digital communication technology, since only well-known operations are performed (e.g., filtering, integration). This SSB property can be exploited to allow large bit rates transmissions at low carrier frequency without caring about image frequency degradation effects typical of ordinary double-sideband signals. xml:lang="fr"
Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R
2015-01-01
Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.
Namiki, Ryo; Hirano, Takuya
2006-01-01
We propose efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. By these phase encodings, the probability of basis mismatch is reduced and total efficiency is increased. We also propose mixed-state protocols by omitting a part of classical communication steps in the efficient-phase-encoding protocols. The omission implies a reduction of information to an eavesdropper and possibly enhances the security of the protocols. We...
On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.
Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus
2017-07-12
Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.
Spin coherence in a Mn{sub 3} single-molecule magnet
Energy Technology Data Exchange (ETDEWEB)
Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)
2016-01-25
Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.
Dynamical sensitivity control of a single-spin quantum sensor.
Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan
2017-07-26
The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
Single-shot work extraction in quantum thermodynamics revisited
Wang, Shang-Yung
2018-01-01
We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.
International Nuclear Information System (INIS)
Faure, F.
1993-01-01
This thesis deals with problems linked to the study of the semi-classical limit in quantum dynamics. The first part presents a geometrical formulation which is tantamount to the time dependent variational principle. The classical dynamics is considered as an orthogonal projection of the quantum dynamics on the family of coherent states. The angle of projection provides an information on the validity of the approximation. This angle is studied in an illustrating example. In the second part, we study quantum mechanics on the torus as a phase space, and particularly degeneracies in the spectrum of Harper like models or kicked Harper like models which manifest chaotic dynamics. These models find direct applications in solid state physics, especially with the quantum Hall effect. In this study, we use the Chern index, which is a topological characterization of the localization of the eigenfunctions as some periodicity conditions are changed. The use of the Husimi distribution provides a phase space representation of the quantum states. We discuss the role played by separatrix-states, by the effects of quantum tunneling, and by a classically chaotic dynamics. (orig.)
Quantum turnstile operation of single-molecule magnets
International Nuclear Information System (INIS)
Moldoveanu, V; Dinu, I V; Tanatar, B; Moca, C P
2015-01-01
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching of the source and drain contacts. If the electrodes have opposite magnetizations the quantum turnstile operation allows the stepwise writing of intermediate excited states. In turn, the transient currents provide a way to read these states. Within our approach we take into account both the uniaxial and transverse anisotropy. The latter may induce additional quantum tunneling processes which affect the efficiency of the proposed read-and-write scheme. An equally weighted mixture of molecular spin states can be prepared if one of the electrodes is ferromagnetic. (paper)
Threshold quantum secret sharing based on single qubit
Lu, Changbin; Miao, Fuyou; Meng, Keju; Yu, Yue
2018-03-01
Based on unitary phase shift operation on single qubit in association with Shamir's ( t, n) secret sharing, a ( t, n) threshold quantum secret sharing scheme (or ( t, n)-QSS) is proposed to share both classical information and quantum states. The scheme uses decoy photons to prevent eavesdropping and employs the secret in Shamir's scheme as the private value to guarantee the correctness of secret reconstruction. Analyses show it is resistant to typical intercept-and-resend attack, entangle-and-measure attack and participant attacks such as entanglement swapping attack. Moreover, it is easier to realize in physic and more practical in applications when compared with related ones. By the method in our scheme, new ( t, n)-QSS schemes can be easily constructed using other classical ( t, n) secret sharing.
A triple quantum dot in a single-wall carbon nanotube
DEFF Research Database (Denmark)
Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.
2008-01-01
A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...
International Nuclear Information System (INIS)
Zhang, Zhedong; Wang, Jin
2015-01-01
We develop a population and flux landscape theory for general non-equilibrium quantum systems. We illustrate our theory by modelling the quantum transport of donor-acceptor energy transfer. We find two driving forces for the non-equilibrium quantum dynamics. The symmetric part of the driving force corresponds to the population landscape contribution which mainly governs the equilibrium part of dynamics while the anti-symmetric part of the driving force generates the non-equilibrium curl quantum flux which leads to the detailed-balance-breaking and time-irreversibility. The multi-loop structure of the flux emerges forms the flux-landscape. We study the trend of changes in population and flux-landscape with respect to the voltage (temperature difference induced by environments) and electronic coupling. Improving the voltage and electronic coupling in general facilitates the quantum transport by reducing the population landscape barriers between major states and increasing the mean value of the flux. A limit-cycle mode emerges when the underlying flux-landscape becomes funnelled with a significant gap between the largest flux loop and the rest of them. On the kinetic level, we find that multiple kinetic paths between quantum states emerge and illustrate the interference effects. The degree of interference is determined by the landscape and flux. Furthermore, we quantify kinetic rate which strongly correlates with the population landscape and flux. For quantum transport, we demonstrate that as the coherence or the quantum entanglement is enhanced, the flux and energy transfer efficiency are increased. Finally it is surprising that the non-equilibriumness quantified by voltage has a non-trivial contribution on strengthening the entanglement, which is attributed to the non-local feature of the quantum curl flux. (paper)
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman
2015-10-30
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-10-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Quantum-Sequencing: Fast electronic single DNA molecule sequencing
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.
Can a quantum state over time resemble a quantum state at a single time?
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F; Barrett, Jonathan; Spekkens, Robert W
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides
DEFF Research Database (Denmark)
Chen, Yuntian; Wubs, Martijn; Mørk, Jesper
2012-01-01
We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....
D'Souza, Mark
1995-01-01
Part I: Quantum manifestations of classical chaos in the Kicked Harper model. The Kicked Harper model has been used to study the quantum manifestations of classical chaos. The variation of a single parameter results in a transition of the classical system from nearly-integrable to chaotic. A second parameter controls the transition between classical and quantum behavior. In the semiclassical limit Bohr's Correspondence Principle predicts the quantum and classical results should match. The quantum system is studied using a tight-binding form of the Hamiltonian, and its time-evolution is studied using minimal uncertainty Gaussian wave packets. The aim is to study the evolution of the quantum system when the classical system is chaotic. Results show the correspondence principle works well when the classical system is not chaotic, but quickly breaks down for chaotic classical motion. In addition, the quasi-energy levels of the Floquet matrix are calculated. When the classical system undergoes a transition from nearly-integrable to chaotic, the quasi-energy levels are expected to exhibit level repulsion. In this case, the level-spacing distribution is expected to undergo a transition from being Poisson -like, to Wigner-like. Results verify that this transition takes place. The introduction of an additional symmetry into the Hamiltonian is seen to change the level repulsion and level-spacing distribution. Part II: Coherent backscattering of a scalar wave off a rough surface. Coherent backscattering is the enhancement of scattering in the backward direction caused by scattering off a random scattering medium or a rough surface. The mechanism responsible is the interference of time-reversed paths during multiple-scattering. Scattering off a rough surface is studied using a one-dimensional lattice of scattering centers, displaced from the perfect lattice positions to introduce randomness. The scattering intensity is obtained in the form of a power series which includes all
Quantum-field theories as representations of a single $^\\ast$-algebra
Raab, Andreas
2013-01-01
We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander
2010-01-01
A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information...... technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based...... on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation...
Optimised quantum hacking of superconducting nanowire single-photon detectors.
Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H
2014-03-24
We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.
Single-flux-quantum circuit technology for superconducting radiation detectors
International Nuclear Information System (INIS)
Fujimaki, Akira; Onogi, Masashi; Matsumoto, Tomohiro; Tanaka, Masamitsu; Sekiya, Akito; Hayakawa, Hisao; Yorozu, Shinichi; Terai, Hirotaka; Yoshikawa, Nobuyuki
2003-01-01
We discuss the application of the single-flux-quantum (SFQ) logic circuits to multi superconducting radiation detectors system. The SFQ-based analog-to-digital converters (ADCs) have the advantage in current sensitivity, which can reach less than 10 nA in a well-tuned ADC. We have also developed the design technology of the SFQ circuits. We demonstrate high-speed operation of large-scale integrated circuits such as a 2x2 cross/bar switch, arithmetic logic unit, indicating that our present SFQ technology is applicable to the multi radiation detectors system. (author)
Lateral photocurrent spreading in single quantum well infrared photodetectors
Ershov, Maxim
1998-01-01
Lateral physical effects in single quantum well infrared photodetectors (SQWIPs) under non-uniform illumination over detector area are considered. These effects are due mainly to the in-plane transport of the photoinduced charge in the QW. The length of the lateral photocurrent spreading is determined by the in-plane conductivity of the carriers in the QW and characteristic time of the QW recharging, and can be as large as 10-10000 mkm. Closed-form analytical expressions for SQWIP responsivit...
Optimised quantum hacking of superconducting nanowire single-photon detectors
Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.
2014-03-01
We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Energy Technology Data Exchange (ETDEWEB)
Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)
2016-05-23
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Burgdoerfer, Joachim
2004-05-01
The ultimate limit of a short pulse is a half-cycle pulse (HCP) subtending only a fraction of an ``optical cycle''. Single pulses as well as trains of HCP's are currently experimentally accessible in the GHz and THz regimes. In Rydberg atoms the duration of such HCP's is short compared to the electronic orbital period representing an impulsive ``kick''. HCP sequences allow to shape and manipulate the time-dependent wavefunction in an (almost) arbitrary fashion. We illustrate the potential of this tool with a few examples: quantum localization in classical chaos, tayloring of wavepackets with low entropy, and probing the coordinate and momentum of a bound electron. Generation of HCP's on an attosecond scale will be discussed. Work supported by FWF, NSF, and DCS, OBES, U.S. DoE, managed by UT-Batelle LLC under contract #DE-AC05-00OR22725.
Realization of electrically tunable single quantum dot nanocavities
Energy Technology Data Exchange (ETDEWEB)
Hofbauer, Felix Florian Georg
2009-03-15
We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot
DEFF Research Database (Denmark)
Chen, Yuntian; Wubs, Martijn; Mørk, Jesper
2011-01-01
solutions for the dynamics of absorption, with maximum atomic excitation . We furthermore propose a terminated waveguide to aid the single-photon absorption. We found that for an emitter placed at an optimal distance from the termination, the maximum atomic excitation due to an incident single......We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input......-photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE β-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency...
Single-atom gating and magnetic interactions in quantum corrals
Energy Technology Data Exchange (ETDEWEB)
Ngo, Anh T.; Kim, Eugene H.; Ulloa, Sergio E.
2017-04-01
Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in experiments to allow precise control over superposition of electronic states in quantum corrals. Using a Green's function approach, we demonstrate theoretically that such atom gating can also be used to control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables control not only on the direct interaction between magnetic adatoms, but also over superpositions of many-body states which can then control long distance interactions. We illustrate this effect by considering the competition between direct exchange between magnetic impurities and the Kondo screening mediated by the host electrons, and how this is affected by gating. These results suggest that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impurity systems with tailored interactions, and may allow the control of entanglement of different spin states.
Directory of Open Access Journals (Sweden)
Alessandro Seri
2017-05-01
Full Text Available Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr^{3+}:Y_{2}SiO_{5} crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.
Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals
Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.
2005-01-01
The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...
Storing single photons emitted by a quantum memory on a highly excited Rydberg state.
Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues
2017-01-19
Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.
Interference due to coherence swapping
Indian Academy of Sciences (India)
Quantum Optics and Information Groups, School of Informatics, Dean Street, University of Wales,. Bangor LL 57 1UT, UK ... has come from a single source and made to pass through a double slit or through a suit- able device such as a .... This is a method to swap coherence from the primary pairs of possible paths to another ...
Marshman, Emily; Singh, Chandralekha
2017-06-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.
Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd
2016-10-01
Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a
Capuzzi, Pablo; Chitra, R.; Menotti, Chiara; Minguzz, Anna; Vignolo, Patrizia
2006-05-01
Nonlinear, or multiphoton, interaction of intense laser radiation with matter has been a key research subject for about four decades. Every three years, the International Conference on Multiphoton Processes (ICOMP) covers the latest advances in the field. Intense-field physics has seen phenomenal progress over the last decade. What looked like dreams in the mid-nineties have become routine today. Major theoretical, experimental and technological advances in fundamental science and applications of multiphoton processes cover such diverse areas as precision measurements, femtosecond and now attosecond metrology, quantum control of atomic and molecular dynamics, laser machining of solid state materials, laser acceleration of electrons and protons, and medical applications. This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics (J. Phys. B) contains a collection of articles originating from the Tenth International Conference on Multiphoton Processes (ICOMP 2005) held on 9-14 October 2005 in Orford, Quebec, Canada (general chair Lou DiMauro, Ohio State University, program co-chairs Paul Corkum and Misha Ivanov, National Research Council of Canada). The conference focused on atoms and molecules in strong fields, femtosecond and attosecond processes, propagation of intense pulses, and of course multiphoton processes which lie at the foundation of all these subjects. Articles presented in this issue cover several key areas of intense-field physics. These include strong field ionization of atoms, molecules and inside transparent dielectric materials, methods of generation and characterization of attosecond XUV pulses and pulse trains, and new approaches to using intense laser fields and/or attosecond pulses for studying entangled systems and imaging electronic and nuclear dynamics with sub-Ångstrom spatial and sub-femtosecond temporal resolution. We have tried to group the papers according to these general areas. We would like to use this
Quantum interference of electrically generated single photons from a quantum dot
International Nuclear Information System (INIS)
Patel, Raj B; Bennett, Anthony J; Shields, Andrew J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A
2010-01-01
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 ± 4%.
Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings
Energy Technology Data Exchange (ETDEWEB)
Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A [Instituto de Microelectronica de Madrid, Centro Nacional de MicrotecnologIa, CSIC, Isaac Newton 8, PTM Tres Cantos, E-28760 Madrid (Spain); Sarkar, D, E-mail: eva.gallardo@uam.e [Department of Physics and Astronomy, University of Sheffield, S3 7RH (United Kingdom)
2010-02-01
Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g{sup (2)}(0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.
International Nuclear Information System (INIS)
Weigert, S.
1999-01-01
To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)
Poly-silicon quantum-dot single-electron transistors
International Nuclear Information System (INIS)
Kang, Kwon-Chil; Lee, Joung-Eob; Lee, Jung-Han; Lee, Jong-Ho; Shin, Hyung-Cheol; Park, Byung-Gook
2012-01-01
For operation of a single-electron transistors (SETs) at room temperature, we proposed a fabrication method for a SET with a self-aligned quantum dot by using polycrystalline silicon (poly-Si). The self-aligned quantum dot is formed by the selective etching of a silicon nanowire on a planarized surface and the subsequent deposition and etch-back of poly-silicon or chemical mechanical polishing (CMP). The two tunneling barriers of the SET are fabricated by thermal oxidation. Also, to decrease the leakage current and control the gate capacitance, we deposit a hard oxide mask layer. The control gate is formed by using an electron beam and photolithography on chemical vapor deposition (CVD). Owing to the small capacitance of the narrow control gate due to the tetraethyl orthosilicate (TEOS) hard mask, we observe clear Coulomb oscillation peaks and differential trans-conductance curves at room temperature. The clear oscillation period of the fabricated SET is 2.0 V.
Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.
Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent
2011-11-01
Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.
Efficient fiber-coupled single-photon sources based on quantum dots
DEFF Research Database (Denmark)
Daveau, Raphaël Sura
This thesis presents the study of solid-state quantum emitters in two dierent forms. The rst part of the thesis deals with quantum dot based single-photon sources with an emphasis on ecient photon extraction into an optical ber. The second part of the thesis covers a theoretical study of optical...... refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices...... the characterization of single quantum dots. The second method, evanescent coupling from a tapered waveguide to a microber, demonstrates a chip-to-ber coupling eciency exceeding 80 % in passive re- ection measurements. The characterization of quantum dots from this device establishes a ber-coupled source eciency of 15...
Quantum Tunneling of Magnetization in Trigonal Single-Molecule Magnets
Liu, Junjie; Del Barco, Enrique; Hill, Stephen
2012-02-01
We perform a numerical analysis of the quantum tunneling of magnetization (QTM) that occurs in a spin S = 6 single-molecule magnet (SMM) with idealized C3 symmetry. The deconstructive points in the QTM are located by following the Berry-phase interference (BPI) oscillations. We find that the O4^3 (=12[Sz,S+^3 +S-^3 ]) operator unfreezes odd-k QTM resonances and generates three-fold patterns of BPI minima in all resonances, including k = 0! This behavior cannot be reproduced with operators that possess even rotational symmetry about the quantization axis. We find also that the k = 0 BPI minima shift away from zero longitudinal field. The wider implications of these results will be discussed in terms of the QTM behavior observed in other SMMs.
Full counting statistics of a single-molecule quantum dot
Dong, Bing; Ding, G. H.; Lei, X. L.
2013-08-01
We investigate the full counting statistics of a single quantum dot strongly coupled to a local phonon and weakly tunnel connected to two metallic electrodes. By employing the generalized nonequilibrium Green-function method and the Lang-Firsov transformation, we derive an explicit analytical formula for the cumulant generating function, which makes one able to identify distinctly the elastic and inelastic contributions to the current and zero-frequency shot noise. We find that at zero temperature, the inelastic effect causes upward steps in the current and downward jumps in the noise at the bias voltages corresponding to the opening of the inelastic channels, which are ascribed to the vibration-induced complex dependencies of electronic self-energies on the energy and bias voltage. More interestingly, the Fano factor exhibits oscillatory behavior with increasing bias voltage and its minimum value is observed to be smaller than one-half.
Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D
2017-12-01
The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250 ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.
Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians
International Nuclear Information System (INIS)
Graefe, Eva-Maria; Schubert, Roman
2012-01-01
The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Siemionow, Vlodek; Sahgal, Vinod; Yue, Guang H
2010-04-01
Voluntary muscle fatigue is a progressive process. A recent study demonstrated muscle fatigue-induced weakening of functional corticomuscular coupling measured by coherence between the brain [electroencephalogram (EEG)] and muscle [electromyogram (EMG)] signals after a relatively long-duration muscle contraction. Comparing the EEG-EMG coherence before versus after fatigue or between data of two long-duration time blocks is not adequate to reveal the dynamic nature of the fatigue process. The purpose of this study was to address this issue by quantifying single-trial EEG-EMG coherence and EEG, EMG power based on wavelet transform. Eight healthy subjects performed 200 maximal intermittent handgrip contractions in a single session with handgrip force, EEG and EMG signals acquired simultaneously. The EEG and EMG data during each 2-s handgrip was subjected to single trial EEG-EMG wavelet energy spectrum and coherence computation. The EEG-EMG coherence and energy spectrum at beta (15 ~ 35 Hz) and gamma (35-50 Hz) frequency bands were statistically analyzed in 2-block (75 trials per block), 5-block (30 trials/block), and 10-block (15 trials/block) data settings. The energy of both the EEG and EMG signals decreased significantly with muscle fatigue. The EEG-EMG coherence had a significant reduction for the 2-block comparison. More detailed dynamical changing and inter-subject variation of the EEG-EMG coherence and energy were revealed by 5- and 10-block comparisons. These results show feasibility of wavelet transform-based measurement of the EEG-EMG coherence and corresponding energy based on single-trial data, which provides extra information to demonstrate a time course of dynamic adaptations of the functional corticomuscular coupling, as well as brain and muscle signals during muscle fatigue.
Compact quantum dots for single-molecule imaging.
Smith, Andrew M; Nie, Shuming
2012-10-09
Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology (1-4). To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation (5). Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large (4,6,7). Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past (8,9). The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an
International Nuclear Information System (INIS)
Zurek, W.H.
1984-01-01
The author shows that nondemolition monitoring of a Weber bar may prevent changes of the number of phonons, and thus influence the sensitivity of quantum-counting gravity wave detectors. This effect is similar to the Watchdog Effect which is predicted to delay decays of the monitored, unstable quantum system. Relations between watchdog effect and Environment-Induced Superselection Rules as well as its connections to the fundamental questions of the quantum theory of measurement are briefly considered. (Auth.)
Studies of quantum levels in GaInNAs single quantum wells
International Nuclear Information System (INIS)
Shirakata, Sho; Kondow, Masahiko; Kitatani, Takeshi
2006-01-01
Spectroscopic studies have been carried out on the quantum levels in GaInNAs/GaAs single quantum wells (SQWs). Photoluminescence (PL), PL excitation (PLE), photoreflectance (PR), and high-density-excited PL (HDE-PL) were measured on high quality GaInNAs SQWs, Ga 0.65 In 0.35 N 0.01 As 0.99 /GaAs (well thickness: l z =10 nm) and Ga 0.65 In 0.35 N 0.005 As 0.995 /GaAs (l z =3∝10 nm), grown by molecular-beam epitaxy. For Ga 0.65 In 0.35 N 0.01 As 0.99 /GaAs (l z =10 nm), PL at 8 K exhibited a peak at 1.07 eV due to the exciton-related transition between quantum levels of ground states (e1-hh1). Both PR and PLE exhibited three transitions (1.17, 1.20 and 1.32 eV), and the former two transitions were assigned to as either of e1-lh1 and e2-hh2 transitions, while the transition at 1.32 eV was assigned to as the e2-lh2 transition. For HDE-PL, a new PL peak was observed at about 1.2 eV, and it was assigned to the unresolved e1-lh1 and e2-hh2 transitions. Similar optical measurements have been done on the Ga 0.65 In 0.35 N 0.005 As 0.995 /GaAs with various l z (3∝10 nm). Dependence of optical spectra and energies of quantum levels on l z have been studied. It has been found that HDE-PL in combination with PLE is a good tool for the study of the quantum level of GaInNAs SQW. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2.
Sim, Sangwan; Lee, Doeon; Trifonov, Artur V; Kim, Taeyoung; Cha, Soonyoung; Sung, Ji Ho; Cho, Sungjun; Shim, Wooyoung; Jo, Moon-Ho; Choi, Hyunyong
2018-01-24
Quantum beats, periodic oscillations arising from coherent superposition states, have enabled exploration of novel coherent phenomena. Originating from strong Coulomb interactions and reduced dielectric screening, two-dimensional transition metal dichalcogenides exhibit strongly bound excitons either in a single structure or hetero-counterpart; however, quantum coherence between excitons is barely known to date. Here we observe exciton quantum beats in atomically thin ReS 2 and further modulate the intensity of the quantum beats signal. Surprisingly, linearly polarized excitons behave like a coherently coupled three-level system exhibiting quantum beats, even though they exhibit anisotropic exciton orientations and optical selection rules. Theoretical studies are also provided to clarify that the observed quantum beats originate from pure quantum coherence, not from classical interference. Furthermore, we modulate on/off quantum beats only by laser polarization. This work provides an ideal laboratory toward polarization-controlled exciton quantum beats in two-dimensional materials.
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V.; Fox, Ronald F.
2005-01-01
A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory
International Nuclear Information System (INIS)
Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.
2006-01-01
This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time
Coherent energy scale revealed by ultrafast dynamics of UX3 (X = Al, Sn, Ga) single crystals
Nair, Saritha K.; Zhu, J.-X.; Sarrao, J. L.; Taylor, A. J.; Chia, Elbert E. M.
2012-09-01
The temperature dependence of relaxation dynamics of UX3 (X = Al, Ga, Sn) compounds is studied using the time-resolved pump-probe technique in reflectance geometry. For UGa3, our data are consistent with the formation of a spin density wave gap as evidenced from the quasidivergence of the relaxation time τ near the Néel temperature TN. For UAl3 and USn3, the relaxation dynamics shows a change from single-exponential to two-exponential behavior below a particular temperature, suggestive of coherence formation of the 5f electrons with the conduction band electrons. This particular temperature can be attributed to the spin fluctuation temperature Tsf, a measure of the strength of Kondo coherence. Our Tsf is consistent with other data such as resistivity and susceptibility measurements. The temperature dependence of the relaxation amplitude and time of UAl3 and USn3 were also fitted by the Rothwarf-Taylor model. Our results show that ultrafast optical spectroscopy is sensitive to c-f Kondo hybridization in the f-electron systems.
Vision for single flux quantum very large scale integrated technology
Silver, Arnold; Bunyk, Paul; Kleinsasser, Alan; Spargo, John
2006-05-01
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm-2 to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm-2 into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip. This technology was exported from the United States in accordance with the US Department of Commerce Export Administration Regulations (EAR) for ultimate destination in the United Kingdom. Diversion contrary to US law prohibited.
Vision for single flux quantum very large scale integrated technology
International Nuclear Information System (INIS)
Silver, Arnold; Bunyk, Paul; Kleinsasser, Alan; Spargo, John
2006-01-01
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm -2 to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm -2 into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip
Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects
García-Pablos, D.; García, N.; Raedt, H. De
1997-01-01
We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated
Resonant coherent quantum tunneling of the magnetization of spin-systems: Spin-parity effects
Garcia-Pablos, D; Garcia, N; de Raedt, H.A.
1997-01-01
We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated to occur only for some specific resonant values of
Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam
Energy Technology Data Exchange (ETDEWEB)
Monteiro, L. F.; Serbeto, A.; Tsui, K. H. [Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, RJ 24210-346 (Brazil); Mendonça, J. T.; Galvão, R. M. O. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil)
2013-07-15
Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}γ{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2√(k{sub w}/λ{sub c})γ{sup 3/2}, with λ{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.
Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations
International Nuclear Information System (INIS)
Stottmeister, Alexander; Thiemann, Thomas
2016-01-01
This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
International Nuclear Information System (INIS)
Nakamura, Tatsuya; Abe, Yuji; Kasai, Seiya; Hasegawa, Hideki; Hashizume, Tamotsu
2006-01-01
A new single electron (SE) binary-decision diagram (BDD) node device having a single quantum dot connected to three nanowire branches through tunnel barriers was fabricated using etched AlGaAs/GaAs nanowires and nanometer-sized Schottky wrap gates (WPGs), and their operation was characterized experimentally, for the hexagonal BDD quantum circuit. Fabricated devices showed clear and steep single electron pass switching by applying only an input voltage signal, which was completely different from switching properties in the previous SE BDD node devices composed of two single electron switches. As the possible switching mechanism, the correlation between the probabilities of tunnelling thorough a single quantum dot in exit branches was discussed
Enhancing quantum sensing sensitivity by a quantum memory.
Zaiser, Sebastian; Rendler, Torsten; Jakobi, Ingmar; Wolf, Thomas; Lee, Sang-Yun; Wagner, Samuel; Bergholm, Ville; Schulte-Herbrüggen, Thomas; Neumann, Philipp; Wrachtrup, Jörg
2016-08-10
In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single (13)C nuclear spins.
Readout of a single electron spin in a double quantum dot using a quantum point contact
International Nuclear Information System (INIS)
Zhang Jianping; Ouyang Shihua; You, J Q; Lam, C.-H.
2008-01-01
We study the dynamics of a single electron spin in a double quantum dot (DQD) and its readout via a quantum point contact (QPC). We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD. Two cases with one and two electrons in the DQD are studied. In the one-electron case, with different Zeeman splittings in the two dots, the electron spin states are distinctly characterized by a constant and an oscillatory current through the QPC. In the two-electron case, the readout of the spin state of the electron in one of the dots called the qubit dot is essentially similar after considering hyperfine interactions between the electrons and the nuclear spins of the host materials and a uniform magnetic field applied to the DQD. Moreover, to ensure that an electron is properly injected into the qubit dot, we propose to determine the success of the electron injection from the variations of the QPC current after applying an oscillating magnetic field to the qubit dot
Single-shot parallel full range complex Fourier-domain optical coherence tomography
International Nuclear Information System (INIS)
Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao
2011-01-01
We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.
Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.
Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech
2017-12-15
Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.
Directory of Open Access Journals (Sweden)
Donald C. Boone
2017-10-01
Full Text Available This computational research study will analyze the multi-physics of lithium ion insertion into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and quantum level. The electron coherent states and a quantum field version of photon density waves will be the joining theories that will explain the electron-photon interaction within the lithium-silicon lattice structure. These two quantum particles will be responsible for the photon absorption rate of silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent bonds that ultimately leads to volume expansion. It will be demonstrated through the combination of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112> orthogonal directions confirms the findings ascertained in previous works made by other research groups. The computational findings presented in this work are similar to those which were discovered experimentally using transmission electron microscopy (TEM and simulation models that used density functional theory (DFT and molecular dynamics (MD. The refractive index and electric susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations and appears frequently throughout this research presentation, which should serve to demonstrate the importance of these parameters in the understanding of this component in lithium ion batteries.
Fernandes, I. L.; Cabrera, G. G.
2018-05-01
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.
Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states
Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.
2018-04-01
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
Hu, C Y
2017-03-28
The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.
Magnetic Quantum Tunneling in Single Molecule Magnets: Mn-12 and Others
del Barco, Enrique
2004-03-01
Magnetic quantum tunneling (MQT) has been studied in single molecule magnets (SMMs) using a micro-Hall effect magnetometer in a superconducting high field vector magnet system that incorporates the possibility of applying pulsed microwave fields. Mn_12-acetate has been studied extensively over the years. However, only recently the symmetry of MQT and the nature of the transverse interactions important to MQT have been determined [1,2]. Magnetic measurements in the pure quantum tunneling regime (0.6 K) illustrate that an average crystal fourfold MQT symmetry is due to local molecular environments of twofold symmetry that are rotated by 90 degrees with respect to one another, confirming that disorder which lowers the molecule symmetry is important to MQT. We have studied a subset of these lower site symmetry molecules and present evidence for a Berry phase that results from a combination of second and forth order contributions to the transverse magnetic anisotropy. These observations are consistent with high frequency EPR studies of the transverse interactions in Mn_12-acetate [3]. Finally, we discuss recent experiments in which microwave radiation is applied to modulate MQT and characterize the lifetimes and coherence times of states that are superpositions of "up" and "down" high spin-projections. [1] E. del Barco, et al., Phys. Rev. Lett. 91, 047203 (2003) [2] S. Hill, et al., Phys. Rev. Lett. 90, 217204 (2003). [3] E. del Barco, A, D. Kent, R. S. Edwards, S. I. Jones, S. Hill, J. M. North, N. S. Dalal, E. M. Rumnberger, D. N. Hendrickson and G. Christou, to be published.
Single photon emission from charged excitons in CdTe/ZnTe quantum dots
Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.
2017-11-01
We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong
2017-10-01
Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.
Platonic quantum networks as coherence-assisted switches in perfect and imperfect situations
International Nuclear Information System (INIS)
Javaherian, C; Twamley, J
2015-01-01
The concept of coherence switches with nanoparticle platonic networks is introduced and analysed. The platonic networks store an initially injected excitation for extremely long durations via the formation of dark states. Switching is achieved by the nano-mechanical arrangements of one site or some part of the network to remove the trapping thus leading to a highly efficient transfer to the target which is irreversibly connected to one site. We present coherence switches based on controlling a cubic network both in the absence and presence of environment and manufacturing/topological noise. (paper)
Coherent manipulation of Andreev states in superconducting atomic contacts
Janvier, C.; Tosi, L.; Bretheau, L.; Girit, Ç. Ö.; Stern, M.; Bertet, P.; Joyez, P.; Vion, D.; Esteve, D.; Goffman, M. F.; Pothier, H.; Urbina, C.
2015-09-01
Coherent control of quantum states has been demonstrated in a variety of superconducting devices. In all of these devices, the variables that are manipulated are collective electromagnetic degrees of freedom: charge, superconducting phase, or flux. Here we demonstrate the coherent manipulation of a quantum system based on Andreev bound states, which are microscopic quasi-particle states inherent to superconducting weak links. Using a circuit quantum electrodynamics setup, we performed single-shot readout of this Andreev qubit. We determined its excited-state lifetime and coherence time to be in the microsecond range. Quantum jumps and parity switchings were observed in continuous measurements. In addition to having possible quantum information applications, such Andreev qubits are a test-bed for the physics of single elementary excitations in superconductors.
2015-12-04
with remarkable efficiency despite their exposure to “hot and wet” environmental conditions. This proposal seeks to develop instrumentation tailored...on solution processing. 1.1.2. Autonomous Systems. The systems described here are incredibly robust to a host of environmental conditions, both...static and dynamic. Since feedback can perturb the fragile quantum state of the system, a robust quantum dynamical system must avoid direct
Magnetic Quantum Tunneling and Symmetry in Single Molecule Magnets
Kent, Andrew D.
2003-03-01
We have studied the symmetry of magnetic quantum tunneling (MQT) in single molecule magnets (SMMs) using a micro-Hall effect magnetometer and high field vector superconducting magnet system. In the most widely studied SMM, Mn12-acetate, an average crystal 4-fold symmetry in the magnetic response is shown to be due to local molecular environments of 2-fold symmetry that are rotated by 90 degrees with respect to one another. We attribute this to ligand disorder that leads to local rhombic distortions, a model first proposed by Cornia et al. based on x-ray diffraction data [1]. We have magnetically distilled a Mn12-acetate crystal to study a subset of these lower (2-fold) site symmetry molecules and present evidence for a spin-parity effect consistent with a local 2-fold symmetry [2]. These results highlight the importance of subtle changes in molecule environment in modulating magnetic anisotropy and MQT. [1] Cornia et al. Phys. Rev. Lett. 89, 257201 (2002) [2] E. del Barco, A. D. Kent, E. Rumberger, D. H. Hendrickson, G. Christou, submitted for publication (2002) and Europhys. Lett. 60, 768 (2002)
Oriented conjugation of single-domain antibodies and quantum dots.
Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona
2014-01-01
Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.
International Nuclear Information System (INIS)
Fiege, Daniel Pascal
2014-01-01
Sodium magnetic resonance imaging (MRI) can quantify directly and non-invasively tissue sodium concentration levels in vivo. Tissue sodium concentration levels are tightly regulated and have been shown to be directly linked to cell viability. The intracellular sodium concentration is an even more specific parameter. The triple-quantum filtering (TQF) technique for sodium MRI has been suggested to detect the intracellular sodium only. Despite their huge potential, only few studies with sodium MRI have been carried out because of the long acquisition times of sodium MRI techniques, their susceptibility to static field inhomogeneities and their limited signal-to-noise ratio compared to proton MRI. Three novel techniques that address these limitations are presented in this thesis: (a) a sodium MRI sequence that acquires simultaneously both tissue sodium concentration maps and TQF images, (b) a phase-rotation scheme that allows for the acquisition of static field inhomogeneity insensitive TQF images, and (c) the combination of the two aforementioned techniques with optimised parameters at the ultra-high fi eld strength of 9.4 T in vivo. The SISTINA sequence - simultaneous single-quantum and triple-quantum filtered imaging of 23 Na - is presented. The sequence is based on a TQF acquisition with a Cartesian readout and a three-pulse preparation. The delay between the first two pulses is used for an additional ultra-short echo time 3D radial readout. The method was implemented on a 4T scanner. It is validated in phantoms and in healthy volunteers that this additional readout does not interfere with the TQ preparation. The method is applied to three cases of brain tumours. The tissue sodium concentration maps and TQF images are presented and compared to 1 H MR and positron emission tomography images. The three-pulse TQF preparation is sensitive to static field inhomogeneities. This problem is caused by destructive interference of different coherence pathways. To address
A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor
DEFF Research Database (Denmark)
See, A. M.; Klochan, O.; Micolich, P.
2013-01-01
. The temperature and magnetic field dependences of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin......, and the interference effects which arise from coherent tunnelling of electrons in the quantum dot....
Decoherence of quantum excitation of even/odd coherent states in ...
Indian Academy of Sciences (India)
even/odd coherent states, ((ˆa†)m |α±〉), in a thermal environment by investigating the variation of negative part of the Wigner quasidistribution function vs. the rescaled time. For this purpose, at first we obtain the time-dependent Wigner function corresponding to the mentioned states in the framework of standard master ...
Coherent control of quantum jumps in an optical lattice by a weak axial magnetic field
International Nuclear Information System (INIS)
Bhattacherjee, Aranyabhuti
2001-07-01
As an extension to our earlier work [Opt. Commun. 191, 83 (2001)] we study how a weak axial magnetic field applied along the axis of an optical lattice can coherently control the photon statistics of a trapped cold metastable Helium atom. (author)
Decoherence of quantum excitation of even/odd coherent states in ...
Indian Academy of Sciences (India)
even/odd coherent states, ((\\^a)m|α±⟩), in a thermal environment by investigating the variation of negative part of the Wigner quasidistribution function vs. the rescaled time. For this purpose, at first we obtain the time-dependent Wigner function ...
Decoherence of quantum excitation of even/odd coherent states in ...
Indian Academy of Sciences (India)
added) even/odd coherent states, ((ˆa†)m |α±〉), in a thermal environment by investigating the variation of negative part of the Wigner quasidistribution function vs. the rescaled time. For this purpose, at first we obtain the time-dependent Wigner ...
Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits
Kiktenko, E. O.; Fedorov, A. K.; Strakhov, A. A.; Man'ko, V. I.
2015-07-01
Design of a large-scale quantum computer has paramount importance for science and technologies. We investigate a scheme for realization of quantum algorithms using noncomposite quantum systems, i.e., systems without subsystems. In this framework, n artificially allocated "subsystems" play a role of qubits in n-qubits quantum algorithms. With focus on two-qubit quantum algorithms, we demonstrate a realization of the universal set of gates using a d = 5 single qudit state. Manipulation with an ancillary level in the systems allows effective implementation of operators from U(4) group via operators from SU(5) group. Using a possible experimental realization of such systems through anharmonic superconducting many-level quantum circuits, we present a blueprint for a single qudit realization of the Deutsch algorithm, which generalizes previously studied realization based on the virtual spin representation (Kessel et al., 2002 [9]).
DEFF Research Database (Denmark)
Unsleber, Sebastian; Maier, Sebastian; McCutcheon, Dara
2015-01-01
-controlled semiconductor quantum dot to an external resonant laser field. For strong continuous-wave driving we observe the characteristic Mollow triplet and analyze the Rabi splitting and sideband widths as a function of driving strength and temperature. The sideband widths increase linearly with temperature...... and the square of the driving strength, which we explain via coupling of the exciton to longitudinal acoustic phonons. We also find an increase of the Rabi splitting with temperature, which indicates a temperature induced delocalization of the excitonic wave function resulting in an increase of the oscillator...... strength. Finally, we demonstrate coherent control of the exciton excited state population via pulsed resonant excitation and observe a damping of the Rabi oscillations with increasing pulse area, which is consistent with our exciton-photon coupling model. We believe that our work outlines the possibility...
Accurate single-observer passive coherent location estimation based on TDOA and DOA
Directory of Open Access Journals (Sweden)
Li Jing
2014-08-01
Full Text Available This paper investigates the problem of target position estimation with a single-observer passive coherent location (PCL system. An approach that combines angle with time difference of arrival (ATDOA is used to estimate the location of a target. Compared with the TDOA-only method which needs two steps, the proposed method estimates the target position more directly. The constrained total least squares (CTLS technique is applied in this approach. It achieves the Cramer–Rao lower bound (CRLB when the parameter measurements are subject to small Gaussian-distributed errors. Performance analysis and the CRLB of this approach are also studied. Theory verifies that the ATDOA method gets a lower CRLB than the TDOA-only method with the same TDOA measuring error. It can also be seen that the position of the target affects estimating precision. At the same time, the locations of transmitters affect the precision and its gradient direction. Compared with the TDOA, the ATDOA method can obtain more precise target position estimation. Furthermore, the proposed method accomplishes target position estimation with a single transmitter, while the TDOA-only method needs at least four transmitters to get the target position. Furthermore, the transmitters’ position errors also affect precision of estimation regularly.
Single shot imaging through turbid medium and around corner using coherent light
Li, Guowei; Li, Dayan; Situ, Guohai
2018-01-01
Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.
Theory of single quantum dot lasers: Pauli-blocking-enhanced anti-bunching
International Nuclear Information System (INIS)
Su, Yumian; Bimberg, Dieter; Carmele, Alexander; Richter, Marten; Knorr, Andreas; Lüdge, Kathy; Schöll, Eckehard
2011-01-01
We present a theoretical model to describe the dynamics of a single semiconductor quantum dot interacting with a microcavity system. The confined quantum dot levels are pumped electrically via a carrier reservoir. The investigated dynamics includes semiconductor-specific, reservoir-induced Pauli-blocking terms in the equations of the photon probability functions. This enables a direct study of the photon statistics of the quantum light emission in dependence on the different pumping rates
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian
2008-01-01
We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...... taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides....
Single-electron switching effect in graphene parallel-coupled double quantum dots
Arai, M.; Masubuchi, S.; Machida, T.
2011-12-01
We have fabricated parallel-coupled quantum dots on single-layer graphene. The tunnel coupling between the quantum dots can be tuned by a graphene in-plane gate. Owing to the tunnel coupling, the Coulomb blockade oscillation peaks exhibit periodic shifts as the number of electron in the non-conducting side-coupled QD is changed. The result suggests the observation of the single electron switching effect, which is a prerequisite for a single photon detection scheme using parallel-coupled quantum dots.
DEFF Research Database (Denmark)
Li, H.W.; Kardynal, Beata; Ellis, D.J.P.
2008-01-01
Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality...... resonant tunneling diodes. A single photon detection efficiency of 2.1%+/- 0.1% at 685 nm was measured corresponding to an internal quantum efficiency of 14%. The devices are simple to fabricate, robust, and show promise for large absorption area single photon detectors based on quantum dot structures....
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
DEFF Research Database (Denmark)
Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther
2015-01-01
even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes......¨dinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can...... not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics....
Toward quantum processing in molecules: a THz-bandwidth coherent memory for light.
Bustard, Philip J; Lausten, Rune; England, Duncan G; Sussman, Benjamin J
2013-08-23
The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to ~1 ns, enabling ~10(4) operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.
Bright single photon source based on self-aligned quantum dot–cavity systems
DEFF Research Database (Denmark)
Maier, Sebastian; Gold, Peter; Forchel, Alfred
2014-01-01
We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...
The Heteronuclear Single-Quantum Correlation (HSQC) Experiment: Vectors versus Product Operators
de la Vega-Herna´ndez, Karen; Antuch, Manuel
2015-01-01
A vectorial representation of the full sequence of events occurring during the 2D-NMR heteronuclear single-quantum correlation (HSQC) experiment is presented. The proposed vectorial representation conveys an understanding of the magnetization evolution during the HSQC pulse sequence for those who have little or no quantum mechanical background.…
Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds
Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu
2018-03-01
We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.
Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals
DEFF Research Database (Denmark)
Lehmann, Tau Bernstorff
In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single-photon...... purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single-photons...... from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...
Low-cost coherent receiver for long-reach optical access network using single-ended detection.
Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao
2014-09-15
A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.
Energy Technology Data Exchange (ETDEWEB)
Trubilko, A. I., E-mail: trubilko.andrey@gmail.com [St. Petersburg University of State Fire Service of the Russian Ministry of Emergency Situations (Russian Federation)
2016-10-15
Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity and to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.
Single-shot secure quantum network coding on butterfly network with free public communication
Owari, Masaki; Kato, Go; Hayashi, Masahito
2018-01-01
Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.
Injection of a single electron from static to moving quantum dots.
Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan
2016-05-27
We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.
Quantum ion-acoustic oscillations in single-walled carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Khan, S.A. [Kyoto Univ., Katsura (Japan). Graduate School of Engineering; Quaid-i-Azam Univ., Islamabad (Pakistan). National Centre for Physics; Iqbal, Z. [University of Management and Technology, Sialkot (Pakistan); Wazir, Z. [Riphah International Univ., Islamabad (Pakistan). Dept. of Basic Sciences; Rehman, Aman ur [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan)
2016-08-01
Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.
Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes
Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman
2016-05-01
Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.
Exciton dephasing in single InGaAs quantum dots
DEFF Research Database (Denmark)
Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis
2000-01-01
The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....
Quantum cascade laser infrared spectroscopy of single cancer cells
Patel, Imran
2017-03-27
Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.
Pilot-wave quantum theory with a single Bohm's trajectory
Avanzini, Francesco; Fresch, Barbara; Moro, Giorgio J.
2015-01-01
The representation of a quantum system as the spatial configuration of its constituents evolving in time as a trajectory under the action of the wave-function, is the main objective of the Bohm theory. However, its standard formulation is referred to the statistical ensemble of its possible trajectories. The statistical ensemble is introduced in order to establish the exact correspondence (the Born's rule) between the probability density on the spatial configurations and the quantum distribut...
Liu, Tong; Guo, Bao-Qing; Yu, Chang-Shui; Zhang, Wei-Ning
2018-02-01
In a recent remarkable experiment [R. B. Patel et al., Science advances 2, e1501531 (2016)], a 3-qubit quantum Fredkin (i.e., controlled-SWAP) gate was demonstrated by using linear optics. Here we propose a simple experimental scheme by utilizing the dispersive interaction in superconducting quantum circuit to implement a hybrid Fredkin gate with a superconducting flux qubit as the control qubit and two separated quantum memories as the target qudits. The quantum memories considered here are prepared by the superconducting coplanar waveguide resonators or nitrogen-vacancy center ensembles. In particular, it is shown that this Fredkin gate can be realized using a single-step operation and more importantly, each target qudit can be in an arbitrary state with arbitrary degrees of freedom. Furthermore, we show that this experimental scheme has many potential applications in quantum computation and quantum information processing such as generating arbitrary entangled states (discrete-variable states or continuous-variable states) of the two memories, measuring the fidelity and the entanglement between the two memories. With state-of-the-art circuit QED technology, the numerical simulation is performed to demonstrate that two-memory NOON states, entangled coherent states, and entangled cat states can be efficiently synthesized.
Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik
2017-07-24
We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.
Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire
DEFF Research Database (Denmark)
Nguyen, H.A.; Grange, T.; Malik, N.S.
2017-01-01
Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons.......Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons....
On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.
Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D
2017-08-30
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
Quantum discord dynamics of two qubits in single-mode cavities
International Nuclear Information System (INIS)
Wang Chen; Chen Qing-Hu
2013-01-01
The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)
The supramolecular structure of liquid water and quantum coherent processes in biology
International Nuclear Information System (INIS)
Ninno, A De; Castellano, A Congiu; Giudice, E Del
2013-01-01
Vibrational spectroscopy provides a powerful tool to understand the molecular structures. When applied to the liquid water, this technique reveals so many details which can also shed a light on the supramolecular arrangement of the most ubiquitous of the substances. In particular, the two fluid model of water, proposed several decades ago, founds experimental evidence. Moreover, some fundamental parameters calculated in the realm of the theory of Quantum ElectroDynamics applied to liquid water can be actually measured showing an excellent agreement with the theory. This allows to add a dynamical origin to the mixed cluster model of water well known by the biologists for fifty years and opens the way to the dawn of a real quantum biology.