Sample records for single protein-ligand complexes

  1. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics. (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A


    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes. (United States)

    Okuno, Tatsuya; Kato, Koya; Terada, Tomoki P; Sasai, Masaki; Chikenji, George


    As the number of structurally resolved protein-ligand complexes increases, the ligand-binding pockets of many proteins have been found to accommodate multiple different compounds. Effective use of these structural data is important for developing virtual screening (VS) methods that identify bioactive compounds. Here, we introduce a VS method, VS-APPLE (Virtual Screening Algorithm using Promiscuous Protein-Ligand complExes), based on promiscuous protein-ligand binding structures. In VS-APPLE, multiple ligands bound to a pocket are combined into a query template for screening. Both the structural match between a test compound and the multiple-ligand template and the possible collisions between the test compound and the target protein are evaluated by an efficient geometric hashing method. The performance of VS-APPLE was examined on a filtered, clustered version of the Directory of Useful Decoys data set. In Area Under the Curve analyses of this data set, VS-APPLE outperformed several popular screening programs. Judging from the performance of VS-APPLE, the structural data of promiscuous protein-ligand bindings could be further analyzed and exploited for developing VS methods.

  3. iview: an interactive WebGL visualizer for protein-ligand complex. (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon


    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  4. Strength and Character of Halogen Bonds in Protein-Ligand Complexes

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Hobza, Pavel


    Roč. 11, č. 10 (2011), s. 4272-4278 ISSN 1528-7483 R&D Projects: GA MŠk LC512 Grant - others:Research and Development for Innovations of European Social Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : halogen bond * protein-ligand complexes * calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.720, year: 2011

  5. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes. (United States)

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; Purohit, Trupta; Dyguda-Kazimierowicz, Edyta; Grembecka, Jolanta; Cierpicki, Tomasz


    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein-ligand complexes. Such fluorine-backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin-MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin-MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine-backbone interactions in protein-ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin-MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine-backbone interactions may represent a particularly attractive approach to improve inhibitors of protein-protein interactions.

  6. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. (United States)

    Koppisetty, Chaitanya A K; Frank, Martin; Kemp, Graham J L; Nyholm, Per-Georg


    Computing binding energies of protein-ligand complexes including their enthalpy and entropy terms by means of computational methods is an appealing approach for selecting initial hits and for further optimization in early stages of drug discovery. Despite the importance, computational predictions of thermodynamic components have evaded attention and reasonable solutions. In this study, support vector machines are used for developing scoring functions to compute binding energies and their enthalpy and entropy components of protein-ligand complexes. The binding energies computed from our newly derived scoring functions have better Pearson's correlation coefficients with experimental data than previously reported scoring functions in benchmarks for protein-ligand complexes from the PDBBind database. The protein-ligand complexes with binding energies dominated by enthalpy or entropy term could be qualitatively classified by the newly derived scoring functions with high accuracy. Furthermore, it is found that the inclusion of comprehensive descriptors based on ligand properties in the scoring functions improved the accuracy of classification as well as the prediction of binding energies including their thermodynamic components. The prediction of binding energies including the enthalpy and entropy components using the support vector machine based scoring functions should be of value in the drug discovery process.

  7. Consistent two-dimensional visualization of protein-ligand complex series

    Directory of Open Access Journals (Sweden)

    Stierand Katrin


    Full Text Available Abstract Background The comparative two-dimensional graphical representation of protein-ligand complex series featuring different ligands bound to the same active site offers a quick insight in their binding mode differences. In comparison to arbitrary orientations of the residue molecules in the individual complex depictions a consistent placement improves the legibility and comparability within the series. The automatic generation of such consistent layouts offers the possibility to apply it to large data sets originating from computer-aided drug design methods. Results We developed a new approach, which automatically generates a consistent layout of interacting residues for a given series of complexes. Based on the structural three-dimensional input information, a global two-dimensional layout for all residues of the complex ensemble is computed. The algorithm incorporates the three-dimensional adjacencies of the active site residues in order to find an universally valid circular arrangement of the residues around the ligand. Subsequent to a two-dimensional ligand superimposition step, a global placement for each residue is derived from the set of already placed ligands. The method generates high-quality layouts, showing mostly overlap-free solutions with molecules which are displayed as structure diagrams providing interaction information in atomic detail. Application examples document an improved legibility compared to series of diagrams whose layouts are calculated independently from each other. Conclusions The presented method extends the field of complex series visualizations. A series of molecules binding to the same protein active site is drawn in a graphically consistent way. Compared to existing approaches these drawings substantially simplify the visual analysis of large compound series.

  8. Protein-ligand complex structure from serial femtosecond crystallography using soaked thermolysin microcrystals and comparison with structures from synchrotron radiation. (United States)

    Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki


    Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.

  9. Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes. (United States)

    Miranda, Williams E; Noskov, Sergei Yu; Valiente, Pedro A


    In this work, we introduced an improved linear interaction energy (LIE) method parameterization for computations of protein–ligand binding free energies. The protocol, coined LIE-D, builds on the linear relationship between the empirical coefficient γ in the standard LIE scheme and the D parameter, introduced in our work. The D-parameter encompasses the balance (difference) between electrostatic (polar) and van der Waals (nonpolar) energies in protein–ligand complexes. Leave-one-out cross-validation showed that LIE-D reproduced accurately the absolute binding free energies for our training set of protein–ligand complexes ( = 0.92 kcal/mol, SDerror = 0.66 kcal/mol, R(2) = 0.90, QLOO(2) = 0.89, and sPRESS(LOO) = 1.28 kcal/mol). We also demonstrated LIE-D robustness by predicting accurately the binding free energies for three different protein–ligand systems outside the training data set, where the electrostatic and van der Waals interaction energies were calculated with different force fields.

  10. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®). (United States)

    Lindblom, Peter R; Wu, Guosheng; Liu, Zhijie; Jim, Kam-Chuen; Baldwin, John J; Gregg, Richard E; Claremon, David A; Singh, Suresh B


    Contour(®) is a computational structure-based drug design technology that grows drug-like molecules by assembling context sensitive fragments in well-defined binding pockets. The grown molecules are scored by a novel empirical scoring function developed using high-resolution crystal structures of diverse classes of protein-ligand complexes and associated experimental binding affinities. An atomic model bearing features of the valence bond and VSEPR theories embodying their molecular electronic environment has been developed for non-covalent intermolecular interactions. On the basis of atomic hybridization and polarization states, each atom is modeled by features representing electron lone pairs, p-orbitals, and polar and non-polar hydrogens. A simple formal charge model was used to differentiate between polar and non-polar atoms. The interaction energy and the desolvation contribution of the protein-ligand association energy is computed as a linear sum of pair-wise interactions and desolvation terms. The pair-wise interaction energy captures short-range positive electrostatic interactions via hydrogen bonds, electrostatic repulsion of like charges, and non-bond contacts. The desolvation energy is estimated by calculating the energy required to desolvate interaction surfaces of the protein and the ligand in the complex. The scoring function predicts binding energies of a diverse set of protein-ligand complexes used for training with a correlation coefficient of 0.61. It also performs equally well in predicting association energies of a diverse validation set of protein-ligand complexes with a correlation coefficient of 0.57, which is equivalent to or better than 12 other scoring functions tested against this set including X-Score, GOLD, and DrugScore. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Setting up a large set of protein-ligand PDB complexes for the development and validation of knowledge-based docking algorithms

    Directory of Open Access Journals (Sweden)

    Aguilera Longendri


    Full Text Available Abstract Background The number of algorithms available to predict ligand-protein interactions is large and ever-increasing. The number of test cases used to validate these methods is usually small and problem dependent. Recently, several databases have been released for further understanding of protein-ligand interactions, having the Protein Data Bank as backend support. Nevertheless, it appears to be difficult to test docking methods on a large variety of complexes. In this paper we report the development of a new database of protein-ligand complexes tailored for testing of docking algorithms. Methods Using a new definition of molecular contact, small ligands contained in the 2005 PDB edition were identified and processed. The database was enriched in molecular properties. In particular, an automated typing of ligand atoms was performed. A filtering procedure was applied to select a non-redundant dataset of complexes. Data mining was performed to obtain information on the frequencies of different types of atomic contacts. Docking simulations were run with the program DOCK. Results We compiled a large database of small ligand-protein complexes, enriched with different calculated properties, that currently contains more than 6000 non-redundant structures. As an example to demonstrate the value of the new database, we derived a new set of chemical matching rules to be used in the context of the program DOCK, based on contact frequencies between ligand atoms and points representing the protein surface, and proved their enhanced efficiency with respect to the default set of rules included in that program. Conclusion The new database constitutes a valuable resource for the development of knowledge-based docking algorithms and for testing docking programs on large sets of protein-ligand complexes. The new chemical matching rules proposed in this work significantly increase the success rate in DOCKing simulations. The database developed in this work is

  12. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase. (United States)

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J


    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  13. Models of protein-ligand crystal structures: trust, but verify (United States)

    Deller, Marc C.; Rupp, Bernhard


    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  14. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes (United States)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.


    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  15. Characterization of protein/ligand interactions by 1H/3H exchange: application to the hAsf1/ histone H3 complex

    International Nuclear Information System (INIS)

    Mousseau, G.


    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H 3 . (N.C.)

  16. Multifunctional Transmembrane Protein Ligands for Cell-Specific Targeting of Plasma Membrane-Derived Vesicles. (United States)

    Zhao, Chi; Busch, David J; Vershel, Connor P; Stachowiak, Jeanne C


    Liposomes and nanoparticles that bind selectively to cell-surface receptors can target specific populations of cells. However, chemical conjugation of ligands to these particles is difficult to control, frequently limiting ligand uniformity and complexity. In contrast, the surfaces of living cells are decorated with highly uniform populations of sophisticated transmembrane proteins. Toward harnessing cellular capabilities, here it is demonstrated that plasma membrane vesicles (PMVs) derived from donor cells can display engineered transmembrane protein ligands that precisely target cells on the basis of receptor expression. These multifunctional targeting proteins incorporate (i) a protein ligand, (ii) an intrinsically disordered protein spacer to make the ligand sterically accessible, and (iii) a fluorescent protein domain that enables quantification of the ligand density on the PMV surface. PMVs that display targeting proteins with affinity for the epidermal growth factor receptor (EGFR) bind at increasing concentrations to breast cancer cells that express increasing levels of EGFR. Further, as an example of the generality of this approach, PMVs expressing a single-domain antibody against green fluorescence protein (eGFP) bind to cells expressing eGFP-tagged receptors with a selectivity of ≈50:1. The results demonstrate the versatility of PMVs as cell targeting systems, suggesting diverse applications from drug delivery to tissue engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Movable Type Method Applied to Protein-Ligand Binding. (United States)

    Zheng, Zheng; Ucisik, Melek N; Merz, Kenneth M


    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term "movable type". Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the free

  18. Characterization of protein/ligand interactions by {sup 1}H/{sup 3}H exchange: application to the hAsf{sup 1}/ histone H{sup 3} complex; Caracterisation des interactions proteine / ligand par echange {sup 1}H/{sup 3}H: application au complexe entre la proteine hAsf{sup 1} et l'histone H{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, G


    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H{sup 3}. (N.C.)


    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini


    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  20. Comparison of molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-three-dimensional reference interaction site model (MM-3D-RISM) method to calculate the binding free energy of protein-ligand complexes: Effect of metal ion and advance statistical test (United States)

    Pandey, Preeti; Srivastava, Rakesh; Bandyopadhyay, Pradipta


    The relative performance of MM-PBSA and MM-3D-RISM methods to estimate the binding free energy of protein-ligand complexes is investigated by applying these to three proteins (Dihydrofolate Reductase, Catechol-O-methyltransferase, and Stromelysin-1) differing in the number of metal ions they contain. None of the computational methods could distinguish all the ligands based on their calculated binding free energies (as compared to experimental values). The difference between the two comes from both polar and non-polar part of solvation. For charged ligand case, MM-PBSA and MM-3D-RISM give a qualitatively different result for the polar part of solvation.

  1. Mapping Protein-Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry. (United States)

    Gallagher, Elyssia S; Hudgens, Jeffrey W


    Biological processes are the result of noncovalent, protein-ligand interactions, where the ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. Amide groups within proteins constantly exchange protons with water. When immersed in heavy water (D2O), mass spectrometry (MS) can measure the change of mass associated with the hydrogen to deuterium exchange (HDX). Protein-ligand interactions modify the hydrogen exchange rates of amide protons, and the measurement of the amide exchange rates can provide rich information regarding the dynamical structure of the protein-ligand complex. This chapter describes a protocol for conducting bottom-up, continuous uptake, proteolytic fragmentation HDX-MS experiments that can help identify and map the interacting peptides of a protein-ligand interface. This tutorial outlines the fundamental theory governing hydrogen exchange; provides practical information regarding the preparation of protein samples and solutions; and describes the exchange reaction, reaction quenching, enzymatic digestion, chromatographic separation, and peptide analysis by MS. Tables list representative combinations of fluidic components used by HDX-MS researchers and summarize the available HDX-MS analysis software packages. Additionally, two HDX-MS case studies are used to illustrate protein-ligand interactions involving: (1) a continuous sequence of interacting residues and (2) a set of discontinuously numbered residues, residing spatially near each other. © 2016 Elsevier Inc. All rights reserved.

  2. Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein-Ligand Interactions. (United States)

    Ashtawy, Hossam M; Mahapatra, Nihar R


    Protein-ligand (PL) interactions play a key role in many life processes such as molecular recognition, molecular binding, signal transmission, and cell metabolism. Examples of interaction forces include hydrogen bonding, hydrophobic effects, steric clashes, electrostatic contacts, and van der Waals attractions. Currently, a large number of hypotheses and perspectives to model these interaction forces are scattered throughout the literature and largely forgotten. Instead, had they been assembled and utilized collectively, they would have substantially improved the accuracy of predicting binding affinity of protein-ligand complexes. In this work, we present Descriptor Data Bank (DDB), a data-driven platform on the cloud for facilitating multiperspective modeling of PL interactions. DDB is an open-access hub for depositing, hosting, executing, and sharing descriptor extraction tools and data for a large number of interaction modeling hypotheses. The platform also implements a machine-learning (ML) toolbox for automatic descriptor filtering and analysis and scoring function (SF) fitting and prediction. The descriptor filtering module is used to filter out irrelevant and/or noisy descriptors and to produce a compact subset from all available features. We seed DDB with 16 diverse descriptor extraction tools developed in-house and collected from the literature. The tools altogether generate over 2700 descriptors that characterize (i) proteins, (ii) ligands, and (iii) protein-ligand complexes. The in-house descriptors we extract are protein-specific which are based on pairwise primary and tertiary alignment of protein structures followed by clustering and trilateration. We built and used DDB's ML library to fit SFs to the in-house descriptors and those collected from the literature. We then evaluated them on several data sets that were constructed to reflect real-world drug screening scenarios. We found that multiperspective SFs that were constructed using a large number

  3. The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery. (United States)

    Groom, Colin R; Cole, Jason C


    Many ligand-discovery stories tell of the use of structures of protein-ligand complexes, but the contribution of structural chemistry is such a core part of finding and improving ligands that it is often overlooked. More than 800 000 crystal structures are available to the community through the Cambridge Structural Database (CSD). Individually, these structures can be of tremendous value and the collection of crystal structures is even more helpful. This article provides examples of how small-molecule crystal structures have been used to complement those of protein-ligand complexes to address challenges ranging from affinity, selectivity and bioavailability though to solubility.

  4. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities (United States)

    Yao, Yuyu; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.


    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)- d-GlcNAc, a single chain variable fragment and α- d-Gal-(1→2)-[α- d-Abe-(1→3)]-α- d-Man-OCH3, cholera toxin B subunit homopentamer with β- d-Gal-(1→3)-β- d-GalNAc-(1→4)[α- d-Neu5Ac-(2→3)]-β- d-Gal-(1→4)-β- d-Glc, and a fragment of galectin 3 and α- l-Fuc-(1→2)-β- d-Gal-(1→3)-β- d-GlcNAc-(1→3)-β- d-Gal-(1→4)-β- d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  5. Development and validation of new methods of distribution of initial population on genetic algorithms for the problem of protein-ligand docking


    Reinaldo Bellini Gonçalves


    The methods of protein-ligand docking are computational methods usedto predict the mode of binding of molecules into drug candidates for its receptor. The docking allows tests of hundreds of compounds in ashort space of time, assisting in the discovery of new drug candidates. The great complexity that involves the binding of protein-ligand complex, makes the problem of docking computationally difficult to be solved. In this work, we used the Genetic Algorithms which is a technique of optimiz...

  6. Protein-ligand docking using FFT based sampling: D3R case study. (United States)

    Padhorny, Dzmitry; Hall, David R; Mirzaei, Hanieh; Mamonov, Artem B; Moghadasi, Mohammad; Alekseenko, Andrey; Beglov, Dmitri; Kozakov, Dima


    Fast Fourier transform (FFT) based approaches have been successful in application to modeling of relatively rigid protein-protein complexes. Recently, we have been able to adapt the FFT methodology to treatment of flexible protein-peptide interactions. Here, we report our latest attempt to expand the capabilities of the FFT approach to treatment of flexible protein-ligand interactions in application to the D3R PL-2016-1 challenge. Based on the D3R assessment, our FFT approach in conjunction with Monte Carlo minimization off-grid refinement was among the top performing methods in the challenge. The potential advantage of our method is its ability to globally sample the protein-ligand interaction landscape, which will be explored in further applications.

  7. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking. (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I


    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at .

  8. The Role of Water in Protein-Ligand Binding: A Comprehensive Study by Crystallography and Isothermal Titration Calorimetry


    Biela, Adam


    The aim of this work is to investigate the impact of desolvation effects on protein-ligand interactions. In all complex structures with thrombin and pyridine, it is evident that preserving the original solvation state of Asp189 is a crucial and a common feature upon binding of the pyridine inhibitors. However, the associated entropic losses are immense. In two ligand complexes even disordered ligand portions are found in the S1 ...

  9. Development and evaluation of a generic evolutionary method for protein-ligand docking. (United States)

    Yang, Jinn-Moon


    We have developed a generic evolutionary method with an empirical scoring function for the protein-ligand docking, which is a problem of paramount importance in structure-based drug design. This approach, referred to as the GEMDOCK (Generic Evolutionary Method for molecular DOCKing), combines both continuous and discrete search mechanisms. We tested our approach on seven protein-ligand complexes, and the docked lowest energy structures have root-mean-square derivations ranging from 0.32 to 0.99 A with respect to the corresponding crystal ligand structures. In addition, we evaluated GEMDOCK on crossdocking experiments, in which some complexes with an identical protein used for docking all crystallized ligands of these complexes. GEMDOCK yielded 98% docked structures with RMSD below 2.0 A when the ligands were docked into foreign protein structures. We have reported the validation and analysis of our approach on various search spaces and scoring functions. Experimental results show that our approach is robust, and the empirical scoring function is simple and fast to recognize compounds. We found that if GEMDOCK used the RMSD scoring function, then the prediction accuracy was 100% and the docked structures had RMSD below 0.1 A for each test system. These results suggest that GEMDOCK is a useful tool, and may systematically improve the forms and parameters of a scoring function, which is one of major bottlenecks for molecular recognition. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 843-857, 2004

  10. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  11. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system. (United States)

    Kantardjiev, Alexander A


    Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at

  12. Improved Free-Energy Landscape Quantification Illustrated with a Computationally Designed Protein-Ligand Interaction. (United States)

    Van Patten, William J; Walder, Robert; Adhikari, Ayush; Okoniewski, Stephen R; Ravichandran, Rashmi; Tinberg, Christine E; Baker, David; Perkins, Thomas T


    Quantifying the energy landscape underlying protein-ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single-molecule technique is atomic force microscopy (AFM)-based force spectroscopy, which generally yields the zero-force dissociation rate constant (k off ) and the distance to the transition state (Δx ≠ ). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG ≠ =6.3±0.2 kcal mol -1 ) and the shape of the energy barrier at the transition state (linear-cubic) in addition to the traditional parameters [k off (=4±0.1×10 -4  s -1 ) and Δx ≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein-ligand interactions and, more broadly, the diverse systems studied by AFM-based force spectroscopy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cloud computing for protein-ligand binding site comparison. (United States)

    Hung, Che-Lun; Hua, Guan-Jie


    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  14. Protein-Ligand Empirical Interaction Components for Virtual Screening. (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge


    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  15. Rate Constants and Mechanisms of Protein-Ligand Binding. (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang


    Whereas protein-ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms.

  16. Influence of Alkylammonium Acetate Buffers on Protein-Ligand Noncovalent Interactions Using Native Mass Spectrometry (United States)

    Zhuang, Xiaoyu; Gavriilidou, Agni F. M.; Zenobi, Renato


    We investigate the influence of three volatile alkylammonium acetate buffers on binding affinities for protein-ligand interactions determined by native electrospray ionization-mass spectrometry (ESI-MS). Four different types of proteins were chosen for this study. A charge-reduction effect was observed for all the cases studied, in comparison to the ions formed in ammonium acetate solution. When increasing the collision energy, the complexes of trypsin and the ligand were found to be more stable when sprayed from alkylammonium acetate buffers than from ammonium acetate. The determined dissociation constant (Kd) also exhibited a drop (up to 40%) when ammonium acetate was replaced by alkylammonium acetate buffers for the case of lysozyme and the ligand. The prospective uses of these ammonium acetate analogs in native ESI-MS are discussed in this paper as well.

  17. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics. (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard


    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. EDGA: A Population Evolution Direction-Guided Genetic Algorithm for Protein-Ligand Docking. (United States)

    Guan, Boxin; Zhang, Changsheng; Ning, Jiaxu


    Protein-ligand docking can be formulated as a search algorithm associated with an accurate scoring function. However, most current search algorithms cannot show good performance in docking problems, especially for highly flexible docking. To overcome this drawback, this article presents a novel and robust optimization algorithm (EDGA) based on the Lamarckian genetic algorithm (LGA) for solving flexible protein-ligand docking problems. This method applies a population evolution direction-guided model of genetics, in which search direction evolves to the optimum solution. The method is more efficient to find the lowest energy of protein-ligand docking. We consider four search methods-a tradition genetic algorithm, LGA, SODOCK, and EDGA-and compare their performance in docking of six protein-ligand docking problems. The results show that EDGA is the most stable, reliable, and successful.

  19. Simple knowledge-based descriptors to predict protein-ligand interactions. Methodology and validation (United States)

    Nissink, J. Willem M.; Verdonk, Marcel L.; Klebe, Gerhard


    A new type of shape descriptor is proposed to describe the spatial orientation for non-covalent interactions. It is built from simple, anisotropic Gaussian contributions that are parameterised by 10 adjustable values. The descriptors have been used to fit propensity distributions derived from scatter data stored in the IsoStar database. This database holds composite pictures of possible interaction geometries between a common central group and various interacting moieties, as extracted from small-molecule crystal structures. These distributions can be related to probabilities for the occurrence of certain interaction geometries among different functional groups. A fitting procedure is described that generates the descriptors in a fully automated way. For this purpose, we apply a similarity index that is tailored to the problem, the Split Hodgkin Index. It accounts for the similarity in regions of either high or low propensity in a separate way. Although dependent on the division into these two subregions, the index is robust and performs better than the regular Hodgkin index. The reliability and coverage of the fitted descriptors was assessed using SuperStar. SuperStar usually operates on the raw IsoStar data to calculate propensity distributions, e.g., for a binding site in a protein. For our purpose we modified the code to have it operate on our descriptors instead. This resulted in a substantial reduction in calculation time (factor of five to eight) compared to the original implementation. A validation procedure was performed on a set of 130 protein-ligand complexes, using four representative interacting probes to map the properties of the various binding sites: ammonium nitrogen, alcohol oxygen, carbonyl oxygen, and methyl carbon. The predicted `hot spots' for the binding of these probes were compared to the actual arrangement of ligand atoms in experimentally determined protein-ligand complexes. Results indicate that the version of SuperStar that applies to

  20. Complex single gene disorders and epilepsy.

    LENUS (Irish Health Repository)

    Merwick, Aine


    Epilepsy is a heterogeneous group of disorders, often associated with significant comorbidity, such as intellectual disability and skin disorder. The genetic underpinnings of many epilepsies are still being elucidated, and we expect further advances over the coming 5 years, as genetic technology improves and prices fall for whole exome and whole genome sequencing. At present, there are several well-characterized complex epilepsies associated with single gene disorders; we review some of these here. They include well-recognized syndromes such as tuberous sclerosis complex, epilepsy associated with Rett syndrome, some of the progressive myoclonic epilepsies, and novel disorders such as epilepsy associated with mutations in the PCDH 19 gene. These disorders are important in informing genetic testing to confirm a diagnosis and to permit better understanding of the variability in phenotype-genotype correlation.

  1. Improved accuracy of low affinity protein-ligand equilibrium dissociation constants directly determined by electrospray ionization mass spectrometry. (United States)

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine


    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (K(D)) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of K(D) are compounded in the case of low affinity complexes. Here we present a K(D) measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (f(sat)) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the K(D) values determined by this method with in-solution K(D) literature values. The influence of the type of molecular interactions and instrumental setup on f(sat) is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  2. istar: A Web Platform for Large-Scale Protein-Ligand Docking (United States)

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J.; Wong, Man-Hon


    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar

  3. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. (United States)

    Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; West, Graham M; Griffin, Patrick R


    Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.

  4. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design. (United States)

    Zhou, P; Huang, J; Tian, F


    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  5. Development of the knowledge-based and empirical combined scoring algorithm (KECSA) to score protein-ligand interactions. (United States)

    Zheng, Zheng; Merz, Kenneth M


    We describe a novel knowledge-based protein-ligand scoring function that employs a new definition for the reference state, allowing us to relate a statistical potential to a Lennard-Jones (LJ) potential. In this way, the LJ potential parameters were generated from protein-ligand complex structural data contained in the Protein Databank (PDB). Forty-nine (49) types of atomic pairwise interactions were derived using this method, which we call the knowledge-based and empirical combined scoring algorithm (KECSA). Two validation benchmarks were introduced to test the performance of KECSA. The first validation benchmark included two test sets that address the training set and enthalpy/entropy of KECSA. The second validation benchmark suite included two large-scale and five small-scale test sets, to compare the reproducibility of KECSA, with respect to two empirical score functions previously developed in our laboratory (LISA and LISA+), as well as to other well-known scoring methods. Validation results illustrate that KECSA shows improved performance in all test sets when compared with other scoring methods, especially in its ability to minimize the root mean square error (RMSE). LISA and LISA+ displayed similar performance using the correlation coefficient and Kendall τ as the metric of quality for some of the small test sets. Further pathways for improvement are discussed for which would allow KECSA to be more sensitive to subtle changes in ligand structure.

  6. Quantitative chemogenomics: machine-learning models of protein-ligand interaction. (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena


    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  7. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. (United States)

    Ballester, Pedro J; Mitchell, John B O


    Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of molecular docking, which in turn is an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterize the complex, which also include parameters fitted to experimental or simulation data and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score's performance was shown to improve dramatically with training set size and hence the future availability of more high-quality structural and interaction data is expected to lead to improved versions of RF-Score.; Supplementary data are available at Bioinformatics online.

  8. Exact and Effective Pair-Wise Potential for Protein-Ligand Interactions Obtained from a Semiempirical Energy Partition

    Directory of Open Access Journals (Sweden)

    André Melo


    Full Text Available In this work, the partition method introduced by Carvalho and Melo was used to study the complex between Cucurbita maxima trypsin inhibitor (CMTI-I and glycerol at the AM1 level. An effective potential, combining non-bonding and polarization plus charge transfer (PLCT terms, was introduced to evaluate the magnitude of the interaction between each amino acid and the ligand. In this case study, the nonbonding–PLCT noncompensation characterizes the stabilization energy of the association process in study. The main residues (Gly29, Cys3 and Arg5 with net attractive effects and Arg1 (with a net repulsive effect, responsible by the stability of protein-ligand complex, are associated with large nonbonding energies non-compensated by PLCT effects. The results obtained enable us to conclude that the present decomposition scheme can be used for understanding the cohesive phenomena in proteins.

  9. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng


    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  10. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. (United States)

    Mitchell, Miguel O


    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  11. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  12. Computational studies of protein-ligand molecular recognition

    NARCIS (Netherlands)

    Gillies, M.B.


    Structure-based drug design is made possible by our understanding of molecular recognition. The utility of this approach was apparent in the development of the clinically e V ective HIV-1 PR inhibitors, where crystal structures of complexes of HIV-1 protease and inhibitors gave pivotal information.

  13. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies. (United States)

    Bryce, Richard A


    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  14. Computational studies of protein-ligand molecular recognition


    Gillies, M.B.


    Structure-based drug design is made possible by our understanding of molecular recognition. The utility of this approach was apparent in the development of the clinically e V ective HIV-1 PR inhibitors, where crystal structures of complexes of HIV-1 protease and inhibitors gave pivotal information. Computational methods drawing upon structural data are of increasing relevance to the drug design process. Nonetheless, these methods are quite rudimentary and signicant improvements are needed. Th...

  15. Low Complexity Bayesian Single Channel Source Separation

    DEFF Research Database (Denmark)

    Beierholm, Thomas; Pedersen, Brian Dam; Winther, Ole


    We propose a simple Bayesian model for performing single channel speech separation using factorized source priors in a sliding window linearly transformed domain. Using a one dimensional mixture of Gaussians to model each band source leads to fast tractable inference for the source signals. Simul...

  16. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions. (United States)

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S


    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid

  17. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding. (United States)

    Montalvo-Acosta, Joel José; Cecchini, Marco


    The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm

    Directory of Open Access Journals (Sweden)

    Jui-Le Chen


    Full Text Available The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA, is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1 the novel migration (information exchange operator is designed specially for cloud-based environments to reduce the computation time; (2 the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result.

  19. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok


    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at

  20. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites. (United States)

    Komiyama, Yusuke; Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro


    Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at They are implemented in Python and supported on Linux. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  1. Assessing protein-ligand docking for the binding of organometallic compounds to proteins. (United States)

    Ortega-Carrasco, Elisabeth; Lledós, Agusti; Maréchal, Jean-Didier


    Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein. Copyright © 2013 Wiley Periodicals, Inc.

  2. Ultrafast energy relaxation in single light-harvesting complexes. (United States)

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk


    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  3. Ultrafast energy relaxation in single light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Malý, Pavel; Gruber, J. Michael; Cogdell, Richard J.; Mančal, Tomáš; van Grondelle, Rienk


    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  4. The XChemExplorer graphical workflow tool for routine or large-scale protein-ligand structure determination. (United States)

    Krojer, Tobias; Talon, Romain; Pearce, Nicholas; Collins, Patrick; Douangamath, Alice; Brandao-Neto, Jose; Dias, Alexandre; Marsden, Brian; von Delft, Frank


    XChemExplorer (XCE) is a data-management and workflow tool to support large-scale simultaneous analysis of protein-ligand complexes during structure-based ligand discovery (SBLD). The user interfaces of established crystallographic software packages such as CCP4 [Winn et al. (2011), Acta Cryst. D67, 235-242] or PHENIX [Adams et al. (2010), Acta Cryst. D66, 213-221] have entrenched the paradigm that a `project' is concerned with solving one structure. This does not hold for SBLD, where many almost identical structures need to be solved and analysed quickly in one batch of work. Functionality to track progress and annotate structures is essential. XCE provides an intuitive graphical user interface which guides the user from data processing, initial map calculation, ligand identification and refinement up until data dissemination. It provides multiple entry points depending on the need of each project, enables batch processing of multiple data sets and records metadata, progress and annotations in an SQLite database. XCE is freely available and works on any Linux and Mac OS X system, and the only dependency is to have the latest version of CCP4 installed. The design and usage of this tool are described here, and its usefulness is demonstrated in the context of fragment-screening campaigns at the Diamond Light Source. It is routinely used to analyse projects comprising 1000 data sets or more, and therefore scales well to even very large ligand-design projects.

  5. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study

    Directory of Open Access Journals (Sweden)

    A Santos Jose C


    Full Text Available Abstract Background There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP, which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. Results The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. Conclusions In addition to confirming literature results, ProGolem’s model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.

  6. WONKA and OOMMPPAA: analysis of protein-ligand interaction data to direct structure-based drug design. (United States)

    Deane, Charlotte M; Wall, Ian D; Green, Darren V S; Marsden, Brian D; Bradley, Anthony R


    In this work, two freely available web-based interactive computational tools that facilitate the analysis and interpretation of protein-ligand interaction data are described. Firstly, WONKA, which assists in uncovering interesting and unusual features (for example residue motions) within ensembles of protein-ligand structures and enables the facile sharing of observations between scientists. Secondly, OOMMPPAA, which incorporates protein-ligand activity data with protein-ligand structural data using three-dimensional matched molecular pairs. OOMMPPAA highlights nuanced structure-activity relationships (SAR) and summarizes available protein-ligand activity data in the protein context. In this paper, the background that led to the development of both tools is described. Their implementation is outlined and their utility using in-house Structural Genomics Consortium (SGC) data sets and openly available data from the PDB and ChEMBL is described. Both tools are freely available to use and download at and

  7. Ligand Conformational and Solvation/Desolvation Free Energy in Protein-Ligand Complex Formation

    Czech Academy of Sciences Publication Activity Database

    Kolář, Michal; Fanfrlík, Jindřich; Hobza, Pavel


    Roč. 115, č. 16 (2011), s. 4718-4724 ISSN 1520-6106 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0295 Grant - others:Korea Science and Engineering Foundation(KR) R32-2008-000-10180-0; European Science Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : solvation free energy * SMD * HIV protease inhibitors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  8. Generation of pharmacophores and classification of drugs using protein-ligand complexes

    Directory of Open Access Journals (Sweden)

    Eliana Velasquez


    Full Text Available Pharmacophore identification is a veryimportant step in de novo design, leadoptimization, chemogenomics, and virtualscreening of drugs. Unfortunately,the high cost of comercial software forpharmacophore detection is a commonlimiting factor for researchers with limitedfunding. This paper presents a set offreely available perl routines that weredesigned to help in the process of 3Dpharmacophore identification and QSARstudies. These routines also allowed theclassification of ligands based on theirtridimensional similarity and bindingmechanism. The family of phosphodiesterasesand their inhibitors were used astest model.

  9. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations. (United States)

    Wang, Bo; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O


    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal·mol(-1) highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10), but larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the nonpolar and entropy components, rather than a better representation of the electrostatics. The SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal-mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo, and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by prescoring

  10. A web server for analysis, comparison and prediction of protein ligand binding sites. (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S


    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL .

  11. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J


    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  12. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A


    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... coordinates of the MHC-bound peptide have first been determined with an accuracy of about 1-1.5 A. Furthermore, it may be easily recalibrated for any protein-ligand complex.......) and of a series of 16 peptides to H-2K(k). Predictions were more accurate for HLA-A2-binding peptides as the training set had been built from experimentally determined structures. The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol. For the homology model-derived equation...

  13. Single-photon absorption by single photosynthetic light-harvesting complexes (United States)

    Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta


    We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment–protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment–protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton–phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ∼0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.

  14. Single photon emission computed tomography in AIDS dementia complex

    International Nuclear Information System (INIS)

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.


    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder

  15. Effects of protein-ligand interactions on hydrogen/deuterium exchange kinetics: canonical and noncanonical scenarios. (United States)

    Sowole, Modupeola A; Konermann, Lars


    Hydrogen/deuterium exchange (HDX) methods are widely used for monitoring protein-ligand interactions. This approach relies on the fact that ligand binding can modulate the extent of protein structural fluctuations that transiently disrupt hydrogen bonds and expose backbone amides to the solvent. It is commonly observed that ligand binding causes a reduction of HDX rates. This reduction can be restricted to elements adjacent to the binding site, but other regions can be affected as well. Qualitatively, ligand-induced HDX protection can be rationalized on the basis of two-state models that equate structural dynamics with global unfolding/refolding. Unfortunately, such models tend to be unrealistic because the dynamics of native proteins are dominated by subglobal transitions and local fluctuations. Ligand binding lowers the ground-state free energy. It is not obvious why this should necessarily be accompanied by a depletion of excited-state occupancies, which would be required for a reduction of HDX rates. Here, we propose a framework that implies that ligand binding can either slow or accelerate amide deuteration throughout the protein. These scenarios are referred to as "type 1" and "type 2", respectively. Evidence for type 1 binding is abundant in the literature, whereas the viability of type 2 interactions is less clear. Using HDX mass spectrometry (MS), we demonstrate that the oxygenation of hemoglobin (Hb) provides a dramatic example of a type 2 scenario. The observed behavior is consistent with cooperative T → R switching, where part of the intrinsic O2 binding energy is reinvested for destabilization of the ground state. This destabilization increases the Boltzmann occupancy of unfolded conformers, thereby enhancing HDX rates. Surprisingly, O2 binding to myoglobin (Mb) also induces elevated HDX rates. These Mb data reveal that type 2 behavior is not limited to cooperative multisubunit systems. Although enhanced protection from deuteration is widely

  16. Single-particle cryo-electron microscopy of macromolecular complexes. (United States)

    Skiniotis, Georgios; Southworth, Daniel R


    Recent technological breakthroughs in image acquisition have enabled single-particle cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution structural information for biological complexes. The improvements in image quality coupled with powerful computational methods for sorting distinct particle populations now also allow the determination of compositional and conformational ensembles, thereby providing key insights into macromolecular function. However, the inherent instability and dynamic nature of biological assemblies remain a tremendous challenge that often requires tailored approaches for successful implementation of the methodology. Here, we briefly describe the fundamentals of single-particle cryo-EM with an emphasis on covering the breadth of techniques and approaches, including low- and high-resolution methods, aiming to illustrate specific steps that are crucial for obtaining structural information by this method. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail:

  17. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?

    Directory of Open Access Journals (Sweden)

    Arsen V Grigoryan

    Full Text Available The ranking of scores of individual chemicals within a large screening library is a crucial step in virtual screening (VS for drug discovery. Previous studies showed that the quality of protein-ligand recognition can be improved using spectrum properties and the shape of the binding energy landscape. Here, we investigate whether the energy gap, defined as the difference between the lowest energy pose generated by a docking experiment and the average energy of all other generated poses and inferred to be a measure of the binding energy landscape sharpness, can improve the separation power between true binders and decoys with respect to the use of the best docking score. We performed retrospective single- and multiple-receptor conformation VS experiments in a diverse benchmark of 40 domains from 38 therapeutically relevant protein targets. Also, we tested the performance of the energy gap on 36 protein targets from the Directory of Useful Decoys (DUD. The results indicate that the energy gap outperforms the best docking score in its ability to discriminate between true binders and decoys, and true binders tend to have larger energy gaps than decoys. Furthermore, we used the energy gap as a descriptor to measure the height of the native binding phase and obtained a significant increase in the success rate of near native binding pose identification when the ligand binding conformations within the boundaries of the native binding phase were considered. The performance of the energy gap was also evaluated on an independent test case of VS-identified PKR-like ER-localized eIF2α kinase (PERK inhibitors. We found that the energy gap was superior to the best docking score in its ability to more highly rank active compounds from inactive ones. These results suggest that the energy gap of the protein-ligand binding energy landscape is a valuable descriptor for use in VS.

  18. Probing heme protein-ligand interactions by UV/visible absorption spectroscopy. (United States)

    Nienhaus, Karin; Nienhaus, G Ulrich


    Ultraviolet/visible (UV/vis) absorption spectroscopy is a powerful tool for steady-state and time-resolved studies of protein-ligand interactions. Prosthetic groups in proteins frequently have strong electronic absorbance bands that depend on the oxidation, ligation, and conformation states of the chromophores. They are also sensitive to conformational changes of the polypeptide chain into which they are embedded. Steady-state absorption spectroscopy provides information on ligand binding equilibria, from which the Gibbs free energy differences between the ligated and unligated states can be computed. Time-resolved absorption spectroscopy allows one to detect short-lived intermediate states that may not get populated significantly under equilibrium conditions, but may nevertheless be of crucial importance for biological function. Moreover, the energy barriers that have to be surmounted in the reaction can be determined. In this chapter, we present a number of typical applications of steady-state and ns time-resolved UV/vis absorption spectroscopy in the study of ligand binding to the central iron in heme proteins.

  19. Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. (United States)

    Breiten, Benjamin; Lockett, Matthew R; Sherman, Woody; Fujita, Shuji; Al-Sayah, Mohammad; Lange, Heiko; Bowers, Carleen M; Heroux, Annie; Krilov, Goran; Whitesides, George M


    The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamide ligands with different patterns of fluorination--that we use to define enthalpy/entropy (H/S) compensation in this system thermodynamically and structurally. The binding affinities of these ligands (with the exception of one ligand, in which the deviation is understood) to HCA are, despite differences in fluorination pattern, indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and entropy of binding. Analysis reveals that differences in the structure and thermodynamic properties of the waters surrounding the bound ligands are an important contributor to the observed H/S compensation. These results support the hypothesis that the molecules of water filling the active site of a protein, and surrounding the ligand, are as important as the contact interactions between the protein and the ligand for biomolecular recognition, and in determining the thermodynamics of binding.

  20. VASP: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity.

    Directory of Open Access Journals (Sweden)

    Brian Y Chen


    Full Text Available Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP, a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR-related lipid transfer (START domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity.

  1. Locating binding poses in protein-ligand systems using reconnaissance metadynamics (United States)

    Söderhjelm, Pär; Tribello, Gareth A.; Parrinello, Michele


    A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin–benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations. PMID:22440749

  2. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    Directory of Open Access Journals (Sweden)

    Noah Ollikainen

    Full Text Available Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i prediction of enzyme specificity altering mutations and (ii prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  3. Screening protein-ligand interactions using {sup 1}H NMR techniques for detecting the ligand; Mapeamento das interacoes proteina-ligante atraves de tecnicas de RMN de {sup 1}H utilizando deteccao do ligante

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Isis Martins; Marsaioli, Anita Jocelyne [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail:


    NMR is a valuable screening tool for the binding of ligands to proteins providing structural information on both protein and ligands and is thus largely applied to drug-discovery. Among the recent NMR techniques to probe weak binding protein-ligand complexes we have critically evaluated the advantages and disadvantages of STD (Saturation Transfer Difference), WaterLOGSY (Water Ligand Observation with Gradient Spectroscopy), NOE pumping and DOSY-NOESY (Diffusion-Ordered NOESY) using a mixture of BSA (bovine serum albumin) plus salicylic acid, caffeine, citric acid, adipic acid and D-glucose. (author)

  4. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M


    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  5. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor

    Directory of Open Access Journals (Sweden)

    Chanjuan eXU


    Full Text Available The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, membrane expression and localization, crosstalk with other receptors or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.

  6. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions

    Directory of Open Access Journals (Sweden)

    Bingjie Hu


    Full Text Available Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer. PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD. We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  7. Singlet-triplet annihilation in single LHCII complexes. (United States)

    Gruber, J Michael; Chmeliov, Jevgenij; Krüger, Tjaart P J; Valkunas, Leonas; van Grondelle, Rienk


    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (∼7 μs) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.

  8. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions. (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra


    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  9. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD. (United States)

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A


    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  10. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations. (United States)

    Abel, Robert; Wang, Lingle; Mobley, David L; Friesner, Richard A


    Protein-ligand binding is among the most fundamental phenomena underlying all molecular biology, and a greater ability to more accurately and robustly predict the binding free energy of a small molecule ligand for its cognate protein is expected to have vast consequences for improving the efficiency of pharmaceutical drug discovery. We briefly reviewed a number of scientific and technical advances that have enabled alchemical free energy calculations to recently emerge as a preferred approach, and critically considered proper validation and effective use of these techniques. In particular, we characterized a selection bias effect which may be important in prospective free energy calculations, and introduced a strategy to improve the accuracy of the free energy predictions. Copyright© Bentham Science Publishers; For any queries, please email at

  11. "Adapted Linear Interaction Energy": A Structure-Based LIE Parametrization for Fast Prediction of Protein-Ligand Affinities. (United States)

    Linder, Mats; Ranganathan, Anirudh; Brinck, Tore


    We present a structure-based parametrization of the Linear Interaction Energy (LIE) method and show that it allows for the prediction of absolute protein-ligand binding energies. We call the new model "Adapted" LIE (ALIE) because the α and β coefficients are defined by system-dependent descriptors and do therefore not require any empirical γ term. The best formulation attains a mean average deviation of 1.8 kcal/mol for a diverse test set and depends on only one fitted parameter. It is robust with respect to additional fitting and cross-validation. We compare this new approach with standard LIE by Åqvist and co-workers and the LIE + γSASA model (initially suggested by Jorgensen and co-workers) against in-house and external data sets and discuss their applicabilities.

  12. Interpretation of protein/ligand crystal structure using QM/MM calculations: Case of HIV-1 protease/metallacarborane complex

    Czech Academy of Sciences Publication Activity Database

    Fanfrlík, Jindřich; Brynda, Jiří; Řezáč, Jan; Hobza, Pavel; Lepšík, Martin


    Roč. 112, č. 47 (2008), s. 15094-15102 ISSN 1520-6106 R&D Projects: GA MŠk LC512; GA MŠk(CZ) LC06077; GA ČR(CZ) GD203/05/H001 EU Projects: European Commission(XE) 37693 - HIV PI RESISTANCE Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : X-ray * quantum mechanics * molecular mechanics * enzyme * carborane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.189, year: 2008

  13. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions (United States)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.


    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  14. Generation, Characterization, and Tunable Reactivity of Organometallic Fragments Bound to a Protein Ligand. (United States)

    Key, Hanna M; Clark, Douglas S; Hartwig, John F


    Organotransition metal complexes catalyze important synthetic transformations, and the development of these systems has rested on the detailed understanding of the structures and elementary reactions of discrete organometallic complexes bound to organic ligands. One strategy for the creation of new organometallic systems is to exploit the intricate and highly structured ligands found in natural metalloproteins. We report the preparation and characterization of discrete rhodium and iridium fragments bound site-specifically in a κ(2)-fashion to the protein carbonic anhydrase as a ligand. The reactions of apo human carbonic anhydrase with [Rh(nbd)2]BF4 or [M(CO)2(acac)] (M=Rh, Ir) form proteins containing Rh or Ir with organometallic ligands. A colorimetric assay was developed to quantify rapidly the metal occupancy at the native metal-binding site, and (15)N-(1)H NMR spectroscopy was used to establish the amino acids to which the metal is bound. IR spectroscopy and EXAFS revealed the presence and number of carbonyl ligands and the number total ligands, while UV-vis spectroscopy provided a signature to readily identify species that had been fully characterized. Exploiting these methods, we observed fundamental stoichiometric reactions of the artificial organometallic site of this protein, including reactions that simultaneously form and cleave metal-carbon bonds. The preparation and reactivity of these artificial organometallic proteins demonstrate the potential to study a new genre of organometallic complexes for which the rates and outcomes of organometallic reactions can be controlled by genetic manipulation of the protein scaffold.

  15. Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. (United States)

    Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; He, Yuanjun; Hendrickson, Christopher L; Marshall, Alan G; Griffin, Patrick R


    Amide hydrogen/deuterium exchange is a powerful biophysical technique for probing changes in protein dynamics induced by ligand interaction. The inherent low throughput of the technology has limited its impact on drug screening and lead optimization. Automation increases the throughput of H/D exchange to make it compatible with drug discovery efforts. Here we describe the first fully automated H/D exchange system that provides highly reproducible H/D exchange kinetics from 130 ms to 24 h. Throughput is maximized by parallel sample processing, and the system can run H/D exchange assays in triplicate without user intervention. We demonstrate the utility of this system to differentiate structural perturbations in the ligand-binding domain (LBD) of the nuclear receptor PPARgamma induced upon binding a full agonist and a partial agonist. PPARgamma is the target of glitazones, drugs used for treatment of insulin resistance associated with type II diabetes. Recently it has been shown that partial agonists of PPARgamma have insulin sensitization properties while lacking several adverse effects associated with full agonist drugs. To further examine the mechanism of partial agonist activation of PPARgamma, we extended our studies to the analysis of ligand interactions with the heterodimeric complex of PPARgamma/RXRalpha LBDs. To facilitate analysis of H/D exchange of large protein complexes, we performed the experiment with a 14.5-T Fourier transform ion cyclotron resonance mass spectrometer capable of measuring mass with accuracy in the ppb range.

  16. Complex Dynamic Scene Perception: Effects of Attentional Set on Perceiving Single and Multiple Event Types (United States)

    Sanocki, Thomas; Sulman, Noah


    Three experiments measured the efficiency of monitoring complex scenes composed of changing objects, or events. All events lasted about 4 s, but in a given block of trials, could be of a single type (single task) or of multiple types (multitask, with a total of four event types). Overall accuracy of detecting target events amid distractors was…

  17. S4MPLE--sampler for multiple protein-ligand entities: simultaneous docking of several entities. (United States)

    Hoffer, Laurent; Horvath, Dragos


    S4MPLE is a conformational sampling tool, based on a hybrid genetic algorithm, simulating one (conformer enumeration) or more molecules (docking). Energy calculations are based on the AMBER force field [Cornell et al. J. Am. Chem. Soc. 1995, 117, 5179.] for biological macromolecules and its generalized version GAFF [Wang et al. J. Comput. Chem. 2004 , 25, 1157.] for ligands. This paper describes more advanced, specific applications of S4MPLE to problems more complex than classical redocking of drug-like compounds [Hoffer et al. J. Mol. Graphics Modell. 2012, submitted for publication.]. Here, simultaneous docking of multiple entities is addressed in two different important contexts. First, simultaneous docking of two fragment-like ligands was attempted, as such ternary complexes are the basis of fragment-based drug design by linkage of the independent binders. As a preliminary, the capacity of S4MPLE to dock fragment-like compounds has been assessed, since this class of small probes used in fragment-based drug design covers a different chemical space than drug-like molecules. Herein reported success rates from fragments redocking are as good as classical benchmarking results on drug-like compounds (Astex Diverse Set [Hartshorn et al. J. Med. Chem. 2007, 50, 726.]). Then, S4MPLE is successfully challenged to predict locations of fragments involved in ternary complexes by means of multientity docking. Second, the key problem of predicting water-mediated interaction is addressed by considering explicit water molecules as additional entities to be docked in the presence of the "main" ligand. Blind prediction of solvent molecule positions, reproducing relevant ligand-water-site mediated interactions, is achieved in 76% cases over saved poses. S4MPLE was also successful to predict crystallographic water displacement by a therefore tailored functional group in the optimized ligand. However, water localization is an extremely delicate issue in terms of weighing of

  18. High pressure as a tool for investigating protein-ligand interactions

    International Nuclear Information System (INIS)

    Marchal, S; Lange, R; Tortora, P; Balny, C


    In recent years, the application of pressure on biological systems has gained increasing interest. Pressure-induced destabilization of electrostatic and hydrophobic interactions is currently exploited to study conformational protein stability and macromolecular assemblies of proteins. Due to links between severe human pathologies and ordered protein oligomerization into aggregates, which have become apparent, a better knowledge of the molecular and structural determinants that ensure the packing efficiency and stability of such complexes has taken on special importance. Here, we report the effect of pressure on the property of human ataxin-3 of aggregation. The results indicate the importance of its polyglutamine chain length in the stability and the tendency of the protein to form spheroids. Partial unfolding of the protein leading to solvent exposure of hydrophobic domains appears to be a prerequisite in the aggregation process of ataxin-3

  19. High pressure as a tool for investigating protein-ligand interactions

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, S [INSERM U128, IFR 122, 1919 route de Mende, F-34293 Montpellier Cedex 5 (France); Lange, R [INSERM U128, IFR 122, 1919 route de Mende, F-34293 Montpellier Cedex 5 (France); Tortora, P [Dipartimento di Biotecnologie e Bioscienze, Universita di Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan (Italy); Balny, C [INSERM U128, IFR 122, 1919 route de Mende, F-34293 Montpellier Cedex 5 (France)


    In recent years, the application of pressure on biological systems has gained increasing interest. Pressure-induced destabilization of electrostatic and hydrophobic interactions is currently exploited to study conformational protein stability and macromolecular assemblies of proteins. Due to links between severe human pathologies and ordered protein oligomerization into aggregates, which have become apparent, a better knowledge of the molecular and structural determinants that ensure the packing efficiency and stability of such complexes has taken on special importance. Here, we report the effect of pressure on the property of human ataxin-3 of aggregation. The results indicate the importance of its polyglutamine chain length in the stability and the tendency of the protein to form spheroids. Partial unfolding of the protein leading to solvent exposure of hydrophobic domains appears to be a prerequisite in the aggregation process of ataxin-3.

  20. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.


    to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton...

  1. Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Kudryashev, Mikhail; Stahlberg, Henning; Boekema, Egbert J.


    The respirasome is a multisubunit supercomplex of the respiratory chain in mitochondria. Here we report the 3D reconstruction of the bovine heart respirasome, composed of dimeric complex III and single copies of complex I and IV, at about 2.2-nm resolution, determined by cryoelectron tomography and

  2. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.

    Directory of Open Access Journals (Sweden)

    Pradeep Anand Ravindranath


    Full Text Available Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1 exponential growth of the search space, demanding more efficient search methods; and 2 increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR-AutoDock for Flexible Receptors (ADFR, a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1 SEQ17 -a receptor diversity set containing 17 pairs of apo-holo structures; and 2 CDK2 -a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we

  3. Miniature protein ligands for EVH1 domains: interplay between affinity, specificity, and cell motility. (United States)

    Holtzman, Jennifer H; Woronowicz, Kamil; Golemi-Kotra, Dasantila; Schepartz, Alanna


    Dynamic rearrangements of the actin cytoskeleton power cell motility in contexts ranging from intracellular microbial pathogenesis to axon guidance. The Ena/VASP family proteins-Mena, VASP, and Evl-are believed to control cell motility by serving as a direct link between signaling events and the actin cytoskeleton. It has previously been reported that a novel miniature protein, pGolemi, binds with high affinity to the EVH1 domain of Mena (Mena1-112) but not to those of VASP (VASP1-115) or Evl (Evl1-115) and also causes an unusual defect in actin-driven Listeria monocytogenes motility. Here, scanning mutagenesis was used to examine the effects of single amino acid changes within pGolemi on EVH1 domain affinity and specificity, miniature protein secondary structure, and L. monocytogenes motility. The data suggest that pGolemi contains the expected aPP-like fold and binds Mena1-112 in a manner highly analogous to the proline-rich repeat region of L. monocytogenes ActA protein. Residues throughout pGolemi contribute to both EVH1 domain affinity and paralog specificity. Moreover, the affinities of pGolemi variants for Mena1-112 correlate with selectivity against the EVH1 domains of VASP and Evl. In L. monocytogenes motility assays, speed and speed variability correlate strongly with EVH1 paralog specificity, suggesting that the Ena/VASP paralogs do not play equivalent roles in the process of L. monocytogenes actin tail maturation.

  4. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine. (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki


    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determining Complex Structures using Docking Method with Single Particle Scattering Data

    Directory of Open Access Journals (Sweden)

    Haiguang Liu


    Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  6. Determining Complex Structures using Docking Method with Single Particle Scattering Data. (United States)

    Wang, Hongxiao; Liu, Haiguang


    Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs), it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  7. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4. (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang


    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  8. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.


    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  9. Single Event Testing on Complex Devices: Test Like You Fly versus Test-Specific Design Structures (United States)

    Berg, Melanie; LaBel, Kenneth A.


    We present a framework for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  10. Foveational Complexity in Single Word Identification: Contralateral Visual Pathways Are Advantaged over Ipsilateral Pathways (United States)

    Obregon, Mateo; Shillcock, Richard


    Recognition of a single word is an elemental task in innumerable cognitive psychology experiments, but involves unexpected complexity. We test a controversial claim that the human fovea is vertically divided, with each half projecting to either the contralateral or ipsilateral hemisphere, thereby influencing foveal word recognition. We report a…

  11. Thermally reversible single-crystal to single-crystal transformation of mononuclear to dinuclear Zn(II) complexes by [2+2] cycloaddition reaction. (United States)

    Medishetty, Raghavender; Yap, Terence Teck Sheng; Koh, Lip Lin; Vittal, Jagadese J


    Two Zn(II) complexes of trans-4-styrylpyridine ligands undergo [2+2] cycloaddition reaction forming Zn(II) complex dimers in a single-crystal to single-crystal (SCSC) manner which were thermally reversible. The dimers are presumed to be the stable intermediates in the formation of 1D coordination polymers upon prolonged exposure to UV light.

  12. Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses. (United States)

    Xue, Xiaoxiao; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun


    We propose a novel structure of complex-tap microwave photonic filter (MPF) employing an incoherent broadband optical source (BOS) and a programmable optical spectrum processor. By tailoring the optical spectral amplitude and phase, arbitrary complex continuous-time impulse responses of the MPF can be constructed. Frequency responses with a single flat-top, highly chirped, or arbitrary-shape passband are demonstrated, respectively. The passband center can also be tuned in a wide range only limited by the opto-electrical devices. To the best of our knowledge, it is the first demonstration of an incoherent-BOS-based MPF which is single-bandpass, widely tunable, and highly reconfigurable with complex taps.

  13. 3D color reconstructions in single DMD holographic display with LED source and complex coding scheme (United States)

    Chlipała, Maksymilian; Kozacki, Tomasz


    In the paper we investigate the possibility of color reconstructions of holograms with a single DMD and incoherent LED source illumination. Holographic display is built with 4F imaging system centering reconstruction volume around the DMD surface. The display design employs complex coding scheme, which allows reconstructing complex wave from a binary hologram. In order to improve the quality of reconstructed holograms time multiplexing method is used. During the optical reconstructions we analyze quality of reconstructed holograms with incoherent RGB light sources as a function of reconstruction distance, present the possibility of 3D hologram reconstruction, and investigate temporal coherence effects in holographic display with the DMD.

  14. Single-photon test of hyper-complex quantum theories using a metamaterial. (United States)

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip


    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  15. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid. (United States)

    Tabaei, Seyed R; Rabe, Michael; Zetterberg, Henrik; Zhdanov, Vladimir P; Höök, Fredrik


    Imaging of individual lipid vesicles is used to track single-enzyme kinetics of phospholipid hydrolysis. The method is employed to quantify the catalytic activity of phospholipase A2 (PLA2) in both pure and complex biological fluids. The measurements are demonstrated to offer a subpicomolar limit of detection (LOD) of human secretory PLA2 (sPLA2) in up to 1000-fold-diluted cerebrospinal fluid (CSF). An additional new feature provided by the single-enzyme sensitivity is that information about both relative concentration variations of active sPLA2 in CSF and the specific enzymatic activity can be simultaneously obtained. When CSF samples from healthy controls and individuals diagnosed with Alzheimer's disease (AD) are analyzed, the specific enzymatic activity is found to be preserved within 7% in the different CSF samples whereas the enzyme concentration differs by up to 56%. This suggests that the previously reported difference in PLA2 activity in CSF samples from healthy and AD individuals originates from differences in the PLA2 expression level rather than from the enzyme activity. Conventional ensemble averaging methods used to probe sPLA2 activity do not allow one to obtain such information. Together with an improvement in the LOD of at least 1 order of magnitude compared to that of conventional assays, this suggests that the method will become useful in furthering our understanding of the role of PLA2 in health and disease and in detecting the pharmacodynamic effects of PLA2-targeting drug candidates.

  16. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina


    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have......Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...

  17. In vivo flow mapping in complex vessel networks by single image correlation. (United States)

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe


    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution.

  18. Tetracoordinate Co(II) complexes containing bathocuproine and single molecule magnetism

    Czech Academy of Sciences Publication Activity Database

    Smolko, L.; Černák, J.; Dušek, Michal; Titiš, J.; Boča, R.


    Roč. 40, č. 8 (2016), s. 6593-6598 ISSN 1144-0546 R&D Projects: GA MŠk LO1603; GA ČR(CZ) GA15-12653S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : crystal structure * single molecule magnetism * Cu(II) complexes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.269, year: 2016

  19. Mechanosensing of DNA bending in a single specific protein-DNA complex (United States)

    Le, Shimin; Chen, Hu; Cong, Peiwen; Lin, Jie; Dröge, Peter; Yan, Jie


    Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.

  20. Single-molecule transport across an individual biomimetic nuclear pore complex (United States)

    Kowalczyk, Stefan W.; Kapinos, Larisa; Blosser, Timothy R.; Magalhães, Tomás; van Nies, Pauline; Lim, Roderick Y. H.; Dekker, Cees


    Nuclear pore complexes regulate the selective exchange of RNA and proteins across the nuclear envelope in eukaryotic cells. Biomimetic strategies offer new opportunities to investigate this remarkable transport phenomenon. Here, we show selective transport of proteins across individual biomimetic nuclear pore complexes at the single-molecule level. Each biomimetic complex is constructed by covalently tethering either Nup98 or Nup153 (phenylalanine-glycine (FG) nucleoporins) to a solid-state nanopore. Individual translocation events are monitored using ionic current measurements with sub-millisecond temporal resolution. Transport receptors (Impβ) proceed with a dwell time of ~2.5 ms for both Nup98- and Nup153-coated pores, whereas the passage of non-specific proteins is strongly inhibited with different degrees of selectivity. For pores up to ~25 nm in diameter, Nups form a dense and low-conducting barrier, whereas they adopt a more open structure in larger pores. Our biomimetic nuclear pore complex provides a quantitative platform for studying nucleocytoplasmic transport phenomena at the single-molecule level in vitro.

  1. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.


    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  2. Single-shot parallel full range complex Fourier-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao


    We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.

  3. Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds. (United States)

    Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre


    In this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl 4 . The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective (United States)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van


    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  5. Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems. (United States)

    Musumeci, Domenica; Rozza, Lucia; Merlino, Antonello; Paduano, Luigi; Marzo, Tiziano; Massai, Lara; Messori, Luigi; Montesarchio, Daniela


    The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) techniques. UV-vis absorption spectra of the Ru complexes were recorded at different times in a pseudo-physiological solution, to monitor the ligand exchange processes in the absence and in the presence of the examined oligonucleotides. CD experiments provided information on the overall conformational changes of the DNA model systems induced by these metal complexes. UV- and CD-monitored thermal denaturation studies were performed to analyse the effects of AziRu and NAMI-A on the stability of the duplex structures. ESI-MS experiments, carried out on the oligonucleotide/metal complex mixtures under investigation, allowed us to detect the formation of stable adducts between the guanine-containing oligomers and the ruthenium complexes. These data unambiguously demonstrate that both AziRu and NAMI-A can interact with the DNA model systems. Although very similar in their structures, the two metal compounds manifest a markedly different reactivity with the examined sequences, respectively, with either a naked Ru(3+) ion or a Ru(Im)(3+) (Im = imidazole) fragment being incorporated into the oligonucleotide structure via stable linkages.

  6. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes. (United States)

    Jonas, Kim C; Huhtaniemi, Ilpo; Hanyaloglu, Aylin C


    The organization of G protein-coupled receptors (GPCRs) into dimers and higher-order oligomers has provided a potential mechanistic system in defining complex GPCR responses. Despite being studied for nearly 20 years it has, and still is, been an area of controversy. Although technology has developed to quantitatively measure these associations in real time, identify the structural interfaces and even systems to understand the physiological significance of di/oligomerization, key questions remain outstanding including the role of each individual complex from the monomer to the higher-order oligomer, in their native system. Recently, single-molecule microscopy approaches have provided the tools to directly visualize individual GPCRs in dimers and oligomers, though as with any technological development each have their advantages and limitations. This chapter will describe these recent developments in single-molecule fluorescent microscopy, focusing on our recent application of super-resolution imaging of the GPCR for the luteinizing hormone/chorionic gonadotropin to quantify GPCR monomers and formation of protomers in to dimers and distinct oligomeric forms. We present our approach, considerations, strategy, and challenges to visualize this receptor beyond the light diffraction limit via photoactivated localization microscopy with photoactivatable dyes. The addition of super-resolution approaches to the GPCR "nano-tool kit" will pave the way for novel avenues to answer outstanding questions regarding the existence and significance of these complexes to GPCR signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    DEFF Research Database (Denmark)

    Osorio, Edgar A; Moth-Poulsen, Kasper; van der Zant, Herre S J


    We demonstrate an electrically controlled high-spin (S = 5/2) to low-spin (S = 1/2) transition in a three-terminal device incorporating a single Mn(2+) ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand......-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also...... a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model....

  8. Enumeration of Combinatorial Classes of Single Variable Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    A vector field in the space of degree d monic, centered single variable complex polynomial vector fields has a combinatorial structure which can be fully described by a combinatorial data set consisting of an equivalence relation and a marked subset on the integers mod 2d-2, satisfying certain...... in a valid way. We first enumerate all combinatorial classes with respect to degree d, and then we enumerate the combinatorial classes having a specific dimension q in parameter space. In both cases, a recursion equation and implicit expressions for the algebraic generating functions are calculated...

  9. Structure-Based Analysis of Single Nucleotide Variants in the Renin-Angiotensinogen Complex. (United States)

    Brown, David K; Sheik Amamuddy, Olivier; Tastan Bishop, Özlem


    The renin-angiotensin system (RAS) plays an important role in regulating blood pressure and controlling sodium levels in the blood. Hyperactivity of this system has been linked to numerous conditions including hypertension, kidney disease, and congestive heart failure. Three classes of drugs have been developed to inhibit RAS. In this study, we provide a structure-based analysis of the effect of single nucleotide variants (SNVs) on the interaction between renin and angiotensinogen with the aim of revealing important residues and potentially damaging variants for further inhibitor design purposes. To identify SNVs that have functional and potentially damaging effects on the renin-angiotensinogen complex and to use computational approaches to investigate how SNVs might have damaging effects. A comprehensive set of all known SNVs in the renin and angiotensinogen proteins was extracted from the HUMA database. This dataset was filtered by removing synonymous and missense variants and using the VAPOR pipeline to predict which variants were likely to be deleterious. Variants in the filtered dataset were modeled into the renin-angiotensinogen complex using MODELLER and subjected to molecular dynamics simulations using GROMACS. The residue interaction networks of the resultant trajectories were analyzed using graph theory. This research identified important SNVs in the interface of RAS and showed how they might affect the function of the proteins. For instance, the mutant complex containing the variant P40L in angiotensinogen caused instability in the complex, indicating that this mutation plays an important role in disrupting the interaction between renin and angiotensinogen. The mutant complex containing the SNV A188V in renin was shown to have significantly increased fluctuation in the residue interaction networks. D104N in renin, associated with renal tubular dysgenesis, caused increased rigidity in the protein complex comparison to the wild type, which probably in turn

  10. Synthesis and Characterization of Hexahapto-Chromium Complexes of Single-Walled Carbon Nanotubes

    KAUST Repository

    Kalinina, Irina


    This chapter employs purified pristine single-walled carbon nanotubes (SWNTs) and octadecylaminefunctionalized-SWNTs. These SWNTs are employed for investigate the potential of the SWNT sidewall to function as a hexahapto ligand for chromium (Cr), with in-depth characterization of the products using some of the techniques, such as thermogravimetric analysis (TGA), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS). Purified electric arc (EA)-produced SWNTs (P2-SWNT) and octadecylaminefunctionalized SWNTs were obtained from Carbon Solutions, Inc. The TEM images show the removal of the Cr particles from the outer surface of the SWNT bundles in the SWNT-Cr complexes after decomplexation; Cr attachment to the surface of the as-prepared complexes (η6-SWNT)Cr(CO)3 and (η6-SWNT-CONH(CH2)17CH3)Cr(CO)3 is clearly evident. The positions of the bands in the Raman spectra of SWNTs are sensitive to doping and thus the chapter examines the effect of complexation of the Cr(CO)3 and Cr(η6-benzene) units on the position of the G and 2D bands in the (η6-SWNT)Cr(CO)3 and (η6-SWNT)Cr(η6-benzene) complexes.

  11. Hydrogen-related complexes in Li-diffused ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Corolewski, Caleb D. [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Parmar, Narendra S.; Lynn, Kelvin G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2814 (United States); McCluskey, Matthew D., E-mail: [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)


    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li{sub 2}O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10{sup 19 }cm{sup −3}). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm{sup −1}, attributed to surface O-H species. When Li{sub 2}CO{sub 3} is used, a structured blue luminescence band and O-H mode at 3327 cm{sup −1} are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level ∼0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  12. Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

    Directory of Open Access Journals (Sweden)

    Wen Yu


    Full Text Available A series of 2,2’-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2’-bipyrimidine, Ln = Gd(III, 1; Tb(III, 2; Dy(III, 3; Ho(III, 4 and Er(III, 5 has been synthesized and characterized. Sublimation of [Tb(tmhd3]2bpm onto a Au(111 surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM. The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III and Er(III compounds clearly exhibits single molecule magnet (SMM characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops.

  13. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. (United States)

    Liu, Xueqi; Wang, Hong-Wei


    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  14. Single-channel blind separation using pseudo-stereo mixture and complex 2-D histogram. (United States)

    Tengtrairat, N; Gao, Bin; Woo, W L; Dlay, S S


    A novel single-channel blind source separation (SCBSS) algorithm is presented. The proposed algorithm yields at least three benefits of the SCBSS solution: 1) resemblance of a stereo signal concept given by one microphone; 2) independent of initialization and a priori knowledge of the sources; and 3) it does not require iterative optimization. The separation process consists of two steps: 1) estimation of source characteristics, where the source signals are modeled by the autoregressive process and 2) construction of masks using only the single-channel mixture. A new pseudo-stereo mixture is formulated by weighting and time-shifting the original single-channel mixture. This creates an artificial mixing system whose parameters will be estimated through our proposed weighted complex 2-D histogram. In this paper, we derive the separability of the proposed mixture model. Conditions required for unique mask construction based on maximum likelihood are also identified. Finally, experimental testing on both synthetic and real-audio sources is conducted to verify that the proposed algorithm yields superior performance and is computationally very fast compared with existing methods.

  15. Ensemble and single-molecule studies on fluorescence quenching in transition metal bipyridine-complexes.

    Directory of Open Access Journals (Sweden)

    Dominik Brox

    Full Text Available Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer.

  16. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud


    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  17. Complex shapes self-assembled from single-stranded DNA tiles. (United States)

    Wei, Bryan; Dai, Mingjie; Yin, Peng


    Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.

  18. Self-assembly of complex two-dimensional shapes from single-stranded DNA tiles. (United States)

    Wei, Bryan; Vhudzijena, Michelle K; Robaszewski, Joanna; Yin, Peng


    Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.

  19. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard


    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  20. Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. (United States)

    Baldoví, José J; Cardona-Serra, Salvador; Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro; Palii, Andrew


    Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.

  1. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe. (United States)

    He, A; Deepan, B; Quan, C


    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  2. ESR study of irradiated single crystals of the cocrystalline complex of cytidine: Salicylic acid

    International Nuclear Information System (INIS)

    Close, D.M.; Sagstuen, E.


    Irradiation at 77 K of single crystals of the 1:1 complex of cytidine and salicylic acid produces a phenoxyl radical formed by oxidation of the salicylic acid. Anisotropic hyperfine coupling tensors have been determined for this radical which are associated with the para and ortho hydrogens. No cytidine oxidation products (alkoxy or hydroxyalkyl radicals) were observed at 77 K. Following the decay of the phenoxyl radical at room temperature, four radicals were detected. These include the cytosine 5--yl and 6--yl radicals, formed by H addition to the cytosine ring, and an anisotropic doublet. By UV irradiation at room temperature, it is possible to convert a significant fraction of 6-yl radicals into 5-yl radicals. Hyperfine coupling and g tensors determined for the anisotropic doublet indicate that this radical is formed in the C/sub 1'/-C/sub 2'/ region of the sugar moiety. These results indicate a shift in radiation damage away from the salicylic acid upon warming, and show that the radiation chemistry of the cocrystalline complex is different from that of the isolated bases

  3. Max-min SINR low complexity transceiver design for single cell massive MIMO

    KAUST Repository

    Sifaou, Houssem


    This work focuses on large scale multi-user MIMO systems in which the base station (BS) outfitted with M antennas communicates with K single antenna user equipments (UEs). In particular, we aim at designing the linear precoder and receiver that maximizes the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. To gain insights into the structure of the optimal precoder and receiver as well as to reduce the computational complexity for their implementation, we analyze the asymptotic regime where M and K grow large with a given ratio and make use of random matrix theory (RMT) tools to compute accurate approximations. Although simpler, the implementation of the asymptotic precoder and receiver requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each UE and make use of RMT to determine the optimal weighting coefficients that asymptotically solve the max-min SINR problem. Numerical results are used to show that the proposed TPE-based precoder and receiver almost achieve the same performance as the optimal ones while requiring a lower complexity.

  4. SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry

    International Nuclear Information System (INIS)

    Disney, R.K.; Vogtman, S.E.


    1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total

  5. Exploring the Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Using Single-Molecule Techniques† (United States)

    Mihailovic, Aleksandra; Vladescu, Ioana; McCauley, Micah; Ly, Elaine; Williams, Mark C.; Spain, Eileen M.; Nuñez, Megan E.


    Here we explore DNA binding by a family of ruthenium(II) polypyridyl complexes using an atomic force microscope (AFM) and optical tweezers. We demonstrate using AFM that Ru(bpy)2dppz2+ intercalates into DNA (Kb= 1.5 × 105 M−1), as does its close relative Ru(bpy)2dppx2+ (Kb= 1.5 × 105 M−1). However, intercalation by Ru(phen)32+ and other Ru(II) complexes with Kb's lower than Ru(bpy)2dppz2+ are difficult to determine using AFM because of competing aggregation and surface-binding phenomena. At the high Ru(II) concentrations required to evaluate intercalation, most of the DNA strands acquire a twisted, curled conformation that is impossible to measure accurately. The condensation of DNA on mica in the presence of polycations is well known, but it clearly precludes the accurate assessment by AFM of DNA intercalation by most Ru(II) complexes, though not by ethidium bromide and other monovalent intercalators. When stretching individual DNA molecules using optical tweezers the same limitation on high metal concentration does not exist. Using optical tweezers we show that Ru(phen)2dppz2+ intercalates avidly (Kb = 3.2 × 106 M−1) while Ru(bpy)32+ does not intercalate, even at micromolar ruthenium concentrations. Ru(phen)32+ is shown to intercalate weakly, i.e. at micromolar concentrations (Kb= 8.8 × 103 M−1). The distinct differences in DNA stretching behavior between Ru(phen)32+ and Ru(bpy)32+ clearly illustrate that intercalation can be distinguished from groove binding by pulling the DNA with optical tweezers. Our results demonstrate both the benefits and challenges of two single-molecule methods in exploring DNA binding, and help to elucidate the mode of binding of Ru(phen)32+. PMID:16649785

  6. "Switching on" the properties of single-molecule magnetism in triangular manganese(III) complexes. (United States)

    Stamatatos, Theocharis C; Foguet-Albiol, Dolos; Lee, Sheng-Chiang; Stoumpos, Constantinos C; Raptopoulou, Catherine P; Terzis, Aris; Wernsdorfer, Wolfgang; Hill, Stephen O; Perlepes, Spyros P; Christou, George


    The reaction between oxide-centered, triangular [MnIII3O(O2CR)6(py)3](ClO4) (R = Me (1), Et (2), Ph (3)) compounds and methyl 2-pyridyl ketone oxime (mpkoH) affords a new family of Mn/carboxylato/oximato complexes, [MnIII3O(O2CR)3(mpko)3](ClO4) [R = Me (4), Et (5), and Ph (6)]. As in 1-3, the cations of 4-6 contain an [MnIII3(mu3-O)]7+ triangular core, but with each Mn2 edge now bridged by an eta1:eta1:mu-RCO2- and an eta1:eta1:eta1:mu-mpko- group. The tridentate binding mode of the latter causes a buckling of the formerly planar [MnIII3(mu3-O)]7+ core, resulting in a relative twisting of the three MnIII octahedra and the central O2- ion now lying approximately 0.3 A above the Mn3 plane. This structural distortion leads to ferromagnetic exchange interactions within the molecule and a resulting S = 6 ground state. Fits of dc magnetization data for 4-6 collected in the 1.8-10.0 K and 10-70 kG ranges confirmed S = 6 ground states, and gave the following D and g values: -0.34 cm(-1) and 1.92 for 4, -0.34 cm(-1) and 1.93 for 5, and -0.35 cm(-1) and 1.99 for 6, where D is the axial zero-field splitting (anisotropy) parameter. Complexes 4-6 all exhibit frequency-dependent out-of-phase (chi" M) ac susceptibility signals suggesting them possibly to be single-molecule magnets (SMMs). Relaxation rate vs T data for complex 4 down to 1.8 K obtained from the chi" M vs T studies were supplemented with rate vs T data measured to 0.04 K via magnetization vs time decay studies, and these were used to construct Arrhenius plots from which was obtained the effective barrier to relaxation (Ueff) of 10.9 K. Magnetization vs dc field sweeps on single-crystals of 4.3CH2Cl2 displayed hysteresis loops exhibiting steps due to quantum tunneling of magnetization (QTM). The loops were essentially temperature-independent below approximately 0.3 K, indicating only ground-state QTM between the lowest-lying Ms = +/-6 levels. Complexes 4-6 are thus confirmed as the first triangular SMMs. High

  7. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.


    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  8. Capturing complex human behaviors in representative sports contexts with a single camera. (United States)

    Duarte, Ricardo; Araújo, Duarte; Fernandes, Orlando; Fonseca, Cristina; Correia, Vanda; Gazimba, Vítor; Travassos, Bruno; Esteves, Pedro; Vilar, Luís; Lopes, José


    In the last years, several motion analysis methods have been developed without considering representative contexts for sports performance. The purpose of this paper was to explain and underscore a straightforward method to measure human behavior in these contexts. Procedures combining manual video tracking (with TACTO device) and bidimensional reconstruction (through direct linear transformation) using a single camera were used in order to capture kinematic data required to compute collective variable(s) and control parameter(s). These procedures were applied to a 1vs1 association football task as an illustrative subphase of team sports and will be presented in a tutorial fashion. Preliminary analysis of distance and velocity data identified a collective variable (difference between the distance of the attacker and the defender to a target defensive area) and two nested control parameters (interpersonal distance and relative velocity). Findings demonstrated that the complementary use of TACTO software and direct linear transformation permit to capture and reconstruct complex human actions in their context in a low dimensional space (information reduction).

  9. Single ventricle, bicuspid aorta and interatrial wall aneurysm as a rare complex adult congenital heart disease: a case report


    Berisha, Blerim; Krasniqi, Xhevdet; Thaqi, Agim; Gashi, Masar; Ko?inaj, Dardan


    Background Single ventricle, bicuspid aortic valve and interatrial wall aneurysm in adulthood are a rare and unique case in medical literature. This presented case with congenital heart disease has never been treated surgically and clinical consequences seriously presented in adulthood. Case presentation A 27 year old man with complex congenital heart disease presented. At the age of six, the single ventricle was ultrasonographly diagnosed, but at age 27 clinical consequences started to be se...

  10. Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse Protein-Ligand Complexes in Cognate Docking

    Czech Academy of Sciences Publication Activity Database

    Ajani, Haresh; Pecina, Adam; Eyrilmez, Saltuk M.; Fanfrlík, Jindřich; Haldar, Susanta; Řezáč, Jan; Hobza, Pavel; Lepšík, Martin


    Roč. 2, č. 7 (2017), s. 4022-4029 ISSN 2470-1343 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : aldose reductase inhibition * biological applications * mechanical calculations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  11. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization (United States)

    Kadukova, Maria; Grudinin, Sergei


    We present a novel optimization approach to train a free-shape distance-dependent protein-ligand scoring function called Convex-PL. We do not impose any functional form of the scoring function. Instead, we decompose it into a polynomial basis and deduce the expansion coefficients from the structural knowledge base using a convex formulation of the optimization problem. Also, for the training set we do not generate false poses with molecular docking packages, but use constant RMSD rigid-body deformations of the ligands inside the binding pockets. This allows the obtained scoring function to be generally applicable to scoring of structural ensembles generated with different docking methods. We assess the Convex-PL scoring function using data from D3R Grand Challenge 2 submissions and the docking test of the CASF 2013 study. We demonstrate that our results outperform the other 20 methods previously assessed in CASF 2013. The method is available at

  12. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2 (United States)

    da Silva Figueiredo Celestino Gomes, Priscila; Da Silva, Franck; Bret, Guillaume; Rognan, Didier


    A novel docking challenge has been set by the Drug Design Data Resource (D3R) in order to predict the pose and affinity ranking of a set of Farnesoid X receptor (FXR) agonists, prior to the public release of their bound X-ray structures and potencies. In a first phase, 36 agonists were docked to 26 Protein Data Bank (PDB) structures of the FXR receptor, and next rescored using the in-house developed GRIM method. GRIM aligns protein-ligand interaction patterns of docked poses to those of available PDB templates for the target protein, and rescore poses by a graph matching method. In agreement with results obtained during the previous 2015 docking challenge, we clearly show that GRIM rescoring improves the overall quality of top-ranked poses by prioritizing interaction patterns already visited in the PDB. Importantly, this challenge enables us to refine the applicability domain of the method by better defining the conditions of its success. We notably show that rescoring apolar ligands in hydrophobic pockets leads to frequent GRIM failures. In the second phase, 102 FXR agonists were ranked by decreasing affinity according to the Gibbs free energy of the corresponding GRIM-selected poses, computed by the HYDE scoring function. Interestingly, this fast and simple rescoring scheme provided the third most accurate ranking method among 57 contributions. Although the obtained ranking is still unsuitable for hit to lead optimization, the GRIM-HYDE scoring scheme is accurate and fast enough to post-process virtual screening data.

  13. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D. (Purdue); (UC); (UIC)


    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  14. Combined Approach of Patch-Surfer and PL-PatchSurfer for Protein-Ligand Binding Prediction in CSAR 2013 and 2014. (United States)

    Zhu, Xiaolei; Shin, Woong-Hee; Kim, Hyungrae; Kihara, Daisuke


    The Community Structure-Activity Resource (CSAR) benchmark exercise provides a unique opportunity for researchers to objectively evaluate the performance of protein-ligand docking methods. Patch-Surfer and PL-PatchSurfer, molecular surface-based methods for predicting binding ligands of proteins developed in our group, were tested on both CSAR 2013 and 2014 benchmark exercises in combination with an empirical scoring function-based method, AutoDock, while we only participated in CSAR 2013 using Patch-Surfer. The prediction results for Phase 1 task in CSAR 2013 showed that Patch-Surfer was able to rank all the four designed binding proteins within top ranks, outperforming AutoDock Vina. In Phase 2 of 2013, PL-PatchSurfer correctly selected the correct ligand pose for two target proteins. PL-PatchSurfer performed reasonably well in ranking ligands according to their binding affinity and in selecting near-native ligand poses in 2013 Phase 3 and 2014 Phase 1, respectively, although AutoDock Vina showed better performance. Lastly, in the 2014 Phase 2 exercise, the PL-PatchSurfer scores computed for ligands to target protein pairs correlated well with their pIC50 values, which was better or comparable to results by other participants. Overall, our methods showed fairly good performance in CSAR 2013 and 2014. Unique characteristics of the methods are discussed in comparison with AutoDock.

  15. Discovery of a new chemical series of BRD4(1) inhibitors using protein-ligand docking and structure-guided design. (United States)

    Duffy, Bryan C; Liu, Shuang; Martin, Gregory S; Wang, Ruifang; Hsia, Ming Min; Zhao, He; Guo, Cheng; Ellis, Michael; Quinn, John F; Kharenko, Olesya A; Norek, Karen; Gesner, Emily M; Young, Peter R; McLure, Kevin G; Wagner, Gregory S; Lakshminarasimhan, Damodharan; White, Andre; Suto, Robert K; Hansen, Henrik C; Kitchen, Douglas B


    Bromodomains are key transcriptional regulators that are thought to be druggable epigenetic targets for cancer, inflammation, diabetes and cardiovascular therapeutics. Of particular importance is the first of two bromodomains in bromodomain containing 4 protein (BRD4(1)). Protein-ligand docking in BRD4(1) was used to purchase a small, focused screening set of compounds possessing a large variety of core structures. Within this set, a small number of weak hits each contained a dihydroquinoxalinone ring system. We purchased other analogs with this ring system and further validated the new hit series and obtained improvement in binding inhibition. Limited exploration by new analog synthesis showed that the binding inhibition in a FRET assay could be improved to the low μM level making this new core a potential hit-to-lead series. Additionally, the predicted geometries of the initial hit and an improved analog were confirmed by X-ray co-crystallography with BRD4(1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Susanne Homolka

    Full Text Available Recently, the diversity of the Mycobacterium tuberculosis complex (MTBC population structure has been described in detail. Based on geographical separation and specific host pathogen co-evolution shaping MTBC virulence traits, at least 20 major lineages/genotypes have evolved finally leading to a clear influence of strain genetic background on transmissibility, clinical presentation/outcome, and resistance development. Therefore, high resolution genotyping for characterization of strains in larger studies is mandatory for understanding mechanisms of host-pathogen-interaction and to improve tuberculosis (TB control. Single nucleotide polymorphisms (SNPs represent the most reliable markers for lineage classification of clinical isolates due to the low levels of homoplasy, however their use is hampered either by low discriminatory power or by the need to analyze a large number of genes to achieve higher resolution. Therefore, we carried out de novo sequencing of 26 genes (approx. 20000 bp per strain in a reference collection of MTBC strains including all major genotypes to define a highly discriminatory gene set. Overall, 161 polymorphisms were detected of which 59 are genotype-specific, while 13 define deeper branches such as the Euro-American lineage. Unbiased investigation of the most variable set of 11 genes in a population based strain collection (one year, city of Hamburg, Germany confirmed the validity of SNP analysis as all strains were classified with high accuracy. Taken together, we defined a diagnostic algorithm which allows the identification of 17 MTBC phylogenetic lineages with high confidence for the first time by sequencing analysis of just five genes. In conclusion, the diagnostic algorithm developed in our study is likely to open the door for a low cost high resolution sequence/SNP based differentiation of the MTBC with a very high specificity. High throughput assays can be established which will be needed for large association

  17. High coating of Ru(II) complexes on gold nanoparticles for single particle luminescence imaging in cells. (United States)

    Rogers, Nicola J; Claire, Sunil; Harris, Robert M; Farabi, Shiva; Zikeli, Gerald; Styles, Iain B; Hodges, Nikolas J; Pikramenou, Zoe


    Gold nanoparticles are efficiently labelled with a luminescent ruthenium complex, producing 13 and 100 nm diameter, monodisperse red-emissive imaging probes with luminescence lifetimes prolonged over the molecular unit. Single, 100 nm particles are observed in whole cell luminescence imaging which reveals their biomolecular association with chromatin in the nucleus of cancer cells.

  18. Single conversion audio amplifier and DC-AC converters with high performance and low complexity control scheme

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.


    This paper proposes a novel control topology for a mains isolated single conversion audio amplifier and DC-AC converters. The topology is made for use in audio applications, and differs from prior art in terms of significantly reduced distortion as well as lower system complexity. The topology can...

  19. Spectral trends in the fluorescence of single bacterial light-harvesting complexes: Experiments and modified redfield simulations

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezhkin, V.; Gall, A.; Olsen, J.; Cogdell, R.J.; Hunter, C.N.; van Grondelle, R.


    In this work we present and discuss the single-molecule fluorescence spectra of a variety of species of light-harvesting complexes: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum and LH1 of Rhodobacter sphaeroides. The emission spectrum of these

  20. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei


    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  1. Detailed Investigation of the Structural, Thermal, and Electronic Properties of Gold Isocyanide Complexes with Mechano-Triggered Single-Crystal-to-Single-Crystal Phase Transitions. (United States)

    Seki, Tomohiro; Sakurada, Kenta; Muromoto, Mai; Seki, Shu; Ito, Hajime


    Mechano-induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano-responsive molecular crystals exhibit crystal-to-amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) (1) and phenyl(3,5-dimethylphenylisocyanide)gold(I) (2) complexes, which exhibit a mechano-triggered single-crystal-to-single-crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano-induced phase transitions have indicated that they undergo non-epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash-photolysis time-resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time

  2. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant. (United States)

    Liu, Xiaoyang; Abbott, Nicholas L


    We report the use of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) to characterize the nanostructure of complexes formed by either single- or double-stranded oligonucleotides with a cationic surfactant (cetyltrimethylammonium bromide, CTAB) in aqueous solution (1 mM Li(2)SO(4)). For single-stranded oligonucleotides 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', both the appearance of two Bragg peaks (at 0.14 and 0.28 Å(-1)) in SAXS spectra with a spacing of 1:2 and form factor fits to SANS spectra are consistent with the presence of multilamellar vesicles (with, on average, 6-9 layers with a periodicity of 45-48 Å). Some samples showed evidence of an additional Bragg peak (at 0.20 Å(-1)) associated with periodic packing (with a periodicity of 31 Å) of the oligonucleotides within the lamellae of the nanostructure. The nucleotide composition of the single-stranded oligonucleotides was also found to impact the number and size of the complexes formed with CTAB. In contrast to 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', 5'-T(20)-3' did not change the state of aggregation of CTAB (globular micelles) over a wide range of oligonucleotide:CTAB charge ratios. These results support the proposition that hydrophobic interactions, as well as electrostatics, play a central role in the formation of complexes between cationic amphiphiles and single-stranded oligonucleotides and thus give rise to nanostructures that depend on nucleotide composition. In contrast to the single-stranded oligonucleotides, for double-stranded oligonucleotides mixed with CTAB, three Bragg peaks (0.13, 0.23, and 0.25 Å(-1)) in SAXS spectra with a spacing ratio of 1:√3:√4 and characteristic changes in SANS spectra indicate formation of a hexagonal nanostructure. Also, the composition of the double-stranded oligonucleotides did not measurably impact the nanostructure of complexes formed with CTAB, suggesting that electrostatic

  3. Calculation of formation constants of single-charged complex ions of bivalent metals in solutions

    International Nuclear Information System (INIS)

    Allakhverdov, G.R.


    A new method for calculating formation constants of complexes of bivalent metals in solutions is suggested. The method is based on using relations characterizing concentration dependence of activity factors and theis interrelation with osmotic coefficients. It is shown that the results of formation constant calculations of complexes MX + (M-Mg, Ca, Sr, Ba, Cd, Co, Zn, Ni, Fe, Mn, Cu; X-Cl, Br, I, NOΛ3) performed with a computer using experimental data in the 0.1-0.5 m(m-molality) concentration range, are in satisfactory agreement with literature data obtained by various research methods. It is established that for all metals the stability of halide complexes drops in the MCl + >MBr + >MI + series. In the series of complexes formed by alkaline earth metals, the complexes stability grows with increase of metal atomic number

  4. TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize

    Directory of Open Access Journals (Sweden)

    Nelson Garcia


    Full Text Available The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90 to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs. Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.

  5. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. (United States)

    Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F


    The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.

  6. A single cognitive heuristic process meets the complexity of domain-specific moral heuristics. (United States)

    Dubljević, Veljko; Racine, Eric


    The inherence heuristic (a) offers modest insights into the complex nature of both the is-ought tension in moral reasoning and moral reasoning per se, and (b) does not reflect the complexity of domain-specific moral heuristics. Formal and general in nature, we contextualize the process described as "inherence heuristic" in a web of domain-specific heuristics (e.g., agent specific; action specific; consequences specific).

  7. Single-Step Multiplex PCR Assay for Characterization of New World Leishmania Complexes (United States)

    Harris, Eva; Kropp, Gerald; Belli, Alejandro; Rodriguez, Betzabé; Agabian, Nina


    We have developed a PCR assay for one-step differentiation of the three complexes of New World Leishmania (Leishmania braziliensis, Leishmania mexicana, and Leishmania donovani). This multiplex assay is targeted to the spliced leader RNA (mini-exon) gene repeats of these organisms and can detect all three complexes simultaneously, generating differently sized products for each complex. The assay is specific to the Leishmania genus and does not recognize related kinetoplastid protozoa, such as Trypanosoma cruzi, Trypanosoma brucei, and Crithidia fasciculata. It correctly identified Leishmania species with a broad geographic distribution in Central and South America. The sensitivity of the PCR amplification ranged from 1 fg to 10 pg of DNA (0.01 to 100 parasites), depending on the complex detected. Crude extracts of cultured parasites, prepared simply by boiling diluted cultures, served as excellent templates for amplification. Crude preparations of clinical material were also tested. The assay detected L. braziliensis in dermal scrapings from cutaneous leishmanial lesions, Leishmania chagasi in dermal scrapings of atypical cutaneous leishmaniasis, and L. mexicana from lesion aspirates from infected hamsters. We have minimized the material requirements and maximized the simplicity, rapidity, and informative content of this assay to render it suitable for use in laboratories in countries where leishmaniasis is endemic. This assay should be useful for rapid in-country identification of Leishmania parasites, particularly where different Leishmania complexes are found in the same geographical area. PMID:9650950

  8. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng


    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy. (paper)

  9. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures (United States)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng


    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  10. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Wolf Martin


    Full Text Available Abstract Background For brain computer interfaces (BCIs, which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS. Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1 offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2 to use motor imagery (MI as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks. Methods 12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA and cross validation, we selected for each subject a best-performing feature combination consisting of 1 one out of three channel, 2 an analysis time interval ranging from 5-15 s after stimulation onset and 3 up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis. Results The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001, over secondary motor areas with an average classification accuracy of 81%. Conclusions Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their

  11. GABA(A)-benzodiazepine receptor complex ligands and stress-induced hyperthermia in singly housed mice.

    NARCIS (Netherlands)

    Olivier, B.; Bouwknecht, J.A.; Pattij, T.; Leahy, C.; Oorschot, R. van; Zethof, T.J.


    Stress-induced hyperthermia (SIH) in singly housed mice, in which the rectal temperature of a mouse is measured twice with a 10-min interval, enables to study the effects of a drug on the basal (T(1)) and on the stress-enhanced temperature (T(2)), 10 min later, using the rectal procedure as

  12. A Rh III-N-heterocyclic carbene complex from metal-metal singly ...

    Indian Academy of Sciences (India)

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory ... to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  13. Management of complex urethral stricture disease: Algorithm and experience from a single institute

    Directory of Open Access Journals (Sweden)

    Yu-Hua Shau


    Conclusion: Complex urethral strictures can be managed by a variety of surgical techniques according to specific stricture locations. However, a careful postoperative follow-up for recurrences is mandatory, since ∼40% of patients undergoing buccal mucosal graft-augmented urethroplasties were expected to have additional procedures after the index urethroplasty.

  14. Spectroscopy of Single Light-Harvesting Complexes from Purple Photosynthetic Bacteria at 1.2 K

    NARCIS (Netherlands)

    Oijen, A.M. van; Ketelaars, M.; Köhler, J.; Aartsma, T.J.; Schmidt, J.


    In this Letter we present the first observation of the fluorescence-excitation spectra of individual light-harvesting complexes (LH2) from purple photosynthetic bacteria at 1.2 K. The spectra reveal the electronic transitions to the individual excitonic states of the assembly of absorbing

  15. Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van


    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  16. Mass transfer with complex reversible chemical reactions I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, Geert; Kuipers, J.A.M.; van Beckum, F.P.H.; van Swaaij, Willibrordus Petrus Maria


    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  17. Fluorescence/luminescence circadian imaging of complex tissues at single-cell resolution. (United States)

    Sellix, Michael T; Currie, Jake; Menaker, Michael; Wijnen, Herman


    The use of luciferase reporter genes together with luminescence detection has enabled high frequency monitoring of molecular circadian clock function in living tissues. With the help of an intensified CCD camera combined with an inverted epifluorescence microscope, the authors have established a new imaging strategy that makes use of transgenic cell type-specific expression of fluorescent proteins to identify cells of interest for subsequent circadian luminescence recording at single-cell resolution.

  18. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules

    Directory of Open Access Journals (Sweden)

    Hong Shan


    Full Text Available ABSTRACT Single particle analysis, which can be regarded as an average of signals from thousands or even millions of particle projections, is an efficient method to study the three-dimensional structures of biological macromolecules. An intrinsic assumption in single particle analysis is that all the analyzed particles must have identical composition and conformation. Thus specimen heterogeneity in either composition or conformation has raised great challenges for high-resolution analysis. For particles with multiple conformations, inaccurate alignments and orientation parameters will yield an averaged map with diminished resolution and smeared density. Besides extensive classification approaches, here based on the assumption that the macromolecular complex is made up of multiple rigid modules whose relative orientations and positions are in slight fluctuation around equilibriums, we propose a new method called as local optimization refinement to address this conformational heterogeneity for an improved resolution. The key idea is to optimize the orientation and shift parameters of each rigid module and then reconstruct their three-dimensional structures individually. Using simulated data of 80S/70S ribosomes with relative fluctuations between the large (60S/50S and the small (40S/30S subunits, we tested this algorithm and found that the resolutions of both subunits are significantly improved. Our method provides a proof-of-principle solution for high-resolution single particle analysis of macromolecular complexes with dynamic conformations.

  19. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules. (United States)

    Shan, Hong; Wang, Zihao; Zhang, Fa; Xiong, Yong; Yin, Chang-Cheng; Sun, Fei


    Single particle analysis, which can be regarded as an average of signals from thousands or even millions of particle projections, is an efficient method to study the three-dimensional structures of biological macromolecules. An intrinsic assumption in single particle analysis is that all the analyzed particles must have identical composition and conformation. Thus specimen heterogeneity in either composition or conformation has raised great challenges for high-resolution analysis. For particles with multiple conformations, inaccurate alignments and orientation parameters will yield an averaged map with diminished resolution and smeared density. Besides extensive classification approaches, here based on the assumption that the macromolecular complex is made up of multiple rigid modules whose relative orientations and positions are in slight fluctuation around equilibriums, we propose a new method called as local optimization refinement to address this conformational heterogeneity for an improved resolution. The key idea is to optimize the orientation and shift parameters of each rigid module and then reconstruct their three-dimensional structures individually. Using simulated data of 80S/70S ribosomes with relative fluctuations between the large (60S/50S) and the small (40S/30S) subunits, we tested this algorithm and found that the resolutions of both subunits are significantly improved. Our method provides a proof-of-principle solution for high-resolution single particle analysis of macromolecular complexes with dynamic conformations.

  20. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single-molecule mag......This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single......-molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl......)imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure...

  1. Promising results after single-stage reconstruction of the nipple and areola complex

    DEFF Research Database (Denmark)

    Børsen-Koch, Mikkel; Bille, Camilla; Thomsen, Jørn B


    a technique based on a local flap for reconstruction of the nipple in combination with immediate intradermal tattooing for reconstruction of the areola. Results: We reviewed the outcome of 22 cases of women who had simple single-stage reconstruction over a period of one year. We found no major and only two...... minor complications including one case of partial flap necrosis and one case of infection. Only three patients needed additional tattooing after a three-month period. The cosmetic outcome was satisfactory and none of the patients needed corrective procedures. The mean procedure time for unilateral...

  2. Structures of two thermolysin-inhibitor complexes that differ by a single hydrogen bond. (United States)

    Tronrud, D E; Holden, H M; Matthews, B W


    The mode of binding to thermolysin of the ester analog Cbz-GlyP-(O)-Leu-Leu has been determined by x-ray crystallography and shown to be virtually identical (maximum difference 0.2 angstrom) with the corresponding peptide analog Cbz-GlyP-(NH)-Leu-Leu. The two inhibitors provide a matched pair of enzyme-inhibitor complexes that differ by 4.1 kilocalories per mole in intrinsic binding energy but are essentially identical except for the presence or absence of a specific hydrogen bond.

  3. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes. (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn


    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  4. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu


    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  5. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. (United States)

    Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan


    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  6. Validation of single-plane fluoroscopy and 2D/3D shape-matching for quantifying shoulder complex kinematics. (United States)

    Lawrence, Rebekah L; Ellingson, Arin M; Ludewig, Paula M


    Fluoroscopy and 2D/3D shape-matching has emerged as the standard for non-invasively quantifying kinematics. However, its accuracy has not been well established for the shoulder complex when using single-plane fluoroscopy. The purpose of this study was to determine the accuracy of single-plane fluoroscopy and 2D/3D shape-matching for quantifying full shoulder complex kinematics. Tantalum markers were implanted into the clavicle, humerus, and scapula of four cadaveric shoulders. Biplane radiographs were obtained with the shoulder in five humerothoracic elevation positions (arm at the side, 30°, 60°, 90°, maximum). Images from both systems were used to perform marker tracking, while only those images acquired with the primary fluoroscopy system were used to perform 2D/3D shape-matching. Kinematics errors due to shape-matching were calculated as the difference between marker tracking and 2D/3D shape-matching and expressed as root mean square (RMS) error, bias, and precision. Overall RMS errors for the glenohumeral joint ranged from 0.7 to 3.3° and 1.2 to 4.2 mm, while errors for the acromioclavicular joint ranged from 1.7 to 3.4°. Errors associated with shape-matching individual bones ranged from 1.2 to 3.2° for the humerus, 0.5 to 1.6° for the scapula, and 0.4 to 3.7° for the clavicle. The results of the study demonstrate that single-plane fluoroscopy and 2D/3D shape-matching can accurately quantify full shoulder complex kinematics in static positions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Computational efficient unsupervised coastline detection from single-polarization 1-look SAR images of complex coastal environments (United States)

    Garzelli, Andrea; Zoppetti, Claudia; Pinelli, Gianpaolo


    Coastline detection in synthetic aperture radar (SAR) images is crucial in many application fields, from coastal erosion monitoring to navigation, from damage assessment to security planning for port facilities. The backscattering difference between land and sea is not always documented in SAR imagery, due to the severe speckle noise, especially in 1-look data with high spatial resolution, high sea state, or complex coastal environments. This paper presents an unsupervised, computationally efficient solution to extract the coastline acquired by only one single-polarization 1-look SAR image. Extensive tests on Spotlight COSMO-SkyMed images of complex coastal environments and objective assessment demonstrate the validity of the proposed procedure which is compared to state-of-the-art methods through visual results and with an objective evaluation of the distance between the detected and the true coastline provided by regional authorities.

  8. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia


    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  9. A Complex Overview of Modeling and Control of the Rotary Single Inverted Pendulum System

    Directory of Open Access Journals (Sweden)

    Slavka Jadlovska


    Full Text Available The purpose of this paper is to present an in-depth survey of the rotary single inverted pendulum system from a control engineer's point of view. The scope of the survey includes modeling and open-loop analysis of the system as well as design and verification of balancing and swing up controllers which ensure successful stabilization of the pendulum in the unstable upright equilibrium. All relevant tasks and simulation experiments are conducted using the appropriate function blocks, GUI applications and demonstration schemes from a Simulink block library developed by the authors of the paper. The library is called Inverted Pendula Modeling and Control (IPMaC and offers comprehensive program support for modeling, simulation and control of classical (linear and rotary inverted pendulum systems.

  10. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    Directory of Open Access Journals (Sweden)

    Laurel J Gershwin

    Full Text Available Bovine respiratory disease complex (BRDC is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus, which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  11. Single Amino Acid Mutation Controls Hole Transfer Dynamics in DNA-Methyltransferase HhaI Complexes. (United States)

    Corbella, Marina; Voityuk, Alexander A; Curutchet, Carles


    Different mutagenic effects are generated by DNA oxidation that implies the formation of radical cation states (so-called holes) on purine nucleobases. The interaction of DNA with proteins may protect DNA from oxidative damage owing to hole transfer (HT) from the stack to aromatic amino acids. However, how protein binding affects HT dynamics in DNA is still poorly understood. Here, we report a computational study of HT in DNA complexes with methyltransferase HhaI with the aim of elucidating the molecular factors that explain why long-range DNA HT is inhibited when the glutamine residue inserted in the double helix is mutated into a tryptophan. We combine molecular dynamics, quantum chemistry, and kinetic Monte Carlo simulations and find that protein binding stabilizes the energies of the guanine radical cation states and significantly impacts the corresponding electronic couplings, thus determining the observed behavior, whereas the formation of a tryptophan radical leads to less efficient HT.

  12. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kanetomo, Takuya; Ishida, Takayuki, E-mail: [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)


    We synthesized [Ln{sup III}(hfac){sub 3}(H{sub 2}O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λ{sub ex} = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] (28% at λ{sub ex} = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λ{sub ex} = 400 nm, while that of the starting material [EuI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] was 4% at λ{sub ex}=400 nm.

  13. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands (United States)

    Kanetomo, Takuya; Ishida, Takayuki


    We synthesized [LnIII(hfac)3(H2O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λex = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbIIII(hfac)3(H2O)2] (28% at λex = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λex = 400 nm, while that of the starting material [EuIIII(hfac)3(H2O)2] was 4% at λex=400 nm.

  14. [Single procedure treatment of complex nephrolithiasis: about a modern series of anatrophic nephrolithotomy]. (United States)

    Lunardi, P; Timsit, M O; Roumiguie, M; Dariane, C; N'Guyen, K; Beauval, J B; Leroux, S


    Advances in endourology have significantly reduced indications of open surgery in the treatment of staghorn calculi. However, in our experience, open surgery is still the treatment of choice in some cases. This study presents the results of a series of selected patients and discusses the results in terms of efficacy and morbidity. A cohort of 26 patients underwent anatrophic nephrolithotomy by lombotomy to treat a complex staghorn calculus. The mean stone size was 68,5mm, 70% were complete staghorn calculi. The operative time was 100minutes. Blood loss was 225mL, with a postoperative transfusion rate of 15.4%. The hospital stay was 8.4 days. The stone free rate following the procedure was 92%. The creatinine clearance (MDRD) at 3 months was improved from 5.9mL/min/m(2) on average over the entire series. There are clearly still indications for open surgery in staghorn stones management, with good results in this contemporary series on both stone removal and nephronic preservation. Yet, it appears that this technique is no longer taught. 5. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M


    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  16. Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers

    KAUST Repository

    Sifaou, Houssem


    This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio subject to a given power constraint. To this end, we consider the asymptotic regime in which M and K grow large with a given ratio. Tools from random matrix theory (RMT) are then used to compute, in closed form, accurate approximations for the parameters of the optimal precoder and receiver, when imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BS. The asymptotic analysis allows us to derive the asymptotically optimal linear precoder and receiver that are characterized by a lower complexity (due to the dependence on the large scale components of the channel) and, possibly, by a better resilience to imperfect channel state information. However, the implementation of both is still challenging as it requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each UE and make use of RMT to determine the optimal weighting coefficients on a per- UE basis that asymptotically solve the max-min SINR problem. Numerical results are used to validate the asymptotic analysis in the finite system regime and to show that the proposed TPE transceivers efficiently mimic the optimal ones, while requiring much lower computational complexity.

  17. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex

    International Nuclear Information System (INIS)

    Chatelain, Lucile; Pecaut, Jacques; Walsh, James P.S.; Tuna, Floriana; Mazzanti, Marinella


    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M II complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {Mn-O=U=O-Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K - the highest reported for a mono-uranium system - arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.

  18. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, Lucile; Pecaut, Jacques [CEA-Grenoble (France). Lab. de Reconnaissance Ionique et Chimie de Coordination SCIB; Walsh, James P.S.; Tuna, Floriana [Manchester Univ. (United Kingdom). School of Chemistry and Photon Science Inst.; Mazzanti, Marinella [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. de Sciences et Ingenierie Chimiques


    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M{sup II} complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {Mn-O=U=O-Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K - the highest reported for a mono-uranium system - arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.

  19. Response of single bacterial cells to stress gives rise to complex history dependence at the population level (United States)

    Mathis, Roland; Ackermann, Martin


    Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998

  20. Measuring word complexity in speech screening: single-word sampling to identify phonological delay/disorder in preschool children. (United States)

    Anderson, Carolyn; Cohen, Wendy


    Children's speech sound development is assessed by comparing speech production with the typical development of speech sounds based on a child's age and developmental profile. One widely used method of sampling is to elicit a single-word sample along with connected speech. Words produced spontaneously rather than imitated may give a more accurate indication of a child's speech development. A published word complexity measure can be used to score later-developing speech sounds and more complex word patterns. There is a need for a screening word list that is quick to administer and reliably differentiates children with typically developing speech from children with patterns of delayed/disordered speech. To identify a short word list based on word complexity that could be spontaneously named by most typically developing children aged 3;00-5;05 years. One hundred and five children aged between 3;00 and 5;05 years from three local authority nursery schools took part in the study. Items from a published speech assessment were modified and extended to include a range of phonemic targets in different word positions in 78 monosyllabic and polysyllabic words. The 78 words were ranked both by phonemic/phonetic complexity as measured by word complexity and by ease of spontaneous production. The ten most complex words (hereafter Triage 10) were named spontaneously by more than 90% of the children. There was no significant difference between the complexity measures for five identified age groups when the data were examined in 6-month groups. A qualitative analysis revealed eight children with profiles of phonological delay or disorder. When these children were considered separately, there was a statistically significant difference (p speech from those with delayed or disordered speech patterns. The Triage 10 words can be used as a screening tool for triage and general assessment and have the potential to monitor progress during intervention. Further testing is being undertaken to

  1. Post-cardiotomy extracorporeal cardiopulmonary resuscitation in neonates with complex single ventricle: analysis of outcomes. (United States)

    Polimenakos, Anastasios C; Wojtyla, Patrice; Smith, Pamela J; Rizzo, Vincent; Nater, Melissa; El Zein, Chawki F; Ilbawi, Michel N


    Extracorporeal cardiopulmonary resuscitation (ECPR) in children with cardiac arrest refractory to conventional cardiopulmonary resuscitation (CPR) has been reported with encouraging results. We sought to review outcomes of neonates with functional single ventricle (FSV) receiving post-cardiotomy ECPR. Forty-eight patients who required post-cardiotomy extracorporeal membrane oxygenation (ECMO) since the introduction of our ECPR protocol (January 2007-December 2009) were identified. Twenty-seven were neonates. Review of records and survival analysis were conducted. Of 27 neonates receiving post-cardiotomy ECMO 20 had FSV. Fourteen had ECPR. Ten underwent Norwood operation (NO) for hypoplastic left heart syndrome (HLHS). Four had FSV other than HLHS. Three underwent Damus-Kay-Stansel or modified NO with systemic-to-pulmonary shunt (SPS) and one SPS with anomalous pulmonary venous connection repair. Mean age and weight were 7.8 ± 2.9 days and 3.44 ± 1.78 kg, respectively. ECMO median duration was 6 days (interquartile range (IQR) 3-14). Survival to ECMO discontinuation was 79% (11 of 14 patients) and at hospital discharge was 57% (8 of 14 patients). The most common cause of death was multi-organ failure (four of six deaths). At last follow-up (median: 11 months (1-34)) 43% of patients were alive. CPR mean duration for patients with favorable versus unfavorable outcome was 38.6 ± 6.3 versus 42.1 ± 7.7 min (p = 0.12). Previously reported determinants for poorer prognosis in conventional non-rescue ECMO (such as pre-ECMO pH0.05). ECMO support in neonates with FSV requiring ECPR can result in favorable outcome in more than half of patients at hospital discharge. Aggressive strategy toward timely application of ECPR is justified. Expeditious ECPR deployment after proper patients' selection, refinement of CPR quality and use of adjunctive neuroprotective interventions, such as induced hypothermia, might further improve outcomes. Copyright © 2011 European Association for

  2. Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids. (United States)

    Zhang, Zheng Z; Pannunzio, Nicholas R; Hsieh, Chih-Lin; Yu, Kefei; Lieber, Michael R


    Long genomic R-loops in eukaryotes were first described at the immunoglobulin heavy chain locus switch regions using bisulfite sequencing and functional studies. A mouse monoclonal antibody called S9.6 has been used for immunoprecipitation (IP) to identify R-loops, based on the assumption that it is specific for RNA:DNA over other nucleic acid duplexes. However, recent work has demonstrated that a variable domain of S9.6 binds AU-rich RNA:RNA duplexes with a KD that is only 5.6-fold weaker than for RNA:DNA duplexes. Most IP protocols do not pre-clear the genomic nucleic acid with RNase A to remove free RNA. Fold back of ssRNA can readily generate RNA:RNA duplexes that may bind the S9.6 antibody, and adventitious binding of RNA may also create short RNA:DNA regions. Here we investigate whether RNase A is needed to obtain reliable IP with S9.6. As our test locus, we chose the most well-documented site for kilobase-long mammalian genomic R-loops, the immunoglobulin heavy chain locus (IgH) class switch regions. The R-loops at this locus can be induced by using cytokines to stimulate transcription from germline transcript promoters. We tested IP using S9.6 with and without various RNase treatments. The RNase treatments included RNase H to destroy the RNA in an RNA:DNA duplex and RNase A to destroy single-stranded (ss) RNA to prevent it from binding S9.6 directly (as duplex RNA) and to prevent the ssRNA from annealing to the genome, resulting in adventitious RNA:DNA hybrids. We find that optimal detection of RNA:DNA duplexes requires removal of ssRNA using RNase A. Without RNase A treatment, known regions of R-loop formation containing RNA:DNA duplexes can not be reliably detected. With RNase A treatment, a signal can be detected over background, but only within a limited 2 or 3-fold range, even with a stable kilobase-long genomic R-loop. Any use of the S9.6 antibody must be preceded by RNase A treatment to remove free ssRNA that may compete for the S9.6 binding by

  3. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. (United States)

    Li, Dinghua; Liu, Chi-Man; Luo, Ruibang; Sadakane, Kunihiko; Lam, Tak-Wah


    MEGAHIT is a NGS de novo assembler for assembling large and complex metagenomics data in a time- and cost-efficient manner. It finished assembling a soil metagenomics dataset with 252 Gbps in 44.1 and 99.6 h on a single computing node with and without a graphics processing unit, respectively. MEGAHIT assembles the data as a whole, i.e. no pre-processing like partitioning and normalization was needed. When compared with previous methods on assembling the soil data, MEGAHIT generated a three-time larger assembly, with longer contig N50 and average contig length; furthermore, 55.8% of the reads were aligned to the assembly, giving a fourfold improvement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  4. Hiding the Complexity: Building a Distributed ATLAS Tier-2 with a Single Resource Interface using ARC Middleware

    International Nuclear Information System (INIS)

    Purdie, S; Stewart, G; Skipsey, S; Washbrook, A; Bhimji, W; Filipcic, A; Kenyon, M


    Since their inception, Grids for high energy physics have found management of data to be the most challenging aspect of operations. This problem has generally been tackled by the experiment's data management framework controlling in fine detail the distribution of data around the grid and the careful brokering of jobs to sites with co-located data. This approach, however, presents experiments with a difficult and complex system to manage as well as introducing a rigidity into the framework which is very far from the original conception of the grid. In this paper we describe how the ScotGrid distributed Tier-2, which has sites in Glasgow, Edinburgh and Durham, was presented to ATLAS as a single, unified resource using the ARC middleware stack. In this model the ScotGrid 'data store' is hosted at Glasgow and presented as a single ATLAS storage resource. As jobs are taken from the ATLAS PanDA framework, they are dispatched to the computing cluster with the fastest response time. An ARC compute element at each site then asynchronously stages the data from the data store into a local cache hosted at each site. The job is then launched in the batch system and accesses data locally. We discuss the merits of this system compared to other operational models and consider, from the point of view of the resource providers (sites), and from the resource consumers (experiments); and consider issues involved in transitions to this model.

  5. Illuminant direction estimation for a single image based on local region complexity analysis and average gray value. (United States)

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Compare, Angelo


    Illuminant direction estimation is an important research issue in the field of image processing. Due to low cost for getting texture information from a single image, it is worthwhile to estimate illuminant direction by employing scenario texture information. This paper proposes a novel computation method to estimate illuminant direction on both color outdoor images and the extended Yale face database B. In our paper, the luminance component is separated from the resized YCbCr image and its edges are detected with the Canny edge detector. Then, we divide the binary edge image into 16 local regions and calculate the edge level percentage in each of them. Afterward, we use the edge level percentage to analyze the complexity of each local region included in the luminance component. Finally, according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model, we calculate the illuminant directions of the luminance component's three local regions, which meet the requirements of lower complexity and larger average gray value, and synthesize them as the final illuminant direction. Unlike previous works, the proposed method requires neither all of the information of the image nor the texture that is included in the training set. Experimental results show that the proposed method works better at the correct rate and execution time than the existing ones.

  6. Application of X-ray single crystal diffractometry to investigation of Np(5) complexes with n-donor ligands

    International Nuclear Information System (INIS)

    Andreev, G.


    Full text of publication follows. We present here some results of application of conventional X-ray single crystal diffractometry to the research on the interaction of Np(V) with N-donor ligands. Compounds that can coordinate to actinides through one or several nitrogen atoms are of a great variety and occur widely in the biosphere. For example, imidazole, pyridine and their derivatives are the building blocks of many biologically important molecules; triazines are known to occur in some aquatic plants. The presence of anthropogenic organic agents like amine-N-carboxylic acids in surface waters has the potential to re-mobilize metals from sediments and aquifers and to influence their bioavailability. The interaction of radionuclides with such ligands needs to be studied in detail to give fundamental understanding the conditions of the incorporation of long lived a-emitters (Np and Pu primarily) into the food chain. Another aspect of the same problem is the design of new chelating ligands for selective co-ordination of actinide ions as an alternative to the traditional sequestering agents. The problem of the separation of long-lived minor actinides and their transmutation also calls for design of new highly selective ligands for solvent extraction. Polydentate N-donor ligands are now considered to be very promising. A detailed study of structural chemistry is crucial for understanding the relationship between the architecture of the ligands and their binding affinity for actinides. The X-ray single crystal diffractometry became conventional technique as applied to the investigation of actinides in spite of difficulties regarding safe handling of radionuclides. This technique provides unambiguous information about modes of the ligand co-ordination to the metal ion and geometrical parameters of complexes. Moreover, the employment of a synchrotron radiation shows considerable promise for determination of solid state structures as well as obtaining structural

  7. Combination of binaural and harmonic masking release effects in the detection of a single component in complex tones. (United States)

    Klein-Hennig, Martin; Dietz, Mathias; Hohmann, Volker


    Both harmonic and binaural signal properties are relevant for auditory processing. To investigate how these cues combine in the auditory system, detection thresholds for an 800-Hz tone masked by a diotic (i.e., identical between the ears) harmonic complex tone were measured in six normal-hearing subjects. The target tone was presented either diotically or with an interaural phase difference (IPD) of 180° and in either harmonic or "mistuned" relationship to the diotic masker. Three different maskers were used, a resolved and an unresolved complex tone (fundamental frequency: 160 and 40 Hz) with four components below and above the target frequency and a broadband unresolved complex tone with 12 additional components. The target IPD provided release from masking in most masker conditions, whereas mistuning led to a significant release from masking only in the diotic conditions with the resolved and the narrowband unresolved maskers. A significant effect of mistuning was neither found in the diotic condition with the wideband unresolved masker nor in any of the dichotic conditions. An auditory model with a single analysis frequency band and different binaural processing schemes was employed to predict the data of the unresolved masker conditions. Sensitivity to modulation cues was achieved by including an auditory-motivated modulation filter in the processing pathway. The predictions of the diotic data were in line with the experimental results and literature data in the narrowband condition, but not in the broadband condition, suggesting that across-frequency processing is involved in processing modulation information. The experimental and model results in the dichotic conditions show that the binaural processor cannot exploit modulation information in binaurally unmasked conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex (United States)

    Chen, W.; Simonetti, A.


    sample. The niocalite for a carbonatite sample Oka153 defines a bimodal age distribution, with weighted average 206Pb/238U ages of 110.1 ±5.0 and 133.2 ±6.1 Ma. Apatite from the same sample also records a similar bimodal age distribution of 111.4 ±2.8 and 126.9 ±1.8 Ma. The combined in situ U-Pb dating results for apatite, pervoskite, niocalite from Oka clearly support a protracted history of magmatic activity (~30 Myr) for this carbonatite complex. Of importance, the U-Pb results from this study clearly indicate the significance of conducting a thorough geochronological investigation rather than defining the age of any one alkaline complex solely on the basis of a single radiometric age determination.

  9. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization (United States)

    Turchin, Peter; Currie, Thomas E.; Whitehouse, Harvey; François, Pieter; Feeney, Kevin; Mullins, Daniel; Hoyer, Daniel; Collins, Christina; Grohmann, Stephanie; Mendel-Gleason, Gavin; Turner, Edward; Dupeyron, Agathe; Cioni, Enrico; Reddish, Jenny; Levine, Jill; Jordan, Greine; Brandl, Eva; Williams, Alice; Cesaretti, Rudolf; Krueger, Marta; Ceccarelli, Alessandro; Figliulo-Rosswurm, Joe; Tuan, Po-Ju; Peregrine, Peter; Marciniak, Arkadiusz; Preiser-Kapeller, Johannes; Kradin, Nikolay; Korotayev, Andrey; Palmisano, Alessio; Baker, David; Bidmead, Julye; Bol, Peter; Christian, David; Cook, Connie; Covey, Alan; Feinman, Gary; Júlíusson, Árni Daníel; Kristinsson, Axel; Miksic, John; Mostern, Ruth; Petrie, Cameron; Rudiak-Gould, Peter; ter Haar, Barend; Wallace, Vesna; Mair, Victor; Xie, Liye; Baines, John; Bridges, Elizabeth; Manning, Joseph; Lockhart, Bruce; Bogaard, Amy; Spencer, Charles


    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history. PMID:29269395

  10. Development and characterization of light-emitting diodes (LEDs) based on ruthenium complex single layer for transparent displays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.; Fonseca, F.; Andrade, A.M. [Laboratorio de Microelectronica, Departamento de Engenharia de Sistemas Electronicos, Escola Politecnica da Universidade de Sao Paulo (Brazil); Patrocinio, A.O.T.; Mizoguchi, S.K.; Murakami Iha, N.Y. [Laboratorio de Fotoquimica Inorganica e Conversao de Energia, Instituto de Quimica da Universidade de Sao Paulo (Brazil); Peres, M.; Monteiro, T.; Pereira, L. [Departamento de Fisica e I3N, Universidade de Aveiro (Portugal)


    In this work, two ruthenium complexes,[Ru(bpy){sub 3}](PF{sub 6}){sub 2} and[Ru(ph2phen){sub 3}](PF{sub 6}){sub 2} in poly(methylmethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 nm and CIE (x,y) color coordinates of (0.64,0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the[Ru(bpy){sub 3}](PF{sub 6}){sub 2} device where the optical output power approaches 10{mu}W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Dispersion of single-wall carbon nanotubes with supramolecular Congo red - properties of the complexes and mechanism of the interaction. (United States)

    Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek


    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.

  12. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.


    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  13. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii. (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten


    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  14. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method (United States)

    Broglia, Riccardo; Durante, Danilo


    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  15. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands. (United States)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S Ahmad


    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s(-1) scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mismatch negativity to single and multiple pitch-deviant tones in regular and pseudo-random complex tone sequences. (United States)

    Vaz Pato, M; Jones, S J; Perez, N; Sprague, L


    To determine whether the process responsible for the mismatch negativity (MMN) might be involved in the analysis of temporal sound patterns for information. Synthesized musical instrument tones of 'clarinet' timbre were delivered in a continuous sequence at 16 tones/s, such that there was virtually no N1 potential to each individual tone. The standard sequence comprised 4 or 5 adjacent notes of the diatonic scale, presented either as a regularly repeated, rising pattern or pseudo-randomly. The deviant stimuli were 1-5 consecutive tones of higher pitch than the standards. A MMN was evoked by a single deviant tone, 1 or 5 semitones above the pitch range of the standards. The response to the 5-semitone deviant was significantly larger (mean of 7.3 microV) when the standard pattern was regular as compared with pseudo-random. The MMN latency, on the other hand, was only influenced by the magnitude of pitch deviation. A second MMN was evoked by a second deviant tone, immediately (SOA 62.5 ms) following the first. Further consecutive MMNs were not consistently evoked. The large amplitude of these MMNs can be attributed to the use of complex tones, continuous presentation and a rapid rate of pitch changes, such that no waveform subtraction was required. Over and above the probability with which each individual tone occurs in the standard sequence, the mismatch process is influenced by its temporal structure, i.e. can be regarded as a temporal pattern analyzer. Contrary to the findings of some other groups, we found that two consecutive deviants can evoke an MMN, even at high rates of presentation such that both occur within the postulated 'temporal window of integration' of ca. 170 ms. These findings suggest that the mismatch process might be involved in the extraction of sequential information from repetitive and non-repetitive sound patterns.

  17. Development of novel strategy for the synthesis of organometallic compounds usable as protein ligands: application to the human cyclophilin hCyp-18

    International Nuclear Information System (INIS)

    Clavaud, C.


    This thesis describes a new strategy for the development of bioactive organometallic compounds, basing on the combinatorial assembly of sub-chemical libraries (A and B) independent but complementary and able to coordinate a metallic heart M to form A-M-B complex potential ligands of biomolecules. The coordination of metals, well adapted to the production of molecular variety is usually used in medicinal chemistry, in diagnostic and therapeutic nuclear medicine. Among the useful elements, the rhenium and the technetium are metals of choice for the development of the assembly strategy because of their chemical and radiochemical properties and of the structure analogy of their complexes. This strategy was validated in vitro. The protein chosen for this purpose was the cyclophilin hCyp-18. (N.C.)

  18. Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding. (United States)

    Biela, Adam; Betz, Michael; Heine, Andreas; Klebe, Gerhard


    The binding of four congeneric peptide-like thermolysin inhibitors has been studied by high-resolution crystal structure analysis and isothermal titration calorimetry. The ligands differ only by a terminal carboxylate and/or methyl group. A surprising non-additivity of functional group contributions for the carboxylate and/or methyl groups is detected. Adding the methyl first and then the carboxylate group results in a small Gibbs free energy increase and minor enthalpy/entropy partitioning for the first modification, whereas the second involves a strong affinity increase combined with large enthalpy/entropy changes. However, first adding the carboxylate and then the methyl group yields reverse effects: the acidic group attachment now causes minor effects, whereas the added methyl group provokes large changes. As all crystal structures show virtually identical binding modes, affinity changes are related to rearrangements of the first solvation layer next to the S(2)' pocket. About 20-25 water molecules are visible next to the studied complexes. The added COO(-) groups perturb the local water network in both carboxylated complexes, and the attached methyl groups provide favorable interaction sites for water molecules. Apart from one example, a contiguously connected water network between protein and ligand functional groups is observed in all complexes. In the complex with the carboxylated ligand, which still lacks the terminal methyl group, the water network is unfavorably ruptured. This results in a surprising thermodynamic signature showing only a minor affinity increase upon COO(-) group attachment. Because the further added methyl group provides a favorable interaction site for water, the network can be reestablished, and a strong affinity increase with a large enthalpy/entropy signature is then detected. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single-frequency operation of a broad-area laser diode by injection locking of a complex spatial mode via a double phase conjugate mirror

    NARCIS (Netherlands)

    van Voorst, P.D.; Offerhaus, Herman L.; Boller, Klaus J.


    We demonstrate what is believed to be the first phase-coherent locking of a high-power broad-area diode to a single-frequency master laser. We use photorefractive double phase conjugation to lock the diode in a selfoptimized complex spatial mode while the photorefractive crystal diffracts that

  20. Computer-assisted and patient-specific 3-D planning and evaluation of a single-cut rotational osteotomy for complex long-bone deformities

    NARCIS (Netherlands)

    Dobbe, J. G. G.; Pré, K. J. du; Kloen, P.; Blankevoort, L.; Streekstra, G. J.


    Malunion after long bone fracture results in an incorrect position of the distal bone segment. This misalignment may lead to reduced function of the limb, early osteoarthritis and chronic pain. An established treatment option is a corrective osteotomy. For complex malunions, a single-cut rotational

  1. Single particle ICP-MS combined with a data evaluastion tool as a routine techique for the analysis of nanoparticles in complex matrices

    NARCIS (Netherlands)

    Peters, R.J.B.; Herrera-Rivera, Z.; Undas, A.K.; Lee, van der M.K.; Marvin, H.J.P.; Bouwmeester, H.; Weigel, S.


    Detection and characterization of nanoparticles (NPs) in complex media as consumer products, food and toxicological test media is an essential part of understanding the potential benefits and risks of the application of nanoparticles. Single particle ICP-MS (spICP-MS) was studied as a screening tool

  2. Impact of Surface Water Layers on Protein--Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case? (United States)

    Betz, Michael; Wulsdorf, Tobias; Krimmer, Stefan G; Klebe, Gerhard


    Drug binding involves changes of the local water structure around proteins including water rearrangements across surface-solvation layers around protein and ligand portions exposed to the newly formed complex surface. For a series of thermolysin-binding phosphonamidates, we discovered that variations of the partly exposed P2'-substituents modulate binding affinity up to 10 kJ mol(-1) with even larger enthalpy/entropy partitioning of the binding signature. The observed profiles cannot be completely explained by desolvation effects. Instead, the quality and completeness of the surface water network wrapping around the formed complexes provide an explanation for the observed structure-activity relationship. We used molecular dynamics to compute surface water networks and predict solvation sites around the complexes. A fairly good correspondence with experimental difference electron densities in high-resolution crystal structures is achieved; in detail some problems with the potentials were discovered. Charge-assisted contacts to waters appeared as exaggerated by AMBER, and stabilizing contributions of water-to-methyl contacts were underestimated.

  3. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H. (Antibody Solutions); (Toronto); (Reflexion); (UC)


    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF{sub 165} to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {l_brace}D-protein antagonist + L-protein form of VEGF-A{r_brace}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 {angstrom}. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 {angstrom}{sup 2} in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  4. Diethylenetriamine/diamines/copper (II complexes [Cu(dien(NN]Br2: Synthesis, solvatochromism, thermal, electrochemistry, single crystal, Hirshfeld surface analysis and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Fatima Abu Saleemh


    Full Text Available Two dicationic water soluble mixed triamine/diamine copper (II complexes, of general formula [Cu(dienNN]Br2 (1–2 [dien = diethelenetriamine and NN is en = ethylenediamine or Me4en = N,N′,N,N′-tetramethylethylenediamine] were prepared under ultrasonic mode with a relatively high yield. These complexes were characterized by elemental microanalysis, UV visible IR spectroscopy, and thermal and electrochemical techniques. In addition, complex 2 structure was solved by X-ray single crystal and Hirshfeld surface analysis. The complex exhibits a distorted square pyramidal coordination environment around Cu(II centre. The solvatochromism of the desired complexes was investigated in water and other suitable organic solvents. The results show that the Guttmann’s DN parameter values of the solvents have mainly contributed to the shift of the d–d absorption band towards the linear increase in the wavelength of the absorption maxima of the complexes. The complex 1 showed higher antibacterial activity against the studied microorganisms compared to complex 2. Both complexes revealed promising antibacterial activities.

  5. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus


    -complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a......-complexes and kinetic a-complexes in protein related problems (e.g., protein structure prediction and protein-ligand docking) deserves furhter investigation.)...

  6. Real-time tRNA transit on single translating ribosomes at codon resolution (United States)

    Uemura, Sotaro; Aitken, Colin Echeverría; Korlach, Jonas; Flusberg, Benjamin A.; Turner, Stephen W.; Puglisi, Joseph D.


    Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we have used zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically-relevant (μM) ligand concentrations. Translation at each codon is monitored by stable binding of tRNAs – labeled with distinct fluorophores – to translating ribosomes, allowing direct detection of the identity of tRNA molecules bound to the ribosome, and therefore, the underlying mRNA sequence. We observe the transit of tRNAs on single translating ribosomes and have determined the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA. Our results show that ribosomes are only briefly occupied by two tRNAs and that release of deacylated tRNA from the E site is uncoupled from binding of A-site tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation. PMID:20393556

  7. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging (United States)

    Millius, Arthur; Watanabe, Naoki; Weiner, Orion D.


    The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes. PMID:22349699

  8. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. (United States)

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop


    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  9. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states. (United States)

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S


    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  10. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)


    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  11. Synthesis and measurements of the optical bandgap of single crystalline complex metal oxide BaCuV2O7 nanowires by UV–VIS absorption

    International Nuclear Information System (INIS)

    Shakir, Imran; Shahid, Muhammad; Aboud, Mohamed F.A.


    Highlights: • Synthesis of single crystalline complex metal oxides BaCuV 2 O 7 nanowires. • Surfactant free, economically favorable chemical solution deposition method. • Complex metal oxides nanowires with controlled stoichiometry. • Simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV 2 O 7 nanowires. - Abstract: The synthesis of single crystalline complex metal oxides BaCuV 2 O 7 nanowires were attained by using surfactant free, economically favorable chemical solution deposition method. A thin layer of BaCuV 2 O 7 nanocrystals is formed by the decomposition of complex metal oxide solution at 150 °C to provide nucleation sites for the growth of nanowires. The synthesized nanowires were typically 1–5 μm long with diameter from 50 to 150 nm. We showed that by simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV 2 O 7 nanowires. The UV–VIS absorption spectra show indirect bandgap of 2.65 ± 0.05 eV of nanowires. The temperature-dependent resistances of BaCuV 2 O 7 nanowires agree with the exponential correlation, supporting that the conducting carriers are the quasi-free electrons. We believe that our methodology will provides a simple and convenient route for the synthesis of variety of complex metal oxides nanowires with controlled stoichiometry

  12. Never Quit: The Complexities of Promoting Social and Academic Excellence at a Single-Gender School for Urban African American Males

    Directory of Open Access Journals (Sweden)

    Marlon C. James


    Full Text Available This study explores the experiences of urban African American males at a first year single-gender charter school in the Southern region of the United States. The present case study was based on interviews and focus groups with parents, teachers, students, and the school administrator, and a participant observation of Excel Academy [pseudonym]. The findings of this study suggest that there were four critical instructional complexities that emerged: expectations dissonance, disguised engagement, differential engagement, and expectations overload. Remarkably, these issues were being addressed by a school value created by students and institutionalized by teachers--To Never Quit. Recommendations to address each instructional complexity are explored.

  13. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2 (United States)

    Kurkcuoglu, Zeynep; Koukos, Panagiotis I.; Citro, Nevia; Trellet, Mikael E.; Rodrigues, J. P. G. L. M.; Moreira, Irina S.; Roel-Touris, Jorge; Melquiond, Adrien S. J.; Geng, Cunliang; Schaarschmidt, Jörg; Xue, Li C.; Vangone, Anna; Bonvin, A. M. J. J.


    We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.

  14. The effect of protein complexation on the mechanical stability of Im9. (United States)

    Hann, Eleanore; Kirkpatrick, Nadine; Kleanthous, Colin; Smith, D Alastair; Radford, Sheena E; Brockwell, David J


    Force mode microscopy can be used to examine the effect of mechanical manipulation on the noncovalent interactions that stabilize proteins and their complexes. Here we describe the effect of complexation by the high affinity protein ligand E9 on the mechanical resistance of the simple four-helical protein, Im9. When concatenated into a construct of alternating I27 domains, Im9 unfolded below the thermal noise limit of the instrument ( approximately 20 pN). Complexation of E9 had little effect on the mechanical resistance of Im9 (unfolding force approximately 30 pN) despite the high avidity of this complex (K(d) approximately 10 fM).

  15. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography. (United States)

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen


    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein. (United States)

    Politis, Argyris; Park, Ah Young; Hall, Zoe; Ruotolo, Brandon T; Robinson, Carol V


    DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex (United States)

    Fathima, K. Saiadali; Anitha, K.


    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  18. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens


    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  19. Time-dependent inhibition of Na+/K+-ATPase induced by single and simultaneous exposure to lead and cadmium (United States)

    Vasić, V.; Kojić, D.; Krinulović, K.; Čolović, M.; Vujačić, A.; Stojić, D.


    Time-dependent interactions of Na+/K+-ATPase, isolated from rat brain synaptic plasma membranes (SPMs), with Cd2+ and Pb2+ ions in a single exposure and in a mixture were investigated in vitro. The interference of the enzyme with these metal ions was studied as a function of different protein concentrations and exposure time. The aim of the work was to investigate the possibility of selective recognition of Cd2+ and Pb2+ ions in a mixture, on the basis of the different rates of their protein-ligand interactions. Decreasing protein concentration increased the sensitivity of Na+/K+-ATPase toward both metals. The selectivity in protein-ligand interactions was obtained by variation of preincubation time (incubation before starting the enzymatic reaction).

  20. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. (United States)

    Beckham, Katherine S H; Ciccarelli, Luciano; Bunduc, Catalin M; Mertens, Haydyn D T; Ummels, Roy; Lugmayr, Wolfgang; Mayr, Julia; Rettel, Mandy; Savitski, Mikhail M; Svergun, Dmitri I; Bitter, Wilbert; Wilmanns, Matthias; Marlovits, Thomas C; Parret, Annabel H A; Houben, Edith N G


    Mycobacteria are characterized by their impermeable outer membrane, which is rich in mycolic acids 1 . To transport substrates across this complex cell envelope, mycobacteria rely on type VII (also known as ESX) secretion systems 2 . In Mycobacterium tuberculosis, these ESX systems are essential for growth and full virulence and therefore represent an attractive target for anti-tuberculosis drugs 3 . However, the molecular details underlying type VII secretion are largely unknown, due to a lack of structural information. Here, we report the molecular architecture of the ESX-5 membrane complex from Mycobacterium xenopi determined at 13 Å resolution by electron microscopy. The four core proteins of the ESX-5 complex (EccB 5 , EccC 5 , EccD 5 and EccE 5 ) assemble with equimolar stoichiometry into an oligomeric assembly that displays six-fold symmetry. This membrane-associated complex seems to be embedded exclusively in the inner membrane, which indicates that additional components are required to translocate substrates across the mycobacterial outer membrane. Furthermore, the extended cytosolic domains of the EccC ATPase, which interact with secretion effectors, are highly flexible, suggesting an as yet unseen mode of substrate interaction. Comparison of our results with known structures of other bacterial secretion systems demonstrates that the architecture of type VII secretion system is fundamentally different, suggesting an alternative secretion mechanism.

  1. Comparison of complex coacervate core micelles from two diblock copolymers or a single diblock copolymer with a polyelectrolyte.

    NARCIS (Netherlands)

    Hofs, P.S.; Voets, I.K.; Keizer, de A.; Cohen Stuart, M.A.


    With light scattering titrations, we show that complex coacervate core micelles (C3Ms) form from a diblock copolymer with a polyelectrolyte block and either an oppositely charged polyelectrolyte, a diblock copolymer with an oppositely charged polyelectrolyte or a mixture of the two. The effect of

  2. Single-molecule magnetism in three related {Co(III)2Dy(III)2}-acetylacetonate complexes with multiple relaxation mechanisms. (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S


    Three new heterometallic complexes with formulas of [Dy(III)2Co(III)2(OMe)2(teaH)2(acac)4(NO3)2] (1), [Dy(III)2Co(III)2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (2), and [Dy(III)2Co(III)2(OMe)2(mdea)2(acac)4(NO3)2] (3) were characterized by single-crystal X-ray diffraction and by dc and ac magnetic susceptibility measurements. All three complexes have an identical "butterfly"-type metallic core that consists of two Dy(III) ions occupying the "body" position and two diamagnetic low-spin Co(III) ions occupying the outer "wing-tips". Each complex displays single-molecule magnet (SMM) behavior in zero applied magnetic field, with thermally activated anisotropy barriers of 27, 28, and 38 K above 7.5 K for 1-3, respectively, as well as observing a temperature-independent mechanism of relaxation below 5 K for 1 and 2 and at 3 K for 3, indicating fast quantum tunneling of magnetization (QTM). A second, faster thermally activated relaxation mechanism may also be active under a zero applied dc field as derived from the Cole-Cole data. Interestingly, these complexes demonstrate further relaxation modes that are strongly dependent upon the application of a static dc magnetic field. Dilution experiments that were performed on 1, in the {Y(III)2Co(III)2} diamagnetic analog, show that the slow magnetic relaxation is of a single-ion origin, but it was found that the neighboring ion also plays an important role in the overall relaxation dynamics.

  3. Selective binding and reverse transcription inhibition of single-strand poly(A) RNA by metal TMPyP complexes. (United States)

    Zhou, Zhu-Xin; Gao, Feng; Chen, Xing; Tian, Xiang-Jing; Ji, Liang-Nian


    Ni-, Cu-, and Zn-TMPyP are capable of binding to single-strand poly(A) RNA with high preference and affinity and inhibiting the reverse transcription of RNA by both M-MuLV and HIV-1 reverse transcriptase. With 10 nM azidothymidine, the IC50 value of M-TMPyP could be lowered to 10(-1) μM order.

  4. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)


    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.

  5. Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices (United States)

    Abplanalp, Matthew J.; Förstel, Marko; Kaiser, Ralf I.


    Complex organic molecules (COM) such as aldehydes, ketones, carboxylic acids, esters, and amides are ubiquitous in the interstellar medium, but traditional gas phase astrochemical models cannot explain their formation routes. By systematically exploiting on line and in situ vacuum ultraviolet photoionization coupled with reflectron time of flight mass spectrometry (PI-ReTOF-MS) and combining these data with infrared spectroscopy (FTIR), we reveal that complex organic molecules can be synthesized within interstellar ices that are condensed on interstellar grains via non-equilibrium reactions involving suprathermal hydrogen atoms at temperatures as low as 5 K. By probing for the first time specific structural isomers without their degradation (fragment-free), the incorporation of tunable vacuum ultraviolet photoionization allows for a much greater understanding of reaction mechanisms that exist in interstellar ices compared to traditional methods, thus eliminating the significant gap between observational and laboratory data that existed for the last decades. With the commission of the Atacama Large Millimeter/Submillimeter Array (ALMA), the number of detections of more complex organic molecules in space will continue to grow ⿿ including biorelevant molecules connected to the Origins of Life theme ⿿ and an understanding of these data will rely on future advances in sophisticated physical chemistry laboratory experiments.

  6. Bis-picolinamide Ruthenium(III) Dihalide Complexes: Dichloride-to-Diiodide Exchange Generates Single trans Isomers with High Potency and Cancer Cell Selectivity. (United States)

    Basri, Aida M; Lord, Rianne M; Allison, Simon J; Rodríguez-Bárzano, Andrea; Lucas, Stephanie J; Janeway, Felix D; Shepherd, Helena J; Pask, Christopher M; Phillips, Roger M; McGowan, Patrick C


    A library of new bis-picolinamide ruthenium(III) dihalide complexes of the type [RuX 2 L 2 ] (X=Cl or I, L=picolinamide) have been synthesised and characterised. The complexes exhibit different picolinamide ligand binding modes, whereby one ligand is bound (N,N) and the other bound (N,O). Structural studies revealed a mixture of cis and trans isomers for the [RuCl 2 L 2 ] complexes but upon a halide exchange reaction to yield [RuI 2 L 2 ], only single trans isomers were detected. High cytotoxic activity against human cancer cell lines was observed, with the potencies of some complexes similar to or better than cisplatin. The conversion to [RuI 2 L 2 ] substantially increased the activity towards cancer cell lines by more than twelvefold. The [RuI 2 L 2 ] complexes displayed potent activity against the A2780cis (cisplatin-resistant human ovarian cancer) cell line, with a more than fourfold higher potency than cisplatin. Equitoxic activity was observed against normoxic and hypoxic cancer cells, which indicates the potential to eradicate both the hypoxic and aerobic fractions of solid tumours with similar efficiency. The activity of selected complexes against non-cancer ARPE-19 cells was also tested. The [RuI 2 L 2 ] complexes were found to be more potent than the [RuCl 2 L 2 ] analogues and also more selective towards cancer cells with a selectivity factor in excess of sevenfold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ. (United States)

    García, Raúl; Herranz, M Ángeles; Leary, Edmund; González, M Teresa; Bollinger, Gabino Rubio; Bürkle, Marius; Zotti, Linda A; Asai, Yoshihiro; Pauly, Fabian; Cuevas, Juan Carlos; Agraït, Nicolás; Martín, Nazario


    We describe the synthesis and single-molecule electrical transport properties of a molecular wire containing a π-extended tetrathiafulvalene (exTTF) group and its charge-transfer complex with F4TCNQ. We form single-molecule junctions using the in situ break junction technique using a homebuilt scanning tunneling microscope with a range of conductance between 10 G0 down to 10(-7) G0. Within this range we do not observe a clear conductance signature of the neutral parent molecule, suggesting either that its conductance is too low or that it does not form a stable junction. Conversely, we do find a clear conductance signature in the experiments carried out on the charge-transfer complex. Due to the fact we expected this species to have a higher conductance than the neutral molecule, we believe this supports the idea that the conductance of the neutral molecule is very low, below our measurement sensitivity. This idea is further supported by theoretical calculations. To the best of our knowledge, these are the first reported single-molecule conductance measurements on a molecular charge-transfer species.

  8. The Foundations of Protein-Ligand Interaction (United States)

    Klebe, Gerhard

    For the specific design of a drug we must first answer the question: How does a drug achieve its activity? An active ingredient must, in order to develop its action, bind to a particular target molecule in the body. Usually this is a protein, but also nucleic acids in the form of RNA and DNA can be target structures for active agents. The most important condition for binding is at first that the active agent exhibits the correct size and shape in order to optimally fit into a cavity exposed to the surface of the protein, the "bindingpocket". It is further necessary for the surface properties of the ligand and protein to be mutually compatible to form specific interactions. In 1894 Emil Fischer compared the exact fit of a substrate for the catalytic centre of an enzyme with the picture of a "lock-and-key". Paul Ehrlich coined in 1913 "Corpora non agunt nisi fixata", literally "bodies do not work when they are not bound". He wanted to imply that active agents that are meant to kill bacteria or parasites must be "fixed" by them, i.e. linked to their structures. Both concepts form the starting point for any rational concept in the development of active pharmaceutical ingredients. In many respects they still apply today. A drug must, after being administered, reach its target and interact with a biological macromolecule. Specific agents have a large affinity and sufficient selectivity to bind to the macromolecule's active site. This is the only way they can develop the desired biological activity without side-effects.

  9. Two-dimensional strandness-dependent electrophoresis: a method to characterize single-stranded DNA, double-stranded DNA, and RNA-DNA hybrids in complex samples. (United States)

    Gunnarsson, Gudmundur H; Gudmundsson, Bjarki; Thormar, Hans G; Alfredsson, Arni; Jonsson, Jon J


    We describe two-dimensional strandness-dependent electrophoresis (2D-SDE) for quantification and length distribution analysis of single-stranded (ss) DNA fragments, double-stranded (ds) DNA fragments, RNA-DNA hybrids, and nicked DNA fragments in complex samples. In the first dimension nucleic acid molecules are separated based on strandness and length in the presence of 7 M urea. After the first-dimension electrophoresis all nucleic acid fragments are heat denatured in the gel. During the second-dimension electrophoresis all nucleic acid fragments are single-stranded and migrate according to length. 2D-SDE takes about 90 min and requires only basic skills and equipment. We show that 2D-SDE has many applications in analyzing complex nucleic acid samples including (1) estimation of renaturation efficiency and kinetics, (2) monitoring cDNA synthesis, (3) detection of nicked DNA fragments, and (4) estimation of quality and in vitro damage of nucleic acid samples. Results from 2D-SDE should be useful to validate techniques such as complex polymerase chain reaction, subtractive hybridization, cDNA synthesis, cDNA normalization, and microarray analysis. 2D-SDE could also be used, e.g., to characterize biological nucleic acid samples. Information obtained with 2D-SDE cannot be readily obtained with other methods. 2D-SDE can be used for preparative isolation of ssDNA fragments, dsDNA fragments, and RNA-DNA hybrids.

  10. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    Directory of Open Access Journals (Sweden)

    Christensen Lars PB


    Full Text Available The problem of asynchronous direct-sequence code-division multiple-access (DS-CDMA detection over the ultra-wideband (UWB multipath channel is considered. A joint synchronization, channel-estimation, and multiuser detection scheme based on the adaptive linear minimum mean square error (LMMSE receiver is presented and evaluated. Further, a novel nonrecursive least-squares algorithm capable of reducing the complexity of the adaptation in the receiver while preserving the advantages of the recursive least-squares (RLS algorithm is presented.

  11. Three-Year Major Clinical Outcomes of Angiography-Guided Single Stenting Technique in Non-Complex Left Main Coronary Artery Diseases. (United States)

    Kim, Yong Hoon; Her, Ae-Young; Rha, Seung-Woon; Choi, Byoung Geol; Shim, Minsuk; Choi, Se Yeon; Byun, Jae Kyeong; Li, Hu; Kim, Woohyeun; Kang, Jun Hyuk; Choi, Jah Yeon; Park, Eun Jin; Park, Sung Hun; Lee, Sunki; Na, Jin Oh; Choi, Cheol Ung; Lim, Hong Euy; Kim, Eung Ju; Park, Chang Gyu; Seo, Hong Seog; Oh, Dong Joo


    There is limited long-term comparative clinical outcome data concerning angiography- versus intravascular ultrasound (IVUS)-guided percutaneous coronary intervention (PCI) in non-complex left main coronary artery (LMCA) disease treated with the single stenting technique in the drug-eluting stent (DES) era.The aim of this study was to investigate whether angiography-guided stenting is comparable to IVUS-guided stenting during 3-year clinical follow-up periods in patients with non-complex LM disease treated with the single stenting technique.A total of 196 patients treated with either angiography-guided (n = 74) or IVUS-guided (n = 122) PCI were included. The primary outcome was the occurrence of major adverse cardiac events (MACE) defined as total death, non-fatal myocardial infarction (MI), target lesion revascularization (TLR), target vessel revascularization (TVR), and non-target vessel revascularization (Non-TVR). To adjust for any potential confounders, propensity score (PS) adjusted analysis was performed.During 3-year follow-up, the PS adjusted Cox-proportional hazard ratio (HR) was not significantly different between the two groups for total death, cardiac death, and MI. Also, TLR and the combined rates of TVR and non-TVR were not significantly different. Finally, MACE was not significantly different between the two groups (HR: 0.63, 95% Confidence interval (CI): 0.33-1.17; P = 0.149).Angiography-guided PCI for non-complex LMCA diseases treated with the single stenting technique showed comparable results compared with IVUS-guided PCI in reducing clinical events during 3-year clinical follow-up in the DES era. Although IVUS guided PCI is the ideal strategy, angiography-guided PCI can be an option for LMCA PCI in some selected cases.

  12. Intense intrashell luminescence of Eu-doped single ZnO nanowires at room temperature by implantation created Eu-Oi complexes. (United States)

    Geburt, Sebastian; Lorke, Michael; da Rosa, Andreia L; Frauenheim, Thomas; Röder, Robert; Voss, Tobias; Kaiser, Uwe; Heimbrodt, Wolfram; Ronning, Carsten


    Successful doping and excellent optical activation of Eu(3+) ions in ZnO nanowires were achieved by ion implantation. We identified and assigned the origin of the intra-4f luminescence of Eu(3+) ions in ZnO by first-principles calculations to Eu-Oi complexes, which are formed during the nonequilibrium ion implantation process and subsequent annealing at 700 °C in air. Our targeted defect engineering resulted in intense intrashell luminescence of single ZnO:Eu nanowires dominating the photoluminescence spectrum even at room temperature. The high intensity enabled us to study the luminescence of single ZnO nanowires in detail, their behavior as a function of excitation power, waveguiding properties, and the decay time of the transition.

  13. Synthesis, characterization and single crystal x-ray analysis of a complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep; Andotra, Savit; Kaur, Mandeep [University of Jammu, Department of Chemistry (India); Gupta, Vivek K.; Kant, Rajni [Department of Physics and Electronics, University of Jammu, X-ray Crystallographic Laboratory (India); Pandey, Sushil K., E-mail: [University of Jammu, Department of Chemistry (India)


    Complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine [((2,4- (CH{sub 3}){sub 2}C{sub 6}H{sub 3}O)2PS2)2Fe(NC{sub 5}H{sub 4}(C{sub 2}H{sub 5})-4){sub 2}] is synthesized and characterized by elemental analysis, magnetic moment, IR spectroscopy and single crystal X-ray analysis. Complex crystallizes in the monoclinic sp. gr. P2{sub 1}/n, Z = 2. Crystal structure consists of mononuclear units with Fe(II) ion chelated by four S atoms of the two diphenyldithiophosphate ligands in bidentate manner. N atoms from two 4-ethylpyridine ligands are axially coordinated to the Fe(II) atom leading to an octahedral geometry.

  14. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G


    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  15. Nanoscopic Approach to Quantification of Equilibrium and Rate Constants of Complex Formation at Single-Molecule Level. (United States)

    Zhang, Xuzhu; Sisamakis, Evangelos; Sozanski, Krzysztof; Holyst, Robert


    Equilibrium and rate constants are key descriptors of complex-formation processes in a variety of chemical and biological reactions. However, these parameters are difficult to quantify, especially in the locally confined, heterogeneous, and dynamically changing living matter. Herein, we address this challenge by combining stimulated emission depletion (STED) nanoscopy with fluorescence correlation spectroscopy (FCS). STED reduces the length-scale of observation to tens of nanometres (2D)/attoliters (3D) and the time-scale to microseconds, with direct, gradual control. This allows one to distinguish diffusional and binding processes of complex-formation, even at reaction rates higher by an order of magnitude than in confocal FCS. We provide analytical autocorrelation formulas for probes undergoing diffusion-reaction processes under STED condition. We support the theoretical analysis of experimental STED-FCS data on a model system of dye-micelle, where we retrieve the equilibrium and rates constants. Our work paves a promising way toward quantitative characterization of molecular interactions in vivo.

  16. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail:


    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  17. Understanding implementation and change in complex interventions. From single- to multi-methodological research on the promotion of youths’ participation in physical education

    DEFF Research Database (Denmark)

    Agergaard, Sine; Dankers, Silke; Munk, Mette


    Existing studies on complex interventions aiming to promote youths’ participation in physical education (PE) appear to be predominantly single-methodological. The aim of this article is to examine the benefits and challenges of evaluating an intervention to increase youths’ participation...... and experiences of social inclusion in the PE context using a multi-method approach integrating quantitative and qualitative approaches. The multi-method approach allowed an integration of the findings with regard to the implementation as well as the effect of the intervention. First of all, standardized...

  18. Structure of the complex of [Ru(tpm)(dppz)py](2+) with a B-DNA oligonucleotide - a single-substituent binding switch for a metallo-intercalator. (United States)

    Waywell, Philip; Gonzalez, Veronica; Gill, Martin R; Adams, Harry; Meijer, Anthony J H M; Williamson, Mike P; Thomas, James A


    We report the synthesis of three new complexes related to the achiral [Ru(tpm)(dppz)py](2+) cation (tpm=tripyridazole methane, dppz=dipyrido[3,2-a:2',3'-c]phenazine, py=pyridine) that contain an additional single functional group on the monodentate ancillary pyridyl ligand. Computational calculations indicate that the coordinated pyridyl rings are in a fixed orientation parallel to the dppz axis, and that the electrostatic properties of the complexes are very similar. DNA binding studies on the new complexes reveal that the nature and positioning of the functional group has a profound effect on the binding mode and affinity of these complexes. To explore the molecular and structural basis of these effects, circular dichroism and NMR studies on [Ru(tpm)(dppz)py]Cl(2) with the octanucleotides d(AGAGCTCT)(2) and d(CGAGCTCG)(2), were carried out. These studies demonstrate that the dppz ligand intercalates into the G(2)-A(3) step, with {Ru(tpm)py} in the minor groove. They also reveal that the complex intercalates into the binding site in two possible orientations with the pyridyl ligand of the major conformer making close contact with terminal base pairs. We conclude that substitution at the 2- or 3-position of the pyridine ring has little effect on binding, but that substitution at the 4-position drastically disrupts intercalative binding, particularly with a 4-amino substituent, because of steric and electronic interactions with the DNA. These results indicate that complexes derived from these systems have the potential to function as sequence-specific light-switch systems.

  19. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)


    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  20. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Mahdioun, Monierosadat; Noorbakhsh, Abdollah; Abdolmaleki, Amir; Ghavami, Raoof


    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k s ) of immobilized Mn-complex were approximately 1.58 x 10 -10 mole cm -2 and 48.84 s -1 . The modified electrode showed excellent electrocatalytic activity toward H 2 O 2 reduction. Detection limit, sensitivity, linear concentration range and k cat for H 2 O 2 were, 0.2 μM and 692 nA μM -1 cm -2 , 1 μM to 1.5 mM and 7.96(±0.2) x 10 3 M -1 s -1 , respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  1. Synthesis, spectroscopic and single crystal X-ray studies on three new mononuclear Ni(II) pincer type complexes: DFT calculations and their antimicrobial activities (United States)

    Layek, Samaresh; Agrahari, Bhumika; Tarafdar, Abhrajyoti; Kumari, Chanda; Anuradha; Ganguly, Rakesh; Pathak, Devendra D.


    Three new mononuclear square planar Ni(II) complexes, containing pincer type tridentate Schiff base ligands, having general formula [(NiL1(4-MePy)] (1), [(NiL1(2-AzNp)] (2), and [(NiL2(4-MePy)] (3) [where L1 = anion of N-(2-hydroxy-3-methoxybenzylidene) benzoylhydrazide (HL1), L2 = anion of N-(2-hydroxy-3-methoxybenzylidene) thiosemicarbazide (HL2), 4-MePy = 4-Methylpyridine and 2-AzNp = 2-Azanapthalene] have been synthesized and fully characterized by FT-IR, UV-visible, NMR, single crystal X-ray diffraction studies and elemental analysis. All the three complexes show square planar geometry around the nickel atom. The pincer type ligand occupies three coordination sites, while the fourth site is occupied by the monodentate nitrogen containing ligand. The Quantum chemical DFT calculations have also been carried out using DFT/B3LYP method and 6-311++G(d,p) basis set. The synthesized nickel complexes were screened for antimicrobial activities by agar well diffusion method against E. coli bacteria. Out of three complexes, [(NiL2(4-MePy)] (3) only showed the antimicrobial activity against E. coli bacteria.

  2. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer. (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W


    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  3. Toward The Reconstitution of the Maturation of Okazaki Fragments Multiprotein Complex in Human At The Single Molecule Level

    KAUST Repository

    Joudeh, Luay


    The maturation of Okazaki fragments on the lagging strand in eukaryotes is mediated by a highly coordinated multistep process involving several proteins that ensure the accurate and efficient replication of genomic DNA. Human proliferating cell nuclear antigen (PCNA) that slides on double-stranded DNA is the key player that coordinates the access of various proteins to the different intermediary steps in this process. In this study, I am focusing on characterizing how PCNA recruits and stimulates the structure specific flap endonuclease 1 (FEN1) to process the aberrant double flap (DF) structures that are produced during maturation of Okazaki fragments. FEN1 distorts the DF structures into a bent conformer to place the scissile phosphate into the active site for cleavage. The product is a nick substrate that can be sealed by DNA ligase I whose recruitment is also mediated by its interaction with PCNA. Using single-molecule Förster resonance energy transfer (smFRET) measurements that simultaneously monitored bending and cleavage of various DF substrates by FEN1 alone or in the presence of PCNA, we found that FEN1 and PCNA bends cognate and non-cognate substrates but display remarkable selectivity to stabilize the bent conformer in cognate substrate while promoting the dissociation of non-cognate substrates. This mechanism provides efficiency and accuracy for FEN1 and PCNA to cleave the correct substrate while avoiding the deleterious cleavage of incorrect substrates. This work provides a true molecular level understanding of the key step during the maturation of Okazaki fragment and contributes towards the reconstitution of its entire activity at the single molecule level.

  4. Preparation and Single-Crystal X-Ray Structures of Four Related Mixed-Ligand 4-Methylpyridine Indium Halide Complexes (United States)

    Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.


    We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.

  5. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. (United States)

    Paterson, Brett M; Alt, Karen; Jeffery, Charmaine M; Price, Roger I; Jagdale, Shweta; Rigby, Sheena; Williams, Charlotte C; Peter, Karlheinz; Hagemeyer, Christoph E; Donnelly, Paul S


    The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simplifying the complex 1H NMR spectra of fluorine-substituted benzamides by spin system filtering and spin-state selection: multiple-quantum-single-quantum correlation. (United States)

    Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N


    The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.

  7. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. (United States)

    Gutacker, Michaela M; Smoot, James C; Migliaccio, Cristi A Lux; Ricklefs, Stacy M; Hua, Su; Cousins, Debby V; Graviss, Edward A; Shashkina, Elena; Kreiswirth, Barry N; Musser, James M


    Several human pathogens (e.g., Bacillus anthracis, Yersinia pestis, Bordetella pertussis, Plasmodium falciparum, and Mycobacterium tuberculosis) have very restricted unselected allelic variation in structural genes, which hinders study of the genetic relationships among strains and strain-trait correlations. To address this problem in a representative pathogen, 432 M. tuberculosis complex strains from global sources were genotyped on the basis of 230 synonymous (silent) single nucleotide polymorphisms (sSNPs) identified by comparison of four genome sequences. Eight major clusters of related genotypes were identified in M. tuberculosis sensu stricto, including a single cluster representing organisms responsible for several large outbreaks in the United States and Asia. All M. tuberculosis sensu stricto isolates of previously unknown phylogenetic position could be rapidly and unambiguously assigned to one of the eight major clusters, thus providing a facile strategy for identifying organisms that are clonally related by descent. Common clones of M. tuberculosis sensu stricto and M. bovis are distinct, deeply branching genotypic complexes whose extant members did not emerge directly from one another in the recent past. sSNP genotyping rapidly delineates relationships among closely related strains of pathogenic microbes and allows construction of genetic frameworks for examining the distribution of biomedically relevant traits such as virulence, transmissibility, and host range.

  8. A Single Residue Mutation in the Gαq Subunit of the G Protein Complex Causes Blindness in Drosophila

    Directory of Open Access Journals (Sweden)

    Jinguo Cao


    Full Text Available Heterotrimeric G proteins play central roles in many signaling pathways, including the phototransduction cascade in animals. However, the degree of involvement of the G protein subunit Gαq is not clear since animals with previously reported strong loss-of-function mutations remain responsive to light stimuli. We recovered a new allele of Gαq in Drosophila that abolishes light response in a conventional electroretinogram assay, and reduces sensitivity in whole-cell recordings of dissociated cells by at least five orders of magnitude. In addition, mutant eyes demonstrate a rapid rate of degeneration in the presence of light. Our new allele is likely the strongest hypomorph described to date. Interestingly, the mutant protein is produced in the eyes but carries a single amino acid change of a conserved hydrophobic residue that has been assigned to the interface of interaction between Gαq and its downstream effector, PLC. Our study has thus uncovered possibly the first point mutation that specifically affects this interaction in vivo.

  9. Noncovalent Ruthenium(II) Complexes-Single-Walled Carbon Nanotube Composites for Bimodal Photothermal and Photodynamic Therapy with Near-Infrared Irradiation. (United States)

    Zhang, Pingyu; Huang, Huaiyi; Huang, Juanjuan; Chen, Hongmin; Wang, Jinquan; Qiu, Kangqiang; Zhao, Donglei; Ji, Liangnian; Chao, Hui


    To enhance the efficacy and optimize the treatment of cancers, the integration of multimodal treatment strategies leading to synergistic effects is a promising approach. The coassembly of multifunctional agents for systematic therapies has received considerable interest in cancer treatment. Herein, Ru(II) complex-functionalized single-walled carbon nanotubes (Ru@SWCNTs) are developed as nanotemplates for bimodal photothermal and two-photon photodynamic therapy (PTT-TPPDT). SWCNTs have the ability to load a great amount of Ru(II) complexes (Ru1 or Ru2) via noncovalent π-π interactions. The loaded Ru(II) complexes are efficiently released by the photothermal effect of irradiation from an 808 nm diode laser (0.25 W/cm(2)). The released Ru(II) complexes produce singlet oxygen species ((1)O2) upon two-photon laser irradiation (808 nm, 0.25 W/cm(2)) and can be used as a two-photon photodynamic therapy (TPPDT) agent. Based on the combination of photothermal therapy and two-photon photodynamic therapy, Ru@SWCNTs have greater anticancer efficacies than either PDT using Ru(II) complexes or PTT using SWCNTs in two-dimensional (2D) cancer cell and three-dimensional (3D) multicellular tumor spheroid (MCTS) models. Furthermore, in vivo tumor ablation is achieved with excellent treatment efficacy under a diode laser (808 nm) irradiation at the power density of 0.25 W/cm(2) for 5 min. This study examines an efficacious bimodal PTT and TPPDT nanoplat form for the development of cancer therapeutics.

  10. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge (United States)

    Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J.


    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  11. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images (United States)

    Moore, Christopher; Marchant, Thomas


    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  12. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells

    Directory of Open Access Journals (Sweden)

    Gu YJ


    Full Text Available Yan-Juan Gu1,2,*, Jinping Cheng2,*, Jiefu Jin3, Shuk Han Cheng2, Wing-Tak Wong11Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 2Department of Biology and Chemistry, The City University of Hong Kong, 3Department of Chemistry, The University of Hong Kong, Hong Kong, China*These authors contributed equally to this workAbstract: Single-walled carbon nanotubes (SWNTs have been identified as an efficient drug carrier. Here a controlled drug-delivery system based on SWNTs coated with doxorubicin (DOX through hydrazone bonds was developed, because the hydrazone bond is more sensitive to tumor microenvironments than other covalent linkers. The SWNTs were firstly stabilized with polyethylene glycol (H2N-PEG-NH2. Hydrazinobenzoic acid (HBA was then covalently attached on SWNTs via carbodiimide-activated coupling reaction to form hydrazine-modified SWNTs. The anticancer drug DOX was conjugated to the HBA segments of SWNT using hydrazine as the linker. The resulting hydrazone bonds formed between the DOX molecules and the HBA segments of SWNTs are acid cleavable, thereby providing a strong pH-responsive drug release, which may facilitate effective DOX release near the acidic tumor microenvironment and thus reduce its overall systemic toxicity. The DOX-loaded SWNTs were efficiently taken up by HepG2 tumor cells, and DOX was released intracellularly, as revealed by MTT assay and confocal microscope observations. Compared with SWNT-DOX conjugate formed by supramolecular interaction, the SWNT-HBA-DOX featured high weight loading and prolonged release of DOX, and thus improved its cytotoxicity against cancer cells. This study suggests that while SWNTs have great potential as a drug carrier, the efficient formulation strategy requires further study.Keywords: carbon nanotubes, drug delivery, controlled release, SWNTs

  13. From the Earliest Evidence of Life to Complex Single-cell Organisms: The First 3 Gyr on Earth (United States)

    Buick, Roger


    a failed attempt at complex multicellular evolution.

  14. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates (United States)

    Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.


    APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853

  15. Propensity of a single-walled carbon nanotube-peptide to mimic a KK10 peptide in an HLA-TCR complex (United States)

    Feng, Mei; Bell, David R.; Zhou, Ruhong


    The application of nanotechnology to improve disease diagnosis, treatment, monitoring, and prevention is the goal of nanomedicine. We report here a theoretical study of a functionalized single-walled carbon nanotube (CNT) mimic binding to a human leukocyte antigen-T cell receptor (HLA-TCR) immune complex as a first attempt of a potential nanomedicine for human immunodeficiency virus (HIV) vaccine development. The carbon nanotube was coated with three arginine residues to imitate the HIV type 1 immunodominant viral peptide KK10 (gag 263-272: KRWIILGLNK), named CNT-peptide hereafter. Through molecular dynamics simulations, we explore the CNT-peptide and KK10 binding to an important HLA-TCR complex. Our results suggest that the CNT-peptide and KK10 bind comparably to the HLA-TCR complex, but the CNT-peptide forms stronger interactions with the TCR. Desorption simulations highlight the innate flexibility of KK10 over the CNT-peptide, resulting in a slightly higher desorption energy required for KK10 over the CNT-peptide. Our findings indicate that the designed CNT-peptide mimic has favorable propensity to activate TCR pathways and should be further explored to understand therapeutic potential.

  16. Posterior or Single-stage Combined Anterior and Posterior Approach Decompression for Treating Complex Cervical Spondylotic Myelopathy Coincident Multilevel Anterior and Posterior Compression. (United States)

    Zhou, Xiaoxiao; Cai, Pan; Li, Yuwei; Wang, Haijiao; Xia, Shengli; Wang, Xiuhui


    A single-center, retrospective, longitudinal matched cohort clinical study of prospectively collected outcomes. To compare retrospectively the clinical outcomes and complications of the posterior approach laminoplasty and single-stage anterior approach laminoplasty combined with anterior cervical corpectomy and fusion and anterior cervical discectomy and fusion for treating patients with cervical spondylotic myelopathy coincident multilevel anterior and posterior compression, known as complex cervical spondylotic myelopathy (cCSM) here. The optimal surgical management of this type of cCSM remains controversial. Sixty-seven patients with multilevel cCSM underwent decompression surgery from 1996 to 2007. Among these patients, 31 underwent a single-stage combined approach with decompression (combined approach group) and 36 underwent laminoplasty for posterior approach (posterior approach group). Average operative duration, operative estimated blood loss, surgical costs, and cervical alignment were measured. Average operative duration, operative estimated blood loss, and surgical costs were significantly lower in the posterior approach group than those in the combined approach group (P0.05). No statistical difference was observed in the preoperative Cobb angle (P>0.05), whereas a significant statistical difference was observed for the postoperative Cobb angle (Pgroups. The surgical incidences of complications were 22.2% and 48.4% in the posterior and combined approach groups (Papproach laminoplasty and single-stage combined approach led to significant neurological improvement and pain reduction in the majority of patients. Both approaches showed similar results in terms of decompression and neurological improvement. The posterior approach was superior to the combined approach in terms of surgical costs, surgical time, blood loss, and complication rate.

  17. Analysis of Single-Hole and Cross-Hole Tracer Tests Conducted at the Nye County Earl Warning Drilling Program Well Complex, Nye County, Nevada

    International Nuclear Information System (INIS)

    A. Umari; J.D. Earle; M.F. Fahy


    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 x 10 -2 for an individual flow path to 2.0 x 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer

  18. Profiling convoluted single-dimension proton NMR spectra: a Plackett-Burman approach for assessing quantification error of metabolites in complex mixtures with application to cell culture. (United States)

    Sokolenko, Stanislav; Blondeel, Eric J M; Azlah, Nada; George, Ben; Schulze, Steffen; Chang, David; Aucoin, Marc G


    Single-dimension hydrogen, or proton, nuclear magnetic resonance spectroscopy (1D-(1)H NMR) has become an attractive option for characterizing the full range of components in complex mixtures of small molecular weight compounds due to its relative simplicity, speed, spectral reproducibility, and noninvasive sample preparation protocols compared to alternative methods. One challenge associated with this method is the overlap of NMR resonances leading to "convoluted" spectra. While this can be mitigated through "targeted profiling", there is still the possibility of increased quantification error. This work presents the application of a Plackett-Burman experimental design for the robust estimation of precision and accuracy of 1D-(1)H NMR compound quantification in synthetic mixtures, with application to mammalian cell culture supernatant. A single, 20 sample experiment was able to provide a sufficient estimate of bias and variability at different metabolite concentrations. Two major sources of bias were identified: incorrect interpretation of singlet resonances and the quantification of resonances from protons in close proximity to labile protons. Furthermore, decreases in measurement accuracy and precision could be observed with decreasing concentration for a small fraction of the components as a result of their particular convolution patterns. Finally, the importance of a priori concentration estimates is demonstrated through the example of interpreting acetate metabolite trends from a bioreactor cultivation of Chinese hamster ovary cells expressing a recombinant antibody.

  19. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex (United States)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.


    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  20. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: Application to nanomolar detection of bromate, periodate and iodate

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Kavosi, Begard; Babaei, Ali; Hallaj, Rahman


    A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl 2 ).ClO 4 , irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (k s ) of the immobilized Os-complex on SWCNTs were 3.07 x 10 -9 mol cm -2 , 5.5 (±0.2) s -1 , 2.94 x 10 -9 mol cm -2 , 7.3 (±0.3) s -1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO 3 - , IO 3 - and IO 4 - in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) x 10 3 , 7.32 (±0.2) x 10 3 and 1.75 (±0.2) x 10 3 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor

  1. Anti-metatype antibodies stabilize the fluorescein single-chain antibody 4-4-20 complex against dissociation by hydrostatic pressure. (United States)

    Coelho-Sampaio, T; Voss, E W


    Hydrostatic pressure was used to promote dissociation of fluorescein (Fl) from single-chain antibody 4-4-20 (SCA 4-4-20). Fl fluorescence intensity was quenched by 97% upon binding to SCA 4-4-20. Increasing pressure to 2.4 kbar enhanced Fl fluorescence from the remaining 3% to 14-17%. The capacity of anti-metatype antibodies (anti-Met), which specifically recognize liganded anti-Fl antibodies, to protect against pressure-induced Fl dissociation was tested. Both polyclonal and monoclonal anti-Met antibodies protected against Fl dissociation, reducing the fluorescence intensity at 2.4 kbar from 14-17% to 6-8%. Additive effects of anti-Met antibodies in protection against pressure-induced Fl dissociation were suggested by the fact that a 2-fold molar excess polyclonal anti-Met reagent promoted additional protection relative to an equimolar amount. On the other hand, combination of different monoclonal anti-Met antibodies did not promote additive protection, suggesting recognition of overlapping metatopes by these monoclonals. The complex formed by SCA 4-4-20 and the Fl analog HPF was more sensitive to pressure than the Fl-SCA 4-4-20 complex. Addition of both polyclonal and monoclonal anti-Met antibodies reduced the Fl fluorescence recovery at 2.4 kbar from 75% to 40-55%. In order to directly study binding of anti-Met antibodies to mAb 4-4-20, monoclonal anti-Met antibody 3A5-1 was labeled with 2-dimethylaminonaphthalene-5-sulfonyl chloride (2,5-Dns-Cl) and Dns fluorescence anisotropy measured. Unliganded mAb 4-4-20 did not bind to 2,5-Dns-3A5-1 as indicated by the absence of measurable changes in Dns fluorescence anisotropy upon increasing mAb concentration. Addition of mAb 4-4-20 bound to Fl produced a sigmoidal increase in Dns anisotropy, compatible with association of the primary immune complex and 3A5-1. An affinity constant, K0.5, of 1.5 x 10(-7) M and a cooperativity coefficient (n) of 3.1 were calculated for formation of the Fl-mAb 4-4-20 complex. The HPF-mAb 4

  2. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru


    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  3. Cytotoxicity study of iron oxide nanoparticles, single-wall carbon nanotubes and their complexes applied to MCF7 breast cancer cells (United States)

    Mege, Karine

    Reactive Oxygen Species (ROS) are radicals of great concern to biologists. Their role in several diseases---such as neurodegenerative disease, diabetes, premature aging and cancer---has been intensively investigated during the last decade. Since a major focus in cancer research is to better understand how it is induced and therefore how it can be cured, the study of the cytotoxic effects of ROS production within cancer cells is vital. Nanotechnology is an emerging field of science that promises great improvements in a number of disciplines. Nano medicine is one of its daughter fields. Various nanomaterials are used for diagnosis and disease detection, therapy and medical imaging, and many are already being used in oncology medicine. The two most frequently used nanomaterials in cancer research are Carbon nanotubes (CNTs) and iron oxide nanoparticles (IONPs). They have been proven to play a significant role in the ROS production of various cancer cells. In this context, this thesis emphasizes the need to study the impact of nanoparticles, such as single-walled carbon nanotubes (SWCNTs), iron oxide nanoparticles (IONPs) and their complexes, on a human breast cancer cell line (MCF-7). To date, there have been very few studies assessing the effect on the oxidative stress activity of this cell line using these nanoparticles and their complexes.

  4. Study Protocol: Phase III single-blinded fast-track pragmatic randomised controlled trial of a complex intervention for breathlessness in advanced disease

    Directory of Open Access Journals (Sweden)

    Brafman-Kennedy Barbara


    Full Text Available Abstract Background Breathlessness in advanced disease causes significant distress to patients and carers and presents management challenges to health care professionals. The Breathlessness Intervention Service (BIS seeks to improve the care of breathless patients with advanced disease (regardless of cause through the use of evidence-based practice and working with other healthcare providers. BIS delivers a complex intervention (of non-pharmacological and pharmacological treatments via a multi-professional team. BIS is being continuously developed and its impact evaluated using the MRC's framework for complex interventions (PreClinical, Phase I and Phase II completed. This paper presents the protocol for Phase III. Methods/Design Phase III comprises a pragmatic, fast-track, single-blind randomised controlled trial of BIS versus standard care. Due to differing disease trajectories, the service uses two broad service models: one for patients with malignant disease (intervention delivered over two weeks and one for patients with non-malignant disease (intervention delivered over four weeks. The Phase III trial therefore consists of two sub-protocols: one for patients with malignant conditions (four week protocol and one for patients with non-malignant conditions (eight week protocol. Mixed method interviews are conducted with patients and their lay carers at three to five measurement points depending on randomisation and sub-protocol. Qualitative interviews are conducted with referring and non-referring health care professionals (malignant disease protocol only. The primary outcome measure is 'patient distress due to breathlessness' measured on a numerical rating scale (0-10. The trial includes economic evaluation. Analysis will be on an intention to treat basis. Discussion This is the first evaluation of a breathlessness intervention for advanced disease to have followed the MRC framework and one of the first palliative care trials to use fast

  5. Isotope U-Pb age on single zircon and REE distribution in rocks and zircon from paleoproterozoic Kandalaksha-Kolvitsa complex Baltic shield (United States)

    Steshenko, Ekaterina; Bayanova, Tamara; Drogobuzhskaya, Svetlana; Lyalina, Ludmila; Serov, Pavel; Chashchin, Viktor; Elizarov, Dmitriy


    Kandalaksha-Kolvitsa paleoproterozoic complex located in the N-E part of Baltic shield and consists of three zones. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate and anorthositic metamorphism. Age of magmatic crystallization of the massif was determined for the first time, using the U-Pb isotope method for single zircon grains. Three fractions of single zircons from anorthosite of the Kandalaksha massif gave precise U-Pb age of 2435.5 ± 4.8 Ma. For the first time REE concentration (WR) was determined using a quadrupole mass spectrometer (Agilent 7500 ce ICP-MS) in the main varieties of rocks of the Kandalaksha-Kolvitsa paleoproterozoic complex. Anorthosite and leucocratic metagabbros (main zone) are characterized by a flat spectrum distribution of HREE, which were normalized by [1]. The REE pattern is characterized by significant positive anomalies of Eu ((Eu / Eu *)n = 3.72-3.91) in anorthosite and leucogabbros and 7.26 - in ortoamfibolitah. General content of individual elements that are common for this type of rocks: Cen = 5.82-8.54, Ybn = 1.54-1.58, which indicates that the process of crystallization of the rock occurred with predominant accumulation of plagioclase. According to geochemical and Nd-Sr isotopic data (ISr=0.702 - 0.706, ɛNd(T) = +1 - (-3)) Kandalaksha Kolvitsa complex, appear to have a general plume source with Paleoproterozoic layered intrusions of the Baltic Shield [2] Distribution of REE (ELAN-9000 ICP-MS) in zircon have a typical magmatic species: a positive Ce, negative Eu anomaly and HREE flat spectrum. Titanium content in zircons were measured for the calculation of their crystallization temperature with 8350C. These data are evidence of magmatic origin of zircon [3]. The scientific researches are supported by RFBR (projects № 15-35-20501, № 16

  6. Complex single-tooth restorations. (United States)

    Trushkowsky, Richard D; Burgess, John O


    There are many options for restoring the decimated dentition. [43] Excellent results can be obtained with many of the materials currently available. The restorative option will depend on the size and location of the lesion, adequate isolation for adhesive restorations, caries rate, the patient's age, the aesthetic needs of the patient, occlusal habits, maintenance of maximum tooth structure, the skill of the dentist, and the longevity desired for the restoration. Amalgam is a cost-effective material, and when used properly, it can provide many years of service. Aesthetic demands, the desire to strengthen teeth, [44] and concern about the safety of mercury in amalgam have increased the use of direct composites, ceramic material, and indirect composites. The main drawback with these materials, however, is their increased technique sensitivity and concerns about their longevity. Gold continues to be a cost-effective and predictable material if placed properly. Full-coverage gold or porcelain fused to metal provides long-term predictability but is more destructive and not as aesthetically appealing. The wide varieties of materials available provide both a challenge and an opportunity to place the most effective material for a particular patient. A thorough understanding of the available materials and their appropriate use is needed to achieve a long-lasting restoration that serves the patient's needs.

  7. First example of a reversible single-crystal-to-single-crystal polymerization-depolymerization accompanied by a magnetic anomaly for a transition-metal complex with an organic radical. (United States)

    Ovcharenko, Victor I; Fokin, Sergey V; Kostina, Elvina T; Romanenko, Galina V; Bogomyakov, Artem S; Tretyakov, Eugene V


    The reaction of copper(II) hexafluoroacetylacetonate [Cu(hfac)2] with the stable nitronyl nitroxide 2-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (L(a)) resulted in a paired heterospin complex [[Cu(hfac)2]3(μ-O,N-L(a))2][Cu(hfac)2(O-L(a))2]. The crystals of the compound were found to be capable of a reversible single-crystal-to-single-crystal (SC-SC) transformation initiated by the variation of temperature. At room temperature, the molecular structure of [[Cu(hfac)2]3(μ-O,N-L(a))2][Cu(hfac)2(O-L(a))2] is formed by the alternating fragments of the pair complex. Cooling the crystals of the complex below 225 K caused considerable mutual displacements of adjacent molecules, which ended in a transformation of the molecular structure into a polymer chain structure. A reversible topotactic polymerization-depolymerization coordination reaction actually takes place in the solid during repeated cooling-heating cycles: [[Cu(hfac)2]3(μ-O,N-L(a))2][Cu(hfac)2(O-L(a))2] ⇌ Cu(hfac)2(μ-O,N-L(a))]∞. Polymerization during cooling is the result of the anomalously great shortening of intermolecular distances (from 4.403 Å at 295 K to 2.460 Å at 150 K; Δd = 1.943 Å) between the terminal Cu atoms of the trinuclear fragments {[[Cu(hfac)2]3(μ-O,N-L(a))2]} and the noncoordinated N atoms of the pyrazole rings of the mononuclear {[Cu(hfac)2(O-L(a))2]} fragments. When the low-temperature phase was heated above 270 K, the polymer chain structure was destroyed and the compound was again converted to the pair molecular complex. The specifics of the given SC-SC transformation lies in the fact that the process is accompanied by a magnetic anomaly, because the intracrystalline displacements of molecules lead to a considerable change in the mutual orientation of the paramagnetic centers, which, in turn, causes modulation of the exchange interaction between the odd electrons of the Cu(2+) ion and nitroxide. On the temperature curve of

  8. Synthesis, characterization and single crystal structures of chiral Schiff base and its tetranuclear palladium complex with Pdsbnd Osbnd Pd bridging and Pdsbnd Pd bonds (United States)

    Rajegowda, H. R.; Kumar, P. Raghavendra; Hosamani, Amar; Butcher, R. J.; Naveen, S.; Lokanath, N. K.


    A new chiral Schiff base ligand 2-{N-[(2S)-(1-hydroxy-3-phenylpropan-2-yl]ethanimidoyl} phenol ((S)sbnd H2L) was obtained by acid catalyzed condensation of (2S)-(-)-2-amino-3-phenyl-1-propanol with 2‧-hydroxyacetophenone. The palladium complex was prepared by treating a solution of (S)sbnd H2L in acetone with a solution of Na2PdCl4 in water in 1:1 M ratio. The new ligand and its complex were characterized by FT-IR, 1H, 13C{1H} NMR spectroscopy, polarimetry and elemental analysis and their molecular structures were determined by single crystal X-ray diffraction. Both the compounds crystallizes in monoclinic system in the space group P21. There exists an intra [Osbnd H ⋯N (1.62(5) Å)] and intermolecular [Osbnd H ⋯O (1.53(5) Å) and Csbnd H ⋯O (2.59 Å)] hydrogen bonding and secondary interactions in the crystal of (S)sbnd H2L. The structure of the palladium complex was found very interesting wherein the ligand coordinated to metal center as tridentate dianionic (O-, N, O-) fashion, (S)-L, resulting in a tetranuclear palladium cluster, [Pd4((S)-L)4]. In these supramolecular structures phenolate oxygen coordinated to Pd(II) ion as Pdsbnd O terminal bonds [1.934(12) - 1.977(11) Å] and the alkoxide oxygen coordinated as Pdsbnd Osbnd Pd bridging bonds [1.993(11) - 2.012(12) Å]. The Pdsbnd N bond lengths found were in the range of 1.949(13) to 1.919(12) Å. There exists two asymmetric tetranuclear complex molecules in its crystal lattice. There exists very strong metal-metal bond interaction, Pd(2)sbnd Pd(3) [3.0410(18) Å] and Pd(6)sbnd Pd(7) [3.0517(19) Å] respectively in the two asymmetric units.

  9. Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex. (United States)

    Hill, Matthew P; Terblanche, John S


    The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs), and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species' realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae). Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same-at least functionally-and global quarantine and management strategies applied

  10. Niche Overlap of Congeneric Invaders Supports a Single-Species Hypothesis and Provides Insight into Future Invasion Risk: Implications for Global Management of the Bactrocera dorsalis Complex (United States)

    Hill, Matthew P.; Terblanche, John S.


    Background The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs), and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species’ realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. Principal Findings Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae). Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. Conclusions/Significance Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same–at least

  11. Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex.

    Directory of Open Access Journals (Sweden)

    Matthew P Hill

    Full Text Available BACKGROUND: The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs, and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species' realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. PRINCIPAL FINDINGS: Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae. Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. CONCLUSIONS/SIGNIFICANCE: Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same

  12. Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes. (United States)

    Boghossian, Ardemis A; Choi, Jong Hyun; Ham, Moon-Ho; Strano, Michael S


    An aqueous solution containing photosynthetic reaction centers (RCs), membrane scaffold proteins (MSPs), phospholipids, and single-walled carbon nanotubes (SWCNTs) solubilized with the surfactant sodium cholate (SC) reversibly self-assembles into a highly ordered structure upon dialysis of the latter. The resulting structure is photoelectrochemically active and consists of 4-nm-thick lipid bilayer disks (nanodisks, NDs) arranged parallel to the surface of the SWCNT with the RC housed within the bilayer such that its hole injecting site faces the nanotube surface. The structure can be assembled and disassembled autonomously with the addition or removal of surfactant. We model the kinetic and thermodynamic forces that drive the dynamics of this reversible self-assembly process. The assembly is monitored using spectrofluorimetry during dialysis and subsequent surfactant addition and used to fit a kinetic model to determine the forward and reverse rate constants of ND and ND-SWCNT formation. The calculated ND and ND-SWCNT forward rate constants are 79 mM(-1) s(-1) and 5.4 × 10(2) mM(-1) s(-1), respectively, and the reverse rate constants are negligible over the dialysis time scale. We find that the reaction is not diffusion-controlled since the ND-SWCNT reaction, which consists of entities with smaller diffusion coefficients, has a larger reaction rate constant. Using these rate parameters, we were able to develop a kinetic phase diagram for the formation of ND-SWCNT complexes, which indicates an optimal dialysis rate of approximately 8 × 10(-4) s(-1). We also fit the model to cyclic ND-SWCNT assembly and disassembly experiments and hence mimic the thermodynamic forces used in regeneration processes detailed previously. Such forces may form the basis of both synthetic and natural photoelectrochemical complexes capable of dynamic component replacement and repair.

  13. Structural and EPR studies on single-crystal and polycrystalline samples of copper(II) and cobalt(II) complexes with N2S2-based macrocyclic ligands. (United States)

    Tamayo, Abel; Casabó, Jaume; Escriche, Lluís; González, Pablo; Lodeiro, Carlos; Rizzi, Alberto C; Brondino, Carlos D; Passeggi, M C G; Kivekäs, Raikko; Sillanpää, Reijo


    The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L) and 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) have been synthesized. The X-ray structural analysis of {[Co(ClO4)(H2O)(L)][Co(H2O)2(L)]}(ClO4)3 shows two different metal sites in octahedral coordination. The EPR spectra of powdered samples of this compound are typical of distorted six-coordinated Co(II) ions in a high-spin (S=3/2) configuration, with the ground state being S=1/2 (g1=5.20, g2=3.20, g3=1.95). The EPR spectrum of [Cu(ClO4)(L)](ClO4) was simulated assuming an axial g tensor (g1=g2=2.043, g3=2.145), while that of [Cu(ClO4)(L1)](ClO4) slightly differs from an axial symmetry (g1=2.025, g2=2.060, g3=2.155). These results are compatible with a Cu(II) ion in square-pyramidal coordination with N2S2 as basal ligands. Single-crystal EPR experiment performed on [Cu(ClO4)(L1)](ClO4) allowed determining the eigenvalues of the molecular g tensor associated with the copper site, as well as the two possible orientations for the tensor. On the basis of symmetry arguments, an assignment in which the eigenvectors are nearly along the Cu(II)-ligand bonds is chosen.

  14. Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread.

    Directory of Open Access Journals (Sweden)

    Andrea Simon

    Full Text Available The Asian cyprinid fish, the topmouth gudgeon (Pseudorasbora parva, was introduced into Europe in the 1960s. A highly invasive freshwater fish, it is currently found in at least 32 countries outside its native range. Here we analyse a 700 base pair fragment of the mitochondrial cytochrome b gene to examine different models of colonisation and spread within the invasive range, and to investigate the factors that may have contributed to their invasion success. Haplotype and nucleotide diversity of the introduced populations from continental Europe was higher than that of the native populations, although two recently introduced populations from the British Isles showed low levels of variability. Based on coalescent theory, all introduced and some native populations showed a relative excess of nucleotide diversity compared to haplotype diversity. This suggests that these populations are not in mutation-drift equilibrium, but rather that the relative inflated level of nucleotide diversity is consistent with recent admixture. This study elucidates the colonisation patterns of P. parva in Europe and provides an evolutionary framework of their invasion. It supports the hypothesis that their European colonisation was initiated by their introduction to a single location or small geographic area with subsequent complex pattern of spread including both long distance and stepping-stone dispersal. Furthermore, it was preceded by, or associated with, the admixture of genetically diverse source populations that may have augmented its invasive-potential.

  15. Socioeconomic Status and Overweight Prevalence in Polish Adolescents: The Impact of Single Factors and a Complex Index of Socioeconomic Status in Respect to Age and Sex (United States)



    Abstract Background The aim of this study was to analyze the association between overweight prevalence and socioeconomic status (SES) measured by complex SES index and single SES factors in Polish adolescents in respect to age and sex. Methods This cross-sectional study was conducted in 2010-2011. A total of 1,176 adolescents aged 13.0-18.9 years were included. The respondents were students of junior-high and high schools from northern, eastern and central Poland. Quota sampling by sex and age was used. The SES was determined by: place of residence, self-declared economic situation, and parental education level. Respondents with low, average or high SES index (SESI) were identified. The level of overweight was assessed using Polish and international standards. Results The odds ratio (OR) for overweight prevalence in the oldest girls (aged 17.0-18.9 years) with high SESI was 0.34 (95%CI:0.13-0.92; P socioeconomic status and prevalence of overweight was related to sex and age. The high socioeconomic status strongly lowered the risk of overweight prevalence in the oldest girls, but not in boys, irrespective of age. Maternal education level lowered risk of overweight prevalence in girls. PMID:25909059

  16. Phylogenetic analysis of two single-copy nuclear genes revealed origin and complex relationships of polyploid species of Hordeum in Triticeae (Poaceae). (United States)

    Hu, Qianni; Sun, Genlou


    Two single-copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and thioredoxin-like gene (HTL), were used to explore the phylogeny and origin of polyploid species in Hordeum. Our results were partly in accord with previous studies, but disclosed additional complexity. Both RPB2 and HTL trees confirmed the presence of Xa genome in H. capense and H. secalinum, and that H. depressum originated from H. californicum together with other American diploids, either H. intercedens or H. pusillum. American diploids solely contributed to the origin of H. depressum. The Asian diploids, either H. bogdanii or H. brevisubulatum, contributed to the formation of American polyploids except H. depressum. RPB2 and HTL sequences showed that H. roshevitzii did not contribute to the origin of American tetraploids. Our data showed a close relationship between the hexaploids H. procerum and H. parodii and the tetraploids H. brachyantherum, H. fuegianum, H. guatemalense, H. jubatum, and H. tetraploidum. The involvement of the diploid H. pusillum and the tetraploid H. jubatum in the formation of H. arizonicum was also indicated in the HTL phylogeny. Our results suggested a possible gene introgression of W- and P-genome species into the tetraploid H. jubatum and the hexaploid H. procerum.

  17. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade


    Full Text Available The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm, 2.91 eV (426 nm and 4.27 eV (290 nm for the ZnS, CdS and HgS samples respectively.

  18. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse-Methamphetamine and 3,4-methylenedioxymethamphetamine. (United States)

    Celikel, Reha; Peterson, Eric C; Owens, S Michael; Varughese, Kottayil I


    Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, K(D)= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name "ecstasy." The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C--H...O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 A, and 2.4 A, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization.

  19. Association of a specific major histocompatibility complex class IIβ single nucleotide polymorphism with resistance to lactococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). (United States)

    Colussi, S; Prearo, M; Bertuzzi, S A; Scanzio, T; Peletto, S; Favaro, L; Modesto, P; Maniaci, M G; Ru, G; Desiato, R; Acutis, P L


    Major histocompatibility complex (MHC) loci encode glycoproteins that bind to foreign peptides and initiate immune responses through their interaction with T cells. MHC class II molecules are heterodimers consisting of α and β chains encoded by extremely variable genes; variation in exon 2 is responsible for the majority of observed polymorphisms, mostly concentrated in the codons specifying the peptide-binding region. Lactococcus garvieae is the causative agent of lactococcosis, a warm-water bacterial infection pathogenic for cultured freshwater and marine fish. It causes considerable economic losses, limiting the profitability and development of fish industries in general and the intensive production of rainbow trout, Oncorhynchus mykiss (Walbaum), in particular. The disease is currently controlled with vaccines and antibiotics; however, vaccines have short-term efficacy, and increasing concerns regarding antibiotic residues have called for alternative strategies. To explore the involvement of the MHC class II β-1 domain as a candidate gene for resistance to lactococcosis, we exposed 400 rainbow trout to naturally contaminated water. One single nucleotide polymorphism (SNP) and one haplotype were associated with resistance (P trout resistant to lactococcosis. © 2014 John Wiley & Sons Ltd.

  20. Structural insight of dopamine β-hydroxylase, a drug target for complex traits, and functional significance of exonic single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Abhijeet Kapoor

    Full Text Available Human dopamine β-hydroxylase (DBH is an important therapeutic target for complex traits. Several single nucleotide polymorphisms (SNPs have also been identified in DBH with potential adverse physiological effect. However, difficulty in obtaining diffractable crystals and lack of a suitable template for modeling the protein has ensured that neither crystallographic three-dimensional structure nor computational model for the enzyme is available to aid rational drug design, prediction of functional significance of SNPs or analytical protein engineering.Adequate biochemical information regarding human DBH, structural coordinates for peptidylglycine alpha-hydroxylating monooxygenase and computational data from a partial model of rat DBH were used along with logical manual intervention in a novel way to build an in silico model of human DBH. The model provides structural insight into the active site, metal coordination, subunit interface, substrate recognition and inhibitor binding. It reveals that DOMON domain potentially promotes tetramerization, while substrate dopamine and a potential therapeutic inhibitor nepicastat are stabilized in the active site through multiple hydrogen bonding. Functional significance of several exonic SNPs could be described from a structural analysis of the model. The model confirms that SNP resulting in Ala318Ser or Leu317Pro mutation may not influence enzyme activity, while Gly482Arg might actually do so being in the proximity of the active site. Arg549Cys may cause abnormal oligomerization through non-native disulfide bond formation. Other SNPs like Glu181, Glu250, Lys239 and Asp290 could potentially inhibit tetramerization thus affecting function.The first three-dimensional model of full-length human DBH protein was obtained in a novel manner with a set of experimental data as guideline for consistency of in silico prediction. Preliminary physicochemical tests validated the model. The model confirms, rationalizes and

  1. The effect of TISSEEL fibrin sealant on seroma formation following complex abdominal wall hernia repair: a single institutional review and derived cost analysis. (United States)

    Azoury, S C; Rodriguez-Unda, N; Soares, K C; Hicks, C W; Baltodano, P A; Poruk, K E; Hu, Q L; Cooney, C M; Cornell, P; Burce, K; Eckhauser, F E


    The authors evaluated the ability of a fibrin sealant (TISSEEL™: Baxter Healthcare Corp, Deerfield, IL, USA) to reduce the incidence of post-operative seroma following abdominal wall hernia repair. We performed a 4-year retrospective review of patients undergoing abdominal wall hernia repair, with and without TISSEEL, by a single surgeon (FEE) at The Johns Hopkins Hospital. Demographics, surgical risk factors, operative data and 30-day outcomes, including wound complications and related interventions, were compared. The quantity and cost of Tisseel per case was reviewed. A total of 250 patients were evaluated: 127 in the TISSEEL group and 123 in the non-TISSEEL control group. The average age for both groups was 56.6 years (P = 0.97). The majority of patients were female (TISSEEL 52.8%, non-TISSEEL 56.1%, P = 0.59) and ASA Class III (TISSEEL 56.7%, non-TISSEEL 58.5%, P = 0.40). There was no difference in the average defect size for both groups (TISSEEL 217 ± 187.6 cm(2), non-TISSEEL 161.3 ± 141.5 cm(2), P = 0.36). Surgical site occurrences occurred in 18.1% of the TISSEEL and 13% of the non-TISSEEL group (P = 0.27). There was a trend towards an increased incidence of seroma in the TISSEEL group (TISSEEL 11%, non-TISSEEL 4.9%, P = 0.07). A total of $124,472.50 was spent on TISSEEL, at an average cost of $995.78 per case. In the largest study to date, TISSEEL™ application offered no advantage for the reduction of post-operative seroma formation following complex abdominal hernia repair. Moreover, the use of this sealant was associated with significant costs.

  2. Changes in antimicrobial susceptibility and major clones of Acinetobacter calcoaceticus-baumannii complex isolates from a single hospital in Korea over 7 years. (United States)

    Park, Young Kyoung; Jung, Sook-In; Park, Kyong-Hwa; Kim, Dae Hun; Choi, Ji Young; Kim, Su Hwan; Ko, Kwan Soo


    Acinetobacter species have emerged as opportunistic nosocomial pathogens in intensive care units. Epidemic spread and outbreaks of multidrug-resistant or carbapenem-resistant Acinetobacter baumannii infections have been described worldwide. Species distribution, antimicrobial resistance and genotypes were investigated for Acinetobacter species isolates collected from a single institution in Korea over 7 years. Two hundred and eighty-seven Acinetobacter species isolates were collected from patients with bloodstream infections in one Korean hospital from 2003 to 2010. Most of them belonged to the Acinetobacter calcoaceticus-baumannii complex (94.4 %). The most frequently isolated species was A. baumannii (44.2 %), followed by Acinetobacter nosocomialis (formerly Acinetobacter genomic species 13TU) (34.1 %). The proportion of A. baumannii increased significantly from 2008 to 2010 (40.4 to 50.0 %). From 2008, imipenem and meropenem resistance rates increased significantly compared with 2003-2007 (12.9 % and 20.5 %, respectively, to 41.4 % and 41.5 %, respectively). An increased carbapenem resistance rate between the two periods was identified more clearly amongst A. baumannii isolates. Polymyxin-resistant A. baumannii isolates emerged in 2008-2010, despite the availability of few isolates. The increase of carbapenem resistance in A. baumannii might be due to the substitution of main clones. Although ST92 and ST69 were the most prevalent clones amongst A. baumannii in 2003-2007 (47.8 % and 15.9 %, respectively), ST75 and ST138 had increased in 2008-2010 (39.7 % and 25.9 %, respectively). Although ST92 showed moderate resistance to carbapenems, most ST75 and ST138 isolates were resistant to carbapenems. All ST75 and ST138 isolates, but only one ST92 isolate, contained the bla(OXA-23-like) gene. Increased carbapenem resistance in Acinetobacter species and A. baumannii isolates might be due to the expansion of specific carbapenem-resistant clones.

  3. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha


    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells (United States)

    Knies, Diana; Klobuch, Sebastian; Xue, Shao-An; Birtel, Matthias; Echchannaoui, Hakim; Yildiz, Oezlem; Omokoko, Tana; Guillaume, Philippe; Romero, Pedro; Stauss, Hans; Sahin, Ugur; Herr, Wolfgang; Theobald, Matthias; Thomas, Simone; Voss, Ralf-Holger


    Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells. PMID:27028870

  5. Oxo-functionalization and reduction of the uranyl ion through lanthanide-element bond homolysis: synthetic, structural, and bonding analysis of a series of singly reduced uranyl-rare earth 5f1-4f(n) complexes. (United States)

    Arnold, Polly L; Hollis, Emmalina; Nichol, Gary S; Love, Jason B; Griveau, Jean-Christophe; Caciuffo, Roberto; Magnani, Nicola; Maron, Laurent; Castro, Ludovic; Yahia, Ahmed; Odoh, Samuel O; Schreckenbach, Georg


    The heterobimetallic complexes [{UO2Ln(py)2(L)}2], combining a singly reduced uranyl cation and a rare-earth trication in a binucleating polypyrrole Schiff-base macrocycle (Pacman) and bridged through a uranyl oxo-group, have been prepared for Ln = Sc, Y, Ce, Sm, Eu, Gd, Dy, Er, Yb, and Lu. These compounds are formed by the single-electron reduction of the Pacman uranyl complex [UO2(py)(H2L)] by the rare-earth complexes Ln(III)(A)3 (A = N(SiMe3)2, OC6H3Bu(t)2-2,6) via homolysis of a Ln-A bond. The complexes are dimeric through mutual uranyl exo-oxo coordination but can be cleaved to form the trimetallic, monouranyl "ate" complexes [(py)3LiOUO(μ-X)Ln(py)(L)] by the addition of lithium halides. X-ray crystallographic structural characterization of many examples reveals very similar features for monomeric and dimeric series, the dimers containing an asymmetric U2O2 diamond core with shorter uranyl U═O distances than in the monomeric complexes. The synthesis by Ln(III)-A homolysis allows [5f(1)-4f(n)]2 and Li[5f(1)-4f(n)] complexes with oxo-bridged metal cations to be made for all possible 4f(n) configurations. Variable-temperature SQUID magnetometry and IR, NIR, and EPR spectroscopies on the complexes are utilized to provide a basis for the better understanding of the electronic structure of f-block complexes and their f-electron exchange interactions. Furthermore, the structures, calculated by restricted-core or all-electron methods, are compared along with the proposed mechanism of formation of the complexes. A strong antiferromagnetic coupling between the metal centers, mediated by the oxo groups, exists in the U(V)Sm(III) monomer, whereas the dimeric U(V)Dy(III) complex was found to show magnetic bistability at 3 K, a property required for the development of single-molecule magnets.

  6. Geometric filters for protein–ligand complexes based on phenomenological molecular models

    Directory of Open Access Journals (Sweden)

    Sudakov O. O.


    Full Text Available Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Efficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of human serine proteases thrombin (F2 and factor Xa (F10 and two corresponding sets of known selective inhibitors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless, usage of the filters with optimized set of thresholds in combination with Pi achieved significant improvement in performance of ligand selection when compared to usage of Pi alone. Conclusions. The proposed geometric filters can be used as a complementary to traditional scoring functions in order to optimize ligand search performance and decrease usage of computational and human resources.

  7. Significance of fragmented QRS complexes for identifying culprit lesions in patients with non-ST-elevation myocardial infarction: a single-center, retrospective analysis of 183 cases

    Directory of Open Access Journals (Sweden)

    Guo Rong


    Full Text Available Abstract Background Fragmented QRS (fQRS complexes are novel electrocardiographic signals, which reflect myocardial conduction delays in patients with coronary artery disease (CAD. The importance of fQRS complexes in identifying culprit vessels was evaluated in this retrospective study. Methods A 12-lead surface electrocardiogram was obtained in 183 patients who had non-ST-elevation myocardial infarction (NSTEMI and subsequently underwent coronary angiography (CAG. On the basis of the frequency of fQRS complexes, indices such as sensitivity, specificity, positive and negative predictive values, and likelihood ratio were evaluated to determine the ability of fQRS complexes to identify the culprit vessels. Results Among the patients studied, elderly patients (age ≥ 65 years and those with diabetes had a significantly higher frequency of fQRS complexes (p = 0.005, p = 0.003, respectively. The fQRS complexes recorded in the 4 precordial leads had the highest specificity (81.8% for indentifying the culprit vessel (left anterior descending artery. However, the specificity of fQRS complexes to identify lesions in the left circumflex and right coronary arteries was lower for the inferior and lateral leads than for the limb leads (65.5% versus 71.7%; however, the limb leads had higher sensitivity (92.3% versus 89.4%. And the total sensitivity and specificity of fQRS (77.1% and 71.5% were higher than those values for ischemic T-waves. Conclusions The frequency of fQRS complexes was higher in elderly and diabetic patients with NSTEMI. The frequency of fQRS complexes recorded in each of the ECG leads can be used to identify culprit vessels in patients with NSTEMI.

  8. The effects of complex exercise on shoulder range of motion and pain for women with breast cancer-related lymphedema: a single-blind, randomized controlled trial. (United States)

    Park, Jin-Hyuck


    This study was to investigate the effects of complex exercise on shoulder range of motion and pain for women with breast cancer-related lymphedema. 69 women participated in this study and then they were randomly allocated to complex exercise group (n = 35) or the conventional decongestive therapy group (n = 34). All subjects received 8 sessions for 4 weeks. To identify the effects on shoulder range of motion and pain, goniometer and visual analog scale were used, respectively. The outcome measurements were performed before and after the 4 week intervention. After 4 weeks, complex exercise group had greater improvements in shoulder range of motion and pain compared with the conventional decongestive therapy group (p women with breast cancer-related lymphedema. Complex exercise would be useful to improve shoulder range of motion and pain of the women with breast cancer-related lymphedema.

  9. Series of isostructural planar lanthanide complexes [Ln(III)4(mu3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue. (United States)

    Abbas, Ghulam; Lan, Yanhua; Kostakis, George E; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K


    A series of five isostructural tetranuclear lanthanide complexes of formula [Ln(4)(mu(3)-OH)(2)(mdeaH)(2)(piv)(8)], (mdeaH(2) = N-methyldiethanolamine; piv = pivalate; Ln = Tb (1), Dy (2), Ho (3), Er (4), and Tm (5)) have been synthesized and characterized. These clusters have a planar "butterfly" Ln(4) core. Magnetically, the Ln(III) ions are weakly coupled in all cases; the Dy(4) compound 2 shows Single Molecule Magnet (SMM) behavior.

  10. Relation between sedimentation behaviour of DNA-membrane complexes and DNA single- and double-strand breaks after irradiation with gamma-rays, pulse neutrons and 12C ions

    International Nuclear Information System (INIS)

    Erzgraber, G.; Lapidus, I.L.


    The experimental data on sedimentation behaviour of DNA-membrane complexes at radiation of the Chinese hamster cells (V79-4) in a wide dose range of 127 Cs γ-rays, pulse neutrons (reactor IBR-2, Laboratory of Neutron Physics, JINR, Dubna) are accelerated 12 C ions (cyclotron U-200, Laboratory of Nuclear Reactions, JINR, Dubna) are presented An assumption on the role of DNA single- and double-strend breaks in changing the sedimentation properties of DNA-membrane complexes has been confirmed by the experiments with radiation of different quality. The possibility of estimating induction and repair of DNA breaks on the basis of dependence of the relative sedimentation velocity of complexes on the irradiation does is discussed

  11. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J


    (CGH) for copy number changes and single-copy number polymorphism (SNP) microarrays for allelic loss (LOH). Many array-based CGH changes were not found by LOH because they did not cause true reduction-to-homozygosity. Conversely, many regions of SNP-LOH occurred in the absence of copy number change...

  12. Immobilization of [Cu(bpy)2]Br2 complex onto a glassy carbon electrode modified with alpha-SiMo12O40(4-) and single walled carbon nanotubes: application to nanomolar detection of hydrogen peroxide and bromate. (United States)

    Salimi, Abdollah; Korani, Aazam; Hallaj, Rahman; Khoshnavazi, Roshan; Hadadzadeh, Hasan


    A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)(2)]Br(2) was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, alpha-SiMo(12)O(40)(4-) and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/alpha-SiMo(12)O(40)(4-) electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/alpha-SiMo(12)O(40)(4-) modified electrodes shows excellent electrocatalytic activity toward reduction H(2)O(2) and BrO(3)(-) at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(+/-0.2)x10(3) M(-1) s(-1) and 3.0(+/-0.10)x10(3) M(-1) s(-1), respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM(-1), 10 nM-20 microM, 1 nM, 5.5 nA nM(-1) and 10 nM-18 microM, respectively.

  13. Synthesis and Characterization of a Ru(II Complex with Functionalized Phenanthroline Ligands Having Single-Double Linked Anthracenyl and 1-Methoxy-1-buten-3-yne Moieties

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye


    Full Text Available Two series of bidentate polypyridine ligands, made of phenanthroline chelating subunits having substituted mono-and di-anthracenyl groups, and 1-methoxy-1-buten-3-yne at the 4 and 7-positions with the corresponding heteroleptic Ru(II complex have been synthesized and characterized. The complex is formulated as [(Ru(L1(L2(NCS2], (where L1 = 4-(9-dianthracenyl-10-(2,3-dimethylacrylic acid-7-(9-anthracenyl-10-(2,3-dimethylacrylic acid-1,10-phenanthroline and L2 = 4,7-bis(1-methoxy-1-buten-3-yne-1,10-phenanthroline. The Ru(II complex shows characteristic broad and intense metal-to-ligand charge transfer (MLCT bands absorption and appreciable photoluminescence spanning the visible region. The ligands and complex were characterized by FT-IR, 1H, 13C NMR spectroscopy, UV-Vis, photoluminescence and elemental analysis (see in supplementary materials. The anchoring groups in both ligands have allowed an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT excited state.

  14. Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube probe: Fast nucleobase autoionization mechanism


    Ignatova, Tetyana; Balaeff, Alexander; Zheng, Ming; Blades, Michael; Stoeckl, Peter; Rotkin, Slava V.


    DNA autoionization is a fundamental process wherein UV-photoexcited nucleobases dissipate energy by charge transfer to the environment without undergoing chemical damage. Here, single-wall carbon nanotubes (SWNT) are explored as a photoluminescent reporter for studying the mechanism and rates of DNA autoionization. Two-color photoluminescence spectroscopy allows separate photoexcitation of the DNA and the SWNTs in the UV and visible range, respectively. A strong SWNT photoluminescence quenchi...

  15. General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Esigma70 RNA polymerase and lambdaP(R) promoter DNA. (United States)

    Tsodikov, O V; Record, M T


    A novel analytical method based on the exact solution of equations of kinetics of unbranched first- and pseudofirst-order mechanisms is developed for application to the process of Esigma70 RNA polymerase (R)-lambdaPR promoter (P) open complex formation, which is described by the minimal three-step mechanism with two kinetically significant intermediates (I1, I2), [equation: see text], where the final product is an open complex RPo. The kinetics of reversible and irreversible association (pseudofirst order, [R] > [P]) to form long-lived complexes (RPo and I2) and the kinetics of dissociation of long-lived complexes both exhibit single exponential behavior. In this situation, the analytical method provides explicit expressions relating observed rate constants to the microscopic rate constants of mechanism steps without use of rapid equilibrium or steady-state approximations, and thereby provides a basis for interpreting the composite rate constants of association (ka), isomerization (ki), and dissociation (kd) obtained from experiment for this or any other sequential mechanism of any number of steps. In subsequent papers, we apply this formalism to analyze kinetic data obtained in the reversible and irreversible binding regimes of Esigma70 RNA polymerase (R)-lambdaP(R) promoter (P) open complex formation.

  16. Impact of Surgihoney Reactive Oxygen on surgical site infection (SSI after complex abdominal wall reconstruction (AWR of grade 3 and 4 ventral Hernias: A single arm pilot study

    Directory of Open Access Journals (Sweden)

    Sam Parker


    Conclusions: This study will provide an assessment of methods and feasibility of recruiting and following up patients who are treated with SHRO. On the basis of this pilot trial, a full trial may be proposed in the future which will provide additional, robust evidence on the clinical and cost effectiveness of SHRO in wound management following AWR. This may act as a model for the management of wounds in complex patients undergoing AWR.

  17. Electron spin-relaxation via vibronic level of nickel (I) and nickel (III) cyanide complexes in NaCl single crystals. (United States)

    Vugman, N V; de Araújo, M B; Pinhal, N M; Magon, C J; da Costa Filho, A J


    Electron spin-lattice relaxation rates for the low spin [Ni(CN)(4)](1-) and [Ni(CN)(4)](3-) complexes in NaCl host lattice were measured by the inversion recovery technique in the temperature range 7-50K. The data for both paramagnetic species fit very well to a relaxation process involving localized anharmonic vibration modes, also responsible for the g-tensor temperature dependence.

  18. Ruthenium(II) bipyridine complexes bearing quinoline-azoimine (NN'N″) tridentate ligands: synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis. (United States)

    Al-Noaimi, Mousa; Abdel-Rahman, Obadah S; Fasfous, Ismail I; El-khateeb, Mohammad; Awwadi, Firas F; Warad, Ismail


    Four octahedral ruthenium(II) azoimine-quinoline complexes having the general molecular formula [Ru(II)(L-Y)(bpy)Cl](PF6) {L-Y=YC6H4N=NC(COCH3)=NC9H6N, Y=H (1), CH3 (2), Br (3), NO2 (4) and bpy=2,2'-bipyrdine} were synthesized. The azoimine-quinoline based ligands behave as NN'N″ tridentate donors and coordinated to ruthenium via azo-N', imine-N' and quinolone-N″ nitrogen atoms. The composition of the complexes has been established by elemental analysis, spectral methods (FT-IR, electronic, (1)H NMR, UV/Vis and electrochemical (cyclic voltammetry) techniques. The crystal structure of complex 1 is reported. The Ru(II) oxidation state is greatly stabilized by the novel tridentate ligands, showing Ru(III/II) couples ranging from 0.93-1.27 V vs. Cp2Fe/Cp2Fe(+). The absorption spectrum of 1 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Prevalence of buried probe in complex congenital nasolacrimal duct obstruction and evaluation of its success rate post 'probing and irrigation': a single-centre retrospective study. (United States)

    Gupta, Nishi; Chawla, Neeraj; Ganesh, Suma; Das, Sima; Dhawan, Nidhi; Bansal, Smriti; Singla, Poonam


    The aim of this study was to determine the prevalence of buried probe variant of complex congenital nasolacrimal duct obstruction (CNLDO) and to evaluate the outcome of probing and irrigation in such cases. Institutional review board approval was taken. A total of 309 eyes (258 patients) were diagnosed with CNLDO during the study period of January 2014-March 2017. A retrospective file review of 25 lacrimal systems of 20 patients diagnosed as buried probe variant of complex CNLDO was carried out during the study period. Buried probe variant of complex CNLDO was found to be 8% of the total CNLDO cases during the study period. Mean age at presentation was 1.7 years (range 8-48 months). Discharge and matting of eyelashes were the presenting symptoms in 22 out of 25 (88%) cases, whereas the only epiphora was the presenting symptom in three (12%) cases. Regurgitation of mucopurulent discharge on pressure over lacrimal sac area was positive in 16 out of 25 (64%) eyes. Associated lacrimal and nasal pathologies were seen in six out of 25 cases (24%). Success rate in buried probe variant cases of CNLDO in our study at 3-month follow-up was 88% (22 of 25 cases). A high period prevalence of 8% out of all CNLDO cases in our study suggests that the buried probe should be considered in selective cases of CNLDO and earlier unsuccessful probing.

  20. A Complex Multiherbal Regimen Based on Ayurveda Medicine for the Management of Hepatic Cirrhosis Complicated by Ascites: Nonrandomized, Uncontrolled, Single Group, Open-Label Observational Clinical Study. (United States)

    Patel, Manish V; Patel, Kalapi B; Gupta, Shivenarain; Michalsen, Andreas; Stapelfeldt, Elmar; Kessler, Christian S


    Hepatic cirrhosis is one of the leading causes of death worldwide, especially if complicated by ascites. This chronic condition can be related to the classical disease entity jalodara in Traditional Indian Medicine (Ayurveda). The present paper aims to evaluate the general potential of Ayurvedic therapy for overall clinical outcomes in hepatic cirrhosis complicated by ascites (HCcA). In form of a nonrandomized, uncontrolled, single group, open-label observational clinical study, 56 patients fulfilling standardized diagnostic criteria for HCcA were observed during their treatment at the P. D. Patel Ayurveda Hospital, Nadiad, India. Based on Ayurvedic tradition, a standardized treatment protocol was developed and implemented, consisting of oral administration of single and compound herbal preparations combined with purificatory measures as well as dietary and lifestyle regimens. The outcomes were assessed by measuring liver functions through specific clinical features and laboratory parameters and by evaluating the Child-Pugh prognostic grade score. After 6 weeks of treatment and a follow-up period of 18 weeks, the outcomes showed statistically significant and clinically relevant improvements. Further larger and randomized trials on effectiveness, safety, and quality of the Ayurvedic approach in the treatment of HCcA are warranted to support these preliminary findings.

  1. Slow magnetic relaxation and single-molecule toroidal behaviour in a family of heptanuclear {Cr"I"I"ILn"I"I"I_6} (Ln=Tb, Ho, Er) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Kuduva R. [IITB-Monash Research Academy, IIT Bombay, Powai, Mumbai (India); Langley, Stuart K. [School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester (United Kingdom); Swain, Abinash; Rajaraman, Gopalan [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai (India); Moubaraki, Boujemaa; Murray, Keith S. [School of Chemistry, Monash University, Clayton, VIC (Australia); Damjanovic, Marko; Wernsdorfer, Wolfgang [Institute Neel, CNRS, Universite Grenoble Alpes, Grenoble (France); Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)


    The synthesis, magnetic properties, and theoretical studies of three heterometallic {Cr"I"I"ILn"I"I"I_6} (Ln=Tb, Ho, Er) complexes, each containing a metal topology consisting of two Ln{sub 3} triangles connected via a Cr{sup III} linker, are reported. The {CrTb_6} and {CrEr_6} analogues display slow relaxation of magnetization in a 3000 Oe static magnetic field. Single-crystal measurements reveal opening up of the hysteresis loop for {CrTb_6} and {CrHo_6} molecules at low temperatures. Ab initio calculations predict toroidal magnetic moments in the two Ln{sub 3} triangles, which are found to couple, stabilizing a con-rotating ferrotoroidal ground state in Tb and Ho examples and extend the possibility of observing toroidal behaviour in non Dy{sup III} complexes for the first time. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Single and double reduction of C{sub 60} in 2:1 {gamma}-cyclodextrin/[60]fullerene inclusion complexes by cyclodextrin radicals

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, Annamaria [Laboratoire de Chimie et Biochimie des Substances Naturelles, MNHN, UMR5154 CNRS-MNHN/USM50502, 63 rue Buffon, 75005 Paris (France)], E-mail:; Zhang Yongmin [Universite Pierre and Marie Curie, Laboratoire de Chimie Organique, UMR 7611 CNRS, Tour 44/45, C. 181, 4 place Jussieu, 75005 Paris (France)], E-mail:; Wang Yali [Universite Pierre and Marie Curie, Laboratoire de Chimie Organique, UMR 7611 CNRS, Tour 44/45, C. 181, 4 place Jussieu, 75005 Paris (France); Edge, Ruth [Free Radical Research Facility, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK, and North East Wales Institute, Wrexham, LL11 2AW (United Kingdom); Free Radical Research Facility, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Navaratnam, Suppiah [Free Radical Research Facility, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK, and North East Wales Institute, Wrexham, LL11 2AW (United Kingdom); BioScience Research Institute, PEEL Building, University of Salford, Salford M5 4WT (United Kingdom); Land, Edward J. [Lennard-Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Bensasson, Rene V. [Laboratoire de Chimie et Biochimie des Substances Naturelles, MNHN, UMR5154 CNRS-MNHN/USM50502, 63 rue Buffon, 75005 Paris (France)], E-mail:


    Spectroscopic and chemical properties of {gamma}-CD{sup {center_dot}} radicals, resulting from the abstraction by HO{sup {center_dot}} radicals of hydrogen atoms, have been investigated using pulse radiolysis. The reactions of {gamma}-CD{sup {center_dot}} radicals with C{sub 60} in 2:1 {gamma}-CD/C{sub 60} inclusion complexes have been studied in aqueous solutions. It has been demonstrated that the {gamma}-CD{sup {center_dot}} radicals are reducing species producing C{sub 60}{sup {center_dot}}{sup -} monoanion radicals, as well as doubly reduced C{sub 60}{sup 2-}, well characterised by their absorption spectra in the near IR. The oxidation potential of {gamma}-CD{sup {center_dot}} radical is estimated to be more negative than -390 mV vs. NHE. The kinetics of the C{sub 60} reduction by {gamma}-CD{sup {center_dot}} radicals have been determined and compared with kinetics by other reducing species including the solvated electron (e{sub aq}{sup -}) and CO{sub 2}{sup {center_dot}}{sup -} radicals. It was observed that the method of preparation of the 2:1 {gamma}-CD/C{sub 60} inclusion complexes modifies the C{sub 60} reduction mechanism.

  3. Type 2 Active Galactic Nuclei with Double-peaked [O III] Lines. II. Single AGNs with Complex Narrow-line Region Kinematics are More Common than Binary AGNs (United States)

    Shen, Yue; Liu, Xin; Greene, Jenny E.; Strauss, Michael A.


    Approximately 1% of low-redshift (z interpreted as either due to kinematics, such as biconical outflows and/or disk rotation of the narrow line region (NLR) around single black holes, or due to the relative motion of two distinct NLRs in a merging pair of AGNs. Here, we report follow-up near-infrared (NIR) imaging and optical slit spectroscopy of 31 double-peaked [O III] type 2 AGNs drawn from the Sloan Digital Sky Survey (SDSS) parent sample presented in Liu et al. The NIR imaging traces the old stellar population in each galaxy, while the optical slit spectroscopy traces the NLR gas. These data reveal a mixture of origins for the double-peaked feature. Roughly 10% of our objects are best explained by binary AGNs at (projected) kpc-scale separations, where two stellar components with spatially coincident NLRs are seen. ~50% of our objects have [O III] emission offset by a few kpc, corresponding to the two velocity components seen in the SDSS spectra, but there are no spatially coincident double stellar components seen in the NIR imaging. For those objects with sufficiently high-quality slit spectra, we see velocity and/or velocity dispersion gradients in [O III] emission, suggestive of the kinematic signatures of a single NLR. The remaining ~40% of our objects are ambiguous and will need higher spatial resolution observations to distinguish between the two scenarios. Our observations therefore favor the kinematics scenario with a single AGN for the majority of these double-peaked [O III] type 2 AGNs. We emphasize the importance of combining imaging and slit spectroscopy in identifying kpc-scale binary AGNs, i.e., in no cases does one of these alone allow an unambiguous identification. We estimate that ~0.5%-2.5% of the z ~ 150 km s-1. Based in part on observations obtained with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile, and with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research

  4. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill


    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  5. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking

    Energy Technology Data Exchange (ETDEWEB)

    Rossier, Olivier; Giannone, Grégory [Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux (France); CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux (France)


    Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.

  6. Complex refractive index measurements for BaF 2 and CaF 2 via single-angle infrared reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kelly-Gorham, Molly Rose K.; DeVetter, Brent M.; Brauer, Carolyn S.; Cannon, Bret D.; Burton, Sarah D.; Bliss, Mary; Johnson, Timothy J.; Myers, Tanya L.


    We have re-investigated the optical constants n and k for the homologous series of inorganic salts barium fluoride (BaF2) and calcium fluoride (CaF2) using a single-angle near-normal incidence reflectance device in combination with a calibrated Fourier transform infrared (FTIR) spectrometer. Our results are in good qualitative agreement with most previous works. However, certain features of the previously published data near the reststrahlen band exhibit distinct differences in spectral characteristics. Notably, our measurements of BaF2 do not include a spectral feature in the ~250 cm-1 reststrahlen band that was previously published. Additionally, CaF2 exhibits a distinct wavelength shift relative to the model derived from previously published data. We confirmed our results with recently published works that use significantly more modern instrumentation and data reduction techniques

  7. Genome-wide single-nucleotide polymorphism data reveal cryptic species within cryptic freshwater snail species-The case of theAncylus fluviatilisspecies complex. (United States)

    Weiss, Martina; Weigand, Hannah; Weigand, Alexander M; Leese, Florian


    DNA barcoding utilizes short standardized DNA sequences to identify species and is increasingly used in biodiversity assessments. The technique has unveiled an unforeseeably high number of morphologically cryptic species. However, if speciation has occurred relatively recently and rapidly, the use of single gene markers, and especially the exclusive use of mitochondrial markers, will presumably fail in delimitating species. Therefore, the true number of biological species might be even higher. One mechanism that can result in rapid speciation is hybridization of different species in combination with polyploidization, that is, allopolyploid speciation. In this study, we analyzed the population genetic structure of the polyploid freshwater snail Ancylus fluviatilis , for which allopolyploidization was postulated as a speciation mechanism. DNA barcoding has already revealed four cryptic species within A. fluviatilis (i.e., A. fluviatilis s. str., Ancylus sp. A-C), but early allozyme data even hint at the presence of additional cryptic lineages in Central Europe. We combined COI sequencing with high-resolution genome-wide SNP data (ddRAD data) to analyze the genetic structure of A. fluviatilis populations in a Central German low mountain range (Sauerland). The ddRAD data results indicate the presence of three cryptic species within A. fluviatilis s. str. occurring in sympatry and even syntopy, whereas mitochondrial sequence data only support the existence of one species, with shared haplotypes between species. Our study hence points to the limitations of DNA barcoding when dealing with organismal groups where speciation is assumed to have occurred rapidly, for example, through the process of allopolyploidization. We therefore emphasize that single marker DNA barcoding can underestimate the true species diversity and argue in strong favor of using genome-wide data for species delimitation in such groups.

  8. Complex chemistry with complex compounds

    Directory of Open Access Journals (Sweden)

    Eichler Robert


    Full Text Available In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of relativistic effects in the heaviest compounds. Our contribution comprises some aspects of the ongoing challenging experiments as well as an outlook towards other interesting compounds related to volatile complex compounds in the gas phase.

  9. Clinical outcomes of complex real-world diabetic patients treated with amphilimus sirolimus-eluting stents or zotarolimus-eluting stents: A single-center registry. (United States)

    Rozemeijer, Rik; Benedetto, Daniela; Kraaijeveld, Adriaan O; Voskuil, Michiel; Stein, Mèra; Timmers, Leo; Rittersma, Saskia Z; Agostoni, Pierfrancesco; Doevendans, Pieter A; Stella, Pieter R


    To assess clinical outcomes of Amphilimus Sirolimus-Eluting Stents (A-SES) as compared to Zotarolimus-Eluting Stents (ZES) in complex real-world diabetic patients. Patients with diabetes mellitus represent one of the most challenging scenarios with high rates of restenosis and stent thrombosis in the current era of drug-eluting stents. Hence, we assessed the safety of A-SES versus ZES in complex diabetic patients. In this observational study, we analyzed all consecutive patients with diabetes mellitus referred to our center from November 2012 to November 2014. The primary outcome was target-lesion failure at 1-year follow-up. A total of 165 consecutive diabetic patients underwent percutaneous coronary intervention with A-SES or ZES for stable coronary artery disease in our tertiary center. Using the Kaplan Meier method the cumulative incidence of target-lesion failure was 6.7% (5.9% A-SES versus 7.5% ZES, p=0.19) at 1-year follow-up. Event-free survival at 1year follow-up was similar (89.4% A-SES vs. 83.3% ZES, p=0.29). Interestingly, we did not find any cases of definite-, and only one case of probable stent thrombosis in this high risk cohort. In this real-world registry, A-SES and ZES seems to be associated with promising 1-year clinical safety outcomes following PCI in a contemporary cohort of high-risk diabetic patients. Our results should be considered hypothesis generating, as the clinical safety of A-SES has to be confirmed in a large trial. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents. (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y


    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  11. Single crystal EPR of the mixed-ligand complex of copper(II) with L-glutamic acid and 1,10-phenanthroline: a study on the narrowing of the hyperfine structure by exchange. (United States)

    Neuman, Nicolás I; Franco, Vanina G; Ferroni, Felix M; Baggio, Ricardo; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D


    We report an EPR study at X- and Q-bands of polycrystalline and single crystal samples of the mixed copper(II) complex with L-glutamic acid (glu) and 1,10-phenantroline (phen), [Cu(glu)(phen)(H(2)O)](+) NO(3)(-)·2(H(2)O). The polycrystalline sample spectrum at Q-band showed well resolved g(∥ )and g(⊥) features and partially solved hyperfine structure at g(∥), typical for weakly exchange coupled systems. This is confirmed from the angular variation of the EPR spectra which shows for certain magnetic field orientations a partially solved hyperfine structure characteristic of weak exchange, whereas a single Lorentzian line corresponding to strong exchange is observed for others. Analysis and simulation of the single crystal EPR spectra were performed using the random frequency modulation model of Anderson. Numerical simulations of the angular variation of the EPR spectra showed that the narrowing of the hyperfine structure is due to an exchange-mediated mechanism in which transitions between any pair of lines are equally likely. The exchange interaction responsible for this process is mediated by hydrophobic interactions between two phen molecules and a mixed chemical path of the type CuA-O(ap)H···O-C-O(eq)-CuB, for which we evaluated an average isotropic exchange parameter |J| ≈ 25 × 10(-4) cm(-1).

  12. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons. (United States)

    Labib, Sarah; Williams, Andrew; Kuo, Byron; Yauk, Carole L; White, Paul A; Halappanavar, Sabina


    The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.

  13. Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. (United States)

    Morino, Masato; Natsui, Shinsuke; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro


    Mrp antiporters catalyze secondary Na(+)(Li(+))/H(+) antiport and/or K(+)/H(+) antiport that is physiologically important in diverse bacteria. An additional capacity for anion flux has been observed for a few systems. Mrp is unique among antiporters in that it requires all six or seven hydrophobic gene products (MrpA to MrpG) of the mrp operon for full antiporter activity, but MrpE has been reported to be dispensable. Here, the membrane complexes formed by Mrp proteins were examined using a cloned mrp operon from alkaliphilic Bacillus pseudofirmus OF4. The operon was engineered so that the seven Mrp proteins could be detected in single samples. Membrane extracts of an antiporter-deficient Escherichia coli strain expressing this construct were analyzed by blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mrp complexes of two sizes were identified containing all seven Mrp proteins. Studies of the single nonpolar mrp gene deletions in the construct showed that a subcomplex of MrpA, MrpB, MrpC, and MrpD was formed in the absence of MrpE, MrpF, or MrpG. By contrast, MrpE, MrpF, and MrpG were not observed in membranes lacking MrpA, MrpB, MrpC, or MrpD. Although MrpA and MrpD have been hypothesized to be the antiporter proteins, the MrpA-to-D complex was inactive. Every Mrp protein was required for an activity level near that of the wild-type Na(+)/H(+) antiporter, but a very low activity level was observed in the absence of MrpE. The introduction of an MrpE(P114G) mutation into the full Mrp complex led to antiport activity with a greatly increased apparent K(m) value for Na(+). The results suggested that interactions among the proteins of heterooligomeric Mrp complexes strongly impact antiporter properties.

  14. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F


    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  15. Four-factor prothrombin complex concentrate improves thrombin generation and prothrombin time in patients with bleeding complications related to rivaroxaban: a single-center pilot trial. (United States)

    Schenk, Bettina; Goerke, Stephanie; Beer, Ronny; Helbok, Raimund; Fries, Dietmar; Bachler, Mirjam


    Direct oral anticoagulants (DOACs) pose a great challenge for physicians in life-threatening bleeding events. The aim of this study was to test the efficacy of reversing the DOAC rivaroxaban using four-factor PCC (prothrombin complex concentrate), a non-specific reversing agent. Patients with life-threatening bleeding events during rivaroxaban treatment were included and administered 25 U kg -1 of PCC. Blood samples were collected immediately prior to as well as after PCC treatment at predefined time intervals. The primary endpoint was defined as the difference in thrombin generation (TG) parameters ETP (endogenous thrombin potential) and C max (peak thrombin generation) prior to and ten minutes subsequent to PCC treatment. Thirteen patients, of whom the majority suffered from intra-cranial haemorrhage (ICH) or subdural haemorrhage (SDH), were included and administered PCC. The results show that the ETP (TG) significantly ( p  = 0.001) improved by 68% and C max (TG) by 54% (p = 0.001) during PCC treatment. In addition, the Quick value (prothrombin time: Quick PT ) significantly improved by 28% and the activated partial thromboplastin time (aPTT) was decreased by 7% ten minutes after PCC administration. C max was reduced at baseline, but not ETP, aPTT or Quick PT . Lag time until initiation (TG, t lag ), thromboelastometry clotting time (CT EXTEM ) and time to peak (TG, t max ) correlated best with measured rivaroxaban levels and were out of normal ranges at baseline, but did not improve after PCC administration. In 77% of the patients bleeding (ICH/SDH-progression) ceased following PCC administration. During the study three participants passed away due to other complications not related to PCC treatment. The possibility of thrombosis formation was also evaluated seven days after administering PCC and no thromboses were found. This study shows that use of PCC improved ETP, C max, Quick PT and aPTT. However, of these parameters, only C max was reduced at the

  16. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith


    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  17. NMR Studies of Protein Hydration and Protein-Ligand Interactions (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be facilitated by hydration. On the other hand, alcohols can bind to many nonspecific sites on the protein. In dry proteins, this type of binding only occurs above a threshold of alcohol vapor pressure. Such a threshold is gradually reduced by increasing the hydration level and can be removed above a critical hydration level. Hydration also shifts the nonspecific alcohol binding from an entropy-driven to an enthalpy-driven process. This dissertation reveals the mechanism of protein hydration and the detailed roles of hydration in ligand binding, with important implications for the understanding of protein functions.

  18. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. (United States)

    Martin, William J; Reiter, Nicholas J


    Over billions of years of evolution, nature has embraced proteins as the major workhorse molecules of the cell. However, nearly every aspect of metabolism is dependent upon how structured RNAs interact with proteins, ligands, and other nucleic acids. Key processes, including telomere maintenance, RNA processing, and protein synthesis, require large RNAs that assemble into elaborate three-dimensional shapes. These RNAs can (i) act as flexible scaffolds for protein subunits, (ii) participate directly in substrate recognition, and (iii) serve as catalytic components. Here, we juxtapose the near atomic level interactions of three ribonucleoprotein complexes: ribonuclease P (involved in 5' pre-tRNA processing), the spliceosome (responsible for pre-mRNA splicing), and telomerase (an RNA-directed DNA polymerase that extends the ends of chromosomes). The focus of this perspective is profiling the structural and dynamic roles of RNAs at the core of these enzymes, highlighting how large RNAs contribute to molecular recognition and catalysis.

  19. The DFT Calculations of Structures and EPR Parameters for the Dinuclear Paddle-Wheel Copper(II) Complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) as Powder or Single Crystal (United States)

    Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua


    Density functional theory (DFT) calculations of the structures and the Cu2+ g factors (gx, gy and gz ) and hyperfine coupling tensor A (Ax , Ay and Az ) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO5] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO5] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH2CH3, NH3 and H2O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.

  20. thiosemicarbazone complexes as single-source precursors

    Indian Academy of Sciences (India)

    These nanocrystallites were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, UV–Vis, PL and Raman spectroscopic techniques. From TEM images, the average grain size of asprepared cobalt sulphide nanocrystallites was ...

  1. Complex dynamics

    CERN Document Server

    Carleson, Lennart


    Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...

  2. Acclimation of denitrifying activated sludge to a single vs. complex external carbon source during a start-up of sequencing batch reactors treating ammonium-rich anaerobic sludge digester liquors. (United States)

    Czerwionka, Krzysztof; Luczkiewicz, Aneta; Majtacz, Joanna; Kowal, Przemyslaw; Jankowska, Katarzyna; Ciesielski, Slawomir; Pagilla, Krishna; Makinia, Jacek


    In this study, denitrification of ammonium-reach anaerobic sludge digester liquor was investigated during start-up periods of two laboratory-scale "fill-and-draw" reactors. One reactor was fed with a single carbon source (ethanol), whereas the other reactor was fed with a complex carbon source (fusel oil). During two acclimation experiments, the structure of microbial community involved in denitrification was analyzed using 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis fingerprints and fluorescent in situ hybridization. The characteristics of the mixed liquor were additionally supported by regular measurements of nitrate uptake rates. The addition of fusel oil and ethanol resulted in a significant enhancement of the denitrification rate and efficiency combined with the increasing volumetric addition of sludge digester liquor up to 15 % of the reactor volume. The microbiological analyses revealed that the addition of sludge digester liquor as well as both external carbon sources (fusel oil and ethanol) did not affect the structure of microbial communities in a severe way. In both reactors, Curvibacter sp. and Azoarcus sp. were found as the most abundant representatives of denitrifiers.

  3. Beyond the Single Story (United States)

    McKenney, Yekaterina


    Teachers of world literature have the opportunity to help students explore the more complex reality behind the stereotypes that they often see in the media. If we don't encourage students to challenge one-dimensional "single stories" that characterize an entire people--whether Muslims, Russians, Mexicans, African Americans, Chinese,…

  4. Self-assembly of mixed-valence Co(II/III) and Ni(II) clusters: azide-bridged 1D single chain coordination polymers comprised of tetranuclear units, tetranuclear Co(II/III) complexes, ferromagnetically coupled azide-bridged tetranuclear, and hexanuclear Ni(II) complexes: synthesis, structural, and magnetic properties. (United States)

    Tandon, Santokh S; Bunge, Scott D; Rakosi, Robert; Xu, Zhiqiang; Thompson, Laurence K


    One-pot reactions between 2,6-diformyl-4-methylphenol (DFMP) and 2-aminoethanol (AE) in the presence of cobalt(II) salts [Co(ClO4)2, CoCl2, Co(CH3CO2)2, Co(NO3)2] and sodium azide result in the self-assembly of novel one-dimensional single chain mixed-valence cobalt coordination polymers {[Co2(II)Co2(III) (HL)2(OCH3)2(N3)3]ClO(4).5H2O.CH3OH}n (1), {[Co2(II)Co2(III) (HL)2(OCH3)2(N3)3]Cl.H2O}n (2) in which tetra-cobalt cationic units are bridged by symmetrical 1,3-azides, forming single chains; mixed valence neutral tetranuclear clusters [Co2(II)Co2(III) (HL)2(OCH3)2(N3)4]CH3OH.2H2O (3), [Co2(II)Co2(III)(HL)2(OCH3)2(N3)2(CH3CO2)2].2CH3OH.2H2O (4), and the cationic cluster [Co2(II) Co2(III) (HL)2(OCH3)2(CH3OH)2(N3)2](NO3)2 (5). In all these reactions, H3L, the potentially pentadentate (N2O3), trianionic double Schiff base ligand 2,6-bis[(2-hydroxy-ethylimino)-methyl]-4-methylphenol is formed. The reaction between DFMP and AE in the presence of nickel(ii) salts and sodium azide in methanol-water mixture results in the self-assembly of ferromagnetically coupled hexanuclear complexes [Ni6(H2L)2(HL-1)2(H2O)2(N3)6](ClO4)(2).2CH3OH (6), and [Ni6(H2L)2(HL-1)2(CH3OH)2(N3)6](BF4)2 (7), involving double (H3L) and single (H2L-1) Schiff base ligands, and a neutral tetranuclear complex [Ni4(H2L)2(OCH3)2(CH3CO2)2(N3)2] (8) with only double Schiff-base (H3L). In these complexes, the nature of the anion and the reaction conditions seem to play an important role in directing the formation of tetranuclear, hexanuclear or polymeric clusters. All complexes involve divacant double cubane-type cores containing three to four different types of bridging ligands (phenoxy, azido, methoxy/alkoxy, and acetate). Variable temperature magnetic properties of these spin coupled clusters have been investigated and magneto-structural correlations have been established.

  5. Complexity explained

    CERN Document Server

    Erdi, Peter


    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  6. The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis. (United States)

    Samejima, Kumiko; Platani, Melpomeni; Wolny, Marcin; Ogawa, Hiromi; Vargiu, Giulia; Knight, Peter J; Peckham, Michelle; Earnshaw, William C


    The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon


    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  8. Complex variable HVPT

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom); Grosjean, Alain [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UPRES-A 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France); Jolicard, Georges [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UPRES-A 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France)


    Complex variable hypervirial perturbation theory is applied to the case of oscillator and Coulomb potentials perturbed by a single term potential of the form Vx{sup n} or Vr{sup n}, respectively. The trial calculations reported show that this approach can produce accurate complex energies for resonant states via a simple and speedy calculation and can also be useful in studies of PT symmetry and tunnelling resonance effects. (addendum)

  9. Electromeric rhodium radical complexes

    NARCIS (Netherlands)

    Puschmann, F.F.; Harmer, J.; Stein, D.; Rüegger, H.; de Bruin, B.; Grützmacher, H.


    Radical changes: One single P-Rh-P angle determines whether the odd electron in the paramagnetic complex [Rh(trop2PPh)(PPh3)] is delocalized over the whole molecule (see picture, blue) or is localized on the P—Rh unit (red). The two energetically almost degenerate electromers exist in a fast

  10. Complex Narratives

    NARCIS (Netherlands)

    Simons, J.; Buckland, W.


    In the opening chapter, "Complex Narratives," Jan Simons brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. He presents an overview of the different concepts - forking path narratives, mind-game films,

  11. phenanthroline complex

    Indian Academy of Sciences (India)



    Feb 28, 2018 ... complex in a unique binding motif and provide additional stability to the compound in the solid state. This iron(II) complex is able to catalyze the cleavage of aromatic C-C linkage of 2,5-dihydroxybenzoic acid (Gentisic acid,. GA) in oxygen environment. The iron(II) complex in the presence of two equivalent ...

  12. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  13. Prediction of protein-DNA complex mobility in gel-free capillary electrophoresis. (United States)

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Arico-Muendel, Christopher C; Krylov, Sergey N


    Selection of protein binders from highly diverse combinatorial libraries of DNA-encoded small molecules is a highly promising approach for discovery of small-molecule drug leads. Methods of kinetic capillary electrophoresis provide the high efficiency of partitioning required for such selection but require the knowledge of electrophoretic mobility of the protein-ligand complex. Here we present a theoretical approach for an accurate estimate of the electrophoretic mobility of such complexes. The model is based on a theory of the thin double layer and corresponding expressions used for the mobilities of a rod-like short oligonucleotide and a sphere-like globular protein. The model uses empirical values of mobilities of free protein, free ligand, and electroosmotic flow. The model was tested with a streptavidin-dsDNA complex linked through biotin (small molecule). The deviation of the prediction from the experimental mobility did not exceed 4%, thus confirming that not only is the model adequate but it is also accurate. This model will facilitate reliable use of KCE methods for selection of drug leads from libraries of DNA-encoded small molecules.

  14. Analysis of various types of single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complexes and their allosteric receptor–receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Toshio, E-mail: [Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526 (Japan); Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526 (Japan); Cell Biology Laboratory, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Yoshioka, Kazuaki; Nakata, Hiroyasu [Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526 (Japan)


    Highlights: • Various scA{sub 2A}R/D{sub 2}R constructs, with spacers between the two receptors, were created. • Using whole cell binding assay, constructs were examined for their binding activity. • Although the apparent ratio of A{sub 2A}R to D{sub 2}R binding sites should be 1, neither was 1. • Counter agonist-independent binding cooperativity occurred in context of scA{sub 2A}R/D{sub 2}R. - Abstract: Adenosine A{sub 2A} receptor (A{sub 2A}R) heteromerizes with dopamine D{sub 2} receptor (D{sub 2}R). However, these class A G protein-coupled receptor (GPCR) dimers are not fully formed, but depend on the equilibrium between monomer and dimer. In order to stimulate the heteromerization, we have previously shown a successful design for a fusion receptor, single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complex. Here, using whole cell binding assay, six more different scA{sub 2A}R/D{sub 2}R constructs were examined. Not only in scA{sub 2A}R/D{sub 2}R ‘liberated’ with longer spacers between the two receptors, which confer the same configuration as the prototype, the A{sub 2A}R-odr4TM-D{sub 2L}R, but differ in size (Forms 1–3), but also in scA{sub 2A}R/D{sub 2L}R (Form 6) fused with a transmembrane (TM) of another type II TM protein, instead of odr4TM, neither of their fixed stoichiometry (the apparent ratios of A{sub 2A}R to D{sub 2}R binding sites) was 1, suggesting their compact folding. This suggests that type II TM, either odr4 or another, facilitates the equilibrial process of the dimer formation between A{sub 2A}R and D{sub 2L}R, resulting in the higher-order oligomer formation from monomer of scA{sub 2A}R/D{sub 2L}R itself. Also, in the reverse type scA{sub 2A}R/D{sub 2L}R, i.e., the D{sub 2L}R-odr4TM-A{sub 2A}R, counter agonist-independent binding cooperativity (cooperative folding) was found to occur (Forms 4 and 5). In this way, the scA{sub 2A}R/D{sub 2L}R system has unveiled the cellular phenomenon as a snapshot of the

  15. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan


    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  16. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.


    the thesis that the aforesaid holds a fortiori for the living cell: Much of the essence of the live state depends more on the manner in which the molecules are organised than on the properties of single molecules. This is due to the phenomenon of 'Complexity'. BioComplexity is defined here as the phenomenon...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... with metabolic control analysis. Subsequently, the complexity of the control of the energy metabolism of E. coli will be analysed in detail. New control theorems will be derived for newly defined control coefficients. It will become transparent that molecular genetic experimentation will allow one to penetrate...

  17. Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation. (United States)

    Morino, Masato; Natsui, Shinsuke; Ono, Tomohiro; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro


    Mrp systems are widely distributed and structurally complex cation/proton antiporters. Antiport activity requires hetero-oligomeric complexes of all six or seven hydrophobic Mrp proteins (MrpA-MrpG). Here, a panel of site-directed mutants in conserved or proposed motif residues was made in the Mrp Na(+)(Li(+))/H(+) antiporter from an alkaliphilic Bacillus. The mutant operons were expressed in antiporter-deficient Escherichia coli KNabc and assessed for antiport properties, support of sodium resistance, membrane levels of each Mrp protein, and presence of monomeric and dimeric Mrp complexes. Antiport did not depend on a VFF motif or a conserved tyrosine pair, but a role for a conserved histidine in a potential quinone binding site of MrpA was supported. The importance of several acidic residues for antiport was confirmed, and the importance of additional residues was demonstrated (e.g. three lysine residues conserved across MrpA, MrpD, and membrane-bound respiratory Complex I subunits (NuoL/M/N)). The results extended indications that MrpE is required for normal membrane levels of other Mrp proteins and for complex formation. Moreover, mutations in several other Mrp proteins lead to greatly reduced membrane levels of MrpE. Thus, changes in either of the two Mrp modules, MrpA-MrpD and MrpE-MrpG, influence the other. Two mutants, MrpB-P37G and MrpC-Q70A, showed a normal phenotype but lacked the MrpA-MrpG monomeric complex while retaining the dimeric hetero-oligomeric complex. Finally, MrpG-P81A and MrpG-P81G mutants exhibited no antiport activity but supported sodium resistance and a low [Na(+)](in). Such mutants could be used to screen hypothesized but uncharacterized sodium efflux functions of Mrp apart from Na(+) (Li(+))/H(+) antiport.

  18. Advances in single chain technology. (United States)

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A


    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  19. Complex odontoma. (United States)

    Preetha, A; Balikai, Bharati S; Sujatha, D; Pai, Anuradha; Ganapathy, K S


    Odontomas are hamartomatous lesions or malformations composed of mature enamel, dentin, and pulp. They may be compound or complex, depending on the extent of morphodifferentiation or their resemblance to normal teeth. The etiology of odontoma is unknown, although several theories have been proposed. This article describes a case of a large infected complex odontoma in the residual mandibular ridge, resulting in considerable mandibular expansion.

  20. Complex narratives

    NARCIS (Netherlands)

    Simons, J.


    This paper brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. It interrogates the different terms - forking-path narratives, mind-game films, modular narratives, multiple-draft films, database narratives,

  1. Complexity Theory (United States)

    Lee, William H K.


    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  2. Single-molecule tracking in living cells using single quantum dot applications. (United States)

    Baba, Koichi; Nishida, Kohji


    Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes.

  3. Single sheet iron oxides

    DEFF Research Database (Denmark)

    Yin, Zhou

    activity. LDH single sheets have been reported to be effective sorbents, catalysts in electrochemical and photochemical reactions, and building thin films together with other nanomaterials for designing new functionalities. Here we focus on the delamination of FeII-FeIII LDHs into single sheet iron oxide...... was rapid compared to other iron oxides, reaching equilibrium within 60 minutes. Arsenic sorption and acid-base titration data could be successfully described with a 1pk Basic Stern Model (BSM). The point of zero charge was around 8. The intrinsic surface complexation equilibrium constants (log K...... became abundant at low pH. (3) Electrochemical reduction of chlorinated compounds using an SSI modified electrode. Here, the electrochemical reactivity of SSIs coated on indium tin oxide coated glass electrodes was investigated. Iron on the SSI modified electrode showed a typical Cyclic Voltammetry...

  4. Ligand-induced protein mobility in complexes of carbonic anhydrase II and benzenesulfonamides with oligoglycine chains.

    Directory of Open Access Journals (Sweden)

    Vijay M Krishnamurthy

    Full Text Available This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA and para-substituted benzenesulfonamide ligands with chains of 1-5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with (15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even "static" proteins in studies of protein-ligand binding, including rational ligand design approaches.

  5. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation. (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi


    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  6. Complex variables

    CERN Document Server

    Fisher, Stephen D


    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  7. Managing Complexity

    DEFF Research Database (Denmark)

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia


    This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dutch...... and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing....

  8. Single crystal EPR study of the dinuclear Cu(II) complex [Cu(tda)(phen)](2)·H(2)tda (tda = thiodiacetate, phen = phenanthroline): influence of weak interdimeric magnetic interactions. (United States)

    Neuman, Nicolás I; Perec, Mireille; González, Pablo J; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D


    We report powder and single crystal EPR measurements of [Cu(tda)(phen)](2)·H(2)tda (tda = thiodiacetate, phen = phenanthroline) at 9.7 GHz. This compound consists of centrosymmetric copper(II) ion dimers, weakly ferromagnetically exchange-coupled (J = +3.2 cm(-1)), in which the dimeric units are linked by hydrophobic chemical paths involving the phen molecules. EPR revealed that the triplet spectra are collapsed by interdimeric exchange interactions mediated by that chemical path. Analysis and simulation of the single crystal EPR spectra were performed using Anderson's exchange narrowing model, together with statistical arguments. This approach allowed us to interpret the spectra modulated by the interdimeric interactions in situations of weak, intermediate, and strong exchange. We evaluated an interdimeric exchange constant J' = 0.0070(3) cm(-1), indicating that hydrophobic paths can transmit weak exchange interactions between centers at relatively long distances of the order of ∼10 Å.

  9. Complex Covariance

    Directory of Open Access Journals (Sweden)

    Frieder Kleefeld


    Full Text Available According to some generalized correspondence principle the classical limit of a non-Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space spanned by complex-valued space and momentum coordinates. As special relativity was developed by Einstein merely for real-valued space-time and four-momentum, we will try to understand how special relativity and covariance can be extended to complex-valued space-time and four-momentum. Our considerations will lead us not only to some unconventional derivation of Lorentz transformations for complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are to lay the foundations of a non-Hermitian quantum theory.

  10. Communication Complexity

    Indian Academy of Sciences (India)

    Jaikumar Radhakrishnan

    Alice and Bob are randomized agents. They exchange messages in order to compute a function f(x, y). We allow a small probability of error. Goal: minimize the total number of bits transmitted. Jaikumar Radhakrishnan. Communication Complexity ...

  11. A single-institution retrospective cohort study of first-line R-EPOCH chemoimmunotherapy for Richter syndrome demonstrating complex chronic lymphocytic leukaemia karyotype as an adverse prognostic factor. (United States)

    Rogers, Kerry A; Huang, Ying; Ruppert, Amy S; Salem, Galena; Stephens, Deborah M; Heerema, Nyla A; Andritsos, Leslie A; Awan, Farrukh T; Byrd, John C; Flynn, Joseph M; Maddocks, Kami J; Jones, Jeffrey A


    Richter Syndrome, an aggressive lymphoma occurring in patients with chronic lymphocytic leukaemia (CLL), has a generally poor prognosis and anthracycline-based chemoimmunotherapy regimens designed to treat de novo diffuse large B-cell lymphoma achieve modest clinical benefit. R-EPOCH (rituximab, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) has demonstrated greater activity against aggressive B-cell histologies but has not been studied in Richter Syndrome. We conducted a retrospective cohort study of 46 Richter Syndrome patients treated with first-line R-EPOCH at our institution between 1 January 2006 and 31 May 2014. The median progression-free survival (PFS) was 3·5 months [95% confidence interval (CI): 2·0-7·6] and median overall survival (OS) was 5·9 months (95% CI: 3·2-10·3). Toxicity was high and 30% of patients died without progression or response. Patients with a complex CLL karyotype had significantly shorter PFS and OS (P = 0·005 and P = 0·002, respectively). Multivariable analysis identified complex CLL karyotype as the most significant predictor of decreased survival [Hazard ratio (HR) 2·72, 95% CI: 1·14-6·52, P = 0·025], adjusting for number of prior CLL treatments (P = 0·036). Richter Syndrome patients with complex CLL karyotype experience poor survival with R-EPOCH treatment and novel approaches are needed for these patients. In contrast, survival of patients without a complex CLL karyotype was similar to patients with de novo diffuse large B-cell lymphoma. © 2017 John Wiley & Sons Ltd.

  12. Changes in body composition, blood lipid profile, and growth factor hormone in a patient with Prader-willi syndrome during 24 weeks of complex exercise: a single case study. (United States)

    Joung, Hee Joung; Lim, In Soo


    Prader-Willi syndrome (PWS) is a genetic disorder characterized by excessive appetite with progressive obesity and growth hormone (GH) deficiency. Excessive eating causes progressive obesity with increased risk of morbidities and mortality. Although GH treatment has beneficial effects on patients with PWS, adverse events have occurred during GH treatment. Exercise potentially has a positive effect on obesity management. The purpose of this research was to examine the effects of 24-week complex exercise program on changes in body composition, blood lipid profiles, and growth factor hormone levels in a patient with PWS. The case study participant was a 23-year-old man with PWS who also had type II diabetes mellitus because of extreme obesity. Complex exercises, including strength and aerobic exercises, were conducted 5 times one week for 60 minutes per session, over 24 weeks. Blood sampling was conducted five times: before and at 8, 16, 20, and 24 weeks after commencement of the exercise program. Weight, fat mass, triglycerides/high-density lipoprotein (TG/HDL) ratio, mean blood glucose, and GH decreased after training. Blood insulin and insulin-like growth factor (IGF-1) levels increased after training. At 15 and 20 weeks, insulin injection was discontinued. Insulin levels increased and average blood glucose decreased to normal levels; IGF-1 increased continuously during the 24-week exercise program. Conclusion] Twenty-four weeks of complex exercises had a positive effect on obesity and diabetes in the patient with PWS. Therefore, long-period complex exercises might be an effective intervention for improvement of metabolic factors in PWS patients. ©2018 The Korean Society for Exercise Nutrition.

  13. New monodentate amidine superbasic ligands with a single configuration in fac-[Re(CO)3(5,5'- or 6,6'-Me2bipyridine)(amidine)]BF4 complexes. (United States)

    Abhayawardhana, Pramuditha; Marzilli, Patricia A; Perera, Theshini; Fronczek, Frank R; Marzilli, Luigi G


    Treatment of two precursors, fac-[Re(CO)(3)(L)(CH(3)CN)]BF(4) [L = 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me(2)bipy) (1) and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me(2)bipy) (2)], with five C(2)-symmetrical saturated heterocyclic amines yielded 10 new amidine complexes, fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) [Y = CH(2), (CH(2))(2), (CH(2))(3), NH, or O]. All 10 complexes possess the novel feature of having only one isomer (amidine E configuration), as established by crystallographic and (1)H NMR spectroscopic methods. We are confident that NMR signals of the other possible isomer (amidine Z configuration) would have been detected, if it were present. Isomers are readily detected in closely related amidine complexes because the double-bond character of the amidine C-N3 bond (N3 is bound to Re) leads to slow E to Z isomer interchange. The new fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) complexes have C-N3 bonds with essentially identical double-bond character. However, the reason that the Z isomer is so unstable as to be undetectable in the new complexes is undoubtedly because of unfavorable clashes between the equatorial ligands and the bulky N(CH(2)CH(2))(2)Y ring moiety of the axial amidine ligand. The amidine formation reactions in acetonitrile (25 °C) proceeded more easily with 2 than with 1, indicating that the distortion in 6,6'-Me(2)bipy resulting from the proximity of the methyl substituents to the inner coordination sphere enhanced the reactivity of the coordinated CH(3)CN. Reaction times for 1 and 2 exhibited a similar dependence on the basicity and ring size of the heterocyclic amine reactants. Moreover, when the product of the reaction of 1 with piperidine, fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))N(CH(2)CH(2))(2)CH(2))]BF(4), was challenged in acetonitrile-d(3) or CDCl(3) with a 5-fold excess of the strong 4-dimethylaminopyridine ligand, there was no evidence for replacement of the amidine ligand after two months, thus establishing

  14. A single-chain fusion molecule consisting of peptide, major histocompatibility gene complex class I heavy chain and beta2-microglobulin can fold partially correctly, but binds peptide inefficiently

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Buus, S


    of a recombinant murine MHC-I molecule, which could be produced in large amounts in bacteria. The recombinant MHC-I protein was expressed as a single molecule (PepSc) consisting of the antigenic peptide linked to the MHC-I heavy chain and further linked to human beta2-microglobulin (hbeta2m). The PepSc molecule...... electrophoresis (SDS-PAGE). Serological analysis revealed the presence of some, but not all, MHC-I-specific epitopes. Biochemically, PepSc could bind peptide, however, rather ineffectively. We suggest that a partially correctly refolded MHC-I has been obtained....

  15. Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection. (United States)

    Chen, Chang-Hsin; Abi-Ghanem, Daad; Waghela, Suryakant D; Chou, Wen-Ko; Farnell, Morgan B; Mwangi, Waithaka; Berghman, Luc R


    Producing diagnostic antibodies in chicken egg yolk represents an alternate animal system that offers many advantages including high productivity at low cost. Despite being an excellent counterpart to mammalian antibodies, chicken IgG from yolk still represents an underused resource. The potential of agonistic monoclonal anti-CD40 antibodies (mAb) as a powerful immunological adjuvant has been demonstrated in mammals, but not in chickens. We recently reported an agonistic anti-chicken CD40 mAb (designated mAb 2C5) and showed that it may have potential as an immunological adjuvant. In this study, we examined the efficacy of targeting a short peptide to chicken CD40 [expressed by the antigen-presenting cells (APCs)] in enhancing an effective IgG response in chickens. For this purpose, an immune complex consisting of one streptavidin molecule, two directionally biotinylated mAb 2C5 molecules, and two biotinylated peptide molecules was produced. Chickens were immunized subcutaneously with doses of this complex ranging from 10 to 90 μg per injection once, and relative quantification of the peptide-specific IgG response showed that the mAb 2C5-based complex was able to elicit a strong IgG response as early as four days post-immunization. This demonstrates that CD40-targeting antigen to chicken APCs can significantly enhance antibody responses and induce immunoglobulin isotype-switching. This immunization strategy holds promise for rapid production of hapten-specific IgG in chickens. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Complex analysis

    CERN Document Server

    Freitag, Eberhard


    The guiding principle of this presentation of ``Classical Complex Analysis'' is to proceed as quickly as possible to the central results while using a small number of notions and concepts from other fields. Thus the prerequisites for understanding this book are minimal; only elementary facts of calculus and algebra are required. The first four chapters cover the essential core of complex analysis: - differentiation in C (including elementary facts about conformal mappings) - integration in C (including complex line integrals, Cauchy's Integral Theorem, and the Integral Formulas) - sequences and series of analytic functions, (isolated) singularities, Laurent series, calculus of residues - construction of analytic functions: the gamma function, Weierstrass' Factorization Theorem, Mittag-Leffler Partial Fraction Decomposition, and -as a particular highlight- the Riemann Mapping Theorem, which characterizes the simply connected domains in C. Further topics included are: - the theory of elliptic functions based on...

  17. Complex Analysis

    CERN Document Server

    Stein, Elias M


    With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle.With this background, the reader is ready to learn a wealth of additional m

  18. Complex manifolds

    CERN Document Server

    Morrow, James


    This book, a revision and organization of lectures given by Kodaira at Stanford University in 1965-66, is an excellent, well-written introduction to the study of abstract complex (analytic) manifolds-a subject that began in the late 1940's and early 1950's. It is largely self-contained, except for some standard results about elliptic partial differential equations, for which complete references are given. -D. C. Spencer, MathSciNet The book under review is the faithful reprint of the original edition of one of the most influential textbooks in modern complex analysis and geometry. The classic

  19. Development of novel strategy for the synthesis of organometallic compounds usable as protein ligands: application to the human cyclophilin hCyp-18; Developpement de ligands de proteines par assemblage combinatoire autour d'un coeur de rhenium{sup V}: application a la cyclophiline hCyp-18

    Energy Technology Data Exchange (ETDEWEB)

    Clavaud, C


    This thesis describes a new strategy for the development of bioactive organometallic compounds, basing on the combinatorial assembly of sub-chemical libraries (A and B) independent but complementary and able to coordinate a metallic heart M to form A-M-B complex potential ligands of biomolecules. The coordination of metals, well adapted to the production of molecular variety is usually used in medicinal chemistry, in diagnostic and therapeutic nuclear medicine. Among the useful elements, the rhenium and the technetium are metals of choice for the development of the assembly strategy because of their chemical and radiochemical properties and of the structure analogy of their complexes. This strategy was validated in vitro. The protein chosen for this purpose was the cyclophilin hCyp-18. (N.C.)

  20. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  1. Communication Complexity

    Indian Academy of Sciences (India)

    Jaikumar Radhakrishnan

    Communication complexity. Motivation . . . An abstract model to study the communicaiton required for computation. A tool for showing lower bounds in several computational models. The study often requires deep understanding of computation using tools from combinatorics, coding theory, algebra, analysis, etc. Jaikumar ...

  2. Lecithin Complex

    African Journals Online (AJOL)

    1Department of Food Science and Engineering, Xinyang College of Agriculture and Forestry, Xinyang 464000, 2Henan. Economy and Trade ... Methanol of HPLC grade was purchased from Tedia (USA). Other chemicals used were of analytical grade. Preparation of polydatin-lecithin complex. Polydatin (200 mg) and ...

  3. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta


    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  4. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/multi-wavelength anomalous dispersion phasing. (United States)

    Suzuki, Tatsuya; Makyio, Hisayoshi; Ando, Hiromune; Komura, Naoko; Menjo, Masanori; Yamada, Yusuke; Imamura, Akihiro; Ishida, Hideharu; Wakatsuki, Soichi; Kato, Ryuichi; Kiso, Makoto


    Seleno-lactoses have been successfully synthesized as candidates for mimicking carbohydrate ligands for human galectin-9 N-terminal carbohydrate recognition domain (NCRD). Selenium was introduced into the mono- or di-saccharides using p-methylselenobenzoic anhydride (Tol2Se) as a novel selenating reagent. The TolSe-substituted monosaccharides were converted into selenoglycosyl donors or acceptors, which were reacted with coupling partners to afford seleno-lactoses. The seleno-lactoses were converted to the target compounds. The structure of human galectin-9 NCRD co-crystallized with 6-MeSe-lactose was determined with single/multi-wavelength anomalous dispersion (SAD/MAD) phasing and was similar to that of the co-crystal with natural lactose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The use of gentamicin-coated nails in complex open tibia fracture and revision cases: A retrospective analysis of a single centre case series and review of the literature. (United States)

    Metsemakers, W J; Reul, M; Nijs, S


    Despite modern advances in fracture care, deep (implant-related) infection remains a problem in the treatment of tibia fractures. There is some evidence that antibiotic-coated implants are beneficial in the prevention of this sometimes devastating complication. In the following study we describe our results using a gentamicin-coated intramedullary tibia nail (Expert Tibia Nail (ETN) PROtect™) for the surgical treatment of complex open tibia fracture and revision cases. We describe the outcome of patients treated between January 2012 and September 2013, using a gentamicin-coated intramedullary tibia nail. Treatment indications included acute, Gustilo grade II-III, open tibia fractures or closed tibia fractures with long-term external fixation prior to intramedullary nailing and complex tibia fracture revision cases with a mean of three prior surgical interventions. Outcome parameters in this study were deep infection and nonunion. In total, 16 consecutive patients with 16 tibia fractures were treated with a gentamicin-coated intramedullary nail. The overall patient population was subdivided into two groups. The first group consisted of 11 patients (68.8%) with acute fractures who were treated with a gentamicin-coated intramedullary nail. The second group consisted of 5 complex revision cases (31.2%). In our patient population no deep infections could be noted after the treatment with a gentamicin-coated tibia nail. Nonunion was diagnosed in 4 patients (25.0%), 1 of these was a revision case. Musculoskeletal complications place a cost burden on total healthcare expenditure. Better understanding of the epidemiology and pathogenesis is essential because this can lead to prevention rather than treatment strategies. The purpose of the study was to evaluate a gentamicin-coated tibia nail in the prevention of deep (implant-related) infection. In our patient population no deep infections occurred after placement of the gentamicin-coated nail. Following this study and

  6. A New Manganese Dinuclear Complex with Phenolate Ligands and a Single Unsupported Oxo Bridge. Storage of Two Positive Charges within Less than 500 mV. Relevance to Photosynthesis. (United States)

    Horner, Olivier; Anxolabéhère-Mallart, Elodie; Charlot, Marie-France; Tchertanov, Lyuba; Guilhem, Jean; Mattioli, Tony A.; Boussac, Alain; Girerd, Jean-Jacques


    The compound [Mn(III)(2)OL(2)](ClO(4))(2).2.23CHCl(3).0.65CH(2)Cl(2) where L(-) is the monoanionic N,N-bis(2-pyridylmethyl)-N'-salicyliden-1,2-diaminoethane ligand, has been synthesized. The complex dication [Mn(III)(2)OL(2)](2+) contains a linear Mn(III)-O-Mn(III) unit with a Mn-Mn distance of 3.516 Å. The pentadentate ligand L(-) wraps around the Mn(III) ion. Electrochemically, it is possible to prepare the one electron oxidized trication [Mn(2)OL(2)](3+) which crystallizes as [Mn(2)OL(2)](ClO(4))(2.37)(PF(6))(0.63).1.5CH(3)CN. The complex trication [Mn(2)OL(2)](3+) contains a Mn(III)-O-Mn(IV) unit with a Mn-Mn distance of 3.524 Å and a Mn-O-Mn angle of 178.7(2) degrees. The contraction of the coordination sphere around the Mn(IV) is clearly observed. The [Mn(2)OL(2)](2+) dication possesses a S = 0 electronic ground state with J = -216 cm(-)(1) (H = -JS(1)().S(2)()), whereas the [Mn(2)OL(2)](3+) trication shows a S = (1)/(2) ground state with J = -353 cm(-)(1). The UV-visible spectrum of [Mn(2)OL(2)](3+) exhibits an intense absorption band (epsilon = 3040 M(-)(1) cm(-)(1)) centered at 570 nm assigned to a phenolate --> Mn(IV) charge-transfer transition. The potentials of the redox couples determined by cyclic voltammetry are E degrees ([Mn(2)OL(2)](3+)/[Mn(2)OL(2)](2+)) = 0.54 V/saturated calomel electrode (SCE) and E degrees ([Mn(2)OL(2)](4+)/[Mn(2)OL(2)](3+)) = 0.99 V/SCE. Upon oxidation at 1.3 V/SCE, the band at 570 nm shifts to 710 nm (epsilon = 2500 M(-)(1) cm(-)(1)) and a well-defined band appears at 400 nm which suggests the formation of a phenoxyl radical. The [Mn(2)OL(2)](3+)( )()complex exhibits a 18-line X-band electron paramagnetic resonance (EPR) spectrum which has been simulated with rhombic tensors |A(1)(x)()| = 160 x 10(-)(4) cm(-)(1); |A(1)(y)()| = 130 x 10(-)(4) cm(-)(1); |A(1)(z)()| = 91 x 10(-)(4) cm(-)(1); |A(2)(x)()| = 62 x 10(-)(4) cm(-)(1); |A(2)(y)()| = 59 x 10(-)(4) cm(-)(1); |A(2)(z)()| = 62 x 10(-)(4) cm(-)(1) and g(x)() = 2.006; g

  7. Blow-Ups in Generalized Complex Geometry

    NARCIS (Netherlands)

    van der Leer Duran, J.L.


    Generalized complex geometry is a theory that unifies complex geometry and symplectic geometry into one single framework. It was introduced by Hitchin and Gualtieri around 2002. In this thesis we address the following question: given a generalized complex manifold together with a submanifold, does

  8. Managing Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Posse, Christian; Malard, Joel M.


    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  9. Tuning the conversion of cyclohexane into cyclohexanol/one by molecular dioxygen, protons and reducing agents at a single non-porphyrinic iron centre and chemical versatility of the tris(2-pyridylmethyl)amine TPAFe(II)Cl2 complex in mild oxidation chemistry. (United States)

    Jaafar, Hassen; Vileno, Bertrand; Thibon, Aurore; Mandon, Dominique


    We report that the oxygen sensitivity of some Fe(II) complexes with tripodal ligands can be used, with benefit, in the oxidation of cyclohexane under mild conditions. Depending on the solvent, two very different reaction pathways are involved, which share the coordination of O(2) to the metal as the common initial step. We have synthesized a series of α-chlorinated tripods in the tris(2-pyridylmethyl)amine series Cl(n)TPA (n = 1-3) and fully characterized the corresponding FeX(2) complexes (X = Cl, CF(3)SO(3)). The single-crystal X-ray structure analyses of the FeCl(2) complexes are reported. In CH(3)CN, the FeCl(2) complexes react smoothly with O(2), whereas the Fe(CF(3)SO(3))(2) complexes are non-sensitive. In CH(3)CN, the reaction of the oxygen-sensitive Cl(n)TPAFeCl(2) (n = 0-3) with O(2), acetic acid and zinc amalgam, in the presence of cyclohexane, affords a mixture of cyclohexanol/one in an ≈ ol/one ratio of 3.1 and a selectivity of the C3°/C2° in the adamantane conversion that is consistent with a metal-oxo based oxidation. Limited efficiency (≈ 2 TON) was observed for the parent TPAFeCl(2) complex and Cl(1)TPAFeCl(2), whereas both other complexes turned out to be poorly active. The TPAFeCl(2) complex was used to address mechanistic questions: when the reaction was carried out in pyridine, the ol/one ratio shifted to 0.15 while efficiency was improved by 7-fold. In pyridine and in the presence of a spin trap (DMPO), the radical-based character of the reaction was definitely established, by contrast with acetonitrile, where no oxygenated radicals were detected. Thus, the reactivity differences arise from involvement of two distinct active species. The dichotomous radical/biomimetic pathway is discussed to interpret these results.

  10. Time complexity and gate complexity

    International Nuclear Information System (INIS)

    Koike, Tatsuhiko; Okudaira, Yosuke


    We formulate and investigate the simplest version of time-optimal quantum computation theory (TO-QCT), where the computation time is defined by the physical one and the Hamiltonian contains only one- and two-qubit interactions. This version of TO-QCT is also considered as optimality by sub-Riemannian geodesic length. The work has two aims: One is to develop a TO-QCT itself based on a physically natural concept of time, and the other is to pursue the possibility of using TO-QCT as a tool to estimate the complexity in conventional gate-optimal quantum computation theory (GO-QCT). In particular, we investigate to what extent is true the following statement: Time complexity is polynomial in the number of qubits if and only if gate complexity is also. In the analysis, we relate TO-QCT and optimal control theory (OCT) through fidelity-optimal computation theory (FO-QCT); FO-QCT is equivalent to TO-QCT in the limit of unit optimal fidelity, while it is formally similar to OCT. We then develop an efficient numerical scheme for FO-QCT by modifying Krotov's method in OCT, which has a monotonic convergence property. We implemented the scheme and obtained solutions of FO-QCT and of TO-QCT for the quantum Fourier transform and a unitary operator that does not have an apparent symmetry. The former has a polynomial gate complexity and the latter is expected to have an exponential one which is based on the fact that a series of generic unitary operators has an exponential gate complexity. The time complexity for the former is found to be linear in the number of qubits, which is understood naturally by the existence of an upper bound. The time complexity for the latter is exponential in the number of qubits. Thus, both the targets seem to be examples satisfyng the preceding statement. The typical characteristics of the optimal Hamiltonians are symmetry under time reversal and constancy of one-qubit operation, which are mathematically shown to hold in fairly general situations.

  11. Welding complex

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, V.K.; Kuchuk-Yatsenko, S.I.; Sakharnov, V.A.; Galyan, B.A.; Krivenko, V.G.; Asoyants, G.B.


    A welding complex for construction of a continuous underwater pipeline is adapted to be installed aboard a ship. The complex includes a welding machine positionable at a joint of the pipeline with a pipe section to be welded, burr-removing trimmers positionable coaxially with the pipeline for displacement relative to the pipeline in the joint area, and a support device for the end part of the pipeline. A rotatably mounted holding device for setting, holding, and retaining the pipe section to be welded, the welding machine, and the trimmers is axially aligned with the end part of the pipeline. An accumulator is provided for storing and delivering successive pipe sections at a loading position laterally offset from the common axis of the pipeline and of the pipe section to be welded to it. The holding device includes a platform movable along the common axis of the pipeline and of the pipe section to be welded to it by a resistance butt welding machine, and a plate with a means for carrying the pipe section to be welded which is mounted on a pivot carried by the platform for rotation between the loading position and the aligning position. The welding complex of the invention provides for implementing resistance butt welding in construction of continuous underwater pipelines and ensures the accuracy of alignment and permanence of the gap between the edges being welded. The welding complex's structure allows handling of longer pipe sections, thus reducing the overall number of joints to be welded. 7 figs.

  12. An integrated in silico approach to analyze the involvement of single amino acid polymorphisms in FANCD1/BRCA2-PALB2 and FANCD1/BRCA2-RAD51 complex. (United States)

    Doss, C George Priya; Nagasundaram, N


    Fanconi anemia (FA) is an autosomal recessive human disease characterized by genomic instability and a marked increase in cancer risk. The importance of FANCD1 gene is manifested by the fact that deleterious amino acid substitutions were found to confer susceptibility to hereditary breast and ovarian cancers. Attaining experimental knowledge about the possible disease-associated substitutions is laborious and time consuming. The recent introduction of genome variation analyzing in silico tools have the capability to identify the deleterious variants in an efficient manner. In this study, we conducted in silico variation analysis of deleterious non-synonymous SNPs at both functional and structural level in the breast cancer and FA susceptibility gene BRCA2/FANCD1. To identify and characterize deleterious mutations in this study, five in silico tools based on two different prediction methods namely pathogenicity prediction (SIFT, PolyPhen, and PANTHER), and protein stability prediction (I-Mutant 2.0 and MuStab) were analyzed. Based on the deleterious scores that overlap in these in silico approaches, and the availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by FANCD1/BRCA2 gene. In this work, we report the results of the first molecular dynamics (MD) simulation study performed to analyze the structural level changes in time scale level with respect to the native and mutated protein complexes (G25R, W31C, W31R in FANCD1/BRCA2-PALB2, and F1524V, V1532F in FANCD1/BRCA2-RAD51). Analysis of the MD trajectories indicated that predicted deleterious variants alter the structural behavior of BRCA2-PALB2 and BRCA2-RAD51 protein complexes. In addition, statistical analysis was employed to test the significance of these in silico tool predictions. Based on these predictions, we conclude that the identification of disease-related SNPs by in silico methods, in combination with MD

  13. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2'-deoxyguanosine structural motif. (United States)

    Hughes, Colan E; Reddy, G N Manjunatha; Masiero, Stefano; Brown, Steven P; Williams, P Andrew; Harris, Kenneth D M


    Derivatives of guanine exhibit diverse supramolecular chemistry, with a variety of distinct hydrogen-bonding motifs reported in the solid state, including ribbons and quartets, which resemble the G-quadruplex found in nucleic acids with sequences rich in guanine. Reflecting this diversity, the solid-state structural properties of 3',5'-bis- O -decanoyl-2'-deoxyguanosine, reported in this paper, reveal a hydrogen-bonded guanine ribbon motif that has not been observed previously for 2'-deoxyguanosine derivatives. In this case, structure determination was carried out directly from powder XRD data, representing one of the most challenging organic molecular structures (a 90-atom molecule) that has been solved to date by this technique. While specific challenges were encountered in the structure determination process, a successful outcome was achieved by augmenting the powder XRD analysis with information derived from solid-state NMR data and with dispersion-corrected periodic DFT calculations for structure optimization. The synergy of experimental and computational methodologies demonstrated in the present work is likely to be an essential feature of strategies to further expand the application of powder XRD as a technique for structure determination of organic molecular materials of even greater complexity in the future.

  14. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui


    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  15. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry


    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  16. Cationic metal complex, carbonatobis(1,10-phenanthroline)cobalt(III) as anion receptor: Synthesis, characterization, single crystal X-ray structure and packing analysis of [Co(phen) 2CO 3](3,5-dinitrobenzoate)·5H 2O (United States)

    Sharma, Raj Pal; Singh, Ajnesh; Brandão, Paula; Felix, Vitor; Venugopalan, Paloth


    To explore the potential of [Co(phen) 2CO 3] + as anion receptor, red coloured single crystals of [Co(phen) 2CO 3](dnb)·5H 2O (dnb = 3,5-dinitrobenzoate) were obtained by recrystallizing the red microcrystalline product synthesised by the reaction of carbonatobis (1,10-phenanthroline)cobalt(III)chloride with sodium salt of 3,5-dinitrobenzoic acid in aqueous medium (1:1 molar ratio). The newly synthesized complex salt has been characterized by elemental analysis, spectroscopic studies (IR, UV/visible, 1H and 13C NMR), solubility and conductance measurements. The complex salt crystallizes in the triclinic crystal system with space group P1¯, having the cell dimensions a = 10.3140(8), b = 12.2885(11), c = 12.8747(13), α = 82.095(4), β = 85.617(4), γ = 79.221(4)°, V = 1585.6(2) Å 3, Z = 2. Single crystal X-ray structure determination revealed ionic structure consisting of cationic carbonatobis(1,10-phenanthroline)cobalt(III), dnb anion and five lattice water molecule. In the complex cation [Co(phen) 2CO 3] +, the cobalt(III) is bonded to four nitrogen atoms, originating from two phenanthroline ligands and two oxygen atoms from the bidentate carbonato group showing an octahedral geometry around cobalt(III) center. Supramolecular networks between ionic groups [ CHphen+⋯Xanion-] by second sphere coordination i.e. C sbnd H⋯O (benzoate), C sbnd H⋯O (nitro), C sbnd H⋯O (water) besides electrostatic forces of attraction alongwith π-π interactions stabilize the crystal lattice.

  17. Heterolytic cleavage of ammonia N-H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance

    KAUST Repository

    Gouré, Eric


    Ammonia N-H bond is cleaved at room temperature by the silica-supported tantalum imido amido complex [(≡SiO)2Ta(NH)(-NH2)], 2, if excess ammonia is present, but requires 150 °C to achieve the same reaction if only one equivalent NH3 is added to 2. MAS solid-state 15N NMR and in situ IR spectroscopic studies of the reaction of either 15N or 2H labeled ammonia with 2 show that initial coordination of the ammonia is followed by scrambling of either 15N or 2H among ammonia, amido and imido groups. Density functional theory (DFT) calculations with a cluster model [{(μ-O)[(H3SiO) 2SiO]2}Ta(NH)(-NH2)(NH3)], 2 q·NH3, show that the intramolecular H transfer from Ta-NH2 to TaNH is ruled out, but the H transfers from the coordinated ammonia to the amido and imido groups have accessible energy barriers. The energy barrier for the ammonia N-H activation by the Ta-amido group is energetically preferred relative to the Ta-imido group. The importance of excess NH3 for getting full isotope scrambling is rationalized by an outer sphere assistance of ammonia acting as proton transfer agent, which equalizes the energy barriers for H transfer from coordinated ammonia to the amido and imido groups. In contrast, additional coordinated ammonia does not favor significantly the H transfer. These results rationalize the experimental conditions used. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011.

  18. Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof

    triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We....... One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects....

  19. Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+(M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

    DEFF Research Database (Denmark)

    Chappell, Sarah; Brooke, Carly; Nichols, Richard John


    Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this...... potential in ionic liquid electrolyte, and the conductance–overpotential relationship is found to fit well with the Kuznetsov–Ulstrup relationship, which is essentially a hopping description.......Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths .... In this work we present evidence that, for a family of conjugated, redox-active metal complexes, hopping may be a significant factor for even the shortest molecule studied (ca. 1 nm between contact atoms). The length dependence of conductance for two series of such complexes which differ essentially...

  20. Complex variables

    CERN Document Server

    Flanigan, Francis J


    A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: ""A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation."" Not so here-Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion

  1. ComplexRec 2017: Recommendation in Complex Scenarios

    DEFF Research Database (Denmark)

    Recommendation algorithms for ratings prediction and item ranking have steadily matured during the past decade. However, these state-of-the-art algorithms are typically applied in relatively straightforward scenarios. In reality, recommendation is often a more complex problem: it is usually just...... a single step in the user's more complex background need. These background needs can often place a variety of constraints on which recommendations are interesting to the user and when they are appropriate. However, relatively little research has been done on these complex recommendation scenarios....... The ComplexRec 2017 workshop addressed this by providing an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all-solution....

  2. Workshop on Recommendation in Complex Scenarios (ComplexRec 2017)

    DEFF Research Database (Denmark)

    Bogers, Toine; Koolen, Marijn; Mobasher, Bamshad


    Recommendation algorithms for ratings prediction and item ranking have steadily matured during the past decade. However, these state-of-the-art algorithms are typically applied in relatively straightforward scenarios. In reality, recommendation is often a more complex problem: it is usually just...... a single step in the user's more complex background need. These background needs can often place a variety of constraints on which recommendations are interesting to the user and when they are appropriate. However, relatively little research has been done on these complex recommendation scenarios....... The ComplexRec 2017 workshop addressed this by providing an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all-solution....

  3. Increase of Organization in Complex Systems


    Georgiev, Georgi Yordanov; Daly, Michael; Gombos, Erin; Vinod, Amrit; Hoonjan, Gajinder


    Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system -...

  4. Synthesis of Ru alkylidene complexes

    Directory of Open Access Journals (Sweden)

    Renat Kadyrov


    Full Text Available The present work describes the robust synthesis of Ru alkylidene complexes (PCy32Cl2Ru=CHR – precursors for metathesis catalysts. Moreover, the dynamic behavior of complexes where R = 2-naphthyl and 2-thienyl was studied. 1H NMR techniques were employed to establish the preferred conformations in solution for both complexes and the energy barrier for rotation around single (Ru=CH–C(thienyl bond was estimated (ΔG≠303K = 12.6 kcal/mol.

  5. Complex Systems

    Directory of Open Access Journals (Sweden)

    Yi Zhao


    Full Text Available Quantum instanton (QI approximation is recently proposed for the evaluations of the chemical reaction rate constants with use of full dimensional potential energy surfaces. Its strategy is to use the instanton mechanism and to approximate time-dependent quantum dynamics to the imaginary time propagation of the quantities of partition function. It thus incorporates the properties of the instanton idea and the quantum effect of partition function and can be applied to chemical reactions of complex systems. In this paper, we present the QI approach and its applications to several complex systems mainly done by us. The concrete systems include, (1 the reaction of H+CH4→H2+CH3, (2 the reaction of H+SiH4→H2+SiH3, (3 H diffusion on Ni(100 surface; and (4 surface-subsurface transport and interior migration for H/Ni. Available experimental and other theoretical data are also presented for the purpose of comparison.

  6. Cosmic Complexity (United States)

    Mather, John C.


    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  7. Herding Complex Networks

    KAUST Repository

    Ruf, Sebastian F.


    The problem of controlling complex networks is of interest to disciplines ranging from biology to swarm robotics. However, controllability can be too strict a condition, failing to capture a range of desirable behaviors. Herdability, which describes the ability to drive a system to a specific set in the state space, was recently introduced as an alternative network control notion. This paper considers the application of herdability to the study of complex networks. The herdability of a class of networked systems is investigated and two problems related to ensuring system herdability are explored. The first is the input addition problem, which investigates which nodes in a network should receive inputs to ensure that the system is herdable. The second is a related problem of selecting the best single node from which to herd the network, in the case that a single node is guaranteed to make the system is herdable. In order to select the best herding node, a novel control energy based herdability centrality measure is introduced.

  8. Syntheses of the Uranium Complexes [U{N(SiMe(3))(2)}(2){N(SiMe(3))(SiMe(2)CH(2)B(C(6)F(5))(3))}] and [U{C(Ph)(NSiMe(3))(2)}(2){&mgr;(3)-BH(4)}(2)]. Determination of Hydrogen Positions by Single-Crystal X-ray and Neutron Diffraction. (United States)

    Müller, Matthias; Williams, V. Cliff; Doerrer, Linda H.; Leech, Michael A.; Mason, Sax A.; Green, Malcolm L. H.; Prout, Keith


    The complex [U{N(SiMe(3))(2)}(2){N(SiMe(3))(SiMe(2)CH(2)B(C(6)F(5))(3))}] (1) is formed in the reaction between the hydride complex [U{N(SiMe(3))(2)}(3)(H)] and B(C(6)F(5))(3), and H(2) is evolved. The X-ray [C(36)H(53)BF(15)N(3)Si(6)U.3.5C(6)D(6), triclinic, space group P&onemacr;, Z = 2, 90 K, a = 14.065(1) Å, b = 14.496(1) Å, c = 18.759(1) Å, alpha = 82.898(1) degrees, beta = 74.415(1) degrees, gamma = 62.919(1) degrees ] and neutron structure [C(36)H(53)BF(15)N(3)Si(6)U.3.5C(6)D(6), triclinic, space group P&onemacr;, Z = 2, 20 K, a = 13.993(1) Å, b = 14.484(1) Å, c = 18.720(1) Å, alpha = 82.810(1) degrees, beta = 74.200(1) degrees, gamma = 63.054(1)E] of compound 1, which crystallizes with 3.5 molecules of C(6)D(6) per asymmetric unit, show the electron deficiency of the uranium atom to be effectively compensated by the formation of multicenter bonds between U and three Si-CH(2) units of the amido ligands. The reaction of the uranium complex [U{C(Ph)(NSiMe(3))(2)}(2)(Cl)(2)] with [Na(BH(4))] gives the complex [U{C(Ph)(NSiMe(3))(2)}(2){&mgr;(3)-BH(4)}(2)] (2). The X-ray structure of 2 [C(26)H(54)B(2)N(4)Si(4)U, monoclinic, space group C2/c, Z = 4, 90 K, a = 21.613(1) Å, b = 9.233(1) Å, c = 18.132(1) Å, beta = 98.804(1) degrees ] proves unequivocally the &mgr;(3) coordination of the BH(4) moieties. In both single-crystal X-ray structure determinations, all hydrogen and deuterium atoms could be located and isotropically refined, including those which are directly coordinated to the uranium. The reliability of the refined hydrogen and deuterium positions for compound 1 is confirmed by comparison of the X-ray and neutron structure determinations. The ability to locate the hydrogen and deuterium positions in these uranium compounds by single-crystal X-ray diffraction is due to good crystal quality, the measurement of data at low temperature, and the use of image plate technology for data collection.

  9. Single port Billroth I gastrectomy

    Directory of Open Access Journals (Sweden)

    Jeremy R Huddy


    Full Text Available Introduction: Experience has allowed increasingly complex procedures to be undertaken by single port surgery. We describe a technique for single port Billroth I gastrectomy with a hand-sewn intracorporeal anastomosis in the resection of a benign tumour diagnosed incidentally on a background of cholelithiasis. Materials and Methods: Single port Billroth I gastrectomy and cholecystectomy was performed using a transumbilical quadport. Flexible tipped camera and straight conventional instruments were used throughout the procedure. The stomach was mobilised including a limited lymph node dissection and resection margins in the proximal antrum and duodenum were divided with a flexible tipped laparoscopic stapler. The lesser curve was reconstructed and an intracorporal hand sewn two layer end-to-end anastomosis was performed using unidirectional barbed sutures. Intraoperative endoscopy confirmed the anastomosis to be patent without leak. Results: Enteral feed was started on the day of surgery, increasing to a full diet by day 6. Analgesic requirements were a patient-controlled analgesia morphine pump for 4 postoperative days and paracetamol for 6 days. There were no postoperative complications and the patient was discharged on the eighth day. Histology confirmed gastric submucosal lipoma. Discussion: As technology improves more complex procedures are possible by single port laparoscopic surgery. In this case, flexible tipped cameras and unidirectional barbed sutures have facilitated an intracorporal hand-sewn two layer end-to-end anastomosis. Experience will allow such techniques to become mainstream.

  10. Single-Cell Genomic Analysis in Plants

    Directory of Open Access Journals (Sweden)

    Yuxuan Yuan


    Full Text Available Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis.

  11. Magnetic properties of 1 : 4 complexes of CoCl2 and pyridines carrying carbenes (S(0) = 4/2, 6/2, and 8/2) in diluted frozen solution; influence of carbene multiplicity on heterospin single-molecule magnets. (United States)

    Karasawa, Satoru; Nakano, Kimihiro; Tanokashira, Jun-ichi; Yamamoto, Noriko; Yoshizaki, Takahito; Koga, Noboru


    The microcrystalline sample of a parent complex, [CoCl(2)(py)(4)], showed a single-molecule magnet (SMM) behavior with an effective activation barrier, U(eff)/k(B), of 16 K for reversal of the magnetism in the presence of a dc field of 3 kOe. Pyridine ligands having 2-4 diazo moieties, DYpy; Y = 2, 3l, 3b, and 4, were prepared and confirmed to be quintet, septet, septet, and nonet in the ground state, respectively, after irradiation. The 1 : 4 complexes, CoCl(2)(DYpy)(4); Y = 2, 3l, 3b, and 4 in frozen solutions after irradiation showed the magnetic behaviors of SMMs with total spin multiplicity, S(total) = 17/2, 25/2, 25/2, and 33/2, respectively. Hysteresis loops depending on the temperature were observed and the values of coercive force, H(c), at 1.9 K were 12, 8.4, 11, and 8.1 kOe for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively. In dynamic magnetic susceptibility experiments, ac magnetic susceptibility data obeyed the Arrhenius law to give U(eff)/k(B) values of 94, 92, 93, and 87 K for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively, while the relaxation times for CoCl(2)(CYpy)(4); Y = 2 and 3l, obtained by dc magnetization decay in the range of 3.5-1.9 K slightly deviated downward from Arrhenius plots on cooling. The dynamic magnetic behaviors for CoCl(2)(CYpy)(4) including [CoCl(2)(py)(4)] and CoCl(2)(C1py)(4) suggested that the generated carbenes interacted with the cobalt ion to increase the relaxation time, τ(q), due to the spin quantum tunneling magnetization, which became larger with increasing S(total) of the complex.

  12. Conformation driven complexation of two analogous benzimidazole ...

    Indian Academy of Sciences (India)

    tion quality single crystals of the complex, suitable for single crystal diffraction experiments, were obtained by slow evaporation of the acetonitrile solution within a ..... Othman A, Evans J S O, Evans I R, Harris R K and. Hodgkinson P 2007 J. Pharma. Sci. 96 1380. 57. Babu N J and Nangia A 2006 Cryst. Growth Des. 6. 1753.

  13. Synthesis of copper and nickel complexes using compartmental ...

    Indian Academy of Sciences (India)


    been analysed by X-ray crystallography. Complexes 1 and 3 have square pyramidal geometry. The co-ordination geometry around the metal ion in complex 7 is square planar and that in complex 10 is octahedral. The electrochemical property of the complexes was studied using cyclic voltammetry. A single quasi-reversible ...

  14. Ecotypes of the Mycobacterium tuberculosis complex.

    NARCIS (Netherlands)

    Smith, Noel H; Kremer, Kristin; Inwald, Jacqueline; Dale, James; Driscoll, Jeffrey R; Gordon, Stephen V; Soolingen, Dick van; Hewinson, R Glyn; Smith, John Maynard


    A phylogeny of the Mycobacterium tuberculosis complex has recently shown that the animal-adapted strains are found in a single lineage marked by the deletion of chromosomal region 9 (RD9) [Brosch et al., 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad.

  15. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)


    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  16. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.


    Thermodynamics has always been a remarkable science in that it studies macroscopic properties that are only partially determined by the properties of individual molecules. Entropy and free energy only exist in constellations of more than a single molecule (degree of freedom). They are the so...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... by taking into account both the molecular properties and the emergent properties that are due to (dys)organisation. This redefinition will free nonequilibrium thermodynamics from the limitations imposed by earlier near-equilibrium assumptions, resolve the duality with kinetics, and bridge the apparent gap...

  17. Single Audit: Single Audit Act Effectiveness Issues

    National Research Council Canada - National Science Library

    Thompson, Sally


    As discussed in the report we are releasing today, our work to review agency actions to ensure that recipients take timely and appropriate corrective actions to fix audit findings contained in single...

  18. Single photon from a single trapped atom

    International Nuclear Information System (INIS)

    Dingjan, J.; Jones, M.P.A.; Beugnon, J.; Darquiee, B.; Bergamini, S.; Browaeys, A.; Messin, G.; Grangier, P.


    Full text: A quantum treatment of the interaction between atoms and light usually begins with the simplest model system: a two-level atom interacting with a monochromatic light wave. Here we demonstrate an elegant experimental realization of this system using an optically trapped single rubidium atom illuminated by resonant light pulses. We observe Rabi oscillations, and show that this system can be used as a highly efficient triggered source of single photons with a well-defined polarisation. In contrast to other sources based on neutral atoms and trapped ions, no optical cavity is required. We achieved a flux of single photons of about 10 4 s -1 at the detector, and observe complete antibunching. This source has potential applications for distributed atom-atom entanglement using single photons. (author)

  19. The DFT calculations of structures and EPR parameters for the dinuclear paddle-wheel copper(II) complex {Cu_2(μ_2-O_2CCH_3)_4}(OCNH{sub 2}CH{sub 3}) as powder or single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua [Univ. of Electronic Science and Technology of China, Chengdu (China). School of Physical Electronics


    Density functional theory (DFT) calculations of the structures and the Cu{sup 2+} g factors (g{sub x}, g{sub y} and g{sub z}) and hyperfine coupling tensor A (A{sub x}, A{sub y} and A{sub z}) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu_2(μ_2-O_2CCH_3)_4}(OCNH{sub 2}CH{sub 3}) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO{sub 5}] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO{sub 5}] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH{sub 2}CH{sub 3}, NH{sub 3} and H{sub 2}O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.

  20. Structural insights, protein-ligand interactions and spectroscopic characterization of isoformononetin (United States)

    Srivastava, Anubha; Singh, Harshita; Mishra, Rashmi; Dev, Kapil; Tandon, Poonam; Maurya, Rakesh


    Isoformononetin, a methoxylated isoflavone present in medicinal plants, has non-estrogenic bone forming effect via differential mitogen-activated protein kinase (MAPK) signaling. Spectroscopic (FT-Raman, FT-IR, UV-vis and NMR spectra) and quantum chemical calculations using density functional theory (DFT) and 6-311++G(d,p) as a large basis set have been employed to study the structural and electronic properties of isoformononetin. A detailed conformational analysis is performed to determine the stability among conformers and the various possibilities of intramolecular hydrogen bonding formation. Molecular docking studies with different protein kinases were performed on isoformononetin and previously studied isoflavonoid, formononetin in order to understand their inhibitory nature and the effect of functional groups on osteogenic or osteoporosis associated proteins. It is found that the oxygen atoms of methoxy, hydroxyl groups attached to phenyl rings R1, R3 and carbonyl group attached to pyran ring R2, play a major role in binding with the protein kinases that is responsible for the osteoporosis; however, no hydrophobic interactions are observed between rings of ligand and protein. The electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT which predict that conformer II is a little bit more stable and chemically low reactive than conformer I of isoformononetin. To estimate the structure-activity relationship, the molecular electrostatic potential (MEP) surface map, and reactivity descriptors are calculated from the optimized geometry of the molecule. From these results, it is also found that isoformononetin is kinetically more stable, less toxic, weak electrophile and chemically less reactive than formononetin. The atoms in molecules and natural bond orbital analysis are applied for the detailed analysis of intra and intermolecular hydrogen bonding interactions.

  1. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures. (United States)

    Lee, Hui Sun; Im, Wonpil


    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  2. Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligand Interaction. (United States)

    Jacobsen, Michael T; Fairhead, Michael; Fogelstrand, Per; Howarth, Mark


    Chemical modification of proteins provides great opportunities to control and visualize living systems. The most common way to modify proteins is reaction of their abundant amines with N-hydroxysuccinimide (NHS) esters. Here we explore the impact of amine number and positioning on protein-conjugate behavior using streptavidin-biotin, a central research tool. Dye-NHS modification of streptavidin severely damaged ligand binding, necessitating development of a new streptavidin-retaining ultrastable binding after labeling. Exploring the ideal level of dye modification, we engineered a panel bearing 1-6 amines per subunit: "amine landscaping." Surprisingly, brightness increased as amine number decreased, revealing extensive quenching following conventional labeling. We ultimately selected Flavidin (fluorophore-friendly streptavidin), combining ultrastable ligand binding with increased brightness after conjugation. Flavidin enhanced fluorescent imaging, allowing more sensitive and specific cell labeling in tissues. Flavidin should have wide application in molecular detection, providing a general insight into how to optimize simultaneously the behavior of the biomolecule and the chemical probe. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.

    Directory of Open Access Journals (Sweden)

    Daniel B Roche

    Full Text Available The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP experiment, utilizing the Matthews Correlation Coefficient (MCC and Binding-site Distance Test (BDT metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall's τ, Spearman's ρ and Pearson's r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC when Receiver Operator Characteristic (ROC analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%, and one of the top manual groups (FN293 tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.

  4. Miniature protein ligands for EVH1 domains: Interplay between affinity, specificity, and cell motility⊥


    Holtzman, Jennifer H.; Woronowicz, Kamil; Golemi-Kotra, Dasantila; Schepartz, Alanna


    Dynamic rearrangements of the actin cytoskeleton power cell motility in contexts ranging from intracellular microbial pathogenesis to axon guidance. The Ena/VASP family proteins--Mena, VASP, and Evl--are believed to control cell motility by serving as a direct link between signaling events and the actin cytoskeleton. Our lab has previously reported a novel miniature protein, pGolemi, which binds with high affinity to the EVH1 domain of Mena (Mena1-112) but not to those of VASP (VASP1-115) or ...

  5. Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts. (United States)

    Monaco, Serena; Tailford, Louise E; Juge, Nathalie; Angulo, Jesus


    Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP-STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D 2 O/H 2 O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP-STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches

    National Research Council Canada - National Science Library

    Lee, Michael S; Olson, Mark A


    .... The results of this approach agree well with experimentally observed binding affinities. Also assessed is a commonly used approximate endpoint approach, which separately estimates enthalpy, solvation free energy, and entropy...

  7. The Novel Dipeptide Translocator Protein Ligand, Referred to As GD-23, Exerts Anxiolytic and Nootropic Activities


    Povarnina, P. Yu.; Yarkov, S. A.; Gudasheva, T. A.; Yarkova, M. A.; Seredenin, S. B.


    The translocator protein (TSPO) promotes the translocation of cholesterol to the inner mitochondrial membrane and mediates steroid formation. In this study, we first report on a biological evaluation of the dipeptide GD-23 (N-carbobenzoxy-L tryptophanyl-L isoleucine amide), a structural analogue of Alpidem, the principal TSPO ligand. We show that GD-23 in a dose range of 0.05 to 0.5 mg/kg (i.p.) exhibits anxiolytic activity in the elevated plus maze test and nootropic activity in the object r...

  8. Preclinical Testing of a Translocator Protein Ligand for the Treatment of Amyotrophic Lateral Sclerosis (United States)


    in their retention times and are not masked by endogenous components of the brain matrix (Fig. 11). The internal standard is spiked in both...vesicle SV2 (Developmental Studies Hybridoma Bank ), rabbit monoclonal anti-neurofilament H (200 KDa) (EMD Millipore). α-Bungarotoxin-647 was used to...animals per group to complete the study). Ventral horn was defined as gray matter ventral to the central canal. Only MNs with a clearly identifiable

  9. IChem: A Versatile Toolkit for Detecting, Comparing, and Predicting Protein-Ligand Interactions. (United States)

    Da Silva, Franck; Desaphy, Jeremy; Rognan, Didier


    Structure-based ligand design requires an exact description of the topology of molecular entities under scrutiny. IChem is a software package that reflects the many contributions of our research group in this area over the last decade. It facilitates and automates many tasks (e.g., ligand/cofactor atom typing, identification of key water molecules) usually left to the modeler's choice. It therefore permits the detection of molecular interactions between two molecules in a very precise and flexible manner. Moreover, IChem enables the conversion of intricate three-dimensional (3D) molecular objects into simple representations (fingerprints, graphs) that facilitate knowledge acquisition at very high throughput. The toolkit is an ideal companion for setting up and performing many structure-based design computations. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Advanced protein-ligand scoring: successful prediction of cyclin-dependent kinase inhibition

    Czech Academy of Sciences Publication Activity Database

    Brahmkshatriya, Pathik; Fanfrlík, Jindřich; Řezáč, Jan; Dobeš, P.; Přenosil, Ondřej; Paruch, K.; Lepšík, Martin; Hobza, Pavel


    Roč. 156, Suppl. 1 (2012), S76-S76 ISSN 1213-8118. [International Congress Natural Anticancer Drugs. 30.06.2012-04.07.2012, Olomouc] R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : semiempirical quantum mechanics * cyclin-dependent kinase 2 Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Single-molecule magnet engineering

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Bendix, Jesper; Clérac, Rodolphe


    Tailoring the specific magnetic properties of any material relies on the topological control of the constituent metal ion building blocks. Although this general approach does not seem to be easily applied to traditional inorganic bulk magnets, coordination chemistry offers a unique tool...... to delicately tune, for instance, the properties of molecules that behave as "magnets", the so-called single-molecule magnets (SMMs). Although many interesting SMMs have been prepared by a more or less serendipitous approach, the assembly of predesigned, isolatable molecular entities into higher nuclearity...... complexes constitutes an elegant and fascinating strategy. This Feature article focuses on the use of building blocks or modules (both terms being used indiscriminately) to direct the structure, and therefore also the magnetic properties, of metal ion complexes exhibiting SMM behaviour. This journal is...

  12. Single frequency intracavity SRO

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben


    Summary form only given. A single resonance optical parametric oscillator (SRO) is inserted intracavity to a CW high power, single frequency, and ring Nd:YVO4 laser. We obtain a stable single frequency CW SRO with output at 1.7-1.9 μm (idler) and a resonating signal at 2.3-2.6 μm. The behavior...

  13. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas


    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  14. Mixed-metal phosphinito complexes of platinum(II) and palladium(II) with lanthanide and actinide elements. The single-crystal X-ray structure of (UO/sub 2/(OH/sub 2/)/(OPPh/sub 2/)/sub 2/Pd(S/sub 2/CNEt/sub 2/)//sub 2/)

    Energy Technology Data Exchange (ETDEWEB)

    Veitch, P.M.; Allan, J.R.; Blake, A.J.; Schroeder, M.


    The single-crystal X-ray structure of the complex shows a distorted pentagonal bipyramidal uranium (VI) ion lying on a crystallographic two-fold axis with the oxo ligands of the trans-UO/sub 2/ moiety, U=O = 1.774(7) A, occupying apical sites. The structure confirms co-ordination of two ((OPPh/sub 2/)/sub 2/Pd(S/sub 2/CNEt/sub 2/))/sup -/ moieties around Usup(VI). The four phosphinito ligands bridge Usup(VI) and the two Pdsup(II) centres with U-O = 2.289(7) and 2.342(6) A and Pd-P 2.2642(24) and 2.2455(23) A. An aqua ligand, U-O = 2.526(8) A, completes the co-ordination sphere around the uranyl centre. The Pdsup(II) centres are essentially planar, each being bound to two phosphinito and one bidentate dithiocarbamate ligand, Pd-S = 2.386(3) and 2.373(3) A.

  15. Characteristic Ligand-Induced Crystal Forms of HIV-1 Protease Complexes: A Novel Discovery of X-Ray Crystallography

    International Nuclear Information System (INIS)

    Olajuyigbe, Folasade M.; Geremia, Silvano


    Mixtures of saquinavir (SQV) and ritonavir (RTV) were cocrystallized with HIV-1 protease (PR) in an attempt to compare their relative potencies using a crystallographic approach and factors responsible for the respective crystal forms obtained were examined. The mixture ratio of the SQV/RTV was in the range of 1:1 to 1:50 with increasing concentration of dimethyl sulphoxide (DMSO) used. Two crystal forms of PR complexes were obtained. At concentrations of 0.8 and 1.2 % DMSO using 1:1 and 1:15 ratios of SQV/RTV, the crystal form was monoclinic while increasing the concentration of DMSO to 3.2 and 5.0% using 1:15 and 1:50 ratios of SQV/RTV, the orthorhombic crystal form was obtained. The high resolution X-ray crystal structures of the PR/ inhibitor complexes reveal that crystal forms with respective space groups are dependent on the occupancy of either SQV or RTV in the active site of the PR. The occupancy of either of the PR inhibitors in the active site of PR has interestingly demonstrated unique cooperativity effects in crystallization of protein-ligand complexes. The crystal forms obtained were also related to the concentration of DMSO and ammonium sulphate in crystallization, and storage conditions of purified PR. Surprisingly, the relative occupancies of these inhibitors in the active site suggested a competition between the two inhibitors which were not inhibition constants related. Analysis of the structures in both crystal forms show no difference in DMSO content but at higher concentration of DMSO (3.2 - 5.0%) in the orthorhombic crystal forms, there were protein-sulphate interactions which were absent in the monoclinic forms with lower concentration (0.8 - 1.2%) of DMSO. This work has clearly demonstrated that there is cooperativity in crystallization and the conditions of crystallization influence specific intermolecular contacts in crystal packing (crystal form). (author)

  16. The COMPLEXity in herpesvirus entry. (United States)

    Sathiyamoorthy, Karthik; Chen, Jia; Longnecker, Richard; Jardetzky, Theodore S


    Enveloped viruses have evolved diverse transmembrane proteins and protein complexes to enable host cell entry by regulating and activating membrane fusion in a target cell-specific manner. In general terms, the entry process requires a receptor binding step, an activation step and a membrane fusion step, which can be encoded within a single viral protein or distributed among multiple viral proteins. HIV and influenza virus, for example, encode all of these functions in a single trimeric glycoprotein, HIV env or influenza virus hemagglutinin (HA). In contrast, herpesviruses have the host receptor binding, activation and fusogenic roles distributed among multiple envelope glycoproteins (ranging from three to six), which must coordinate their functions at the site of fusion. Despite the apparent complexity in the number of viral entry proteins, herpesvirus entry is fundamentally built around two core glycoprotein entities: the gHgL complex, which appears to act as an 'activator' of entry, and the gB protein, which is thought to act as the membrane 'fusogen'. Both are required for all herpesvirus fusion and entry. In many herpesviruses, gHgL either binds host receptors directly or assembles into larger complexes with additional viral proteins that bind host receptors, conferring specificity to the cells that are targeted for infection. These gHgL entry complexes (ECs) are centrally important to activating gB-mediated membrane fusion and establishing viral tropism, forming membrane bridging intermediates before gB triggering. Here we review recent structural and functional studies of Epstein-Barr virus (EBV) and Cytomegalovirus (CMV) gHgL complexes that provide a framework for understanding the role of gHgL in herpesvirus entry. Furthermore, a recently determined EM model of Herpes Simplex virus (HSV) gB embedded in exosomes highlights how gB conformational changes may promote viral and cellular membrane fusion. Copyright © 2017. Published by Elsevier B.V.

  17. Fluorido complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan Balasekaran, Samundeeswari


    Fluorine chemistry has received considerable interest during recent years due to its significant role in the life sciences, especially for drug development. Despite the great nuclear medicinal importance of the radioactive metal technetium in radiopharmaceuticals, its coordination chemistry with the fluorido ligand is by far less explored than that of other ligands. Up to now, only a few technetium fluorides are known. This thesis contains the synthesis, spectroscopic and structural characterization of novel technetium fluorides in the oxidation states ''+1'', ''+2'', ''+4'' and ''+6''. In the oxidation state ''+6'', the fluoridotechnetates were synthesized either from nitridotechnetic(VI) acid or from pertechnetate by using reducing agent and have been isolated as cesium or tetraethylammonium salts. The compounds were characterized spectroscopically and structurally. In the intermediate oxidation state ''+4'', hexafluoridotechnetate(IV) was known for long time and studied spectroscopically. This thesis reports novel and improved syntheses and solved the critical issues of early publications such as the color, some spectroscopic properties and the structure of this key compound. Single crystal analyses of alkali metal, ammonium and tetramethylammonium salts of hexafluoridotechnetate(IV) are presented. In aqueous alkaline solutions, the ammonium salt of hexafluoridotechnetate(IV) undergoes hydrolysis and forms an oxido-bridged dimeric complex. It is the first step hydrolysis product of hexafluoridotechnetate(IV) and was characterized by spectroscopic and crystallographic methods. Low-valent technetium fluorides with the metal in the oxidation states of ''+2'' or ''+1'' are almost unknown. A detailed description of the synthesis and characterization of pentafluoridonitrosyltechnetate(II) is presented. The

  18. Three perspectives on complexity: entropy, compression, subsymmetry (United States)

    Nagaraj, Nithin; Balasubramanian, Karthi


    There is no single universally accepted definition of `Complexity'. There are several perspectives on complexity and what constitutes complex behaviour or complex systems, as opposed to regular, predictable behaviour and simple systems. In this paper, we explore the following perspectives on complexity: effort-to-describe (Shannon entropy H, Lempel-Ziv complexity LZ), effort-to-compress (ETC complexity) and degree-of-order (Subsymmetry or SubSym). While Shannon entropy and LZ are very popular and widely used, ETC is relatively a new complexity measure. In this paper, we also propose a novel normalized complexity measure SubSym based on the existing idea of counting the number of subsymmetries or palindromes within a sequence. We compare the performance of these complexity measures on the following tasks: (A) characterizing complexity of short binary sequences of lengths 4 to 16, (B) distinguishing periodic and chaotic time series from 1D logistic map and 2D Hénon map, (C) analyzing the complexity of stochastic time series generated from 2-state Markov chains, and (D) distinguishing between tonic and irregular spiking patterns generated from the `Adaptive exponential integrate-and-fire' neuron model. Our study reveals that each perspective has its own advantages and uniqueness while also having an overlap with each other.

  19. Nano-soldering to single atomic layer (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA


    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  20. Mixed biexcitons in single quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher


    Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Delta(h) = 4.8 meV and Delta(m)= 2.8 meV is identified by polarization...

  1. A osteotomia em um plano oblíquo por corte único para correção de deformidades complexas diafisárias de ossos longos: um método para sua realização Single-cut oblique plane osteotomy to correct complex diaphyseal deformities of long bones: a method for its performance

    Directory of Open Access Journals (Sweden)

    Ralph Walter Christian


    O: O presente estudo mostrou ser possível estabelecer um método confiável e reprodutível para a técnica da osteotomia em plano oblíquo por corte único para a correção de deformidades diafisárias complexas de ossos longos.Correction of complex deformities, those with concomitant angular and torsional deviations, can be done by osteogenesis and by osteotomies. This study was performed to develop and apply a method of single-cut oblique plane osteotomy to correct complex diaphyseal deformities in long bones (femur or tibia and to check its applicability. METHODS: This prospective study involved 10 patients of both genders, ages ranging from 17 to 62, who presented with complex deformities of long bones (four in the femur, six in the tibia and were surgically treated by corrective osteotomy using the single-cut oblique plane technique. The patients were evaluated comparatively before and after surgery to measure the true angular deformities by a graphic method based on radiographic measurements of the deformed bone, and clinically for the torsional deformity and extension. Time till union and complications were also observed. Pre-operative planning determined the calculation of the bone-cutting angle. For each patient, an artificial model was made of the deformed bone, and the correction was simulated in such model. Drawings of the bone with annotations of the major surgical steps and the choice of the site and size of the synthesis material were made. The pre-operative planning guided the surgery. In the pre-operative stage, the patients had deformities with the following mean values: true angular deformity of 19º; torsion of 12º; shortening of 1.3 cm. RESULTS: After correction, the measurements showed the following mean values: true angular deformity of de 4º (p = 0.005; torsion of 1º (p = 0.005, and shortening of 0.6 cm (p = 0.027. Three patients had complications, two with delayed union, and one with late deep infection and delayed union. CONCLUSION: This

  2. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro


    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  3. Complex Systems: An Introduction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...

  4. Single molecule Studies of DNA Mismatch Repair (United States)

    Erie, Dorothy A.; Weninger, Keith R.


    DNA mismatch repair involves is a widely conserved set of proteins that is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair. PMID:24746644


    Directory of Open Access Journals (Sweden)

    N. O. Vaganova


    Full Text Available The aim of the present article is to reveal system effects of the university complexes including the organizations of professional education on different levels.Methodology and research methods. Theoretical methods: receipt of scientific information on systems, collection of data on university complexes; empirical: comparison and correlation of the obtained data.Results and scientific novelty. A university complex is designated as a system. The system effects being the results of integration of the organizations of professional education of different levels are educed: effect of instability of the hierarchical relations when preserving a certain structure of a university complex; effect of a single educational purpose, effect of influence of the external environment. These effects cause emergence of new quality of the integrated pedagogical system which is designated as «ability to self-regulating updating».Practical significance. The materials and results of the study can be used for further development of university complexes as organizations that integrate the establishments of vocational education on different levels.

  6. Single ventricle cardiac defect

    International Nuclear Information System (INIS)

    Eren, B.; Turkmen, N.; Fedakar, R.; Cetin, V.


    Single ventricle heart is defined as a rare cardiac abnormality with a single ventricle chamber involving diverse functional and physiological defects. Our case is of a ten month-old baby boy who died shortly after admission to the hospital due to vomiting and diarrhoea. Autopsy findings revealed cyanosis of finger nails and ears. Internal examination revealed; large heart, weighing 60 grams, single ventricle, without a septum and upper membranous part. Single ventricle is a rare pathology, hence, this paper aims to discuss this case from a medico-legal point of view. (author)

  7. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    and acceptor atoms due to complex formation) and interaction energy, Eint for a large variety of the non- covalent dimers in the categories HB, DHB, and XB. The MESP based eDA concept proposed by Mohan and. Suresh has unified the HB, DHB, and XB non-covalent complexes in a single category, the eDA complex.61.

  8. Instruction sequences and non-uniform complexity theory

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.


    We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and formulate a counterpart of the complexity theoretic

  9. Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [Co(dipic)2Ni(OH2)5]·2H2O (dipic=dipicolinate) with two carrier proteins. (United States)

    Shahraki, Somaye; Shiri, Fereshteh; Majd, Mostafa Heidari; Razmara, Zohreh


    Recognizing of binding mechanisms between drugs and carrier proteins is basic for us to understand the pharmacokinetics and pharmacodynamics of them. In this research, the anticancer activities of a binuclear complex [Co(dipic) 2 Ni(OH 2 ) 5 ]·2H 2 O (dipic=dipicolinate) against MDA-MB-231 cell lines were studied. Results of MTT assay and flow cytometry analysis revealed that above complex can induce the cytotoxicity and the apoptosis in breast cancer cell lines. So, this complex was selected to investigate its binding to human serum albumin (HSA) and bovine β-lactoglobulin (βLG) by spectroscopic methods (UV-visible, fluorescence and FT-IR) along with molecular docking technique. The fluorescence data showed Co-Ni complex quench the fluorescence of both proteins by a static quenching mechanism and HSA has stronger binding affinity toward Co-Ni complex than βLG. The binding constant (K b ), number of binding sites (n) and thermodynamic parameters were calculated and showed that the Co-Ni complex binds to protein (HSA and βLG) through hydrogen bonding and van der Waals forces with one binding site. The results of UV-visible measurements indicated that the binding of above complex to HSA and βLG may induce conformational and micro-environmental changes of studied proteins. Protein-ligand docking analysis confirmed that the Co-Ni complex binds to residues located in the subdomain IIA of HSA and site II of βLG. Copyright © 2017. Published by Elsevier B.V.

  10. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A


    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  11. The Mitochondrial Complex(Ity of Cancer

    Directory of Open Access Journals (Sweden)

    Félix A. Urra


    Full Text Available Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH–ubiquinone oxidoreductase (Complex I is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.

  12. Complexity of Perceptual Processes (United States)

    Tito Arecchi, F.


    At the borderline between neuroscience and physics of complex phenomena, a new paradigm is under investigation, namely feature binding. This terminology denotes how a large collection of coupled neurons combines external signals with internal memories into new coherent patterns of meaning. An external stimulus spreads over an assembly of coupled neurons, building up a corresponding collective state. Thus, the synchronization of spike trains of many individual neurons is the basis of a coherent perception. Based on recent investigations, a novel conjecture for the dynamics of single neurons and, consequently, for neuron assemblies has been formulated. Homoclinic chaos is proposed as the most suitable way to code information in time by trains of equal spikes occurring at apparently erratic times; a new quantitative indicator, called propensity, is introduced to select the most appropriate neuron model. In order to classify the set of different perceptions, the percept space is given a metric structure by introducing a distance measure between distinct percepts. The distance in percept space is conjugate to the duration of the perception in the sense that an uncertainty relation in percept space is associated with time limited perceptions. Thus coding of different percepts by synchronized spike trains entails fundamental quantum features. It is conjectured that they are related to the details of the perceptual chain rather than depending on Planck's action.

  13. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule spectroscopy. (SMS), confocal microscopy,. FCS, sm-FRET, FLIM. 1 High-resolution spectrum re- fers to a spectrum consisting of very sharp lines. The sharp lines clearly display transitions to ...

  14. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE. February 2015. GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule ..... Resonance Energy. Transfer (FRET) is an elegant technique to measure the distance between a donor and an acceptor molecule. FRET refers to the.

  15. Single photon and nonlocality

    Indian Academy of Sciences (India)

    critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct. Keywords. Nonlocality; single particle; hidden variables. PACS Nos 03.67.Ba; 03.65.Ta; 32.80.Lg; 07.79.Fc. 1. Introduction. Quantum nonlocality [2] for single particle is a subject of debate since the origin.

  16. Single gaze gestures

    DEFF Research Database (Denmark)

    Møllenbach, Emilie; Lilholm, Martin; Gail, Alastair


    This paper examines gaze gestures and their applicability as a generic selection method for gaze-only controlled interfaces. The method explored here is the Single Gaze Gesture (SGG), i.e. gestures consisting of a single point-to-point eye movement. Horizontal and vertical, long and short SGGs were...

  17. Understanding Single Adulthood. (United States)

    Stein, Peter J.

    The life styles and life chances of the unmarried include elements of choices. Singles may be grouped and characterized according to whether their status may be considered stable or temporary. A life cycle, or continuum model of singlehood is reviewed, including its different factors, or phases. A new model for singles is proposed--a life spiral…

  18. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard


    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  19. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences


    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  20. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst


    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  1. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram


    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  2. Single-photon imaging

    CERN Document Server

    Seitz, Peter


    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  3. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez


    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different...... structures and properties have been proposed in the literature. The main aim of this paper is to provide a review of these PLLs. To this end, the single-phase PLLs are first classified into two major categories: 1) power-based PLLs (pPLLs), and 2) quadrature signal generation-based PLLs (QSG......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  4. Single Policy Study

    DEFF Research Database (Denmark)

    Kronsell, Annica; Manners, Ian James


    Single policy studies are the most common form of European Union (EU) research. Single policy studies are widely used to understand the role of the EU in a wide variety of sectors, together with their development over time, and often offer public policy prescriptions. This chapter discusses the r...... Policy (CSDP). The examples are illustrative of how single policy studies can be designed to use different approaches in the analysis: multiple streams approach to policy-making; a comparative hypothesis testing; and feminist institutional theory.......Single policy studies are the most common form of European Union (EU) research. Single policy studies are widely used to understand the role of the EU in a wide variety of sectors, together with their development over time, and often offer public policy prescriptions. This chapter discusses...... the relevance of single policy studies in EU research and give examples of how such research can be designed and carried out. The chapter reviews three examples of single policy studies using different methods based on EU environmental policy, the EU biofuels directive, and the EU Common Security and Defence...

  5. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    Potts, K.T.


    Macrocycles with cavity diameters in the region 4.5-5.2 Angstrom, based on computer modeling studies, have been prepared by high dilution cyclocondensation of 2-aminopyridyl substituted biurets and thiobiurets with appropriately substituted, reactive intermediates such as chlorocarbonyl isocyanate and malonyl dichloride. Detailed high field 1 H NMR studies have been used to identify all protons in these macrocycles for structural verification and in confromation studies, and by-products obtained in their synthesis as well as in complexation studies have been characterized and identified using these NMR techniques, as well as single crystal X-ray studies. 5 refs

  6. Single photon ECT

    International Nuclear Information System (INIS)

    Maeda, Toshio; Matsuda, Hiroshi; Tada, Akira; Bunko, Hisashi; Koizumi, Kiyoshi


    The detectability of lesions located deep in a body or overlapped with a physiologically increased activity improve with the help of single photon ECT. In some cases, the ECT is superior to the conventional gamma camera images and X-ray CT scans in the evaluation of the location and size of lesion. The single photon ECT of the brain compares favorably with the contrast enhansed X-ray CT scans. The most important adaptation of the single photon ECT are the detection of recurrent brain tumors after craniotomy and the evaluation of ischemic heart diseases. (author)

  7. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.


    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  8. Probability and complex quantum trajectories

    International Nuclear Information System (INIS)

    John, Moncy V.


    It is shown that in the complex trajectory representation of quantum mechanics, the Born's Ψ*Ψ probability density can be obtained from the imaginary part of the velocity field of particles on the real axis. Extending this probability axiom to the complex plane, we first attempt to find a probability density by solving an appropriate conservation equation. The characteristic curves of this conservation equation are found to be the same as the complex paths of particles in the new representation. The boundary condition in this case is that the extended probability density should agree with the quantum probability rule along the real line. For the simple, time-independent, one-dimensional problems worked out here, we find that a conserved probability density can be derived from the velocity field of particles, except in regions where the trajectories were previously suspected to be nonviable. An alternative method to find this probability density in terms of a trajectory integral, which is easier to implement on a computer and useful for single particle solutions, is also presented. Most importantly, we show, by using the complex extension of Schrodinger equation, that the desired conservation equation can be derived from this definition of probability density

  9. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang


    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  10. Stresses of Single Parenting (United States)

    ... Text Size Email Print Share Stresses of Single Parenting Page Content Article Body What are some ways ... way. Check your local library for books on parenting. Local hospitals, the YMCA, and church groups often ...

  11. Single Beam Holography. (United States)

    Chen, Hsuan; Ruterbusch, Paul H.


    Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)

  12. In-silico single nucleotide polymorphisms (SNP) mining of Sorghum ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution.

  13. Radioisotope trithiol complexes (United States)

    Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.


    The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.

  14. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano


    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  15. Single Event Effect Hardware Trojans with Remote Activation (United States)


    Interrupt SEFI Corruption of a data path leading to loss of normal operation Complex devices with built-in cpu/state machine or control...Acronym Description Devices Affected Single Event Upset SEU Corruption of the information stored in a memory element Memories, latches in logic...devices Multiple Bit Upset MBU Several memory elements corrupted by a single strike Memories, latches in logic devices Single Event Functional

  16. Quantum private comparison employing single-photon interference (United States)

    Liu, Bin; Xiao, Di; Huang, Wei; Jia, Heng-Yue; Song, Ting-Ting


    As a typical quantum cryptographic task between distrustful participants, quantum private comparison (QPC) has attracted a lot of attention in recent years. Here we propose two QPC protocols employing single-photon interference, a typical and interesting technology for quantum communications. Compared with the previous QPC protocols employing normal single states or entangled states, the proposed protocols achieve lower communication complexity utilizing the characteristics of single-photon interference. And we also proved the security of the proposed protocols in theory.

  17. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du


    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  18. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.


    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  19. Mycobacterium Avium Complex (MAC) (United States)

    ... 30, 2014 Select a Language: Fact Sheet 514 Mycobacterium Avium Complex (MAC) WHAT IS MAC? HOW DO ... INTERACTION PROBLEMS THE BOTTOM LINE WHAT IS MAC? Mycobacterium Avium Complex (MAC) is a serious illness caused ...

  20. Complex sulfides and thiosalts

    International Nuclear Information System (INIS)

    Uehlls, A.


    Different types of the structures of complex sulfides, thiosalts of alkali, alkaline earth, rare earth, transition and actinide metals are considered in the review of the papers published before 1980 and devoted to the crystal structure of complex sulfides

  1. Holograms as complex media (United States)

    Caulfield, H. John


    Complex media can be grown, found in nature, or manufactured.. Holography is one way of fabricating such media. Here I review some examples of holographically manufactured complex media and speculate about some that could be made.

  2. The simple complex numbers


    Zalesny, Jaroslaw


    A new simple geometrical interpretation of complex numbers is presented. It differs from their usual interpretation as points in the complex plane. From the new point of view the complex numbers are rather operations on vectors than points. Moreover, in this approach the real, imaginary and complex numbers have similar interpretation. They are simply some operations on vectors. The presented interpretation is simpler, more natural, and better adjusted to possible applications in geometry and ...

  3. The Visibility Complex

    NARCIS (Netherlands)

    Pocchiola, Michel; Vegter, Gert


    We introduce the visibility complex of a collection O of n pairwise disjoint convex objects in the plane. This 2–dimensional cell complex may be considered as a generalization of the tangent visibility graph of O. Its space complexity k is proportional to the size of the tangent visibility graph. We

  4. Complex fuzzy soft multisets (United States)

    Alkouri, Abd Ulazeez M.; Salleh, Abdul Razak


    In this paper we combine two definitions, namely fuzzy soft multiset and complex fuzzy set to construct the definition of a complex fuzzy soft multiset and study its properties. In other words, we study the extension of a fuzzy soft multiset from real numbers to complex numbers. We also introduce its basic operations, namely complement, union and intersection. Some examples are given.

  5. Single-Mode VCSELs (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  6. Complex variables I essentials

    CERN Document Server

    Solomon, Alan D


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Complex Variables I includes functions of a complex variable, elementary complex functions, integrals of complex functions in the complex plane, sequences and series, and poles and r

  7. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG


    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  8. Single-Photon Optomechanics (United States)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.


    Optomechanics experiments are rapidly approaching the regime where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. We show that in this limit the power spectrum has multiple sidebands and that the cavity response has several resonances in the resolved-sideband limit. Using master-equation simulations, we also study the crossover from the weak-coupling many-photon to the single-photon strong-coupling regime. Finally, we find non-Gaussian steady states of the mechanical oscillator when multiphoton transitions are resonant. Our study provides the tools to detect and take advantage of this novel regime of optomechanics.

  9. Single well techniques

    International Nuclear Information System (INIS)

    Drost, W.


    The single well technique method includes measurement of parameters of groundwater flow in saturated rock. For determination of filtration velocity the dilution of radioactive tracer is measured, for direction logging the collimeter is rotated in the probe linked with the compass. The limiting factor for measurement of high filtration velocities is the occurrence of turbulent flow. The single well technique is used in civil engineering projects, water works and subsurface drainage of liquid waste from disposal sites. The radioactive tracer method for logging the vertical fluid movement in bore-holes is broadly used in groundwater survey and exploitation. (author)

  10. Biocatalytic Single Enzyme Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Kim, Jungbae


    As an innovative way of enzyme stabilization, we recently developed a new enzyme composite of nano-meter scale that we call "single-enzyme nanoparticles (SENs)" (9). Each enzyme molecule is surrounded with a porous composite organic/inorganic network of less than a few nanometers think. This approach represents a new type of enzyme-containing nanostructure. In experiments with perotease (chymotrypsin, CT), the activity of single enzyme nanoparticle form of the enzyme was greatly stabilized compared to the free form, without imposing a serious mass transfer limitation of substrates. In this chapter we will describe the synthesis, characterization and catalytic activity of the new SENs.

  11. Single port laparoscopic surgery

    DEFF Research Database (Denmark)

    Springborg, Henrik; Istre, Olav


    potential benefits. Theoretically, cosmetic outcomes, postoperative pain and complication rates could be improved with use of single site surgery. This study describes introduction of the method in a private hospital in Denmark, in which 40 patients have been treated for benign gynecologic conditions......LESS, or laparo-endoscopic single site surgery, is a promising new method in minimally invasive surgery. An increasing number of surgical procedures are being performed using this technique, however, its large-scale adoption awaits results of prospective randomized controlled studies confirming...


    Energy Technology Data Exchange (ETDEWEB)

    J.B. Cho


    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied


    International Nuclear Information System (INIS)

    J.B. Cho


    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M and O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  14. Algorithms, complexity, and the sciences. (United States)

    Papadimitriou, Christos


    Algorithms, perhaps together with Moore's law, compose the engine of the information technology revolution, whereas complexity--the antithesis of algorithms--is one of the deepest realms of mathematical investigation. After introducing the basic concepts of algorithms and complexity, and the fundamental complexity classes P (polynomial time) and NP (nondeterministic polynomial time, or search problems), we discuss briefly the P vs. NP problem. We then focus on certain classes between P and NP which capture important phenomena in the social and life sciences, namely the Nash equlibrium and other equilibria in economics and game theory, and certain processes in population genetics and evolution. Finally, an algorithm known as multiplicative weights update (MWU) provides an algorithmic interpretation of the evolution of allele frequencies in a population under sex and weak selection. All three of these equivalences are rife with domain-specific implications: The concept of Nash equilibrium may be less universal--and therefore less compelling--than has been presumed; selection on gene interactions may entail the maintenance of genetic variation for longer periods than selection on single alleles predicts; whereas MWU can be shown to maximize, for each gene, a convex combination of the gene's cumulative fitness in the population and the entropy of the allele distribution, an insight that may be pertinent to the maintenance of variation in evolution.

  15. Physics of Complex Polymeric Molecules (United States)

    Kelly, Joshua Walter

    The statistical physics of complex polymers with branches and circuits is the topic of this dissertation. An important motivation are large, single-stranded (ss) RNA molecules. Such molecules form complex ``secondary" and ``tertiary" structures that can be represented as branched polymers with circuits. Such structures are in part directly determined by the nucleotide sequence and in part subject to thermal fluctuations. The polymer physics literature on molecules in this class has mostly focused on randomly branched polymers without circuits while there has been minimal research on polymers with specific structures and on polymers that contain circuits. The dissertation is composed of three parts: Part I studies branched polymers with thermally fluctuating structure confined to a potential well as a simple model for the encapsidation of viral RNA. Excluded volume interactions were ignored. In Part II, I apply Flory theory to the study of the encapsidation of viral ss RNA molecules with specific branched structures, but without circuits, in the presence of excluded volume interaction. In Part III, I expand on Part II and consider complex polymers with specific structure including both branching and circuits. I introduce a method based on the mathematics of Laplacian matrices that allows me to calculate density profiles for such molecules, which was not possible within Flory theory.

  16. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Single Item Inventory Models

    NARCIS (Netherlands)

    E.M. Bazsa-Oldenkamp; P. den Iseger


    textabstractThis paper extends a fundamental result about single-item inventory systems. This approach allows more general performance measures, demand processes and order policies, and leads to easier analysis and implementation, than prior research. We obtain closed form expressions for the

  18. Single Nucleotide Polymorphism

    DEFF Research Database (Denmark)

    Børsting, Claus; Pereira, Vania; Andersen, Jeppe Dyrberg


    Single nucleotide polymorphisms (SNPs) are the most frequent DNA sequence variations in the genome. They have been studied extensively in the last decade with various purposes in mind. In this chapter, we will discuss the advantages and disadvantages of using SNPs for human identification...

  19. Single Value Devices

    NARCIS (Netherlands)

    Mader, Angelika H.; Dertien, Edwin Christian; Reidsma, Dennis


    We live in a world of continuous information overflow, but the quality of information and communication is suffering. Single value devices contribute to the information and communication quality by fo- cussing on one explicit, relevant piece of information. The information is decoupled from a

  20. Single Value Devices

    NARCIS (Netherlands)

    Mader, Angelika H.; Dertien, Edwin Christian; Reidsma, Dennis; Camurri, Antonio; Costa, Cristina

    We live in a world of continuous information overflow, but the quality of information and communication is suffering. Single value devices contribute to information and communication quality by focussing on one explicit, relevant piece of information. The information is decoupled from a computer and