WorldWideScience

Sample records for single protein band

  1. Changing optical band structure with single photons

    Science.gov (United States)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  2. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  3. Single transverse mode protein laser

    Science.gov (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  4. A bespoke single-band Hubbard model material

    Science.gov (United States)

    Griffin, S. M.; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.

    2016-02-01

    The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the "standard model" of condensed-matter physics. The model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form, multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model to determine the relevance of the model in the description of real materials. After identifying an appropriate crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping, and we propose specific materials for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which the single-band Hubbard model on a triangular lattice exhibits exotic d -wave superconductivity.

  5. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band.

    Science.gov (United States)

    Wang, Jiqiang

    2016-03-01

    Restricted sensing and actuation control represents an important area of research that has been overlooked in most of the design methodologies. In many practical control engineering problems, it is necessitated to implement the design through a single sensor and single actuator for multivariate performance variables. In this paper, a novel approach is proposed for the solution to the single sensor and single actuator control problem where performance over any prescribed frequency band can also be tailored. The results are obtained for the broad band control design based on the formulation for discrete frequency control. It is shown that the single sensor and single actuator control problem over a frequency band can be cast into a Nevanlinna-Pick interpolation problem. An optimal controller can then be obtained via the convex optimization over LMIs. Even remarkable is that robustness issues can also be tackled in this framework. A numerical example is provided for the broad band attenuation of rotor blade vibration to illustrate the proposed design procedures. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  7. Mini-stop bands in single heterojunction photonic crystal waveguides

    KAUST Repository

    Shahid, N.

    2013-01-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications. 2013 Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License.

  8. Watching Single Proteins Using Engineered Nanopores

    Science.gov (United States)

    Movileanu, Liviu

    2014-01-01

    Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnosis. PMID:24370252

  9. Watching single protein molecules in action

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri

    (NCS1). The NMR solution structure of NCS1, in combination with fluorescence spectroscopy and mutational analysis, suggested a novel role for the C-terminal tail in regulating conformational stability. On the single-molecule level, the C-domain folded through a partially folded intermediate state....... This knowledge-gap is partly due to our inability to unveil the details of folding mechanisms that can be buried in the ensemble-averaged output of traditional bulk methods. Single-molecule techniques have provided a perspective beyond the ensemble average and enable studying the folding trajectories of protein...... molecules in unprecedented detail. These methods can, in principle, detect rare folding or misfolding events, and ultimately lead to a reconstruction of the free energy landscape. In this thesis, the folding mechanism of both single- and double-domain proteins is unraveled using single-molecule optical...

  10. Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate

    Science.gov (United States)

    Singh, Pramod K.; Korolev, Konstantin A.; Afsar, Mohammed N.; Sonkusale, Sameer

    2011-12-01

    Ultra thin millimeter-wave absorbers on flexible polyimide substrate utilizing metamaterials are implemented for single and dual frequency bands in an emerging frequency spectrum of 77, 95, and 110 GHz. The dual band absorber is designed using a novel approach of imbedding high frequency resonator inside low frequency resonator capable of absorbing electromagnetic energy at both 77 and 110 GHz bands simultaneously. The total thickness of the absorber is just 126 μm (almost 1/20th of the wavelength). Measured peak absorptions for single frequency absorbers are 92, 94, and 99% at 77.2, 94.8, and 109.5 GHz, respectively, and for dual band absorber 92% at 77 GHz and 94% at 109.8 GHz.

  11. Watching single protein molecules in action

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri

    . This knowledge-gap is partly due to our inability to unveil the details of folding mechanisms that can be buried in the ensemble-averaged output of traditional bulk methods. Single-molecule techniques have provided a perspective beyond the ensemble average and enable studying the folding trajectories of protein...... molecules in unprecedented detail. These methods can, in principle, detect rare folding or misfolding events, and ultimately lead to a reconstruction of the free energy landscape. In this thesis, the folding mechanism of both single- and double-domain proteins is unraveled using single-molecule optical......, with transition states located almost halfway between the native and unfolded states. When pulled from the N- and C-termini, both experiments and simulations suggested that the molecule populates a transition state that resembles that observed during chemical denaturation, with respect to structure and position...

  12. Characterization of white grub (Melolonthidae; Coleoptera in salak plantation based on morphology and protein banding pattern

    Directory of Open Access Journals (Sweden)

    SUGIYARTO

    2009-07-01

    Full Text Available Maryati KT, Sugiyarto. 2010. Characterization of white grub (Melolonthidae; Coleoptera in salak plantation based on morphology and protein banding pattern. Nusantara Bioscience 1: 72-77. This research aims to find out the white grub (Melolonthidae; Coleoptera variability based on the morphological characteristic and protein banding pattern found in ”salak pondoh” farm in Regencies of Sleman, Yogyakarta and Magelang, Central Java. Each area has five sampling points. Morphological analysis on white grub was conducted using descriptive method and analysis on protein banding pattern was conducted using qualitative analysis based on the presence or absent of band pattern on the gel, and qualitatively based on the relative mobility value (Rf of protein. The result indicated that the white grub in Sleman and Magelang, based on morphology characteristic is only one species, namely Holothricia sp. Based on the protein banding pattern, the white grub sample have differences of protein band number and protein molecular weight. Key words: Salacca zalacca, white grub, morphology, protein banding pattern.Abstrak. Maryati KT, Sugiyarto. 2010. Karakterisasi lundi putih (Melolonthidae: Coleoptera pada pertanaman salak berdasarkan ciri morfologi dan pola pita protein. Nusantara Bioscience 1: 72-77. Penelitian ini bertujuan untuk mengetahui keanekaragaman lundi putih (Melolonthidae; Coleoptera berdasarkan ciri morfologi dan pola pita protein yang ditemukan di lahan pertanaman salak pondoh di Kabupaten Sleman, Yogyakarta dan Kabupaten Magelang, Jawa Tengah. Pada masing-masing wilayah diambil lima titik sampling. Analisis morfologi lundi putih digunakan metode deskriptif, dan analisis pola pita protein digunakan analisis kualitatif berdasarkan muncul tidaknya pola pita pada gel, dan secara kuantitatif berdasarkan nilai mobilitas relatif protein (RF. Hasil penelitian menunjukkan bahwa sampel lundi putih di Kabupaten Sleman dan Magelang, berdasar karakter

  13. Cellophane banding for the gradual attenuation of single extrahepatic portosystemic shunts in eleven dogs.

    Science.gov (United States)

    Youmans, K R; Hunt, G B

    1998-08-01

    To evaluate the efficacy and short term effects of a cellophane banding technique for progressive attenuation of canine single extrahepatic portosystemic shunts. A prospective trial of 11 dogs with single congenital extrahepatic shunts. Rectal ammonia tolerance testing and routine biochemical tests were performed preoperatively on all dogs. In seven dogs, preoperative abdominal Doppler ultrasonography was also performed. Exploratory laparotomy revealed a single extrahepatic portocaval shunt in each animal, which was attenuated using a cellophane band with an internal diameter of 2 to 3 mm. The abdomen was closed routinely. Follow-up biochemical analysis and abdominal Doppler ultrasonography or splenoportography were performed postoperatively. The shunt was not amenable to total ligation in 11 dogs, based upon reported criteria. All dogs recovered uneventfully from surgery without evidence of portal hypertension, and showed clinical improvement thereafter. Shunt occlusion was deemed to have occurred in 10 dogs based on resolution of biochemical and/or sonographic abnormalities. One dog continued to have sonographic evidence of portosystemic shunting when evaluated 3 weeks after surgery, despite normal ammonia tolerance, but was lost to subsequent follow-up. Two dogs, in which 3 mm cellophane bands were placed, experienced delayed shunt occlusion. Cellophane banding is simple to perform, and causes progressive attenuation of single extrahepatic shunts in dogs. Further work is needed to determine the maximum diameter of a cellophane band which will produce total attenuation, and the long-term safety and reliability of the treatment.

  14. Single-carrier impact ionization favored by a limited band dispersion

    OpenAIRE

    Darbandi, A.; Rubel, O.

    2012-01-01

    A critical requirement for high gain and low noise avalanche photodiodes is the single-carrier avalanche multiplication. We propose that the single-carrier avalanche multiplication can be achieved in materials with a limited width of the conduction or valence band resulting in a restriction of kinetic energy for one of the charge carriers. This feature is not common to the majority of technologically relevant semiconductors, but it is observed in chalcogenides, such as Selenium and compound I...

  15. HARMONI : A single-field wide-band integral-field spectrograph for the European ELT

    NARCIS (Netherlands)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Davies, Roger L.; Remillieux, Alban; Bacon, Roland; Lunney, David; Arribas, Santiago; Mediavilla, Evencio; Gago, Fernando; Bezawada, Naidu; Ferruit, Pierre; Fragoso, Ana; Freeman, David; Fuentes, Javier; Fusco, Thierry; Gallie, Angus; Garcia, Adolfo; Goodsall, Timothy; Gracia, Felix; Jarno, Aurelien; Kosmalski, Johan; Lynn, James; McLay, Stuart; Montgomery, David; Pecontal, Arlette; Schnetler, Hermine; Smith, Harry; Sosa, Dario; Battaglia, Giuseppina; Bowles, Neil; Colina, Luis; Emsellem, Eric; Garcia-Perez, Ana; Gladysz, Szymon; Hook, Isobel; Irwin, Patrick; Jarvis, Matt; Kennicutt, Robert; Levan, Andrew; Longmore, Andy; Magorrian, John; McCaughrean, Mark; Origlia, Livia; Rebolo, Rafael; Rigopoulou, Dimitra; Ryan, Sean; Swinbank, Mark; Tanvir, Nial; Tolstoy, Eline; Verma, Aprajita

    We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core

  16. Two hundred seventy-five single-incision laparoscopic gastric band insertions: what have we learnt?

    Science.gov (United States)

    Murgatroyd, Beth; Chakravartty, Saurav; Sarma, Diwakar R; Patel, Ameet G

    2014-07-01

    Single-incision surgery in the morbidly obese patient has not been widely adopted, but remains a popular choice amongst patients. In the bariatric patient, it presents its own surgical challenges with hepatomegaly and increased abdominal adiposity. Here, we present our experience of 275 single-incision laparoscopic gastric bands.Between June 2009 and April 2013, 275 obese patients underwent single-incision laparoscopic adjustable gastric banding through a single incision using a multichannel single port and via a pars flaccida approach. Prospective data collection was undertaken including operating time, additional ports and additional procedures undertaken.In this series, median operative time was 60 (range 34-170) min. An additional port was placed in 15 patients (5%), including two conversions to four-port technique (0.7%). Of these patients (n = 15), the majority were male (p rate of success for all BMIs. Following 275 single-incision band insertions additional port placements were more commonly required in male patients, BMI >45 and earlier in the learning curve.

  17. Synchro-Betatron Stop-Bands Due to a Single Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A

    2004-06-17

    We analyze the stop-band due to crab cavities for horizontal tunes that are either close to integers or close to half integers. The latter case is relevant for today's electron/positron colliders. We compare this stop-band to that created by dispersion in an accelerating cavity and show that a single typical crab cavity creates larger stop-bands than a typical dispersion at an accelerating cavity. We furthermore analyze whether it is beneficial to place the crab cavity at a position where the dispersion and its slope vanish. We find that this choice is worth while if the horizontal tune is close to a half integer, but not if it is close to an integer. Furthermore we find that stop-bands can be avoided when the horizontal tune is located at a favorable side of the integer or the half integer. While we are here concerned with the installation of a single crab cavity in a storage ring, we show that the stop-bands can be weakened, although not eliminated, significantly when two crab cavities per ring are chosen suitably.

  18. High spectral efficient W-band optical/wireless system employing single-sideband single-carrier modulation.

    Science.gov (United States)

    Ho, Chun-Hung; Lin, Chun-Ting; Cheng, Yu-Hsuan; Huang, Hou-Tzu; Wei, Chia-Chien; Chi, Sien

    2014-02-24

    With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented. We discuss the maximum available bandwidth of different modulation formats between SSB-SC and OFDM signals at the BER below forward error correction (FEC) threshold (3.8 × 10(-3)). Up to 50-Gbps 32-QAM SSB-SC signals with spectral efficiency of 5 bit/s/Hz can be achieved.

  19. Determination of band offsets at GaN/single-layer MoS2 heterojunction

    KAUST Repository

    Tangi, Malleswararao

    2016-07-25

    We report the band alignment parameters of the GaN/single-layer (SL) MoS2 heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS2/c-sapphire. We confirm that the MoS2 is an SL by measuring the separation and position of room temperature micro-Raman E1 2g and A1 g modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS2 heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS2 and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  20. Band Alignment at GaN/Single-Layer WSe2 Interface

    KAUST Repository

    Tangi, Malleswararao

    2017-02-21

    We study the band discontinuity at the GaN/single-layer (SL) WSe2 heterointerface. The GaN thin layer is epitaxially grown by molecular beam epitaxy on chemically vapor deposited SL-WSe2/c-sapphire. We confirm that the WSe2 was formed as an SL from structural and optical analyses using atomic force microscopy, scanning transmission electron microscopy, micro-Raman, absorbance, and microphotoluminescence spectra. The determination of band offset parameters at the GaN/SL-WSe2 heterojunction is obtained by high-resolution X-ray photoelectron spectroscopy, electron affinities, and the electronic bandgap values of SL-WSe2 and GaN. The valence band and conduction band offset values are determined to be 2.25 ± 0.15 and 0.80 ± 0.15 eV, respectively, with type II band alignment. The band alignment parameters determined here provide a route toward the integration of group III nitride semiconducting materials with transition metal dichalcogenides (TMDs) for designing and modeling of their heterojunction-based electronic and optoelectronic devices.

  1. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  2. Laparoendoscopic single-site gastric bands versus standard multiport gastric bands: a comparison of technical learning curve measured by surgical time.

    Science.gov (United States)

    Gawart, Matthew; Dupitron, Sabine; Lutfi, Rami

    2012-03-01

    We aimed to evaluate our learning curve comparing surgical time of laparoendoscopic single-site (LESS) banding with multiport laparoscopy. We performed a retrospective analysis of prospectively collected data comparing our first 48 LESS bands with our first 50 multiport laparoscopic bands at our institution. We then compared the first 24 LESS bands with the last 24 bands. The average body mass index for the LESS group was significantly lower than for the laparoscopic group (43.19 vs 48.3; P < .0001). The surgical time was much faster toward the second half of our experience performing the LESS procedure (85.34 vs 68.8; P = .0055). LESS banding took significantly longer than our early traditional laparoscopic adjustable gastric banding (76.85 vs 64.4; P = .0015). We conclude that in experienced hands, single-incision banding is feasible and safe to perform. Long-term data are needed to prove that LESS banding is as good a surgery as traditional laparoscopic surgery. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Single-band negative differential resistance in metallic armchair MoS2 nanoribbons

    International Nuclear Information System (INIS)

    Chen, Cheng; Wang, Xue-Feng; Li, Yao-Sheng; Cheng, Xue-Mei; Yao, A-Long

    2017-01-01

    Semiconductor armchair MoS 2 nanoribbons can be converted into conductors by edge functionalization of H atoms or OH groups. Those metallic nanoribbons exhibit I – V characteristics of a single half-filled band with strong negative differential resistance (NDR) under a voltage bias less than 1 V. This originates from the spatial separation between electrons in the conduction and valence bands. The NDR becomes spin dependent if the H atoms or OH groups are not uniformly adsorbed on the edge. Furthermore, the spin polarization can be greatly enhanced in heterojunctions of H- and OH-passivated nanoribbons. (paper)

  4. Single Pixel, Single Band Microstrip Antenna for Sub-Millimeter Wavelength Detection Using Transition Edge Superconducting Bolometric Receivers

    Science.gov (United States)

    Hunt, Cynthia; Bock, Jamie J.; Day, Peter K.; Goldin, Alexey; Lange, Andrew E.; Leduc, Henry G.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    We are developing a single pixel antenna coupled bolometric detector as a precursor to the SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) instrument. Our device consists of a dual slot microstrip antenna coupled to an Al/Ti/Au voltage-biased transition edge superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting microstrip lines and terminating the lines at a normal metal resistor on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized to for 100GHz band measurements, ideal for future implementation as an astronomical sub-millimeter instrument. We will present recent tests of these single pixel detectors.

  5. Isoforms of wild type proteins often appear as low molecular weight bands on SDS-PAGE.

    Science.gov (United States)

    Zhang, Ju; Lou, Xiaomin; Shen, Haihong; Zellmer, Lucas; Sun, Yuan; Liu, Siqi; Xu, Ningzhi; Liao, D Joshua

    2014-08-01

    Immunoblotting, after polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE), is a technique commonly used to detect specific proteins. SDS-PAGE often results in the visualization of protein band(s) in addition to the one expected based on the theoretical molecular mass (TMM) of the protein of interest. To determine the likelihood of additional band(s) being nonspecific, we used liquid chromatography - mass spectrometry to identify proteins that were extracted from bands with the apparent molecular mass (MM) of 40 and 26 kD, originating from protein extracts derived from non-malignant HEK293 and cancerous MDA-MB231 (MB231) cells separated using SDS-PAGE. In total, approximately 57% and 21% of the MS/MS spectra were annotated as peptides in the two cell samples, respectively. Moreover, approximately 24% and 36.2% of the identified proteins from HEK293 and MB231 cells matched their TMMs. Of the identified proteins, 8% from HEK293 and 26% from MB231 had apparent MMs that were larger than predicted, and 67% from HEK293 and 37% from MB231 exhibited smaller MM values than predicted. These revelations suggest that interpretation of the positive bands of immunoblots should be conducted with caution. This study also shows that protein identification performed by mass spectrometry on bands excised from SDS-PAGE gels could make valuable contributions to the identification of cancer biomarkers, and to cancer-therapy studies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  7. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  8. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    Science.gov (United States)

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The use of simultaneous confidence bands for comparison of single parameter fluorescent intensity data.

    Science.gov (United States)

    Kim, Dongha; Donnenberg, Vera S; Wilson, John W; Donnenberg, Albert D

    2016-01-01

    Despite the utility of multiparameter flow cytometry for a wide variety of biological applications, comparing single parameter histograms of fluorescence intensity remains a mainstay of flow cytometric analysis. Even comparisons requiring multiparameter gating strategies often end with single parameter histograms as the final readout. When histograms overlap, analysis relies on comparison of mean or median fluorescence intensities, or determination of percent positive based on an arbitrary cutoff. Earlier attempts to address this problem utilized either simple channel-by-channel subtraction without statistical evaluation, or the Kolmogorov-Smirnov (KS) or Chi-square test statistics, both of which proved to be overly sensitive to small and biologically insignificant differences. Here we present a method for the comparison of two single-parameter histograms based on difference curves and their simultaneous confidence bands generated by bootstrapping raw channel data. Bootstrapping is a nonparametric statistical approach that can be used to generate confidence intervals without distributional assumptions about the data. We have constructed simultaneous confidence bands and show them to be superior to KS and Cox methods. The method constructs 95% confidence bands about the difference curves, provides a P value for the comparison and calculates the area under the difference curve (AUC) as an estimate of percent positive and the area under the confidence band (AUCSCB95), providing a lower estimate of the percent positive. To demonstrate the utility of this new approach we have examined single-color fluorescence intensity data taken from a cell surface proteomic survey of a lung cancer cell line (A549) and a published fluorescence intensity data from a rhodamine efflux assay of P-glycoprotein activity, comparing rhodamine 123 loading and efflux in CD4 and CD8 T-cell populations. SAS source code is provided as supplementary material. © 2015 International Society for

  10. Characterestics of pico-second single bunch at the S-band linear accelerator

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru; Kozawa, Takahiro; Kobayashi, Toshiaki; Ueda, Toru; Miya, Kenzo

    1994-01-01

    Measurement of the bunch structure of a pico-second single bunch was performed using a femto-second streak camera at the S-band linear accelerator of the University of Tokyo. The aim of this research is to investigate the feasibility of the generation of a femto-second single bunch at the S-band linac. The details of the bunch structure and energy spectrum of an original single bunch were precisely investigated in several operation modes where the RF phases in accelerating tubes and a prebuncher were varied. The femto-second streak camera was utilized to measure the bunch structure by one shot via Cherenkov radiation emitted by the electrons in the bunch. Next, an experiment for magnetic pulse compression of the original single bunch was carried out. Pulse shapes of the compressed bunchs for different energy modulation were also obtained by measuring Cherenkov radiation by one shot using the femto-second streak camera. Prior to the experiment, numerical tracking analysis to determine operating parameters for the magnetic pulse compression was also done. Measured pulse widths were compared with calculated ones. Finally, a 2 ps (full width at half maximum; FWHM) single bunch with an electric charge of 0.3 nC could be generated by the magnetic pulse compression. ((orig.))

  11. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    Science.gov (United States)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar–Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  12. Variation of morphology, karyotype and protein band pattern of adenium (Adenium obesum varieties

    Directory of Open Access Journals (Sweden)

    PRABANG SETYONO

    2009-07-01

    Full Text Available Hastuti D, Suranto, Setyono P. 2009. Variation of morphology, karyotype and protein band pattern of adenium (Adenium obesum varieties. Nusantara Bioscience 1: 78-83. The aim of this research to find out the Adenium obesum variation from six varieties, namely: obesum, cery, red lucas, red fanta , white bigben and harry potter based on morphology, karyotype, as well as protein banding pattern. The chromosome preparation was made using semi-permanent squash method from the tip of root plant; while protein banding pattern was made using SDS-PAGE method. Qualitative data included shape and color of the leave and flower described from each variety. Data were presented in morphometry and analyzed using ANOVA and then followed by DMRT with 5% of confidence levels, indicated significance difference. Protein banding pattern, the root, stem, leave and all organs were analyzed using Hierarchical Cluster Analysis method with Average Linkage (between Groups using SPSS 10.0. The result of research shows that the six A. obesum varieties have morphological character with no variation of light green to dark green leave, not hairy, smooth leave bone, meanwhile for light red to dark red flower crown color although some of them are white and the same funnel color, yellow. All varieties of A. obesum have same number of chromosome, 2n = 22 and shows the difference ranging from 2.56 to 5.13 um. In the banding pattern formed qualitatively, there is variation among the six varieties.

  13. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    Science.gov (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  14. Single Molecule Spectroscopy of Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Subramaniam, Vinod

    2009-01-01

    The discovery and use of fluorescent proteins has revolutionized cellular biology. Despite the widespread use of visible fluorescent proteins as reporters and sensors in cellular environments the versatile photophysics of fluorescent proteins is still subject to intense research. Understanding the

  15. Stochastic single-molecule dynamics of synaptic membrane protein domains

    Science.gov (United States)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  16. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  17. Single-stage gain-clamped L-band EDFA with C-band ASE self-oscillation in ring cavity

    International Nuclear Information System (INIS)

    Mahdi, M A; Al-Mansoori, M H; Bakar, A A A; Shaari, S; Zamzuri, A K

    2008-01-01

    We demonstrate single-stage gain-clamped L-band Er 3+ -doped fiber amplifier (EDFA) utilizing self-oscillation modes as the control light. The amplifier structure exploits the characteristics of C/L-band coupler to isolate between lasing modes and L-band signal. The self-lasing cavity modes are obtained without any tunable bandpass filter in the loop and generated from the amplified spontaneous emission in the C-band region. The amplifier configuration has lower noise figures as opposed to a dual-stage partially gain-clamped amplifier. The gain and noise figure fluctuations are less than ± 0.4 dB in the gain-clamping region. The transient analysis confirms that the maximum power excursion is less than 0.3 dB for 10-dB add/drop

  18. Ruptured Jejunal Diverticulum Due to a Single-Band Small Bowel Obstruction

    Directory of Open Access Journals (Sweden)

    Rajaraman Durai

    2008-01-01

    Full Text Available Jejunal diverticulosis is rare and often goes unnoticed until complications occur. The diverticula are true, acquired diverticula and often asymptomatic. Jejunal diverticulosis can be associated with diverticulosis of the duodenum, ileum, and colon. Here we describe a patient with known severe diverticular disease of the large bowel, who presented acutely with abdominal pain and signs of generalised peritonitis. Laparotomy showed ruptured jejunal diverticulosis with a single band over the terminal ileum, causing small bowel obstruction. Spontaneous perforation of a jejunal diverticulum is rare and is usually an intraoperative finding. One should exclude a precipitating cause, such as coexisting distal obstruction, stricture, or a foreign body.

  19. Ruptured Jejunal Diverticulum Due to a Single-Band Small Bowel Obstruction

    Science.gov (United States)

    Durai, Rajaraman; Sinha, Ashish; Khan, Mihir; Hoque, Happy; Kerwat, Rajab

    2008-01-01

    Jejunal diverticulosis is rare and often goes unnoticed until complications occur. The diverticula are true, acquired diverticula and often asymptomatic. Jejunal diverticulosis can be associated with diverticulosis of the duodenum, ileum, and colon. Here we describe a patient with known severe diverticular disease of the large bowel, who presented acutely with abdominal pain and signs of generalised peritonitis. Laparotomy showed ruptured jejunal diverticulosis with a single band over the terminal ileum, causing small bowel obstruction. Spontaneous perforation of a jejunal diverticulum is rare and is usually an intraoperative finding. One should exclude a precipitating cause, such as coexisting distal obstruction, stricture, or a foreign body. PMID:18836661

  20. A single term expression of ground band level energies of a soft rotor

    International Nuclear Information System (INIS)

    Gupta, J.B.; Kavathekar, A.K.; Sharma, R.

    1995-01-01

    A single term expression in the form of a Power law with two unknown coefficients is proposed. It explains fairly well the energies of ground bands in even-even nuclei in the A = 150-200 region. The index ''b'' and the coefficient ''a'' in this expression are fairly constant independent of the level spin, below the back bending energy. Variation of average ''a'' and ''b'' with Z and N, and with the valence nucleon pair product N p N n is also illustrated and agrees with general expectations. (orig.)

  1. Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.

    1999-01-01

    The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.

  2. Band 3 protein function in teleost fish erythrocytes: effect of oxygenation-deoxygenation

    Czech Academy of Sciences Publication Activity Database

    Russo, A.; Tellone, E.; Ficarra, S.; Giardina, B.; Bellocco, E.; Lagana, G.; Leuzzi, U.; Kotyk, Arnošt; Galtieri, A.

    2008-01-01

    Roč. 57, č. 1 (2008), s. 49-54 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : erythrocytes * hemoglobin * band 3 protein Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  3. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    Science.gov (United States)

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse telecommunications wavelengths.

  4. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    Directory of Open Access Journals (Sweden)

    Otto Blehr

    1997-04-01

    Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.

  5. Modeling of the I V characteristics of single and double barrier tunneling diodes using A k · p band model

    Science.gov (United States)

    Mui, D.; Patil, M.; Chen, J.; Agarwala, S.; Kumar, N. S.; Morkoc, H.

    1989-11-01

    We model the I-V characteristics of single and double barrier tunneling diodes using the complex band structure of the tunneling barrier obtained from a k · p band model. Band-bending is calculated by solving two coupled 1-D Poisson's equations with a classical potential in the accumulation region. The transfer matrix method is used for the calculation of the transmission probability of the tunneling electron whose complex k-vector is obtained from the band structure. An energy dependent density of states effective mass which is also calculated from the band structure is used. I-V characteristics for In 0.53Ga 0.47As/In 0.52Al 0.48As/In 0.53Ga 0.47As single and double barrier tunneling diodes obtained from this model agree quantitatively with experiment.

  6. Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael

    2009-01-01

    Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response,...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well.......Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...

  7. Orientation dependence of dispersion and band gap of PIMNT single crystals

    Science.gov (United States)

    He, Chongjun; Chen, Hongbing; Wang, Jiming; Gu, Xiaorong; Wu, Tong; Liu, Youwen

    2018-01-01

    As piezoelectric materials, optical properties of xPb(In1/2Nb1/2)O3-(1-x-y)Pb(Mg1/3Nb2/3)O3-yPbTiO3 single crystals were not perfectly known. Here refractive indices and optical transmission of 0.25Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3- 0.33PbTiO3 (PIMNT) single crystal are investigated after poled along different directions. Cauchy dispersion equations of the refractive indices were obtained by least square fitting, which can be used to calculate the refractive indices in the low absorption wavelength range. After poled along [011] direction, the optical transmission of PIMNT single crystal is more than 65% above 0.5 μm, which is much higher than that of [001] and [111] directions. Energy band gap was obtained from absorption coefficient.

  8. Evaluation of yeast single cell protein (SCP) diets on growth ...

    African Journals Online (AJOL)

    Jane

    An investigation was carried out on the possibility of replacing fishmeal with graded levels of yeast single cell protein (SCP; 10, 20, 30, 40 and 50%) in isonitrogenous feed formulations (30% protein) in the diet of Oreochromis niloticus fingerlings for a period of 12 weeks. The control diet had fishmeal as the primary protein ...

  9. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals

    Science.gov (United States)

    Aslan, Ozgur Burak; Ruppert, Claudia; Heinz, Tony

    2015-03-01

    Single- and few-layer crystals of exfoliated MoTe2 have been characterized spectroscopically by photoluminescence, Raman scattering, and optical absorption measurements. We find that MoTe2 in the monolayer limit displays strong photoluminescence. On the basis of complementary optical absorption results, we conclude that monolayer MoTe2 is a direct-gap semiconductor with an optical band gap of 1.10 eV. This new monolayer material extends the spectral range of atomically thin direct-gap materials from the visible to the near-infrared. Supported by the NSF through Grant DMR-1124894 for sample preparation and characterization by the O?ce of Naval Research for analysis. C.R. acknowledges support from the Alexander von Humboldt Foundation.

  10. In-house L-band niobium single cell cavities at KEK

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Kobayashi, Yoshiharu; Funahashi, Yoshisato; Koizumi, Susumu; Saito, Kenji; Noguchi, Shuichi; Kako, Eiji; Shishido, Toshio

    1993-01-01

    For the TESLA (TeV Energy Superconducting Linear Accelerator) as an energy frontier accelerator of the next generation improving the performance of the niobium superconducting cavities is the most important issue and much reduction of fabrication cost of cavities is another key. Since manufacturing of niobium material requires hard techniques due to the easily oxidizable metal, fabrication of niobium cavities has been conducted in only companies providing enough equipments in Japan. KEK has accumulated the fabrication technics such as forming method by deep drawing, trimming, centering of beam tubes, electron beam welding and measurement of manufacturing error so on. We made in-house L-band single cell cavities using these technologies. In this paper we present these manufacturing of the niobium cavities and estimate the fabrication cost as exactly as possible. The manufacturing error is also described. (author)

  11. Quality assessment of recombinant proteins by infrared spectroscopy. Characterisation of a protein aggregation related band of the Ca²⁺-ATPase.

    Science.gov (United States)

    Li, Chenge; Kumar, Saroj; Montigny, Cédric; le Maire, Marc; Barth, Andreas

    2014-09-07

    Infrared spectroscopy was used to characterise recombinant sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a). In the amide I region, its spectrum differed from that of Ca(2+)-ATPase prepared from rabbit fast twitch muscle below 1650 cm(-1). A band at 1642 cm(-1) is reduced in the spectrum of the recombinant protein and a band at 1631 cm(-1) is more prominent. By comparison of amide I band areas with the known secondary structure content of the protein, we assigned the 1642 cm(-1) band to β-sheet structure. Further investigation revealed that the 1642 cm(-1) band decreased and the 1631 cm(-1) band increased upon storage at room temperature and upon repeated washing of a protein film with water. Also protein aggregates obtained after solubilisation of the rabbit muscle enzyme showed a prominent band at 1631 cm(-1), whereas the spectrum of solubilised ATPase resembled that of the membrane bound protein. The spectral position of the 1631 cm(-1) band is similar to that of a band observed for inclusion bodies of other proteins. The findings show that the absence of the 1642 cm(-1) band and the presence of a prominent band at 1631 cm(-1) indicate protein aggregation and can be used as a quality marker for the optimisation of recombinant protein production. We conclude that recombinant production of SERCA1a, storage at room temperature, repeated washing and aggregation after solubilisation all modify existing β-sheets in the cytosolic domains so that they become similar to those found in inclusion bodies of other proteins.

  12. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2016-01-01

    Full Text Available Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.

  13. Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system

    Science.gov (United States)

    Chen, Zhiquan; Li, Hongjian; Li, Boxun; He, Zhihui; Xu, Hui; Zheng, Mingfei; Zhao, Mingzhuo

    2016-10-01

    A nanoscale plasmonic filter based on a single-stub coupled metal-dielectric-metal waveguide system is investigated theoretically and numerically. A tunable wide band-stop can be achieved by loading a metal bar into the stub. The band-stop originates from the direct coupling between the resonance modes. The bandwidth and the center wavelength of the band-stop can be tuned by changing the parameters of the metal bar. Compared with previously reported filters, the plasmonic system has the advantages of easy fabrication and compactness. Our results indicate that the proposed system has potential to be utilized in integrated optical circuits and tunable filters.

  14. Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps.

    Science.gov (United States)

    Li, Xiuling; Ma, Liang; Wang, Dayong; Zeng, Xiao Cheng; Wu, Xiaojun; Yang, Jinlong

    2016-10-20

    Extended line defects in two-dimensional (2D) materials can play an important role in modulating their electronic properties. During the experimental synthesis of 2D materials, line defects are commonly generated at grain boundaries between domains of different orientations. In this work, twelve types of line-defect structures in single crystalline phosphorene are examined by using first-principles calculations. These line defects are typically formed via migration and aggregation of intrinsic point defects, including the Stone-Wales (SW), single or double vacancy (SV or DV) defects. Our calculated results demonstrate that the migration of point defects in phosphorene is anisotropic, for instance, the lowest migration energy barriers are 1.39 (or 0.40) and 2.58 (or 0.49) eV for SW (or SV) defects in zigzag and armchair directions, respectively. The aggregation of point defects into lines is energetically favorable compared with the separated point defects in phosphorene. In particular, the axis of line defects in phosphorene is direction-selective, depending on the composed point defects. The presence of line defects effectively modulates the electronic properties of phosphorene, rendering the defect-containing phosphorene either metallic or semiconducting with a tunable band gap. Of particular interest is the fact that the SV-based line defect can behave as a metallic wire, suggesting a possibility to fabricate a circuit with subnanometer widths in the semiconducting phosphorene for nanoscale electronic application.

  15. Protein Laboratories in Single Location | Poster

    Science.gov (United States)

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  16. Geometry-induced injection dispersion in single-cell protein electrophoresis.

    Science.gov (United States)

    Pan, Qiong; Herr, Amy E

    2018-02-13

    Arrays of microwells are widely used to isolate individual cells, facilitate high throughput cytometry assays, and ensure compatibility of those assays with whole-cell imaging. Microwell geometries have recently been utilized for handling and preparation of single-cell lysate, prior to single-cell protein electrophoresis. It is in the context of single-cell electrophoresis that we investigate the interplay of microwell geometry (circular, rectangular, triangular) and transport (diffusion, electromigration) on the subsequent performance of single-cell polyacrylamide gel electrophoresis (PAGE) for protein targets. We define and measure injector-induced dispersion during PAGE, and develop a numerical model of band broadening sources, experimentally validate the numerical model, and then identify operating conditions (characterized through the Peclet number, Pe) that lead to microwell-geometry induced losses in separation performance. With analysis of mammalian cells as a case study, we sought to understand at what Pe is the PAGE separation performance adversely sensitized to the microwell geometry. In developing design rules, we find that for the microwell geometries that are the most suitable for isolation of mammalian cells and moderate mass protein targets, the Pe is usually small enough (Pe geometry on protein PAGE of single-cell lysate. In extreme cases where the largest mammalian cells are analyzed (Pe > ∼20), consideration of Pe suggests using a rectangular - and not the widely used circular - microwell geometry to maximize protein PAGE separation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mining single-electron spectra of the interface states from a supercell band structure of silicene on an Ag (111 ) substrate with band-unfolding methodology

    Science.gov (United States)

    Iwata, Jun-Ichi; Matsushita, Yu-ichiro; Nishi, Hirofumi; Guo, Zhi-Xin; Oshiyama, Atsushi

    2017-12-01

    We develop a new position-resolved band-unfolding method based on the density functional theory to clarify the single-electron energy spectrum of (3 ×3 ) silicene on Ag (111 ) substrate. The position-resolved scheme enables us to clarify each contribution from each spatial region to the single-electron spectrum, which facilitates the chemical identification of each electron state. We find interface states which are distributed in the region of silicene and top two layers of the Ag substrate near the Fermi level and also below the Fermi level. The states are unique in silicene on a substrate in the sense that they are mixtures of Si and Ag orbitals. The obtained electronic structure near the Fermi level is interesting, featuring a hyperbolic-paraboloid-shaped energy band which leads to 12 Dirac-like cones at the boundary of the primitive Brillouin zone of Ag (111 ) . Characteristics of measured photoemission spectra are satisfactorily explained by the obtained unfolded bands.

  18. Single channel analysis of membrane proteins in artificial bilayer membranes.

    Science.gov (United States)

    Bartsch, Philipp; Harsman, Anke; Wagner, Richard

    2013-01-01

    The planar lipid bilayer technique is a powerful experimental approach for electrical single channel recordings of pore-forming membrane proteins in a chemically well-defined and easily modifiable environment. Here we provide a general survey of the basic materials and procedures required to set up a robust bilayer system and perform electrophysiological single channel recordings of reconstituted proteins suitable for the in-depth characterization of their functional properties.

  19. Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner.

    Science.gov (United States)

    Mao, Youxin; Chang, Shoude; Murdock, Erroll; Flueraru, Costel

    2011-06-01

    We report a novel (to the best of our knowledge) simultaneous 1310/1550 two-wavelength band swept laser source and dual-band common-path swept-source optical coherence tomography (SS-OCT). Synchronized dual-wavelength tuning is performed by using two laser cavities and narrowband wavelength filters with a single dual-window polygonal scanner. Measured average output powers of 60 and 27 mW have been achieved for the 1310 and 1550 nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 to 1387 nm for the 1310 nm band and from 1519 to 1581 nm for the 1550 nm band at an A-scan rate of 65 kHz. Broadband wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form dual-band common-path SS-OCT. Simultaneous OCT imaging at 1310 and 1550 nm is achieved. This technique allows for in vivo high-speed OCT imaging with potential application in functional (spectroscopic) investigations. © 2011 Optical Society of America

  20. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  1. Evaluation of yeast single cell protein (SCP) diets on growth ...

    African Journals Online (AJOL)

    An investigation was carried out on the possibility of replacing fishmeal with graded levels of yeast single cell protein (SCP; 10, 20, 30, 40 and 50%) in ... that the 50% yeast SCP fed fish had the highest percentage of body protein (55.35%), but with a lower amount of fat at the end of the feeding trial compared to the control.

  2. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    customary food and feed sources of protein (agriculnrre and fishery) to ocher sources like single cell protein (SCP); whose production from hydrocarbons is one ... origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, algae. protozoa, mid even bacterinphagcs generally cultivated on substrates ...

  3. Conversion of Food waste to Single Cell Protein using Aspergillus ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-13

    Mar 13, 2018 ... ABSTRACT: The utilization of food waste into products like single cell protein is an alternative solution to global protein shortage ... as orange, pineapple, banana, watermelon and cucumber waste as growth media for A. niger using standard techniques. ..... Waste to Wealth- Value Recovery from. Agrofood.

  4. Conversion of Food waste to Single Cell Protein using Aspergillus ...

    African Journals Online (AJOL)

    The utilization of food waste into products like single cell protein is an alternative solution to global protein shortage and to alleviate pollution problems. This investigation was carried out with food wastes such as orange, pineapple, banana, watermelon and cucumber waste as growth media for A. niger using standard ...

  5. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    The production of single cell protein (SCP) by the propagation of the yeast, Saccharomyces cerevisae ... animal feed but little or no information has been documented as per its explication for the production of single cell .... use of yeasts produced from vatious carbohydrate sources, molasses, sulphite liquors and vegetable.

  6. Spin-dependent electron-phonon coupling in the valence band of single-layer WS2

    DEFF Research Database (Denmark)

    Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin

    2017-01-01

    The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....

  7. A Novel Compact Ultra-Wideband Antenna with Single and Double Band Rejection

    Directory of Open Access Journals (Sweden)

    B. Zakeri

    2014-12-01

    Full Text Available Band-notch characteristic has been of great interest recently to overcome the electromagnetic interference of Ultra-wideband systems (UWB with other existing ones. In this paper, we present a novel microstrip-fed antenna with band rejection property appropriate for UWB applications. Band-notch characteristic has been achieved by adding a rectangular resonant element to the ground section. A prototype was fabricated and measured based upon optimal parameters. Experimental results show consistency with simulation results. Measurement results confirm that the antenna covers the UWB band and satisfies a band rejection in the frequency span of 5 GHz to 5.7 GHz to restrain it from interference with Wireless Local Area Network (WLAN. Then, to achieve better isolation, a rectangular strip is appended to the band-notch creating part of the ground section to enhance obtained VSWR up to 30 through simulation. In addition, by applying a similar technique, a dual band-notched characteristic with an average simulated VSWR of around 13.75 has been achieved for WLAN and the downlink of X band satellite communication systems with each more than 10. Features such as small size, omnidirectional pattern and perfect isolation make the antenna suitable for any UWB applications.

  8. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion......-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...

  9. Vibrational and structural investigation of SOUL protein single crystals by using micro-Raman spectroscopy

    Science.gov (United States)

    Rossi, Barbara; Giarola, Marco; Mariotto, Gino; Ambrosi, Emmanuele; Monaco, Hugo L.

    2010-05-01

    Protein SOUL is a new member of the recently discovered putative heme-binding protein family called SOUL/HEBP and, to date, no structural information exists for this protein. Here, micro-Raman spectroscopy is used to study the vibrational properties of single crystals obtained from recombinant protein SOUL by means of two different optimization routes. This spectroscopic approach offers the valuable advantage of the in-situ collection of experimental data from protein crystals, placed onto a hanging-drop plate, under the same conditions used to grow the crystals. By focusing on the regions of amides I and III bands, some secondary structure characteristic features have been recognized. Moreover, some side-chain marker bands were observed in the Raman spectra of SOUL crystals and the unambiguous assignment of these peaks inferred by comparing the experimental Raman spectra of pure amino acids and their Raman intensities computed using quantum chemical calculations. Our comparative analysis allows to get a deeper understanding of the side-chain environments and of the interactions involving these specific amino acids in the two different SOUL crystals.

  10. De Hass-van Alphen and magnetoresistance reveal predominantly single-band transport behavior in PdTe2.

    Science.gov (United States)

    Wang, Yongjian; Zhang, Jinglei; Zhu, Wenka; Zou, Youming; Xi, Chuanying; Ma, Long; Han, Tao; Yang, Jun; Wang, Jingrong; Xu, Junmin; Zhang, Lei; Pi, Li; Zhang, Changjin; Zhang, Yuheng

    2016-08-12

    Research on two-dimensional transition metal dichalcogenides (TMDs) has grown rapidly over the past several years, from fundamental studies to the development of next generation technologies. Recently, it has been reported that the MX2-type PdTe2 exhibits superconductivity with topological surface state, making this compound a promising candidate for investigating possible topological superconductivity. However, due to the multi-band feature of most of TMDs, the investigating of magnetoresistance and quantum oscillations of these TMDs proves to be quite complicated. Here we report a combined de Hass-van Alphen effect and magnetoresistance studies on the PdTe2 single crystal. Our high-field de Hass-van Alphen data measured at different temperature and different tilting angle suggest that though these is a well-defined multi-band feature, a predominant oscillation frequency has the largest oscillation magnitude in the fast Fourier transformation spectra, which is at least one order of magnitude larger than other oscillation frequencies. Thus it is likely that the transport behavior in PdTe2 system can be simplified into a single-band model. Meanwhile, the magnetoresistance results of the PdTe2 sample can be well-fitted according to the single-band models. The present results could be important in further investigation of the transport behaviors of two-dimensional TMDs.

  11. A single-patterned five-band terahertz metamaterial absorber based on multiple resonance mechanisms

    Science.gov (United States)

    Ju, Zong-De; Xu, Guo-Qing; Wei, Zhi-Hua; Li, Jing; Zhao, Qian; Huang, Jie

    2018-01-01

    A single-patterned five-band terahertz metamaterial absorber based on simple metal-dielectric-metal sandwich structure is investigated and demonstrated. The numerical simulations reveal the different dependence of the absorption ability on the incident polarization angle, dielectric layer, and structural dimensions of the single pattern. The extracted electric field distribution indicates that the five-band near-perfect absorption performance (average over 98%) mainly originates from the combination of LC, dipole, quadrupole, and high-order resonance. The researches on magnetic field and power loss density distributions further reveal the absorption mechanism. Moreover, additional resonance mode can be excited to form a six-band high-performance absorber only by adjusting some geometric dimensions of the single pattern with multiple resonance modes. The simple method provides us a very good idea to implement a super multi-band absorber. The proposed absorbers here can be applied in massive related fields, such as metamaterial sensors, thermal radiation, and imaging system.

  12. Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals.

    Science.gov (United States)

    Chen, Daqin; Lei, Lei; Zhang, Rui; Yang, Anping; Xu, Ju; Wang, Yuansheng

    2012-11-07

    Novel Yb/Er(Tm):Na(3)MF(7) (M = Zr, Hf) nanocrystals with intrinsic single-band upconversion emission, in contrast to the routine lanthanide-doped fluoride nanocrystals which show typical multi-band upconversion emissions, are reported for the first time. Specifically, the red upconversion intensity of the Yb/Er:Na(3)ZrF(7) nanocrystals is about 5 times as high as that of the hexagonal Yb/Er:NaYF(4) ones with a similar crystal size.

  13. A Planar UWB Antenna with Switchable Single/Double Band-Rejection Characteristics

    Directory of Open Access Journals (Sweden)

    V. Sharbati

    2016-09-01

    Full Text Available In this Paper, a reconfigurable antenna with capability to operate in the ultrawideband (UWB mode from 2.85 to 14.4 GHz with switchable notch bands of 3.25–4.26 GHz, 5.1–5.9 GHz or 7.1-7.8 GHz, is presented. The proposed antenna has a simple configuration and compact size of 17 × 14 mm2. To make the band-notches, three methods (methods of slot antenna, parasitic patches and backplane structure are used. To achieve the reconfigurability, three PIN diode are placed on the proposed antenna. A PIN diode is inserted over the L-shaped parasitic element and the rectangular patch, another one is placed between the two parasitic elements on the ground plane, and other across the square ring-shaped slot, respectively. Antenna performance can be changed by adjusting the status of the PIN diodes that make the band-notches in applications bands (WLAN, WiMAX/C-band and X-band. Good group delay and monopole-like radiation pattern characteristics are achieved in the frequency band of interest. The antenna performance both by simulation and by experiment indicates that it is suitable and a good candidate for UWB applications.

  14. Use of GPS TEC Maps for Calibrating Single Band VLBI Sessions

    Science.gov (United States)

    Gordon, David

    2010-01-01

    GPS TEC ionosphere maps were first applied to a series of K and Q band VLBA astrometry sessions to try to eliminate a declination bias in estimated source positions. Their usage has been expanded to calibrate X-band only VLBI observations as well. At K-band, approx.60% of the declination bias appears to be removed with the application of GPS ionosphere calibrations. At X-band however, it appears that up to 90% or more of the declination bias is removed, with a corresponding increase in RA and declination uncertainties of approx.0.5 mas. GPS ionosphere calibrations may be very useful for improving the estimated positions of the X-only and S-only sources in the VCS and RDV sessions.

  15. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction

    KAUST Repository

    Chiu, Ming-Hui

    2015-07-16

    The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.

  16. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  17. Dynamic protein assemblies in homologous recombination with single DNA molecules

    NARCIS (Netherlands)

    van der Heijden, A.H.

    2007-01-01

    What happens when your DNA breaks? This thesis describes experimental work on the single-molecule level focusing on the interaction between DNA and DNA-repair proteins, in particular bacterial RecA and human Rad51, involved in homologous recombination. Homologous recombination and its central event

  18. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    -erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...... in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...

  19. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marco; Wajnberg, Eliane; Bemski, George

    1997-11-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (Hb N O) and nitrosyl myoglobin (Mb NO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N (NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. (author) 24 refs., 6 figs.

  20. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  1. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2016-01-01

    Agency IceSAR 2012 campaign is discussed. IceSAR 2012 was conceived so as to support the secondary objectives of the future Earth Explorer mission BIOMASS, which will be a SAR instrument with media penetration capabilities due to the use of the P-band frequency. In this regard, a tomographic study of ice...

  2. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  3. Single Protein Molecule Mapping with Magnetic Atomic Force Microscopy

    Science.gov (United States)

    Moskalenko, Andriy V.; Yarova, Polina L.; Gordeev, Sergey N.; Smirnov, Sergey V.

    2010-01-01

    Abstract Understanding the structural organization and distribution of proteins in biological cells is of fundamental importance in biomedical research. The use of conventional fluorescent microscopy for this purpose is limited due to its relatively low spatial resolution compared to the size of a single protein molecule. Atomic force microscopy (AFM), on the other hand, allows one to achieve single-protein resolution by scanning the cell surface using a specialized ligand-coated AFM tip. However, because this method relies on short-range interactions, it is limited to the detection of binding sites that are directly accessible to the AFM tip. We developed a method based on magnetic (long-range) interactions and applied it to investigate the structural organization and distribution of endothelin receptors on the surface of smooth muscle cells. Endothelin receptors were labeled with 50-nm superparamagnetic microbeads and then imaged with magnetic AFM. Considering its high spatial resolution and ability to “see” magnetically labeled proteins at a distance of up to 150 nm, this approach may become an important tool for investigating the dynamics of individual proteins both on the cell membrane and in the submembrane space. PMID:20141762

  4. Microencapsulation of single-cell protein from various microalgae species

    Directory of Open Access Journals (Sweden)

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  5. COMPARATIVE PRODUCTION OF SINGLE CELL PROTEIN FROM FISH PROTEIN ISOLATE WASTAGE AND ULTRA FILTERED CHEESE WHEY

    Directory of Open Access Journals (Sweden)

    Soroush Haghighi-Manesh

    2013-02-01

    Full Text Available Fish protein isolate wastage and ultra filtered cheese whey were used as substrates for fermentation by Kluyveromyces marxianus to produce single cell protein, under batch and aerobic condition in which pH and temperature were adjusted to 4.5 and 35°C. The produced biomass was analyzed for protein content in different periods of time during fermentation. About 82% and 75% of total protein was produced in the first 18 h of 96 h fermentation of ultra filtered cheese whey and protein isolate wastage respectively, which can be an indication of the exponential phase of the yeast growth. The results of biomass yield measurements during 96 h process also confirm this finding. Moreover, since ultra filtered cheese whey was higher in single cell protein yield, solubility, water holding capacity, water absorption and power of biological and chemical oxygen demand reduction, and also was lower in foam overrun and stability than fish protein isolate wastage, it was selected as the suitable substrate for single cell protein production.

  6. Evaluation of single cell protein for nutrition of farm animals

    Energy Technology Data Exchange (ETDEWEB)

    Oslage, H.J.; Schulz, E.

    1981-08-01

    For the production of microorganisms with high content of protein technologies on the basis of carbon rich substrates have been developed during the past years. Thus, signification of Single Cell Protein (SCP) for nutrition of farm animals has changed. While, in former times, yeasts were added only in small portions (1-2%) as vitamin supplementation today it is the aim to use microbial biomass as a protein component. The use of SCP as a feedstuff requires a careful physiological and toxicological evaluation as well as extensive investigations of possible use and frontiers of those products for farm animals. Topic of this work were bacteria, bred on methanol as well as yeasts, grown on alcanes and on whey/lactic acid respectively. SCP is preferently used as a feedstuff for poultry, pigs, calves and fishes. Digestibility and utilisation of protein is good till very good, for the a.m. animals, digestibility being between 75-93% and net protein utilisation (NPU) being between 60-76%. In rations of young animals (chicken, piglets and calves) contents of 5-10% SCP have been proved to be without any negative effect on acceptance, body gain, feed utilisation and mortality. For older animals SCP can be used as the only protein source beside the basic feedstuffs.

  7. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  8. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  9. Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectra.

    Science.gov (United States)

    Hoffman, Adam S; Fang, Chia-Yu; Gates, Bruce C

    2016-10-06

    Determining and controlling the uniformity of isolated metal sites on surfaces of supports are central goals in investigations of single-site catalysts because well-defined species provide opportunities for fundamental understanding of the surface sites. CO is a useful probe of surface metal sites, often reacting with them to form metal carbonyls, the infrared spectra of which provide insights into the nature of the sites and the metal-support interface. Metals bonded to various support surface sites give broad bands in the spectra, and when narrow bands are observed, they indicate a high degree of uniformity of the metal sites. Much recent work on single-site catalysts has been done with supports that are inherently nonuniform, giving supported metal species that are therefore nonuniform. Herein we summarize values of ν CO data characterizing supported iridium gem-dicarbonyls, showing that the most nearly uniform of them are those supported on zeolites and the least uniform are those supported on metal oxides. Guided by ν CO data of supported iridium gem-dicarbonyls, we have determined new, general synthesis methods to maximize the degree of uniformity of iridium species on zeolites and on MgO. We report results for a zeolite HY-supported iridium gem-dicarbonyl with full width at half-maximum values of only 4.6 and 5.2 cm -1 characterizing the symmetric and asymmetric CO stretches and implying that this is the most nearly uniform supported single-site metal catalyst.

  10. Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding.

    Directory of Open Access Journals (Sweden)

    Judith Aron-Wisnewsky

    Full Text Available The number of morbidly obese patients undergoing bariatric surgery (BS has increased dramatically in recent years. Therefore, monitoring food intake and its consequences in terms of nutritional status is necessary to prevent nutritional deficiencies. The aim of this study was to analyze the effect of food restriction on nutritional parameters in the short-term (≤3 months period after BS in morbid obesity.In a prospective study, we followed 22 obese women who underwent Roux-en-Y gastric bypass (GBP or adjustable gastric banding (AGB at baseline (T0 and 1 (T1 and 3 (T3 months after surgery. We evaluated food intake, nutrient adequacy and serum concentrations of vitamins and minerals known to be at risk for deficiency following BS.Before surgery, we observed suboptimal food intakes, leading to a risk of micronutrient deficiencies. Serum analysis confirmed nutritional deficiencies for iron and thiamine for 27 and 23% of the patients, respectively. The drastic energy and food reduction seen in the short term led to very low probabilities of adequacy for nutrients equivalent across both surgeries. Serum analysis demonstrated a continuous decrease in prealbumin during the follow-up, indicating mild protein depletion in 21 and 57% of GBP patients and 50 and 63% of AGB patients, respectively, at T1 and T3. Regarding vitamins and minerals, systematic supplementation after GBP prevented most nutritional deficiencies. By contrast, AGB patients, for whom there is no systematic supplementation, developed such deficiencies.Our results suggest that cautious monitoring of protein intake after BS is mandatory. Furthermore, AGB patients might also benefit from systematic multivitamin and mineral supplementation at least in the short term.

  11. Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding.

    Science.gov (United States)

    Aron-Wisnewsky, Judith; Verger, Eric O; Bounaix, Carine; Dao, Maria Carlota; Oppert, Jean-Michel; Bouillot, Jean-Luc; Chevallier, Jean-Marc; Clément, Karine

    2016-01-01

    The number of morbidly obese patients undergoing bariatric surgery (BS) has increased dramatically in recent years. Therefore, monitoring food intake and its consequences in terms of nutritional status is necessary to prevent nutritional deficiencies. The aim of this study was to analyze the effect of food restriction on nutritional parameters in the short-term (≤3 months) period after BS in morbid obesity. In a prospective study, we followed 22 obese women who underwent Roux-en-Y gastric bypass (GBP) or adjustable gastric banding (AGB) at baseline (T0) and 1 (T1) and 3 (T3) months after surgery. We evaluated food intake, nutrient adequacy and serum concentrations of vitamins and minerals known to be at risk for deficiency following BS. Before surgery, we observed suboptimal food intakes, leading to a risk of micronutrient deficiencies. Serum analysis confirmed nutritional deficiencies for iron and thiamine for 27 and 23% of the patients, respectively. The drastic energy and food reduction seen in the short term led to very low probabilities of adequacy for nutrients equivalent across both surgeries. Serum analysis demonstrated a continuous decrease in prealbumin during the follow-up, indicating mild protein depletion in 21 and 57% of GBP patients and 50 and 63% of AGB patients, respectively, at T1 and T3. Regarding vitamins and minerals, systematic supplementation after GBP prevented most nutritional deficiencies. By contrast, AGB patients, for whom there is no systematic supplementation, developed such deficiencies. Our results suggest that cautious monitoring of protein intake after BS is mandatory. Furthermore, AGB patients might also benefit from systematic multivitamin and mineral supplementation at least in the short term.

  12. From Protein Structure to Function via Single Crystal Optical Spectroscopy

    Directory of Open Access Journals (Sweden)

    Luca eRonda

    2015-04-01

    Full Text Available The more than 100.000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic artifacts, including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density map, thus limiting the relevance of structure determinations. Moreover, for most of these structures no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in the inference for protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5’-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.

  13. The effect of a low-frequency noise signal on a single-frequency millimeter-band oscillator based on an avalanche-transit diode

    Science.gov (United States)

    Kotov, V. D.; Myasin, E. A.

    2017-11-01

    Noise-wave generation in a single-frequency oscillator based on a 7-mm-band avalanche-transit diode has been implemented for the first time under the action of a low-frequency narrow-band ( 3 MHz) noise signal on an avalanche-transit-diode feed circuit.

  14. Conduction band mass determinations for n-type InGaAs/InAlAs single quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.D.; Reno, J.L. [Sandia National Labs., Albuquerque, NM (United States); Kotera, Nobuo [Kyushu Inst. of Tech., Iizuka, Fukuoka (Japan); Wang, Y. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.

    1998-05-01

    The authors report the measurement of the conduction band mass in n-type single 27-ML-wide InGaAs/InAlAs quantum well lattice matched to InP using two methods: (1) Magnetoluminescence spectroscopy and (2) far-infrared cyclotron resonance. The magnetoluminescence method utilizes Landau level transitions between 0 and 14 T at 1.4 K. The far infrared cyclotron resonance measurements were made at 4.2 K and to fields as large up to 18 T. The 2D-carrier density N{sub 2D} = 3 {times} 10{sup 11} cm{sup {minus}2} at low temperatures. The magnetoluminescence technique yielded an effective conduction-band mass of m{sub c} = 0.062m{sub 0} while the far infrared cyclotron resonance measurements gave m{sub c} = 0.056m{sub 0}, where m{sub 0} is the free electron mass. Both measurements show no evidence for any significant conduction-band nonparabolicity.

  15. Tetramethylammonium-filled protein nanopore for single-molecule analysis.

    Science.gov (United States)

    Wang, Ying; Yao, Fujun; Kang, Xiao-feng

    2015-10-06

    Nanopore technology, as the simplest and most inexpensive single-molecule tool, is being intensively developed. In nanopore stochastic sensing, KCl and NaCl have traditionally been employed as pore-filled electrolytes for recording the change of ion conductance in nanopores triggered by analyte translocation through the pore. However, some challenges limit its further advance. Here we used tetramethylammonium (TMA) chloride, instead of KCl, as a novel analysis system for nanopores. Some unique nanopore characteristics were observed: (1) The stability of the planar lipid bilayer for embedding the protein pores was elevated at least 6 times. (2) The TMA-Cl system could effectively reduce the noise of single-channel recording. (3) It was easy to control the insertion of protein pores into the lipid bilayer, and the formed single nanopore could last for a sufficiently long time. (4) TMA-Cl could be used as a DNA speed bump in the nanopore to slow DNA translocation speed. (5) The capacity of the nanopore capture of DNA (capture rate) increased significantly and simultaneously increased the translocation time of DNA in the pore. (6) The TMA-filled nanopore could discriminate between various polynucleotides.

  16. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    Science.gov (United States)

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  17. An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band

    Directory of Open Access Journals (Sweden)

    Jordi Cristóbal

    2018-03-01

    Full Text Available Land surface temperature (LST is one of the sources of input data for modeling land surface processes. The Landsat satellite series is the only operational mission with more than 30 years of archived thermal infrared imagery from which we can retrieve LST. Unfortunately, stray light artifacts were observed in Landsat-8 TIRS data, mostly affecting Band 11, currently making the split-window technique impractical for retrieving surface temperature without requiring atmospheric data. In this study, a single-channel methodology to retrieve surface temperature from Landsat TM and ETM+ was improved to retrieve LST from Landsat-8 TIRS Band 10 using near-surface air temperature (Ta and integrated atmospheric column water vapor (w as input data. This improved methodology was parameterized and successfully evaluated with simulated data from a global and robust radiosonde database and validated with in situ data from four flux tower sites under different types of vegetation and snow cover in 44 Landsat-8 scenes. Evaluation results using simulated data showed that the inclusion of Ta together with w within a single-channel scheme improves LST retrieval, yielding lower errors and less bias than models based only on w. The new proposed LST retrieval model, developed with both w and Ta, yielded overall errors on the order of 1 K and a bias of −0.5 K validated against in situ data, providing a better performance than other models parameterized using w and Ta or only w models that yielded higher error and bias.

  18. Interaction of DNA and Proteins with Single Nanopores

    Science.gov (United States)

    Kasianowicz, J. J.

    2006-03-01

    The bacterial toxins Staphylococcus aureus alpha-hemolysin and Bacillus anthracis protective antigen kill cells in part by forming ion channels in target membranes. We are using electrophysiology, molecular biology/protein biochemistry and computer modeling to study how biopolymers (e.g., single-stranded DNA and proteins) bind to and transport through these nanometer-scale pores. The results provide insight into the mechanism by which these toxins work and are the basis for several potential nanobiotechnology applications including ultra-rapid DNA sequencing, the sensitive and selective detection of a wide range of analytes and high throughput screening of therapeutic agents against several anthrax toxins. In collaboration with V.M. Stanford, M. Misakian, B. Nablo, S.E. Henrickson, NIST, EEEL, Gaithersburg, MD; T. Nguyen, R. Gussio, NCI, Ft. Detrick, MD; and K.M. Halverson, S. Bavari, R.G. Panchal, USAMRIID, Ft. Detrick, MD.

  19. X-band singly degenerate parametric amplification in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.

    1978-01-01

    Preliminary measurements on a (quasi-) degenerate parametric amplifier using a single Josephson tunnel junction as the active element is reported. The pump frequency is at 18 GHz and the signal and idler frequencies are both at about 9 GHz. A power gain of 16 dB in a 4-MHz 3-dB bandwidth is achie...... is achieved at the top of the cryostat. Applied Physics Letters is copyrighted by The American Institute of Physics....

  20. single crystal growth, x-ray structure analysis, optical band gap

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... Hg...Hgand Cl...Cl interactions are stabilizing the structures in 3D pattern. UV-vis absorption spectra illustrate the change in opticalband gap from 3.01eVto 3.42eV on replacing the metal halide group.Raman and Hyper-Raman tensors calculations were performed based on single crystal X-ray data and the ...

  1. Single methyl groups can act as toggle switches to specify transmembrane protein-protein interactions

    DEFF Research Database (Denmark)

    He, Li; Steinocher, Helena; Shelar, Ashish

    2017-01-01

    of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated......Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively...... productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single...

  2. Single-stage revision from gastric band to gastric bypass or sleeve gastrectomy: 6- and 12-month outcomes.

    Science.gov (United States)

    Yeung, Louise; Durkan, Brandice; Barrett, Allison; Kraft, Cary; Vu, Kim; Phillips, Edward; Cunneen, Scott; Burch, Miguel

    2016-06-01

    Laparoscopic adjustable gastric banding (LAGB) is increasingly requiring revisional surgery for complications and failures. Removal of the band and conversion to either laparoscopic Roux-en-y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG) is feasible as a single-stage procedure. The objective of this study is to compare the safety and efficacy of single-stage revision from LAGB to either LRYGB or LSG at 6 and 12 months postoperatively. Retrospective analysis was performed on patients undergoing single-stage revision between 2009 and 2014 at a single academic medical center. Patients were reassessed for weight loss and complications at 6 and 12 months postoperatively. Thirty-two patients underwent single-stage revision to LRYGB, and 72 to LSG. Preoperative BMIs were similar between the two groups (p = 0.27). Median length of stay for LRYGB was 3 days versus 2 for LSG (p = 0.14). Four patients in the LRYGB group required reoperation within 30 days, and two patients in the LSG group required reoperation within 30 days (p = 0.15). There was no difference in ER visits (p = 0.24) or readmission rates (p = 0.80) within 30 days of operation. Six delayed complications were seen in the LSG group with three requiring intervention. At 6 months postoperatively, percent excess weight loss (%EWL) was 50.20 for LRYGB and 30.64 for LSG (p = 0.056). At 12 months, %EWL was 51.19 for LRYGB and 34.89 for LSG (p = 0.31). There was no difference in diabetes or hypertension medication reduction at 12 months between LRYGB and LSG (p > 0.07). Single-stage revision from LAGB to LRYGB or LSG is technically feasible, but not without complications. The complications in the bypass group were more severe. There was no difference in readmission or reoperation rates, weight loss or comorbidity reduction. Revision to LRYGB trended toward higher rate and greater severity of complications with equivalent weight loss and comorbidity reduction.

  3. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive.

    Science.gov (United States)

    Burley, Stephen K; Berman, Helen M; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer

    2017-01-01

    The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences. The PDB archive currently houses ~130,000 entries (May 2017). It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdb.org), which includes the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu). The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (deposit.wwpdb.org). The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates. wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources. At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM). wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc.) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.

  4. Laparoscopic Adjustable Gastric Banding: Predictive Factors for Weight Loss and Band Removal After More than 10 Years' Follow-Up in a Single University Unit.

    Science.gov (United States)

    Tammaro, Pasquale; Hansel, Boris; Police, Andrea; Kousouri, Marina; Magnan, Christophe; Marmuse, Jean Pierre; Arapis, Konstantinos

    2017-08-01

    Weight loss and overall outcomes following laparoscopic adjustable gastric banding (LAGB) are more variable than with other bariatric procedures. Our aim was to investigate the predictive value of certain parameters in a cohort of 794 patients with 10 years' minimum follow-up after LAGB. We retrospectively reviewed the records of 794 patients undergoing LAGB performed by the authors between April 1996 and December 2004. We collected patients' data on weight loss and band-related complications and performed logistic regression modelling and calculated Kaplan-Meier curves for band preservation. The follow-up rate at 10 years was 90.4%. The mean follow-up duration was 15.1 years (range, 120-228 months). Overall band removal with or without conversion or replacement was required in 304 (38.2%) patients. The mean survival time of the band was 148.4 months (95% confidence interval: 138.3-167.4), and there was no difference in the rate of removal by operative technique (p = 0.7). The highest rate of band removal occurred in female patients (p = 0.05), those with BMI > 50 kg/m 2 (p = 0.005) and in those success rate was significantly lower in patients with initial BMI > 50 kg/m 2 . Conversely, differences in success rate were not statistically significant for age (using 50 years as the cut-off), technique or sex. Higher rates of removal occurred in women, younger patients and those with BMI > 50 kg/m 2 . Regardless of these criteria, the rate of band removal for complications rose over time. Patients should be informed of the high risk of the need for band removal long-term.

  5. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering.

    Science.gov (United States)

    Peng, R; Xu, H C; Tan, S Y; Cao, H Y; Xia, M; Shen, X P; Huang, Z C; Wen, C H P; Song, Q; Zhang, T; Xie, B P; Gong, X G; Feng, D L

    2014-09-26

    The interface between transition metal compounds provides a rich playground for emergent phenomena. Recently, significantly enhanced superconductivity has been reported for single-layer FeSe on Nb-doped SrTiO3 substrate. Yet it remains mysterious how the interface affects the superconductivity. Here we use in situ angle-resolved photoemission spectroscopy to investigate various FeSe-based heterostructures grown by molecular beam epitaxy, and uncover that electronic correlations and superconducting gap-closing temperature (Tg) are tuned by interfacial effects. Tg up to 75 K is observed in extremely tensile-strained single-layer FeSe on Nb-doped BaTiO3, which sets a record high pairing temperature for both Fe-based superconductor and monolayer-thick films, providing a promising prospect on realizing more cost-effective superconducting device. Moreover, our results exclude the direct correlation between superconductivity and tensile strain or the energy of an interfacial phonon mode, and highlight the critical and non-trivial role of FeSe/oxide interface on the high Tg, which provides new clues for understanding its origin.

  6. Single-molecule studies of unconventional motor protein myosin VI

    Science.gov (United States)

    Kim, HyeongJun

    Myosin VI is one of the myosin superfamily members that are actin-based molecular motors. It has received special attention due to its distinct features as compared to other myosins, such as its opposite directionality and a much larger step size than expected given the length of its "leg". This dissertation presents the author.s graduate work of several single-molecule studies on myosin VI. Special attention was paid to some of myosin VI.s tail domains that consist of proximal tail (PT), medial tail (MT), distal tail (DT) domains and cargo-binding domain (CBD). The functional form of myosin VI in cells is still under debate. Although full length myosin VI proteins in cytosolic extracts of cells were monomers from earlier studies, there are several reasons why it is now believed that myosin VI could exist as a dimer. If this is true and dimerization occurs, the next logical question would be which parts of myosin VI are dimerization regions? One model claimed that the CBD is the sole dimerization region. A competing model claimed that there must be another region that could be involved in dimerization, based on their observation that a construct without the CBD could still dimerize. Our single-molecule experiment with progressively truncated myosin VI constructs showed that the MT domain is a dimerization region, supporting the latter model. Additional single-molecule experiments and molecular dynamics (MD) simulation done with our collaborators suggest that electrostatic salt bridges formed between positive and negative amino acid residues are mainly responsible for the MT domain dimerization. After resolving this, we are left with another important question which is how myosin VI can take such a large step. Recent crystal structure showed that one of the tail domains preceding the MT domain, called the PT domain, is a three-helix bundle. The most easily conceivable way might be an unfolding of the three-helix bundle upon dimerization, allowing the protein to

  7. Quantification of trace elements in protein bands by synchrotron radiation x-ray fluorescence after isoelectric focusing separation of human hemoglobin

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Li Bai; He Wei; Huang Yuying; Chai Zhifang

    2005-01-01

    The role and effects of a trace element in a particular organism strongly depend on its particular chemical forms in which the element is present. Therefore, the bulk content or concentration of an element in the organism of interest is often meaningless in judging its biological significance. To understand bioavailability, transportation, cell uptake, metabolism, toxicity, and other biological behaviors of trace elements in the body, information is needed about speciation of trace element, especially about distribution of metal-containing proteins. Development of appropriate methods for speciation analysis is therefore required. Synchrotron radiation x-ray fluorescence (SRXRF) is a sensitive method for multielemental analysis with detection limit of 10 ng/g. It has been successfully used for imaging and quantifying trace elements in various pathological and healthy tissues, even in a single cell, to help understand the mechanism of diseases and the biochemistry of elements. In our previous work, the technique was combined with electrophoresis to study distribution of metalloproteins in biological samples, but the quantitative analysis of trace elements in protein bands after electrophoresis was still unrealized. In this study, a procedure has been proposed for quantification of Fe, Cu, and Zn in protein bands with SRXRF analysis after isoelectric focusing (IEF) separation. Calibration standards were prepared by adding certain amounts of metal ions and free-metal proteins to electrophoresis gel. Human hemoglobin was separated with IEF, and Fe, Cu, and Zn in protein bands were analyzed by SRXRF. The calibration curves can be obtained in a range of 0-8 mg/kg metals and a linear relationship between dosage of metals and fluorescent intensity can be observed (r 2 > 0.99). The method provides the detection limits of 2.43, 1.12, and 0.96 mg/kg for Fe, Cu and Zn, and the recoveries of 90.4 and 115.7 % for Fe and Zn, respectively. The hyphenated technique of SRXRF and IEF

  8. Ewald sphere correction using a single side-band image processing algorithm.

    Science.gov (United States)

    Russo, Christopher J; Henderson, Richard

    2018-04-01

    Curvature of the Ewald sphere limits the resolution at which Fourier components in an image can be approximated as corresponding to a projection of the object. Since the radius of the Ewald sphere is inversely proportional to the wavelength of the imaging electrons, this normally imposes a limit on the thickness of specimen for which images can be easily interpreted to a particular resolution. Here we present a computational method for precisely correcting for the curvature of the Ewald sphere using defocused images that delocalise the high-resolution Fourier components from the primary image. By correcting for each approximately Friedel-symmetry-related sideband separately using two distinct complex transforms that effectively move the displaced Fourier components back to where they belong in the structure, we can determine the amplitude and phase of each of the Fourier components separately. This precisely accounts for the effect of Ewald sphere curvature over a bandwidth defined by the defocus and the size of the particle being imaged. We demonstrate this processing algorithm using: 1. simulated images of a particle with only a single, high-resolution Fourier component, and 2. experimental images of gold nanoparticles embedded in ice. Processing micrographs with this algorithm will allow higher resolution imaging of thicker specimens at lower energies without any image degradation or blurring due to errors made by the assumption of a flat Ewald sphere. Although the procedure will work best on images recorded with higher defocus settings than used normally, it should still improve 3D single-particle structure determination using images recorded at any defocus and any electron energy. Finally, since the Ewald sphere curvature is in a known direction in the third dimension which is parallel to the direction of view, this algorithm automatically determines the absolute hand of the specimen without the need for pairs of images with a known tilt angle difference

  9. Axial-Compressive Behavior, Including Kink-Band Formation and Propagation, of Single p-Phenylene Terephthalamide (PPTA Fibers

    Directory of Open Access Journals (Sweden)

    M. Grujicic

    2013-01-01

    Full Text Available The mechanical response of p-phenylene terephthalamide (PPTA single fibers when subjected to uniaxial compression is investigated computationally using coarse-grained molecular statics/dynamics methods. In order to construct the coarse-grained PPTA model (specifically, in order to define the nature of the coarse-grained particles/beads and to parameterize various components of the bead/bead force-field functions, the results of an all-atom molecular-level computational investigation are used. In addition, the microstructure/topology of the fiber core, consisting of a number of coaxial crystalline fibrils, is taken into account. Also, following our prior work, various PPTA crystallographic/topological defects are introduced into the model (at concentrations consistent with the prototypical PPTA synthesis/processing conditions. The analysis carried out clearly revealed (a formation of the kink bands during axial compression; (b the role of defects in promoting the formation of kink bands; (c the stimulating effects of some defects on the fiber-fibrillation process; and (d the detrimental effect of the prior compression, associated with fiber fibrillation, on the residual longitudinal-tensile strength of the PPTA fibers.

  10. Electron microscopic and physicobiochemical studies on disorganization of the cytoskeletal network and integral protein (band 3) in red cells of band 4.2 deficiency with a mutation (codon 142: GCT-->ACT).

    Science.gov (United States)

    Inoue, T; Kanzaki, A; Yawata, A; Tsuji, A; Ata, K; Okamoto, N; Wada, H; Higo, I; Sugihara, T; Yamada, O

    1994-04-01

    The role of band 4.2 deficiency in the pathogenesis of red cell membrane dysfunctions was studied in seven unrelated patients with complete band 4.2 deficiency with a point mutation (142 GCT-->ACT; 142 Ala-->Thr) on the cDNA of the band 4.2 gene. Two major types of abnormalities were detected in these patients; (A) abnormalities of the cytoskeletal network in the horizontal dimension, and (B) abnormalities of band 3 in the vertical dimension. Electron microscopy by the surface replica method and the quick-freeze deep-etching method demonstrated the markedly impaired cytoskeletal network (a disorganized cobblestone pattern, uneven distribution of junctional units, and the appearance of bulky aggregates after heat treatment). Ektacytometry showed a markedly decreased red cell deformability especially at 48 degrees C, although the cytoskeletal proteins themselves were essentially normal with normal mechanical stability of the Triton-shells. Electron microscopy by the freeze fracture method revealed a decreased number and a random distribution of intramembrane particles (IMPs) with a shift of the IMPs to a larger size. Fluorescence recovery after photobleaching studies on band 3 indicated the marked increase of its mobile fraction. The extractability of band 3 by Triton X in vitro was markedly enhanced, although the physico-biochemical properties of band 3 itself (the cleavage pattern of band 3 fragments, and the binding properties of band 3 to band 4.2 or ankyrin) were basically normal. These findings demonstrate that band 4.2 plays a crucial role in the maintenance of the normal structure and functions of both the cytoskeletal and integral proteins (band 3).

  11. Narrow band imaging (NBI cystoscopy and assisted bipolar TURBT: A preliminary experience in a single centre

    Directory of Open Access Journals (Sweden)

    Roberto Giulianelli

    2017-10-01

    Full Text Available Objective: The aim of this study was to compare, in order to increase our ability to detect bladder cancer, the predictive power of narrow band imaging (NBI versus white light cystoscopy (WL. The secondary objective was to evaluate how the preoperative use of NBI cystoscopy can increase the ability to detect bladder lesions in terms of status, multi-focality and dimensions. Materials and methods: Between June 2010 and April 2012, 797 consecutive patients, 423 male and 374 female, affected by suspected bladder cancer lesions, underwent to WL plus NBI cystoscopy and subsequently to WL Bipolar Gyrus PK (Olympus, Tokyo, Japan transurethral resection of bladder tumour (WL-TURBT. The average follow-up was 24 (16-38 months. Mean age was 67.7 yrs. (range 46-88. All the patients underwent by same surgeon to WL resection (WL-TURBT of the previously identified lesions by same surgeon. All the removed tissue was sent separately for histological evaluation after mapping the areas of resection on a topographic sheet. Results: In our study we considered 797 patients that matched our inclusion criteria. Through the use of WL cystoscopy, we identified 603 patients (75.53% with suspicious lesions, instead, with the use of light NBI, we found 786 patients with suspicious lesions (98.49%.The use of NBI cystoscopy increases by approximately 30% the specific ability to detect lesions not otherwise visible with WL cystoscopy (OR 21.9 and RR 1.30, in particular for patients with lesions size < 3 cm (OR 24.00; RR 1.40, unifocal (OR: 22.28; RR 1.47 and recurrent (OR 58.4; RR 1.34. Pathology demonstrated the presence of cancer in 512 (64.2% patients, of whom 412 (51.8% were visible both with WL cystoscopy and NBI cystoscopy. In our experience, only 11 (1.38% lesions were only positive at WL cystoscopy (negative at NBI cystoscopy thus 501 (62.8%, OR 10.13; RR 1.21 patients showed bladder oncological lesions positive at NBI cystoscopy. In these patients, the use the NBI

  12. Z-band Alternatively Spliced PDZ Motif Protein (ZASP) Is the Major O-Linked β-N-Acetylglucosamine-substituted Protein in Human Heart Myofibrils*

    Science.gov (United States)

    Leung, Man-Ching; Hitchen, Paul G.; Ward, Douglas G.; Messer, Andrew E.; Marston, Steven B.

    2013-01-01

    We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p heart myofibrils. PMID:23271734

  13. Single-cell analysis of G-protein signal transduction.

    Science.gov (United States)

    Clister, Terri; Mehta, Sohum; Zhang, Jin

    2015-03-13

    The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Excitons and trions in monolayer transition metal dichalcogenides: A comparative study between the multiband model and the quadratic single-band model

    Science.gov (United States)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2017-07-01

    The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single-band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single-band model when (interband) interactions are strong.

  15. The E. coli Single Protein Production (cSPP) System for Production and Structural Analysis of Membrane Proteins

    OpenAIRE

    Mao, Lili; Vaiphei, S. Thangminlal; Shimazu, Tsutomu; Schneider, William M.; Tang, Yuefeng; Mani, Rajeswari; Roth, Monica J.; Montelione, Gaetano T.; Inouye, Masayori

    2009-01-01

    At present, only 0.9% of PDB-deposited structures are of membrane proteins in spite of the fact that membrane proteins constitute approximately 30% of total proteins in most genomes from bacteria to humans. Here we address some of the major bottlenecks in the structural studies of membrane proteins and discuss the ability of the new technology, the Single-Protein Production (SPP) system, to help solve these bottlenecks.

  16. Immunotoxicity of nucleic acid reduced BioProtein - a bacterial derived single cell protein - in Wistar rats

    DEFF Research Database (Denmark)

    Mølck, Anne-marie; Poulsen, Morten; Christensen, Hanne Risager

    2002-01-01

    BioProtein is a single cell protein produced by a mixed methanotrophic and heterotrophic bacteria culture using natural gas as energy source, which has been approved for animal feed. BioProtein contains a large amount of nucleic acids making the product less suitable for human consumption, theref...

  17. High performance of low band gap polymer-based ambipolar transistor using single-layer graphene electrodes.

    Science.gov (United States)

    Choi, Jong Yong; Kang, Woonggi; Kang, Boseok; Cha, Wonsuk; Son, Seon Kyoung; Yoon, Youngwoon; Kim, Hyunjung; Kang, Youngjong; Ko, Min Jae; Son, Hae Jung; Cho, Kilwon; Cho, Jeong Ho; Kim, BongSoo

    2015-03-18

    Bottom-contact bottom-gate organic field-effect transistors (OFETs) are fabricated using a low band gap pDTTDPP-DT polymer as a channel material and single-layer graphene (SLG) or Au source/drain electrodes. The SLG-based ambipolar OFETs significantly outperform the Au-based ambipolar OFETs, and thermal annealing effectively improves the carrier mobilities of the pDTTDPP-DT films. The difference is attributed to the following facts: (i) the thermally annealed pDTTDPP-DT chains on the SLG assume more crystalline features with an edge-on orientation as compared to the polymer chains on the Au, (ii) the morphological features of the thermally annealed pDTTDPP-DT films on the SLG electrodes are closer to the features of those on the gate dielectric layer, and (iii) the SLG electrode provides a flatter, more hydrophobic surface that is favorable for the polymer crystallization than the Au. In addition, the preferred carrier transport in each electrode-based OFET is associated with the HOMO/LUMO alignment relative to the Fermi level of the employed electrode. All of these experimental results consistently explain why the carrier mobilities of the SLG-based OFET are more than 10 times higher than those of the Au-based OTFT. This work demonstrates the strong dependence of ambipolar carrier transport on the source/drain electrode and annealing temperature.

  18. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  19. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique.

    Science.gov (United States)

    Mei, Liang; Guan, Peng; Yang, Yang; Kong, Zheng

    2017-08-07

    An 808 nm single-band Mie scattering Scheimpflug lidar system is developed in Dalian, Northern China, for real-time, large-area atmospheric aerosol/particle remote sensing. Atmospheric measurement has been performed in urban area during a typical haze weather condition, and time-range distribution of atmospheric backscattering signal is recorded from March 18th to 22nd, 2017, by employing the Scheimpflug lidar system. Atmospheric extinction coefficient is then retrieved according to the Klett-inversion algorithm, while the boundary value is obtained by the slope-method in the far end where the atmosphere is homogeneous in a subinterval region. The correlation between the extinction coefficients retrieved from the Scheimpflug lidar technique and the PM10/PM2.5 concentrations measured by a conventional air pollution monitoring station is also studied. The good agreement between the measurement results, i.e., a correlation coefficient of 0.85, successfully demonstrates the feasibility and great potential of the Scheimpflug lidar technique for atmospheric studies and applications.

  20. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    National Research Council Canada - National Science Library

    Dovichi, Norman J

    2005-01-01

    .... Capillary sieving electrophoresis and capillary micellar electrophoresis were used to characterize proteins in single cells in one-dimensional separations, while the two techniques were combined...

  1. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    Science.gov (United States)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  2. Conversion of failed laparoscopic adjustable gastric banding to Roux-en-Y gastric bypass is safe as a single-step procedure

    NARCIS (Netherlands)

    Emous, M.; Apers, J.; Hoff, C.; van Beek, A. P.; Totte, E.

    Several different procedures have been proposed as a revisional procedure for treatment of failed laparoscopic adjustable gastric banding (LAGB). Laparoscopic Roux-en-Y gastric bypass (LRYGB) has been advocated as the procedure of choice for revision. In this study, we compare the single- and

  3. Uji Banding Pengukuran Protein Total Serum Antara Metoda Tetes Layang, Refraktometer Dan Spektrofotometer

    OpenAIRE

    Suryanto, Suryanto; Banundari, RH

    2001-01-01

    Examination of serum total protein is often needed to assess the presence :' hypoproteinemia or hyperproteinemia in various cases, and the method of Examination commonly used is photometric (Biuret) or automatisation. In View of not all regions can make this instrument available, the method of Examination using Refractometer device and Flying-drops method can become alternatives for measuring serum total protein in remote region or in many Tablic health centres and small hospitals.This reseac...

  4. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    International Nuclear Information System (INIS)

    Lowe, M.; McGrath, R.; Sharma, H. R.; Yadav, T. P.; Fournée, V.; Ledieu, J.

    2015-01-01

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe 3 O 4 rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol

  5. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    Science.gov (United States)

    Lowe, M.; Yadav, T. P.; Fournée, V.; Ledieu, J.; McGrath, R.; Sharma, H. R.

    2015-03-01

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe3O4 rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  6. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M.; McGrath, R.; Sharma, H. R. [Surface Science Research Centre and The Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Yadav, T. P. [Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Fournée, V.; Ledieu, J. [Institut Jean Lamour (UMR7198 CNRS-Université de Lorraine), Parc de Saurupt, 54011 Nancy Cedex (France)

    2015-03-07

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  7. Single-Molecule Study of Proteins by Biological Nanopore Sensors

    Science.gov (United States)

    Wu, Dongmei; Bi, Sheng; Zhang, Liyu; Yang, Jun

    2014-01-01

    Nanopore technology has been developed for detecting properties of proteins through monitoring of ionic current modulations as protein passes via a nanosize pore. As a real-time, sensitive, selective and stable technology, biological nanopores are of widespread concern. Here, we introduce the background of nanopore researches in the area of α-hemolysin (α-HL) nanopores in protein conformation detections and protein–ligand interactions. Moreover, several original biological nanopores are also introduced with various features and functions. PMID:25268917

  8. Single-Molecule Study of Proteins by Biological Nanopore Sensors

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    2014-09-01

    Full Text Available Nanopore technology has been developed for detecting properties of proteins through monitoring of ionic current modulations as protein passes via a nanosize pore. As a real-time, sensitive, selective and stable technology, biological nanopores are of widespread concern. Here, we introduce the background of nanopore researches in the area of α-hemolysin (α-HL nanopores in protein conformation detections and protein–ligand interactions. Moreover, several original biological nanopores are also introduced with various features and functions.

  9. Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy

    Science.gov (United States)

    Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi

    2009-02-01

    Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.

  10. Single-molecule protein sequencing through fingerprinting: computational assessment

    NARCIS (Netherlands)

    Yao, Y.; Docter, M.; Ginkel, van J.; Ridder, de D.; Joo, C.

    2015-01-01

    Proteins are vital in all biological systems as they constitute the main structural and functional components of cells. Recent advances in mass spectrometry have brought the promise of complete proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing technique has

  11. Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence

    Science.gov (United States)

    Yamada, Takumi; Aharen, Tomoko; Kanemitsu, Yoshihiko

    2018-02-01

    The determination of the band gap and exciton energies of lead halide perovskites is very important from the viewpoint of fundamental physics and photonic device applications. By using photoluminescence excitation (PLE) spectra, we reveal the optical properties of CH3NH3PbCl3 single crystals in the near-band-edge energy regime. The one-photon PLE spectrum exhibits the 1 s exciton peak at 3.11 eV. On the contrary, the two-photon PLE spectrum exhibits no peak structure. This indicates photon recycling of excitonic luminescence. By analyzing the spatial distribution of the excitons and photon recycling, we obtain 3.15 eV for the band gap energy and 41 meV for the exciton binding energy.

  12. Absence of Dystrophin Related Protein-2 disrupts Cajal bands in a patient with Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Brennan, Kathryn M; Bai, Yunhong; Pisciotta, Chiara; Wang, Suola; Feely, Shawna M E; Hoegger, Mark; Gutmann, Laurie; Moore, Steven A; Gonzalez, Michael; Sherman, Diane L; Brophy, Peter J; Züchner, Stephan; Shy, Michael E

    2015-10-01

    Using exome sequencing in an individual with Charcot-Marie-Tooth disease (CMT) we have identified a mutation in the X-linked dystrophin-related protein 2 (DRP2) gene. A 60-year-old gentleman presented to our clinic and underwent clinical, electrophysiological and skin biopsy studies. The patient had clinical features of a length dependent sensorimotor neuropathy with an age of onset of 50 years. Neurophysiology revealed prolonged latencies with intermediate conduction velocities but no conduction block or temporal dispersion. A panel of 23 disease causing genes was sequenced and ultimately was uninformative. Whole exome sequencing revealed a stop mutation in DRP2, c.805C>T (Q269*). DRP2 interacts with periaxin and dystroglycan to form the periaxin-DRP2-dystroglycan complex which plays a role in the maintenance of the well-characterized Cajal bands of myelinating Schwann cells. Skin biopsies from our patient revealed a lack of DRP2 in myelinated dermal nerves by immunofluorescence. Furthermore electron microscopy failed to identify Cajal bands in the patient's dermal myelinated axons in keeping with ultrastructural pathology seen in the Drp2 knockout mouse. Both the electrophysiologic and dermal nerve twig pathology support the interpretation that this patient's DRP2 mutation causes characteristic morphological abnormalities recapitulating the Drp2 knockout model and potentially represents a novel genetic cause of CMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    National Research Council Canada - National Science Library

    Hanke, Andreas

    2008-01-01

    ... may open up spontaneously due to thermal activation. By rising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA...

  14. Reconstrução anatômica do ligamento cruzado anterior do joelho: banda dupla ou banda simples? Anatomical reconstruction of anterior cruciate ligament of the knee: double band or single band?

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Zanotelli Zanella

    2012-04-01

    Full Text Available OBJETIVO: Avaliar as técnicas de banda dupla e banda simples para reconstrução anatômica do ligamento cruzado anterior do joelho e comprovar que a técnica de dupla banda, além de fornecer maior estabilidade anterior, também causa menor dor e uma melhor resposta subjetiva do paciente. MÉTODOS: Selecionamos 42 pacientes que foram submetidos à reconstrução do LCA, conforme a técnica de reconstrução anatômica por banda simples com enxerto de tendões flexores com dois túneis ou reconstrução anatômica por banda dupla e quatro túneis com enxerto de tendões dos músculos semitendíneo e gracilis. Todas as fixações foram realizadas com parafusos de interferência. Não houve variação na amostra, avaliou-se no pré-operatório IKDC objetivo, subjetivo, Lysholm e tempo de lesão. Reavaliou-se após seis meses todas as variáveis anteriormente citadas, incluindo o KT-1000 correlacionando o joelho contralateral. RESULTADOS: Não houve diferença significativa entre os dois grupos nas avaliações subjetivas, mas na amplitude de movimento, nas avaliações objetivas, incluindo o KT-1000 (com significância estatística, o grupo da banda simples anatômica obteve melhores resultados. CONCLUSÃO: Nosso estudo demonstra que não obtivemos diferença entre os dois grupos nas avaliações subjetivas, porém nas avaliações objetivas observamos melhores resultados na técnica por banda simples anatômica.OBJECTIVE: To evaluate the double-band and single-band techniques for anatomical reconstruction of the anterior cruciate ligament of the knee and demonstrate that the double-band technique not only provides greater anterior stability but also causes less pain and a better subjective patient response. METHODS: We selected 42 patients who underwent anterior cruciate ligament reconstruction, by means of either the single-band anatomical reconstruction technique, using flexor tendon grafts with two tunnels, or the double-band anatomical

  15. Photoconversion of organic materials into single-cell protein

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.F.

    1991-12-31

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  16. Effects of single-stranded DNA binding proteins on primer extension by telomerase.

    Science.gov (United States)

    Cohen, Shlomit; Jacob, Eyal; Manor, Haim

    2004-08-12

    We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations. Copyright 2004 Elsevier B.V.

  17. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  18. Revealing Two-State Protein-Protein Interaction of Calmodulin by Single-Molecule Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H PETER.

    2006-08-09

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of 28 amino-acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM-C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (F1AsH) that enables our unambiguously probing the CaM N-terminal target-binding domain motions at a millisecond timescale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between F1AsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal slow (at sub-second time scale) binding-unbinding motions of the N-terminal domain of the CaM in CaM-C28W complexes, which is a strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  19. Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering

    Czech Academy of Sciences Publication Activity Database

    Álvarez, M. P.; del Corro, Elena; Morales-García, A.; Kavan, Ladislav; Kalbáč, Martin; Frank, Otakar

    2015-01-01

    Roč. 15, č. 5 (2015), s. 3139-3146 ISSN 1530-6984 R&D Projects: GA ČR GA14-15357S; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Molybdenum disulfide * band gap engineering * out-of-plane compression Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.779, year: 2015

  20. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  1. Real-time shape approximation and fingerprinting of single proteins using a nanopore

    Science.gov (United States)

    Yusko, Erik C.; Bruhn, Brandon R.; Eggenberger, Olivia M.; Houghtaling, Jared; Rollings, Ryan C.; Walsh, Nathan C.; Nandivada, Santoshi; Pindrus, Mariya; Hall, Adam R.; Sept, David; Li, Jiali; Kalonia, Devendra S.; Mayer, Michael

    2017-05-01

    Established methods for characterizing proteins typically require physical or chemical modification steps or cannot be used to examine individual molecules in solution. Ionic current measurements through electrolyte-filled nanopores can characterize single native proteins in an aqueous environment, but currently offer only limited capabilities. Here we show that the zeptolitre sensing volume of bilayer-coated solid-state nanopores can be used to determine the approximate shape, volume, charge, rotational diffusion coefficient and dipole moment of individual proteins. To do this, we developed a theory for the quantitative understanding of modulations in ionic current that arise from the rotational dynamics of single proteins as they move through the electric field inside the nanopore. The approach allows us to measure the five parameters simultaneously, and we show that they can be used to identify, characterize and quantify proteins and protein complexes with potential implications for structural biology, proteomics, biomarker detection and routine protein analysis.

  2. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Bikash; Penn, Wesley D.; Nakayasu, Ernesto S.; Lacount, Douglas J.

    2017-09-01

    Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.

  3. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  4. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  5. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana.

    Science.gov (United States)

    Edmondson, Andrew C; Song, Daqing; Alvarez, Luis A; Wall, Melisa K; Almond, David; McClellan, David A; Maxwell, Anthony; Nielsen, Brent L

    2005-04-01

    A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.

  6. Photodoping and enhanced visible light absorption in single-walled carbon nanotubes functionalized with a wide band gap oligomer.

    Science.gov (United States)

    Bunes, Benjamin R; Xu, Miao; Zhang, Yaqiong; Gross, Dustin E; Saha, Avishek; Jacobs, Daniel L; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling

    2015-01-07

    Carbon nanotubes feature excellent electronic properties but narrow absorption bands limit their utility in certain optoelectronic devices, including photovoltaic cells. Here, the addition of a wide-bandgap gap oligomer enhances light absorption in the visible spectrum. Furthermore, the oligomer interacts with the carbon nanotube through a peculiar charge transfer, which provides insight into Type II heterojunctions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Yersinia pestis Ail: multiple roles of a single protein

    Science.gov (United States)

    Kolodziejek, Anna M.; Hovde, Carolyn J.; Minnich, Scott A.

    2012-01-01

    Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen. PMID:22919692

  8. Yersinia pestis Ail: multiple roles of a single protein.

    Science.gov (United States)

    Kolodziejek, Anna M; Hovde, Carolyn J; Minnich, Scott A

    2012-01-01

    Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague-a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen.

  9. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  10. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  11. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA–Protein Interactions at the Single-Molecule Level

    Directory of Open Access Journals (Sweden)

    Huijun Xue

    2017-10-01

    Full Text Available Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA–Avi and biotin–streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA and origin recognition complex (ORC as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.

  12. Phylogenetic and functional analysis of the bacteriophage P1 single-stranded DNA-binding protein

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nilsson, A.S.; Lehnherr, H.

    2002-01-01

    Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit...

  13. Economic Optimizing Control for Single-Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Drejer, André; Ritschel, Tobias Kasper Skovborg; Jørgensen, Sten Bay

    2017-01-01

    The production of single-cell protein (SCP) in a U-loop reactor by a methanotroph is a cost efficient sustainable alternative to protein from fish meal obtained by over-fishing the oceans. SCP serves as animal feed. In this paper, we present a mathematical model that describes the dynamics of SCP...

  14. Yeast single cell protein in the diet of Oreochromis niloticus (L ...

    African Journals Online (AJOL)

    use

    Diets D10 to D50 had fish meal replaced systematically with yeast single cell protein (SCP) in the order 10, 20, 30, 40 and 50%, respectively. Trial feeding was ... Key word: microbial protein, Oreochromis niloticus, feeding, cost benefit, aquaculture. .... Supplementary Feeding for Production of Nile Tilapia, Silver Carp.

  15. See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins

    NARCIS (Netherlands)

    van Mameren, J.; Peterman, E.J.G.; Wuite, G.J.L.

    2008-01-01

    Direct visualization of DNA and proteins allows researchers to investigate DNA-protein interactions with great detail. Much progress has been made in this area as a result of increasingly sensitive single-molecule fluorescence techniques. At the same time, methods that control the conformation of

  16. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3-BaTiO3 single crystals

    Science.gov (United States)

    He, Chongjun; Deng, Chenguang; Wang, Jiming; Gu, Xiaorong; Wu, Tong; Zhu, Kongjun; Liu, Youwen

    2016-02-01

    Optical transmittance spectra of lead-free ferroelectric (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-xBT) single crystals poled along different directions have been studied comprehensively. After poled along [001] direction, the transmittance of tetragonal NBT-8%BT crystal is about 70%, which is much higher than that of NBT-2%BT crystal with rhombohedral structure and NBT-5%BT crystal with morphotropic phase boundary (MPB) composition. However, after poled [111] direction, the transmittance of tetragonal NBT-8%BT crystal is the smallest among them. These properties are manifest in view of the crystal structure. Both direct and indirect optical energy band gaps, as well phonon energies were obtained from absorption coefficient spectra by Tauc equations. The band gaps of [001]-poled NBT-xBT crystals increase with BT content, yet the [111]-poled crystals have opposite trends.

  17. 100-Gb/s 80-km transmission of PIM-SSB-OFDM at C-band using a single-end photodetector

    Science.gov (United States)

    Huo, Jiahao; Zhou, Xian; Zhong, Kangping; Gui, Tao; Tan, Fengze; Tu, Jiajing; Yuan, Jinhui; Zhang, Hongyu; Long, Keping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2017-10-01

    Polarization-interleave-multiplexed (PIM) with single-sideband orthogonal frequency-division multiplexing (SSB-OFDM) based on direct detection is proposed for short-reach applications transmitted up to 80 km in which the guard band can be shared for the two SSB signals with interleave electrical center frequencies. Based on two dual-drive Mach-Zehnder modulators with one single-end photodetector (PD), 100-Gb/s PIM-SSB-OFDM transmission over a 80-km standard single-mode fiber is successfully demonstrated. After 80-km transmission, the optical signal-to-noise ratio requirement is 29.1 dB with respect to the bit error rate threshold of 7% hard decision-forward error correction overhead.

  18. Single-cell phospho-protein analysis by flow cytometry.

    Science.gov (United States)

    Schulz, Kenneth R; Danna, Erika A; Krutzik, Peter O; Nolan, Garry P

    2012-02-01

    This protocol describes methods for monitoring intracellular phosphorylation-dependent signaling events on a single-cell basis. This approach measures cell signaling by treating cells with exogenous stimuli, fixing cells with formaldehyde, permeabilizing with methanol, and then staining with phospho-specific antibodies. Thus, cell signaling states can be determined as a measure of how cells interact with their environment. This method has applications in clinical research as well as mechanistic studies of basic biology. In clinical research, diagnostic or drug efficacy information can be retrieved by discovering how a disease affects the ability of cells to respond to growth factors. Basic scientists can use this technique to analyze signaling events in cell lines and human or murine primary cells, including rare populations, like B1 cells or stem cells. This technique has broad applications bringing standard biochemical analysis into primary cells in order to garner valuable information about signaling events in physiologic settings. © 2012 by John Wiley & Sons, Inc.

  19. Yersinia pestis Ail: multiple roles of a single protein

    Directory of Open Access Journals (Sweden)

    Anna M Kolodziejek

    2012-08-01

    Full Text Available Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague – a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (Omps are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed i inhibition of the bactericidal properties of complement, ii attachment and Yop delivery to host tissue iii prevention of PMNL recruitment to the lymph nodes, and iv inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen.

  20. Single- and Multiband OFDM Photonic Wireless Links in the 75−110 GHz Band Employing Optical Combs

    DEFF Research Database (Denmark)

    Beltrán, M.; Deng, Lei; Pang, Xiaodan

    2012-01-01

    The photonic generation of electrical orthogonal frequency-division multiplexing (OFDM) modulated wireless signals in the 75−110 GHz band is experimentally demonstrated employing in-phase/quadrature electrooptical modulation and optical heterodyn upconversion. The wireless transmission of 16......-quadrature-amplitude-modulation OFDM signals is demonstrated with a bit error rate performance within the forward error correction limits. Signals of 19.1 Gb/s in 6.3-GHz bandwidth are transmitted over up to 1.3-m wireless distance. Optical comb generation is further employed to support different channels...

  1. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning

    2012-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and synthetic aperture radar (SAR) satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. A multitemporal...... data set from the Danish airborne polarimetric EMISAR has been used to assess the performance of different polarization modes for crop classification. Both C- and L-band SAR data were acquired simultaneously over the Foulum agricultural test site in Denmark on a monthly basis during the growing season...

  2. Medium- to Long-Term Outcomes of Gastric Banding in Adolescents: a Single-Center Study of 97 Consecutive Patients.

    Science.gov (United States)

    Dumont, Paul-Noël; Blanchet, Marie-Cécile; Gignoux, Benoît; Matussière, Yann; Frering, Vincent

    2018-01-01

    Morbid obesity in adolescents has been treated effectively with laparoscopic adjustable gastric banding (LAGB). We prospectively studied 97 consecutive obese adolescents undergoing LAGB over the course of 10 years. The average patient age at surgery was 17.2 ± 0.7 years; mean body mass index, 44.9 ± 6.1 kg/m 2 . Excluding those lost to follow-up (n = 21), respective mean total weight loss and excess weight loss were 20.0 ± 16.6 and 46.6 ± 39.5% (n = 76, 78.4%). An ascending trend line showed a significant positive correlation between excess weight loss and follow-up duration (mean 56.0 ± 22.0 months). There was no mortality or morbidity. Nineteen patients (25.0%) underwent band removal at a mean 43.0 ± 28.0 months. LAGB proved safe and effective over the mid- and longer term; it should be strongly considered as a procedure of first intention for obese adolescents.

  3. Long-range spin-singlet proximity effect for a Josephson system with a single-crystal ferromagnet due to its band-structure features

    Science.gov (United States)

    Avdeev, M. V.; Proshin, Yu. N.

    2018-03-01

    A possible explanation for the long-range proximity effect observed in single-crystalline cobalt nanowires sandwiched between two tungsten superconducting electrodes [Nat. Phys. 6, 389 (2010), 10.1038/nphys1621] is proposed. The theoretical model uses properties of a ferromagnet band structure. Specifically, to connect the exchange field with the momentum of quasiparticles the distinction between the effective masses in majority and minority spin subbands and the Fermi-surface anisotropy are considered. The derived Eilenberger-like equations allowed us to obtain a renormalized exchange interaction that is completely compensated for some crystallographic directions under certain conditions. The proposed theoretical model is compared with previous approaches.

  4. High Power Test of X-band Single Cell HOM-free Choke-mode Damped Accelerating Structure made by Tsinghua University

    OpenAIRE

    Wu, Xiaowei; Abe, Tetsuo; Chen, Huaibi; Higo, Toshiyasu; Shi, Jiaru; Wuensch, Walter; Zha, Hao

    2016-01-01

    As an alternative design for CLIC main accelerating structures, X-band choke-mode damped structures had been studied for several years. However, the performance of choke-mode cavity under high power is still in lack of research. Two standing wave single cell choke-mode damped accelerating structures with different choke dimensions which are working at 11.424 GHz were designed, manufactured and bench tested by accelerator group in Tsinghua University. High power test was carried out on it to s...

  5. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei; Bissell, Mina J.

    2009-06-03

    Maintenance of organ homeostasis and control of appropriate response to environmental alterations requires intimate coordination of cellular function and tissue organization. An important component of this coordination may be provided by proteins that can serve distinct, but linked, functions on both sides of the plasma membrane. Here we present a novel hypothesis in which non-classical secretion can provide a mechanism through which single proteins can integrate complex tissue functions. Single genes can exert a complex, dynamic influence through a number of different processes that act to multiply the function of the gene product(s). Alternative splicing can create many different transcripts that encode proteins of diverse, even antagonistic, function from a single gene. Posttranslational modifications can alter the stability, activity, localization, and even basic function of proteins. A protein can exist in different subcellular localizations. More recently, it has become clear that single proteins can function both inside and outside the cell. These proteins often lack defined secretory signal sequences, and transit the plasma membrane by mechanisms separate from the classical ER/Golgi secretory process. When examples of such proteins are examined individually, the multifunctionality and lack of a signal sequence are puzzling - why should a protein with a well known function in one context function in such a distinct fashion in another? We propose that one reason for a single protein to perform intracellular and extracellular roles is to coordinate organization and maintenance of a global tissue function. Here, we describe in detail three specific examples of proteins that act in this fashion, outlining their specific functions in the extracellular space and in the intracellular space, and we discuss how these functions may be linked. We present epimorphin/syntaxin-2, which may coordinate morphogenesis of secretory organs (as epimorphin) with control of

  6. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    Science.gov (United States)

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  7. Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein

    NARCIS (Netherlands)

    Hink, M.A.; Griep, R.A.; Borst, J.W.; Hoek, van A.; Eppink, M.H.M.; Schots, A.; Visser, A.J.W.G.

    2000-01-01

    Structural information on intracellular fusions of the green fluorescent protein (GFP) of the jellyfish Aequorea victoria with endogenous proteins is required as they are increasingly used in cell biology and biochemistry. We have investigated the dynamic properties of GFP alone and fused to a

  8. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate.

    Science.gov (United States)

    Jeong, Yoon; Lee, Kwan Hong; Park, Hansoo; Choi, Jonghoon

    2015-01-01

    We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG) targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ) captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell-cell communication and immune responses.

  9. Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site

    Science.gov (United States)

    Valley, Cary T.; Porter, Douglas F.; Qiu, Chen; Campbell, Zachary T.; Hall, Traci M. Tanaka; Wickens, Marvin

    2012-01-01

    mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites. Despite this conserved “two-handed” pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins. PMID:22467831

  10. g-Anisotropy of the S2-state manganese cluster in single crystals of cyanobacterial photosystem II studied by W-band electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Matsuoka, Hideto; Furukawa, Ko; Kato, Tatsuhisa; Mino, Hiroyuki; Shen, Jian-Ren; Kawamori, Asako

    2006-07-06

    The multiline signal from the S2-state manganese cluster in the oxygen evolving complex of photosystem II (PSII) was observed in single crystals of a thermophilic cyanobacterium Thermosynechococcus vulcanus for the first time by W-band (94 GHz) electron paramagnetic resonance (EPR). At W-band, spectra were characterized by the g-anisotropy, which enabled the precise determination of the tensor. Distinct hyperfine splittings (hfs's) as seen in frozen solutions of PSII at X-band (9.5 GHz) were detected in most of the crystal orientations relative to the magnetic field. In some orientations, however, the hfs's disappeared due to overlapping of a large number of EPR lines from eight crystallographic symmetry-related sites of the manganese cluster within the unit cell of the crystal. Analysis of the orientation-dependent spectral features yielded the following g-tensor components: g(x) = 1.988, g(y) = 1.981, g(z) = 1.965. The principal values suggested an approximate axial symmetry around the Mn(III) ion in the cluster.

  11. Expanded graphite/Novolac phenolic resin composite as single layer electromagnetic wave absorber for x-band applications

    Science.gov (United States)

    Gogoi, Jyoti P.; Bhattacharyya, Nidhi Saxena

    2013-01-01

    Expanded graphite/novolac phenolic resin (EG/NPR) composites are developed as dielectric absorbers with 4mm thickness and its microwave absorption ability studied in the frequency range 8.4 to 12.4 GHz. A high reflection loss ~ -43 dB is observed at 12.4 GHz for 5 wt. % EG/NPR composites. With the increase in EG concentration in the composite the reflection loss decreases and the absorption peak shifts towards lower frequency. 7 wt. %, 8 wt. % and 10 wt. % composites shows a 10dB absorption bandwidth of order of 1GHz. Light weight EG/NPR composite shows potential to be used as cost-effective broadband microwave absorber over the X-band.

  12. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. InGaAsP/InP Nanocavity for Single-Photon Source at 1.55-μm Telecommunication Band.

    Science.gov (United States)

    Song, Hai-Zhi; Hadi, Mukhtar; Zheng, Yanzhen; Shen, Bizhou; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M

    2017-12-01

    A new structure of 1.55-μm pillar cavity is proposed. Consisting of InP-air-aperture and InGaAsP layers, this cavity can be fabricated by using a monolithic process, which was difficult for previous 1.55-μm pillar cavities. Owing to the air apertures and tapered distributed Bragg reflectors, such a pillar cavity with nanometer-scaled diameters can give a quality factor of 10 4 -10 5 at 1.55 μm. Capable of weakly and strongly coupling a single quantum dot with an optical mode, this nanocavity could be a prospective candidate for quantum-dot single-photon sources at 1.55-μm telecommunication band.

  14. Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Park, J. S.; Sasaki, K.; Saito, R.; Izumida, W.; Kalbáč, Martin; Farhat, H.; Dresselhaus, G.; Dresselhaus, M. S.

    2009-01-01

    Roč. 80, č. 8 (2009), 081402-1-081402-4 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fermi energy dependence * Raman spectroscopy * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 3.475, year: 2009

  15. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  16. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  17. Shedding light on protein folding, structural and functional dynamics by single molecule studies

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Hatzakis, Nikos

    2014-01-01

    The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean...... property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out...

  18. Identification of soybean proteins from a single cell type: The root hair

    Energy Technology Data Exchange (ETDEWEB)

    Brechenmacher, Laurent; Nguyen, Tran H.; Hixson, Kim K.; Libault, Marc; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana; Stacey, Gary

    2012-11-01

    Root hairs are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean root hair cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean root hairs using an accurate mass and time tag approach, establishing the most comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome database using different proteases. Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to root hair formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and RAB proteins). Interestingly, some of these proteins appear to be specifically expressed in root hairs and constitute very good candidates for further studies to elucidate unique features of this single cell model.

  19. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques.

    Science.gov (United States)

    Cao, Renzhi; Adhikari, Badri; Bhattacharya, Debswapna; Sun, Miao; Hou, Jie; Cheng, Jianlin

    2017-02-15

    Protein model quality assessment (QA) plays a very important role in protein structure prediction. It can be divided into two groups of methods: single model and consensus QA method. The consensus QA methods may fail when there is a large portion of low quality models in the model pool. In this paper, we develop a novel single-model quality assessment method QAcon utilizing structural features, physicochemical properties, and residue contact predictions. We apply residue-residue contact information predicted by two protein contact prediction methods PSICOV and DNcon to generate a new score as feature for quality assessment. This novel feature and other 11 features are used as input to train a two-layer neural network on CASP9 datasets to predict the quality of a single protein model. We blindly benchmarked our method QAcon on CASP11 dataset as the MULTICOM-CLUSTER server. Based on the evaluation, our method is ranked as one of the top single model QA methods. The good performance of the features based on contact prediction illustrates the value of using contact information in protein quality assessment. The web server and the source code of QAcon are freely available at: http://cactus.rnet.missouri.edu/QAcon. chengji@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Increased type I collagen content and DNA binding activity of a single-stranded, cytosine-rich sequence in the high-salt buffer protein extract of the copper-deficient rat heart.

    Science.gov (United States)

    Zeng, Huawei; Saari, Jack T

    2004-11-01

    Dietary copper (Cu) deficiency not only causes a hypertrophic cardiomyopathy but also increases cancer risk in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue. Male Sprague-Dawley rats were fed diets that were either a Cu-adequate diet (6.0 microg Cu/g diet, n = 6) or a Cu-deficient diet (0.3 microg Cu/g diet, n = 6) for 5 weeks. The high-salt buffer (HSB) protein extract from heart tissue of Cu-deficient, but not Cu-adequate rats showed a 132 kDa protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This protein band stained pink with Coomassie Blue, suggesting the presence of collagens or other proline-rich proteins. Dot immunoblotting demonstrated that total type I collagen was increased by 110% in HSB protein extract from Cu-deficient, relative to Cu-adequate, rats. Liquid chromatography with mass spectrometry analysis indicated that the 132 kDa protein band contained a collagen alpha (I) chain precursor as well as a leucine-rich protein 130 (LRP130) in HSB protein extract from Cu-deficient but not Cu-adequate rats. A gel shift assay showed that HSB protein extract from Cu-deficient rats bound to a single-stranded cytosine-rich DNA with higher affinity than the extract of Cu-adequate rats, similar to reports of an increase in LRP130 single-stranded DNA binding activity in several types of tumor cells. Collectively, these results not only suggest an additional feature of altered collagen metabolism with Cu deficiency but also demonstrate for the first time an increase in single-stranded cytosine-rich DNA binding in Cu-deficient rat heart.

  1. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum

    DEFF Research Database (Denmark)

    Schindler, J.; Ye, J. Y.; Jensen, Ole Nørregaard

    2013-01-01

    proteins are major targets of the signalling cascades, we developed a protocol to monitor their phosphorylation state starting from a single mouse cerebellum. An aqueous polymer two-phase system was used to enrich for plasma membrane proteins. Subsequently, calcium phosphate precipitation, immobilized...... metal affinity chromatography, and TiO2 were combined to a sequential extraction procedure prior to mass spectrometric analyses. This strategy resulted in the identification of 1501 different native phosphorylation sites in 507 different proteins. 765 (51%) of these phosphorylation sites were localized...

  2. Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH.

    Science.gov (United States)

    Kochan, Jakub; Wawro, Mateusz; Kasza, Aneta

    2015-10-01

    Although the concept of combining immunofluorescence (IF) with single-molecule RNA fluorescence in situ hybridization (smRNA FISH) seems obvious, the specific materials used during IF and smRNA FISH make it difficult to perform these procedures simultaneously on the same specimen. Even though there are reports where IF and smRNA FISH were combined with success, these were insufficient in terms of signal intensities, staining patterns, and GFP-compatibility, and a detailed exploration of the various factors that influence IF and smRNA FISH outcome has not been published yet. Here, we report a detailed study of conditions and reagents used in classic IF and smRNA FISH that allowed us to establish an easy, robust, and GFP-compatible procedure. Our protocol enables simultaneous detection of mRNA and protein quantity as well as the subcellular distribution of these molecules in single cells by combining an RNase-free modification of the IF technique and the more recent smRNA FISH method. Using this procedure, we have shown the direct interaction of RNase MCPIP1 with IL-6 mRNA. We also demonstrate the use of our protocol in heterogeneous cell population analysis, revealing cell-to-cell differences in mRNA and protein content.

  3. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2015-01-01

    In this study, we have undertaken efforts to find correlation between phosphorescence lifetimes of single tryptophan containing proteins and some structural indicators of protein flexibility/rigidity, such as the degree of tryptophan burial or its exposure to solvent, protein secondary and tertiary structure of the region of localization of tryptophan as well as B factors for tryptophan residue and its immediate surroundings. Bearing in mind that, apart from effective local viscosity of the protein/solvent matrix, the other factor that concur in determining room temperature tryptophan phosphorescence (RTTP) lifetime in proteins is the extent of intramolecular quenching by His, Cys, Tyr and Trp side chains, the crystallographic structures derived from the Brookhaven Protein Data Bank were also analyzed concentrating on the presence of potentially quenching amino acid side chains in the close proximity of the indole chromophore. The obtained results indicated that, in most cases, the phosphorescence lifetimes of tryptophan containing proteins studied tend to correlate with the above mentioned structural indicators of protein rigidity/flexibility. This correlation is expected to provide guidelines for the future development of phosphorescence lifetime-based method for the prediction of structural flexibility of proteins, which is directly linked to their biological function.

  4. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  5. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.

    2005-01-01

    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  6. Shedding Light on Protein Folding, Structural and Functional Dynamics by Single Molecule Studies

    Directory of Open Access Journals (Sweden)

    Krutika Bavishi

    2014-11-01

    Full Text Available The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.

  7. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  8. Two highly thermostable paralogous single-stranded DNA-binding proteins from Thermoanaerobacter tengcongensis.

    Science.gov (United States)

    Olszewski, Marcin; Mickiewicz, Małgorzata; Kur, Józef

    2008-07-01

    The thermophilic bacterium Thermoanaerobacter tengcongensis has two single-stranded DNA-binding (SSB) proteins, designated TteSSB2 and TteSSB3. In a SSB complementation assay in Escherichia coli, only TteSSB3 took over the in vivo function of EcoSSB. We have cloned the ssb genes obtained by PCR and have developed E. coli overexpression systems. The TteSSB2 and TteSSB3 consist of 153 and 150 amino acids with a calculated molecular mass of 17.29 and 16.96 kDa, respectively. They are the smallest known bacterial SSB proteins. The homology between amino acid sequences of these proteins is 40% identity and 53% similarity. They are functional as homotetramers, with each monomer encoding one single-stranded DNA binding domain (OB-fold). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 40 nt per homotetramer. Thermostability with half-life of about 30 s at 95 degrees C makes TteSSB3 similar to the known SSB of Thermus aquaticus (TaqSSB). The TteSSB2 was fully active even after 6 h incubation at 100 degrees C. Here, we show for the first time paralogous thermostable homotetrameric SSBs, which could be an attractive alternative for known homodimeric thermostable SSB proteins in their applications for molecular biology methods and analytical purposes.

  9. Study of molasses / vinasse waste ratio for single cell protein and total microorganisms

    Directory of Open Access Journals (Sweden)

    Marcia Luciana Cazetta

    2006-02-01

    Full Text Available Different molasses/ vinasse ratio were used as substrate to investigate single cell protein and total lipids production by five microorganisms: four yeasts strains: Candida lipolytica, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, a yeast isolated from vinasse lake (denominated LLV98 and a bacterium strain, Corynebacterium glutamicum. The media utilized were: a 50% molasses and 50% vinasse; b 25% molasses and 75% vinasse and c 75% molasses and 25% vinasse. The objective of this work was to study the growth of microorganisms and also evaluate protein and lipids content in the biomass obtained from these by-products. The highest single cell protein production was obtained by S. cerevisiae, 50.35%, followed by R. mucilaginosa, 41.96%. The lowest productions were obtained by C. glutamicum. The higher total lipids productions, more than 26%, were founded in molasses plus vinasse at 50%/50% by S. cerevisiae and C. glutamicum.

  10. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution.

    Science.gov (United States)

    Schoenfeld, Brad Jon; Aragon, Alan Albert

    2018-01-01

    Controversy exists about the maximum amount of protein that can be utilized for lean tissue-building purposes in a single meal for those involved in regimented resistance training. It has been proposed that muscle protein synthesis is maximized in young adults with an intake of ~ 20-25 g of a high-quality protein; anything above this amount is believed to be oxidized for energy or transaminated to form urea and other organic acids. However, these findings are specific to the provision of fast-digesting proteins without the addition of other macronutrients. Consumption of slower-acting protein sources, particularly when consumed in combination with other macronutrients, would delay absorption and thus conceivably enhance the utilization of the constituent amino acids. The purpose of this paper was twofold: 1) to objectively review the literature in an effort to determine an upper anabolic threshold for per-meal protein intake; 2) draw relevant conclusions based on the current data so as to elucidate guidelines for per-meal daily protein distribution to optimize lean tissue accretion. Both acute and long-term studies on the topic were evaluated and their findings placed into context with respect to per-meal utilization of protein and the associated implications to distribution of protein feedings across the course of a day. The preponderance of data indicate that while consumption of higher protein doses (> 20 g) results in greater AA oxidation, this is not the fate for all the additional ingested AAs as some are utilized for tissue-building purposes. Based on the current evidence, we conclude that to maximize anabolism one should consume protein at a target intake of 0.4 g/kg/meal across a minimum of four meals in order to reach a minimum of 1.6 g/kg/day. Using the upper daily intake of 2.2 g/kg/day reported in the literature spread out over the same four meals would necessitate a maximum of 0.55 g/kg/meal.

  11. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  12. New Frontiers in NanoBiotechnology: Monitoring the Protein Function With Single Protein Resolution

    Science.gov (United States)

    2005-03-29

    Dipartimento di Fisica, Universita’ di Modena e Reggio Emilia e-mail corni.stefano@unimore.it Electron transfer proteins perform, in living cells...Center on nanoStructures and bioSystems at Surfaces (S3), Dip. di Fisica, Universita’ di Modena e Reggio Emilia Via Campi 213/A, 41100 Modena, Italy...nanowires R. Di Felice INFM-S3 - Universit6 di Modena e Reggio Emilialtaly e-mail: rosa@unimore.it Recent efforts in the field of molecular electronics

  13. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    Science.gov (United States)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  14. Single-Molecule Characterization of DNA-Protein Interactions Using Nanopore Biosensors.

    Science.gov (United States)

    Squires, A H; Gilboa, T; Torfstein, C; Varongchayakul, N; Meller, A

    2017-01-01

    Detection and characterization of nucleic acid-protein interactions, particularly those involving DNA and proteins such as transcription factors, enzymes, and DNA packaging proteins, remain significant barriers to our understanding of genetic regulation. Nanopores are an extremely sensitive and versatile sensing platform for label-free detection of single biomolecules. Analyte molecules are drawn to and through a nanoscale aperture by an electrophoretic force, which acts upon their native charge while in the sensing region of the pore. When the nanopore's diameter is only slightly larger than the biopolymer's cross section (typically a few nm); the latter must translocate through the pore in a linear fashion due to the constricted geometry in this region. These features allow nanopores to interrogate protein-nucleic acids in multiple sensing modes: first, by scanning and mapping the locations of binding sites along an analyte molecule, and second, by probing the strength of the bond between a protein and nucleic acid, using the native charge of the nucleic acid to apply an electrophoretic force to the complex while the protein is geometrically prevented from passing through the nanopore. In this chapter, we describe progress toward nanopore sensing of protein-nucleic acid complexes in the context of both mapping binding sites and performing force spectroscopy to determine the strength of interactions. We conclude by reviewing the strengths and challenges of the nanopore technique in the context of studying DNA-protein interactions. © 2017 Elsevier Inc. All rights reserved.

  15. Flow-Based Single Cell Deposition for High-Throughput Screening of Protein Libraries.

    Directory of Open Access Journals (Sweden)

    Cassandra Stowe

    Full Text Available The identification and engineering of proteins having refined or novel characteristics is an important area of research in many scientific fields. Protein modelling has enabled the rational design of unique proteins, but high-throughput screening of large libraries is still required to identify proteins with potentially valuable properties. Here we report on the development and evaluation of a novel fluorescent activated cell sorting based screening platform. Single bacterial cells, expressing a protein library to be screened, are electronically sorted and deposited onto plates containing solid nutrient growth media in a dense matrix format of between 44 and 195 colonies/cm2. We show that this matrix format is readily applicable to machine interrogation (<30 seconds per plate and subsequent bioinformatic analysis (~60 seconds per plate thus enabling the high-throughput screening of the protein library. We evaluate this platform and show that bacteria containing a bioluminescent protein can be spectrally analysed using an optical imager, and a rare clone (0.5% population can successfully be identified, picked and further characterised. To further enhance this screening platform, we have developed a prototype electronic sort stream multiplexer, that when integrated into a commercial flow cytometric sorter, increases the rate of colony deposition by 89.2% to 24 colonies per second. We believe that the screening platform described here is potentially the foundation of a new generation of high-throughput screening technologies for proteins.

  16. Low Temperature Stress Induced Changes in Biochemical Parameters, Protein Banding Pattern and Expression of Zat12 and Myb Genes in Rice Seedling

    Directory of Open Access Journals (Sweden)

    Salma Perveen

    2013-11-01

    Full Text Available Low temperature stress is one of the main abiotic factors that reduce the productivity of many crops in hilly areas around the world. In this study, rice seedling were exposed to low temperature stress (control, 0°C, -2°C, -4°C and -6°C for 2 hr to observe its effect on two rice varieties (Basmati-385 and Shaheen Basmati through ion and proline contents, photosynthetic pigments, total protein content, protein banding pattern and expression of Zat12 and Myb genes. Resulted showed different patterns of accumulation of Na+ K+ and Ca+2 ions with the decrease in temperature in both varieties. Proline accumulation was gradually increased in both varieties with the decrease in temperature. Photosynthetic pigments (Chlorophyll (Chl a, b and carotene were negatively affected by low temperature stress in both varieties, however, carotene content was much affected than Chl a and b. Nonsignificant variation in protein contents was observed at all levels of low temperature, but the effects of low temperature stress on protein banding pattern of Basmti-385 and Shaheen Basmati were different at different treatments. RT-PCR results indicated that ZAT12 was upregulated by short term low temperature stress while OsMYB show slight upregulation at -2°C as compared to the other treatments. This study identified that ZAT12 and OsMYB function as a positive regulator to mediate tolerance of rice seedlings at low temperature stress.

  17. Smoke Priming, a Potent Protective Agent Against Salinity: Effect on Proline Accumulation, Elemental Uptake, Pigmental Attributes and Protein Banding Patterns of Rice (Oryza Sativa

    Directory of Open Access Journals (Sweden)

    Jamil, Muhammad

    2013-02-01

    Full Text Available The exogenous application of plant derived smoke solution through seed pre treatment is consider to create tolerance in the plant against salinity, for this purpose different dilution of plant derived smoke solution as 1:5000 Buhania, 1:1000 Buhania, 1:1000 Cymbopogon, 1:500 Cymbopogon were used against 0 mM, 50, 100 and 150mM NaCl solution in the medium. The effect was observed on total proline accumulation, heavy metals uptake, photosynthetic pigments and protein polypeptide bands intensity in two rice varieties as Basmati 385 (B-385 and Shaheen Basmati (S. Basmati. Proline concentration increases while chlorophyll “a” chlorophyll “b” and carotene level decreases with increasing salinity. On other hand zinc concentration increases while cadmium and lead concentration decrease in the crop under saline conditions. Intensity of protein polypeptides bands decreases gradually with increasing salinity level but plants from the seeds soaked with smoke solution alleviate the drastic affect of salinity, and intensity of bands is quite good by comparing with non primed seeds. It is concluded that seed priming with plant derived smoke solution show beneficial effect on crop to protect them from salinity.

  18. Simulation, Control and Optimization of Single Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Engoulevent, Franck Guillaume; Jørgensen, John Bagterp

    2012-01-01

    In 2011, the world population passed 7 billions inhabitants. While this number witnesses the success of humankind on earth, it also rises among other things questions about food supply. Declining live stock in the wild, rising price of energy combined with climatic change give a new economic...... potential for alternative sources of protein production. Single cell protein (SCP) is protein produced by growth of micro organisms. Among these micro organisms, Methylococcus Capsulatus is particular interesting as it can grow on either methane or methanol and contains 70% protein. The U-Loop reactor...... report simulation results. In addition we design and compare dierent regulatory control systems for regulation of SCP production in the U-Loop reactor. The purpose of the regulatory control systems is to keep the process at a steady state and to reject disturbances. We design and implement such control...

  19. Identifying the Location of a Single Protein along the DNA Strand Using Solid-State Nanopores.

    Science.gov (United States)

    Yu, Jae-Seok; Lim, Min-Cheol; Huynh, Duyen Thi Ngoc; Kim, Hyung-Jun; Kim, Hyun-Mi; Kim, Young-Rok; Kim, Ki-Bum

    2015-05-26

    Solid-state nanopore has been widely studied as an effective tool to detect and analyze small biomolecules, such as DNA, RNA, and proteins, at a single molecule level. In this study, we demonstrate a rapid identification of the location of zinc finger protein (ZFP), which is bound to a specific locus along the length of a double-stranded DNA (dsDNA) to a single protein resolution using a low noise solid-state nanopore. When ZFP labeled DNAs were driven through a nanopore by an externally applied electric field, characteristic ionic current signals arising from the passage of the DNA/ZFP complex and bare DNA were detected, which enabled us to identify the locations of ZFP binding site. We examined two DNAs with ZFP binding sites at different positions and found that the location of the additional current drop derived from the DNA/ZFP complex is well-matched with a theoretical one along the length of the DNA molecule. These results suggest that the protein binding site on DNA can be mapped or that genetic information can be read at a single molecule level using solid-state nanopores.

  20. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  1. High-affinity single-domain binding proteins with a binary-code interface.

    Science.gov (United States)

    Koide, Akiko; Gilbreth, Ryan N; Esaki, Kaori; Tereshko, Valentina; Koide, Shohei

    2007-04-17

    High degrees of sequence and conformation complexity found in natural protein interaction interfaces are generally considered essential for achieving tight and specific interactions. However, it has been demonstrated that specific antibodies can be built by using an interface with a binary code consisting of only Tyr and Ser. This surprising result might be attributed to yet undefined properties of the antibody scaffold that uniquely enhance its capacity for target binding. In this work we tested the generality of the binary-code interface by engineering binding proteins based on a single-domain scaffold. We show that Tyr/Ser binary-code interfaces consisting of only 15-20 positions within a fibronectin type III domain (FN3; 95 residues) are capable of producing specific binding proteins (termed "monobodies") with a low-nanomolar K(d). A 2.35-A x-ray crystal structure of a monobody in complex with its target, maltose-binding protein, and mutation analysis revealed dominant contributions of Tyr residues to binding as well as striking molecular mimicry of a maltose-binding protein substrate, beta-cyclodextrin, by the Tyr/Ser binary interface. This work suggests that an interaction interface with low chemical diversity but with significant conformational diversity is generally sufficient for tight and specific molecular recognition, providing fundamental insights into factors governing protein-protein interactions.

  2. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    Science.gov (United States)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  3. Two states or not two states: Single-molecule folding studies of protein L

    Science.gov (United States)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  4. Nano-bio-optomechanics: nanoaperture tweezers probe single nanoparticles, proteins, and their interactions

    Science.gov (United States)

    Gordon, Reuven

    2015-09-01

    Nanoparticles in the single digit nanometer range can be easily isolated and studied with low optical powers using nanoaperture tweezers. We have studied individual proteins and their interactions with small molecules, DNA and antibodies. Recently, using the fluctuations of the trapped object, we have pioneered a new way to "listen" to the vibrations of nanoparticles in the 100 GHz - 1 THz range; the approach is called extraordinary acoustic Raman (EAR). EAR gives unprecedented low frequency spectra of individual proteins in solution, allowing for identification and analysis, as well as probing their role in biological functions. We have also used EAR to study the elastic properties, shape and size of various individual nanoparticles.

  5. Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy.

    Science.gov (United States)

    Cameron Varano, A; Harafuji, Naoe; Dearnaley, William; Guay-Woodford, Lisa; Kelly, Deborah F

    2017-01-01

    Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.

  6. 3D structure determination of protein using TEM single particle analysis.

    Science.gov (United States)

    Sato, Chikara; Mio, Kazuhiro; Kawata, Masaaki; Ogura, Toshihiko

    2014-11-01

    Proteins play important roles in cell functions such as enzymes, cell trafficking, neurotransmission, muscle contraction and hormone secretion. However, some proteins are very difficult to be crystallized and their structures are undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Among them, electron microscopy based single particle reconstruction (SPA) technique is a computer-aided structure determination method. This method reconstructs the 3D structure from projection images of dispersed protein. A large number of two-dimensional particle images are picked up from EM films, aligned and classified to generate 2D averages, and used to reconstruct the 3D structure by assigning the Euler angle of each 2D average. Due to the necessity of elaborate collaboration between the classical biology and the innovative information technology including parallel computing, scientists needed to break unseen barriers to get a start of this analysis. However, recent progresses in electron microscopes, mathematical algorithms, and computational abilities greatly reduced the height of barriers and expanded targets that are considered to be primarily addressable using single particle analysis. Membrane proteins are one of these targets to which the single particle analysis is successfully applied for the understanding of their 3D structures. For this purpose, we have developed various SPA methods [1-5] and applied them to different proteins [6-8].Here, we introduce reconstructed proteins, and discuss the availability of this technique. The intramembrane-cleaving proteases (I-CLiPs) that sever the transmembrane domains of their substrates have been identified in a range of organisms and play a variety of roles in biological conditions. I-CLiPs have been classified into three groups: serine-, aspartyl- and metalloprotease

  7. Expression and purification of single cysteine-containing mutant variants of the mouse prion protein by oxidative refolding.

    Science.gov (United States)

    Sengupta, Ishita; Udgaonkar, Jayant B

    2017-12-01

    The folding and aggregation of proteins has been studied extensively, using multiple probes. To facilitate such experiments, introduction of spectroscopically-active moieties in to the protein of interest is often necessary. This is commonly achieved by specifically labelling cysteine residues in the protein, which are either present naturally or introduced artificially by site-directed mutagenesis. In the case of the recombinant prion protein, which is normally expressed in inclusion bodies, the presence of the native disulfide bond complicates the correct refolding of single cysteine-containing mutant variants of the protein. To overcome this major bottleneck, a simple purification strategy for single tryptophan, single cysteine-containing mutant variants of the mouse prion protein is presented, with yields comparable to that of the wild type protein. The protein(s) obtained by this method are correctly folded, with a single reduced cysteine, and the native disulfide bond between residues C178 and C213 intact. The β-sheet rich oligomers formed from these mutant variant protein(s) are identical to the wild type protein oligomer. The current strategy facilitates sample preparation for a number of high resolution spectroscopic measurements for the prion protein, which specifically require thiol labelling. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae.

    Science.gov (United States)

    Gervasi, Teresa; Pellizzeri, Vito; Calabrese, Giorgio; Di Bella, Giuseppa; Cicero, Nicola; Dugo, Giacomo

    2018-03-01

    Food waste is the single-largest component of the waste stream, in order to protect and safeguard the public health, useful and innovative recycling methods are investigated. The conversion of food wastes in value-added products is becoming a more economically viable and interesting practice. Food waste, collected in the distribution sector and citrus industries, was characterised for its potential as a raw material to use in fermentation processes. In this study, the production of single-cell protein (SCP) using food waste as a substrate was investigated. The purpose of this study has been to produce SCP from mixtures of food waste using Saccharomyces cerevisiae. The main fermentation test was carried out using a 25 l bioreactor. The utilisation of food waste can allow us to not only to reduce environmental pollution, but also to obtain value-added products such as protein supply for animal feed.

  9. Genetics of single-cell protein abundance variation in large yeast populations

    Science.gov (United States)

    Albert, Frank W.; Treusch, Sebastian; Shockley, Arthur H.; Bloom, Joshua S.; Kruglyak, Leonid

    2014-02-01

    Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in `hotspots' that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell

  10. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  11. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  12. Quantification of functional dynamics of membrane proteins reconstituted in nanodiscs membranes by single turnover functional readout

    DEFF Research Database (Denmark)

    Moses, Matias Emil; Hedegård, Per; Hatzakis, Nikos

    2016-01-01

    Single-molecule measurements are emerging as a powerful tool to study the individual behavior of biomolecules, revolutionizing our understanding of biological processes. Their ability to measure the distribution of behaviors, instead of the average behavior, allows the direct observation and quan......Single-molecule measurements are emerging as a powerful tool to study the individual behavior of biomolecules, revolutionizing our understanding of biological processes. Their ability to measure the distribution of behaviors, instead of the average behavior, allows the direct observation...... and quantification of the activity, abundance, and lifetime of multiple states and transient intermediates in the energy landscape that are typically averaged out in nonsynchronized ensemble measurements. Studying the function of membrane proteins at the single-molecule level remains a formidable challenge......, and to date there is limited number of available functional assays. In this chapter, we describe in detail our recently developed methodology to reconstitute membrane proteins such as the integral membrane protein cytochrome P450 oxidoreductase on membrane systems such as Nanodiscs and study their functional...

  13. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Loren B.; Stanek, Jan; Marchand, Tanguy Le; Bertarello, Andrea; Paepe, Diane Cala-De; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Knott, Benno; Wegner, Sebastian; Engelke, Frank [Bruker Biospin (Germany); Felli, Isabella C.; Pierattelli, Roberta [University of Florence, Department of Chemistry “Ugo Schiff“and Magnetic Resonance Center (CERM) (Italy); Dixon, Nicholas E. [University of Wollongong, School of Chemistry (Australia); Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France)

    2015-07-15

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  14. Amino acid profiles and presumptive nutritional assessment of single-cell protein from certain lactobacilli.

    Science.gov (United States)

    Erdman, M D; Bergen, W G; Reddy, C A

    1977-04-01

    The amino acid profiles, modified essential amino acid (MEAA) indexes, and in vitro pepsin digestibilities were determined for single-cell protein (SCP) from certain industrially important lactobacilli. For the three parameters examined, substantial differences were seen between different Lactobacillus species and between strains with a given species. SCP from all of the lactobacilli examined appeared relatively high in MEAA indexes and pepsin digestibility. SCP from L. acidophilus 3205 and L. fermenti 3954 had the highest MEAA indexes, whereas L. bulgaricus 2217 and L. thermophilus 3863 had the highest percentage of digestible crude protein. SCP from L. plantarum strains had the lowest MEAA indexes. The essential amino acid compositions of SCP from different lactobacilli appear comparable to that of Food and Agriculture Organization reference protein and SCP from other sources.

  15. Single Nucleotide Variants in the Protein C Pathway and Mortality in Dialysis Patients

    Science.gov (United States)

    Ocak, Gürbey; Drechsler, Christiane; Vossen, Carla Y.; Vos, Hans L.; Rosendaal, Frits R.; Reitsma, Pieter H.; Hoffmann, Michael M.; März, Winfried; Ouwehand, Willem H.; Krediet, Raymond T.; Boeschoten, Elisabeth W.; Dekker, Friedo W.; Wanner, Christoph; Verduijn, Marion

    2014-01-01

    Background The protein C pathway plays an important role in the maintenance of endothelial barrier function and in the inflammatory and coagulant processes that are characteristic of patients on dialysis. We investigated whether common single nucleotide variants (SNV) in genes encoding protein C pathway components were associated with all-cause 5 years mortality risk in dialysis patients. Methods Single nucleotides variants in the factor V gene (F5 rs6025; factor V Leiden), the thrombomodulin gene (THBD rs1042580), the protein C gene (PROC rs1799808 and 1799809) and the endothelial protein C receptor gene (PROCR rs867186, rs2069951, and rs2069952) were genotyped in 1070 dialysis patients from the NEtherlands COoperative Study on the Adequacy of Dialysis (NECOSAD) cohort) and in 1243 dialysis patients from the German 4D cohort. Results Factor V Leiden was associated with a 1.5-fold (95% CI 1.1–1.9) increased 5-year all-cause mortality risk and carriers of the AG/GG genotypes of the PROC rs1799809 had a 1.2-fold (95% CI 1.0–1.4) increased 5-year all-cause mortality risk. The other SNVs in THBD, PROC, and PROCR were not associated with 5-years mortality. Conclusion Our study suggests that factor V Leiden and PROC rs1799809 contributes to an increased mortality risk in dialysis patients. PMID:24816905

  16. Mechanosensing of DNA bending in a single specific protein-DNA complex

    Science.gov (United States)

    Le, Shimin; Chen, Hu; Cong, Peiwen; Lin, Jie; Dröge, Peter; Yan, Jie

    2013-12-01

    Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.

  17. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that

  18. Sulfate influx on band 3 protein of equine erythrocyte membrane (Equus caballus) using different experimental temperatures and buffer solutions.

    Science.gov (United States)

    Casella, S; Piccione, D; Ielati, S; Bocchino, E G; Piccione, G

    2013-06-01

    The aim of this study was to assess the anion transport in equine erythrocytes through the measurement of the sulfate uptake operating from band 3 using different experimental temperatures and buffer solutions. Blood samples of six clinically healthy horses were collected via jugular vein puncture, and an emochrome-citometric examination was performed. The blood was divided into four aliquots and by centrifugation and aspiration the plasma and buffy coat were carefully discarded. The red blood cells were washed with an isosmotic medium and centrifuged. The obtained cell suspensions were incubated with two different experimental buffer solutions (buffer A: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM glucose; and buffer B: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM MgCl2) in a water bath for 1 h at 25 °C and 37 °C. Normal erythrocytes, suspended at 3% hematocrit, were used to measure the SO4= influx by absorption spectrophotometry at 425 nm wavelength. Unpaired Student's t-test showed a statistically significant decrease (P buffer solutions. Comparing the buffer A with buffer B unpaired Student's t-test showed statistically lower values (P < 0.0001) for A solution versus B solution both at 25 °C and at 37 °C. The greater inhibition of SO4 (=) influx measured in equine erythrocytes indicates the increased formation of the sulfydryl bonds in band 3 and the modulation of the sulfydryl groups, culminating in the conformational changes in band 3. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Single cell cytometry of protein function in RNAi treated cells and in native populations

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2008-08-01

    Full Text Available Abstract Background High Content Screening has been shown to improve results of RNAi and other perturbations, however significant intra-sample heterogeneity is common and can complicate some analyses. Single cell cytometry can extract important information from subpopulations within these samples. Such approaches are important for immune cells analyzed by flow cytometry, but have not been broadly available for adherent cells that are critical to the study of solid-tumor cancers and other disease models. Results We have directly quantitated the effect of resolving RNAi treatments at the single cell level in experimental systems for both exogenous and endogenous targets. Analyzing the effect of an siRNA that targets GFP at the single cell level permits a stronger measure of the absolute function of the siRNA by gating to eliminate background levels of GFP intensities. Extending these methods to endogenous proteins, we have shown that well-level results of the knockdown of PTEN results in an increase in phospho-S6 levels, but at the single cell level, the correlation reveals the role of other inputs into the pathway. In a third example, reduction of STAT3 levels by siRNA causes an accumulation of cells in the G1 phase of the cell cycle, but does not induce apoptosis or necrosis when compared to control cells that express the same levels of STAT3. In a final example, the effect of reduced p53 levels on increased adriamycin sensitivity for colon carcinoma cells was demonstrated at the whole-well level using siRNA knockdown and in control and untreated cells at the single cell level. Conclusion We find that single cell analysis methods are generally applicable to a wide range of experiments in adherent cells using technology that is becoming increasingly available to most laboratories. It is well-suited to emerging models of signaling dysfunction, such as oncogene addition and oncogenic shock. Single cell cytometry can demonstrate effects on cell

  20. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    Science.gov (United States)

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    Science.gov (United States)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  2. Single-Molecule Analysis of Protein Large-Amplitude Conformational Transitions

    Science.gov (United States)

    Yang, Haw

    2011-03-01

    Proteins have evolved to harness thermal fluctuations, rather than frustrated by them, to carry out chemical transformations and mechanical work. What are, then, the operation and design principles of protein machines? To frame the problem in a tractable way, several basic questions have been formulated to guide the experimental design: (a) How many conformational states can a protein sample on the functionally important timescale? (b) What are the inter-conversion rates between states? (c) How do ligand binding or interactions with other proteins modulate the motions? (d) What are the structural basis of flexibility and its underlying molecular mechanics? Guided by this framework, we have studied protein tyrosine phosphatase B, PtpB, from M. tuberculosis (a virulence factor of tuberculosis and a potential drug target) and adenylate kinase, AK, from E. coli (a ubiquitous energy-balancing enzyme in cells). These domain movements have been followed in real time on their respective catalytic timescales using high-resolution single-molecule Förster resonance energy transfer (FRET) spectroscopy. It is shown quantitatively that both PtpB and AK are capable of dynamically sampling two distinct states that correlate well with those observed by x-ray crystallography. Integrating these microscopic dynamics into macroscopic kinetics allows us to place the experimentally measured free-energy landscape in the context of enzymatic turnovers.

  3. Magnetic properties of weakly exchange-coupled high spin Co(II) ions in pseudooctahedral coordination evaluated by single crystal X-band EPR spectroscopy and magnetic measurements.

    Science.gov (United States)

    Neuman, Nicolás I; Winkler, Elín; Peña, Octavio; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D

    2014-03-03

    We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S′= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(–1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(–1)), in good agreement with the average J(3/2) value determined from magnetic measurements.

  4. 25–34 GHz Single-Pole, Double-Throw CMOS Switches for a Ka-Band Phased-Array Transceiver

    Directory of Open Access Journals (Sweden)

    Sangyong Park

    2018-01-01

    Full Text Available This paper presents two single-pole, double-throw (SPDT mm-wave switches for Ka-band phased-array transceivers, fabricated with a 65-nm complementary metal oxide semiconductor (CMOS process. One switch employs cross-biasing (CB control with a single supply, while the other uses dual-supply biasing (DSB control with positive and negative voltages. Negative voltages were generated internally, using a ring oscillator and a charge pump. Identical gate and body floated N-type metal oxide semiconductor field effect transistors (N-MOSFETs in a triple well were used as the switch core transistors. Inductors were used to improve the isolation between the transmitter (TX and receiver (RX, as well as insertion loss, by canceling the parasitic capacitance of the switch core transistors at resonance. The size of the proposed radio frequency (RF switch is 260 μm × 230 μm, excluding all pads. The minimum insertion losses of the CB and DSB switches were 2.1 dB at 28 GHz and 1.93 dB at 24 GHz, respectively. Between 25 GHz and 34 GHz, the insertion losses were less than 2.3 dB and 2.5 dB, the return losses were less than 16.7 dB and 17.3 dB, and the isolation was over 18.4 dB and 15.3 dB, respectively. The third order input intercept points (IIP3 of the CB and DSB switches were 38.4 dBm and 39 dBm at 28 GHz, respectively.

  5. Design of single-polarization coupler based on dual-core photonic band-gap fiber implied in resonant fiber optic gyro

    Science.gov (United States)

    Xu, Zhenlong; Li, Xuyou; Zhang, Chunmei; Ling, Weiwei; Liu, Pan; Xia, Linlin; Yang, Hanrui

    2016-12-01

    A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 μm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.

  6. Long-lasting changes in brain activation induced by a single REAC technology pulse in Wi-Fi bands. Randomized double-blind fMRI qualitative study.

    Science.gov (United States)

    Rinaldi, Salvatore; Mura, Marco; Castagna, Alessandro; Fontani, Vania

    2014-07-11

    The aim of this randomized double-blind study was to evaluate in healthy adult subjects, with functional magnetic resonance imaging (fMRI), long lasting changes in brain activation patterns following administration of a single, 250 milliseconds pulse emitted with radio-electric asymmetric conveyer (REAC) technology in the Wi-Fi bands. The REAC impulse was not administered during the scan, but after this, according to a protocol that has previously been demonstrated to be effective in improving motor control and postural balance, in healthy subjects and patients. The study was conducted on 33 healthy volunteers, performed with a 1.5 T unit while operating a motor block task involving cyclical and alternating flexion and extension of one leg. Subsequently subjects were randomly divided into a treatment and a sham treatment control group. Repeated fMRI examinations were performed following the administration of the REAC pulse or sham treatment. The Treated group showed cerebellar and ponto-mesencephalic activation components that disappeared in the second scan, while these activation components persisted in the Sham group. This study shows that a very weak signal, such as 250 milliseconds Wi-Fi pulse, administered with REAC technology, could lead to lasting effects on brain activity modification.

  7. Characterization of the C-protein from posterior latissimus dorsi muscle of the adult chicken: heterogeneity within a single sarcomere

    OpenAIRE

    1983-01-01

    Specific isoforms of myofibrillar proteins are expressed in different muscles and in various fiber types within a single muscle. We have isolated and characterized monoclonal antibodies against C-proteins from slow tonic (anterior latissimus dorsi, ALD) and fast twitch (pectoralis major) muscles of the chicken. Although the antibody against "fast" C-protein (MF-1) did not bind to the "slow" isoform and the antibody to the "slow" C-protein (ALD-66) did not bind to the "fast" isoform, we observ...

  8. Interactions of DNA binding proteins with G-Quadruplex structures at the single molecule level

    Science.gov (United States)

    Ray, Sujay

    Guanine-rich nucleic acid (DNA/RNA) sequences can form non-canonical secondary structures, known as G-quadruplex (GQ). Numerous in vivo and in vitro studies have demonstrated formation of these structures in telomeric and non-telomeric regions of the genome. Telomeric GQs protect the chromosome ends whereas non-telomeric GQs either act as road blocks or recognition sites for DNA metabolic machinery. These observations suggest the significance of these structures in regulation of different metabolic processes, such as replication and repair. GQs are typically thermodynamically more stable than the corresponding Watson-Crick base pairing formed by G-rich and C-rich strands, making protein activity a crucial factor for their destabilization. Inside the cell, GQs interact with different proteins and their enzymatic activity is the determining factor for their stability. We studied interactions of several proteins with GQs to understand the underlying principles of protein-GQ interactions using single-molecule FRET and other biophysical techniques. Replication Protein-A (RPA), a single stranded DNA (ssDNA) binding protein, is known to posses GQ unfolding activity. First, we compared the thermal stability of three potentially GQ-forming DNA sequences (PQS) to their stability against RPA-mediated unfolding. One of these sequences is the human telomeric repeat and the other two, located in the promoter region of tyrosine hydroxylase gene, are highly heterogeneous sequences that better represent PQS in the genome. The thermal stability of these structures do not necessarily correlate with their stability against protein-mediated unfolding. We conclude that thermal stability is not necessarily an adequate criterion for predicting the physiological viability of GQ structures. To determine the critical structural factors that influence protein-GQ interactions we studied two groups of GQ structures that have systematically varying loop lengths and number of G-tetrad layers. We

  9. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-08-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  10. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    International Nuclear Information System (INIS)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-01-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described

  11. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  12. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    Science.gov (United States)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  13. Protein structural model selection by combining consensus and single scoring methods.

    Directory of Open Access Journals (Sweden)

    Zhiquan He

    Full Text Available Quality assessment (QA for predicted protein structural models is an important and challenging research problem in protein structure prediction. Consensus Global Distance Test (CGDT methods assess each decoy (predicted structural model based on its structural similarity to all others in a decoy set and has been proved to work well when good decoys are in a majority cluster. Scoring functions evaluate each single decoy based on its structural properties. Both methods have their merits and limitations. In this paper, we present a novel method called PWCom, which consists of two neural networks sequentially to combine CGDT and single model scoring methods such as RW, DDFire and OPUS-Ca. Specifically, for every pair of decoys, the difference of the corresponding feature vectors is input to the first neural network which enables one to predict whether the decoy-pair are significantly different in terms of their GDT scores to the native. If yes, the second neural network is used to decide which one of the two is closer to the native structure. The quality score for each decoy in the pool is based on the number of winning times during the pairwise comparisons. Test results on three benchmark datasets from different model generation methods showed that PWCom significantly improves over consensus GDT and single scoring methods. The QA server (MUFOLD-Server applying this method in CASP 10 QA category was ranked the second place in terms of Pearson and Spearman correlation performance.

  14. Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.

    Science.gov (United States)

    Tych, Katarzyna M; Hoffmann, Toni; Batchelor, Matthew; Hughes, Megan L; Kendrick, Katherine E; Walsh, Danielle L; Wilson, Michael; Brockwell, David J; Dougan, Lorna

    2015-04-01

    Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.

  15. Functional mapping of cell surface proteins with localized stimulation of single cells

    Science.gov (United States)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  16. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    Science.gov (United States)

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  17. Protein-fold recognition using an improved single-source K diverse shortest paths algorithm.

    Science.gov (United States)

    Lhota, John; Xie, Lei

    2016-04-01

    Protein structure prediction, when construed as a fold recognition problem, is one of the most important applications of similarity search in bioinformatics. A new protein-fold recognition method is reported which combines a single-source K diverse shortest path (SSKDSP) algorithm with Enrichment of Network Topological Similarity (ENTS) algorithm to search a graphic feature space generated using sequence similarity and structural similarity metrics. A modified, more efficient SSKDSP algorithm is developed to improve the performance of graph searching. The new implementation of the SSKDSP algorithm empirically requires 82% less memory and 61% less time than the current implementation, allowing for the analysis of larger, denser graphs. Furthermore, the statistical significance of fold ranking generated from SSKDSP is assessed using ENTS. The reported ENTS-SSKDSP algorithm outperforms original ENTS that uses random walk with restart for the graph search as well as other state-of-the-art protein structure prediction algorithms HHSearch and Sparks-X, as evaluated by a benchmark of 600 query proteins. The reported methods may easily be extended to other similarity search problems in bioinformatics and chemoinformatics. The SSKDSP software is available at http://compsci.hunter.cuny.edu/~leixie/sskdsp.html. © 2016 Wiley Periodicals, Inc.

  18. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  19. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  20. Stepwise bending of DNA by a single TATA box binding protein

    DEFF Research Database (Denmark)

    Tolic-Nørrelykke, Simon F; Rasmussen, Mette B; Pavone, Francesco S

    2006-01-01

    The TATA-box binding protein (TBP) is required by all three eucaryotic RNA polymerases for the initiation of transcription from most promoters. TBP recognizes, binds to, and bends promoter sequences called "TATA-boxes" in the DNA. We present results from the study of individual Saccharomyces...... cerevisiae TBPs interacting with single DNA molecules containing a TATA-box. Using video microscopy, we observed the Brownian motion of the beads tethered by short surface-bound DNA. When TBP binds to and bends the DNA, the conformation of the DNA changes and the amplitude of Brownian motion of the tehtered...

  1. Probing Protein Multidimensional Conformational Fluctuations by Single-Molecule Multiparameter Photon Stamping Spectroscopy

    Science.gov (United States)

    2015-01-01

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  2. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  3. SVMQA: support-vector-machine-based protein single-model quality assessment.

    Science.gov (United States)

    Manavalan, Balachandran; Lee, Jooyoung

    2017-08-15

    The accurate ranking of predicted structural models and selecting the best model from a given candidate pool remain as open problems in the field of structural bioinformatics. The quality assessment (QA) methods used to address these problems can be grouped into two categories: consensus methods and single-model methods. Consensus methods in general perform better and attain higher correlation between predicted and true quality measures. However, these methods frequently fail to generate proper quality scores for native-like structures which are distinct from the rest of the pool. Conversely, single-model methods do not suffer from this drawback and are better suited for real-life applications where many models from various sources may not be readily available. In this study, we developed a support-vector-machine-based single-model global quality assessment (SVMQA) method. For a given protein model, the SVMQA method predicts TM-score and GDT_TS score based on a feature vector containing statistical potential energy terms and consistency-based terms between the actual structural features (extracted from the three-dimensional coordinates) and predicted values (from primary sequence). We trained SVMQA using CASP8, CASP9 and CASP10 targets and determined the machine parameters by 10-fold cross-validation. We evaluated the performance of our SVMQA method on various benchmarking datasets. Results show that SVMQA outperformed the existing best single-model QA methods both in ranking provided protein models and in selecting the best model from the pool. According to the CASP12 assessment, SVMQA was the best method in selecting good-quality models from decoys in terms of GDTloss. SVMQA method can be freely downloaded from http://lee.kias.re.kr/SVMQA/SVMQA_eval.tar.gz. jlee@kias.re.kr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Effects of the daily consumption of protein enriched bread and protein enriched drinking yoghurt on the total protein intake in older adults in a rehabilitation centre: a single blind randomised controlled trial.

    Science.gov (United States)

    van Til, A J; Naumann, E; Cox-Claessens, I J H M; Kremer, S; Boelsma, E; de van der Schueren, M A E

    2015-05-01

    To investigate the effects of protein enriched bread and drinking yoghurt, substituting regular products, on the total protein intake and the distribution of protein intake over the day in older adults. A single blind randomised controlled trial. Rehabilitation centre. Older adults (≥ 55 years) admitted to a rehabilitation centre after hospital discharge (n=34). Participants received a high protein diet (protein enriched bread and protein enriched drinking yoghurt; n=17) or a regular diet (regular bread and regular drinking yoghurt; n=17) for three consecutive weeks. Total protein intake and protein intake per meal, measured twice weekly over a three weeks period (six measurements per participant). Compared with controls, patients who received the protein enriched products had a significantly higher protein intake (115.3 g/d vs 72.5 g/d, Pconsumption of protein enriched products improves protein distribution over the day.

  5. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein

    Science.gov (United States)

    Wu, Hao; Wang, Wei; Naiyer, Nada; Fichtenbaum, Eric; Qualley, Dominic F.; McCauley, Micah J.; Gorelick, Robert J.; Rouzina, Ioulia; Musier-Forsyth, Karin; Williams, Mark C.

    2014-01-01

    Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic

  6. Tackling Bet v 1 and associated food allergies with a single hybrid protein.

    Science.gov (United States)

    Hofer, Heidi; Asam, Claudia; Hauser, Michael; Nagl, Birgit; Laimer, Josef; Himly, Martin; Briza, Peter; Ebner, Christof; Lang, Roland; Hawranek, Thomas; Bohle, Barbara; Lackner, Peter; Ferreira, Fátima; Wallner, Michael

    2017-08-01

    Allergy vaccines should be easily applicable, safe, and efficacious. For Bet v 1-mediated birch pollen and associated food allergies, a single wild-type allergen does not provide a complete solution. We aimed to combine immunologically relevant epitopes of Bet v 1 and the 2 clinically most important related food allergens from apple and hazelnut to a single hybrid protein, termed MBC4. After identification of T cell epitope-containing parts on each of the 3 parental allergens, the hybrid molecule was designed to cover relevant epitopes and evaluated in silico. Thereby a mutation was introduced into the hybrid sequence, which should alter the secondary structure without compromising the immunogenic properties of the molecule. MBC4 and the parental allergens were purified to homogeneity. Analyses of secondary structure elements revealed substantial changes rendering the hybrid de facto nonreactive with patients' serum IgE. Nevertheless, the protein was monomeric in solution. MBC4 was able to activate T-cell lines from donors with birch pollen allergy and from mice immunized with the parental allergens. Moreover, on immunization of mice and rabbits, MBC4 induced cross-reactive IgG antibodies, which were able to block the binding of human serum IgE. Directed epitope rearrangements combined with a knowledge-based structural modification resulted in a protein unable to bind IgE from allergic patients. Still, properties to activate specific T cells or induce blocking antibodies were conserved. This suggests that MBC4 is a suitable vaccine candidate for the simultaneous treatment of Bet v 1 and associated food allergies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation.

    Science.gov (United States)

    Sari, Roger S; de Almeida, Anna Christina; Cangussu, Alex S R; Jorge, Edson V; Mozzer, Otto D; Santos, Hércules Otacílio; Quintilio, Wagner; Brandi, Igor Viana; Andrade, Viviane Aguiar; Miguel, Angelo Samir M; Sobrinho Santos, Eliane M

    2016-12-01

    The aim of the present study was to compare the potency and safety of vaccines against Clostridium botulinum (C. botulinum) type C and D formulated with chitosan as controlled release matrix and vaccines formulated in conventional manner using aluminum hydroxide. Parameters were established for the development of chitosan microspheres, using simple coacervation to standardize the use of this polymer in protein encapsulation for vaccine formulation. To formulate a single shot vaccine inactivated antigens of C. botulinum type C and D were used with original toxin titles equal to 5.2 and 6.2 log LD50/ml, respectively. For each antigen a chitosan based solution of 50 mL was prepared. Control vaccines were formulated by mixing toxoid type C and D with aluminum hydroxide [25% Al(OH) 3 , pH 6.3]. The toxoid sterility, innocuity and potency of vaccines were evaluated as stipulated by MAPA-BRASIL according to ministerial directive no. 23. Encapsulation efficiency of BSA in chitosan was 32.5-40.37%, while that the encapsulation efficiency to toxoid type C was 41,03% (1.94 mg/mL) and of the toxoid type D was 32.30% (1.82 mg/mL). The single shot vaccine formulated using chitosan for protein encapsulation through simple coacervation showed potency and safety similar to conventional vaccine currently used in Brazilian livestock (10 and 2 IU/mL against C. botulinum type C and D, respectively). The present work suggests that our single shot vaccine would be a good option as a cattle vaccine against these C. botulinum type C and D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Nucleotide excision repair at the single-molecule level : analysis of the E. coli UvrA protein

    NARCIS (Netherlands)

    Wagner, Koen

    2011-01-01

    In this thesis, the characteristics of the Escherichia coli UvrA protein were analyzed with microscopy techniques that allow detection of protein complexes at the single-molecule level. Together with UvrB and UvrC, UvrA catalyzes the excision of damaged DNA from the bacterial genome. This DNA repair

  9. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  11. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation. Copyright © 2016 Biophysical Society. All rights reserved.

  12. High-throughput single-molecule force spectroscopy for membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios [M E Mueller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel (Switzerland); Ratera, Merce; Palacin, Manuel [Institute for Research in Biomedicine, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Centro de Investigacion Biomedica en Red de Enfermedades Raras, E-08028 Barcelona (Spain); Bippes, Christian A; Mueller, Daniel J [BioTechnology Center, Technical University, Tatzberg 47, D-01307 Dresden (Germany)], E-mail: andreas.engel@unibas.ch, E-mail: dimitrios.fotiadis@mci.unibe.ch

    2008-09-24

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether {approx}400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with {approx}200 (AdiC) and {approx}400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  13. High-throughput single-molecule force spectroscopy for membrane proteins

    International Nuclear Information System (INIS)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios; Ratera, Merce; Palacin, Manuel; Bippes, Christian A; Mueller, Daniel J

    2008-01-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ∼400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ∼200 (AdiC) and ∼400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications

  14. Monitoring single membrane protein dynamics in a liposome manipulated in solution by the ABELtrap

    Science.gov (United States)

    Rendler, T.; Renz, M.; Hammann, E.; Ernst, S.; Zarrabi, N.; Börsch, M.

    2011-02-01

    FoF1-ATP synthase is the essential membrane enzyme maintaining the cellular level of adenosine triphosphate (ATP) and comprises two rotary motors. We measure subunit rotation in FoF1-ATP synthase by intramolecular Foerster resonance energy transfer (FRET) between two fluorophores at the rotor and at the stator of the enzyme. Confocal FRET measurements of freely diffusing single enzymes in lipid vesicles are limited to hundreds of milliseconds by the transit times through the laser focus. We evaluate two different methods to trap the enzyme inside the confocal volume in order to extend the observation times. Monte Carlo simulations show that optical tweezers with low laser power are not suitable for lipid vesicles with a diameter of 130 nm. A. E. Cohen (Harvard) and W. E. Moerner (Stanford) have recently developed an Anti-Brownian electrokinetic trap (ABELtrap) which is capable to apparently immobilize single molecules, proteins, viruses or vesicles in solution. Trapping of fluorescent particles is achieved by applying a real time, position-dependent feedback to four electrodes in a microfluidic device. The standard deviation from a given target position in the ABELtrap is smaller than 200 nm. We develop a combination of the ABELtrap with confocal FRET measurements to monitor single membrane enzyme dynamics by FRET for more than 10 seconds in solution.

  15. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  16. Effects of the daily consumption of protein enriched bread and protein enriched drinking yoghurt on the total protein intake in older adults in a rehabilitation centre: A single blind randomised controlled trial

    NARCIS (Netherlands)

    van Til, A.J.; Naumann, E.; Cox-Claessens, I.J.H.M.; Kremer, S.; Boelsma, E.; van Bokhorst-de van der Schueren, M.A.E.

    2015-01-01

    Objectives: To investigate the effects of protein enriched bread and drinking yoghurt, substituting regular products, on the total protein intake and the distribution of protein intake over the day in older adults.Design: A single blind randomised controlled trial.Setting: Rehabilitation

  17. Effect of the daily consumption of protein enriched bread and protein enriched drinking yoghurt on the total protein intake in older adults in a rehabilitation centre: a single blind randomised controlled trial

    NARCIS (Netherlands)

    Til, van A.J.; Naumann, E.; Cox-Claessens, I.J.H.M.; Kremer, S.; Boelsma, E.; Schueren, van der D.E.

    2015-01-01

    Objectives To investigate the effects of protein enriched bread and drinking yoghurt, substituting regular products, on the total protein intake and the distribution of protein intake over the day in older adults. Design A single blind randomised controlled trial. Setting Rehabilitation centre.

  18. NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.

    Science.gov (United States)

    Isernia, Carla; Bucci, Enrico; Leone, Marilisa; Zaccaro, Laura; Di Lello, Paola; Digilio, Giuseppe; Esposito, Sabrina; Saviano, Michele; Di Blasio, Benedetto; Pedone, Carlo; Pedone, Paolo V; Fattorusso, Roberto

    2003-03-03

    Zinc finger domains of the classical type represent the most abundant DNA binding domains in eukaryotic transcription factors. Plant proteins contain from one to four zinc finger domains, which are characterized by high conservation of the sequence QALGGH, shown to be critical for DNA-binding activity. The Arabidopsis thaliana SUPERMAN protein, which contains a single QALGGH zinc finger, is necessary for proper spatial development of reproductive floral tissues and has been shown to specifically bind to DNA. Here, we report the synthesis and UV and NMR spectroscopic structural characterization of a 37 amino acid SUPERMAN region complexed to a Zn(2+) ion (Zn-SUP37) and present the first high-resolution structure of a classical zinc finger domain from a plant protein. The NMR structure of the SUPERMAN zinc finger domain consists of a very well-defined betabetaalpha motif, typical of all other Cys(2)-His(2) zinc fingers structurally characterized. As a consequence, the highly conserved QALGGH sequence is located at the N terminus of the alpha helix. This region of the domain of animal zinc finger proteins consists of hypervariable residues that are responsible for recognizing the DNA bases. Therefore, we propose a peculiar DNA recognition code for the QALGGH zinc finger domain that includes all or some of the amino acid residues at positions -1, 2, and 3 (numbered relative to the N terminus of the helix) and possibly others at the C-terminal end of the recognition helix. This study further confirms that the zinc finger domain, though very simple, is an extremely versatile DNA binding motif.

  19. Evaluation of canine adverse food reactions by patch testing with single proteins, single carbohydrates and commercial foods.

    Science.gov (United States)

    Johansen, Cornelia; Mariani, Claire; Mueller, Ralf S

    2017-10-01

    Adverse food reaction (AFR) is an important differential diagnosis for the pruritic dog. It is usually diagnosed by feeding an elimination diet with a novel protein and carbohydrate source for eight weeks followed by subsequent food provocation. A previous study demonstrated that patch testing dogs with foods had a high sensitivity and negative predictability for selection of elimination diet ingredients. The aim of this study was to investigate patch testing with proteins, carbohydrates and dry commercial dog food in dogs to determine whether there was value in patch testing to aid the diagnosis of canine adverse food reaction. Twenty five privately owned dogs, with confirmed AFR, underwent provocation trials with selected food antigens and patch testing. For proteins, carbohydrates and dry dog food the sensitivity of patch testing was 100%, 70% and 22.2%, respectively; the negative predictive values of patch testing were 100%, 79% and 72%. The positive predictive values of patch testing for proteins and carbohydrates were 75% and 74%, respectively. This study confirmed that patch testing may be useful for the selection of a suitable protein source for an elimination diet in dogs with suspected AFR, but not as a diagnostic tool for canine AFR. Results for proteins are more reliable than for carbohydrates and the majority of positive patch test reactions were observed with raw protein. Patch testing with commercial dog food does not seem to be useful. © 2017 ESVD and ACVD.

  20. An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer.

    Science.gov (United States)

    Hamadani, Kambiz M; Howe, Jesse; Jensen, Madeleine K; Wu, Peng; Cate, Jamie H D; Marqusee, Susan

    2017-09-22

    Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational

  1. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies.

    Science.gov (United States)

    Padhiar, Arshad Ahmed; Chanda, Warren; Joseph, Thomson Patrick; Guo, Xuefang; Liu, Min; Sha, Li; Batool, Samana; Gao, Yifan; Zhang, Wei; Huang, Min; Zhong, Mintao

    2018-03-01

    The formation of inclusion bodies (IBs) is considered as an Achilles heel of heterologous protein expression in bacterial hosts. Wide array of techniques has been developed to recover biochemically challenging proteins from IBs. However, acquiring the active state even from the same protein family was found to be an independent of single established method. Here, we present a new strategy for the recovery of wide sub-classes of recombinant protein from harsh IBs. We found that numerous methods and their combinations for reducing IB formation and producing soluble proteins were not effective, if the inclusion bodies were harsh in nature. On the other hand, different practices with mild solubilization buffers were able to solubilize IBs completely, yet the recovery of active protein requires large screening of refolding buffers. With the integration of previously reported mild solubilization techniques, we proposed an improved method, which comprised low sarkosyl concentration, ranging from 0.05 to 0.1% coupled with slow freezing (- 1 °C/min) and fast thaw (room temperature), resulting in greater solubility and the integrity of solubilized protein. Dilution method was employed with single buffer to restore activity for every sub-class of recombinant protein. Results showed that the recovered protein's activity was significantly higher compared with traditional solubilization/refolding approach. Solubilization of IBs by the described method was proved milder in nature, which restored native-like conformation of proteins within IBs.

  2. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins.

    Science.gov (United States)

    Hu, Pingán; Zhang, Jia; Wen, Zhenzhong; Zhang, Can

    2011-08-19

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 × 10(4)-fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  3. Co-cultivation of Green Microalgae and Methanotrophic Bacteria for Single Cell Protein Production from Wastewater

    DEFF Research Database (Denmark)

    Rasouli, Zahra; Valverde Pérez, Borja; D'Este, Martina

    2017-01-01

    microalgae – as a means to recover nutrients from industrial wastewater and upcycle them to feed grade single cell protein. Results demonstrated that both algae and bacteria could remove or assimilate most of the organic carbon present in the wastewater. However, their growth stopped before nutrients...... and substrates in the gas phase (i.e., methane and oxygen for methanotrophs and carbon dioxide for algae) were depleted. Likely, algal growth was light limited and stopped after organic carbon was consumed, whilst growth of methanotrophic bacteria could be limited by trace elements (e.g., copper). Nevertheless......Conventional water treatment technologies remove nutrients via resource intensive processes. However, new approaches for residual nutrient recycling are needed to provide food to the increasing world population. This work explores the use of microbial biomass – methane oxidizing bacteria and green...

  4. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lili [China Pharmaceutical University, Nanjing 210009 (China); The Nursing College of Pingdingshan University, Pingdingshan 467000 (China); Lin, Rui [Yancheng Health Vocational and Technical College, Yancheng 224005 (China); He, Hua, E-mail: dochehua@163.com [China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Sun, Meiling, E-mail: sml-nir@sohu.com [China Pharmaceutical University, Nanjing 210009 (China); Jiang, Li; Gao, Mengmeng [China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    The aim of this work was to investigate the detailed interaction between BSA and amidated single walled carbon nanotubes (e-SWNTs) in vitro. Ethylenediamine (EDA) was successfully linked on the surface of single-walled carbon nanotubes (SWNTs) via acylation to improve their dispersion and to introduce active groups. Bovine serum albumin (BSA) was selected as the template protein to inspect the interaction of e-SWNTs with protein. Decreases in fluorescence intensity of BSA induced by e-SWNTs demonstrated the occurrence of interaction between BSA and e-SWNTs. Quenching parameters and different absorption spectra for e-SWNTs–BSA show that the quenching effect of e-SWNTs was static quenching. Hydrophobic force had a leading contribution to the binding roles of BSA on e-SWNTs, which was confirmed by positive enthalpy change and entropy change. The interference of Na{sup +} with the quenching effect of e-SWNTs authenticated that electrostatic force existed in the interactive process simultaneously. The hydrophobicity of amino acid residues markedly increased with the addition of e-SWNTs viewed from UV spectra of BSA. The content of α-helix structure in BSA decreased by 6.8% due to the addition of e-SWNTs, indicating that e-SWNTs have an effect on the secondary conformation of BSA. -- Highlights: • The interaction between e-SWNTs and BSA was investigated by multiple spectroscopic methods. • Quenching mechanism was static quenching. • Changes in structure of BSA were inspected by synchronous fluorescence, UV–vis and CD spectrum.

  5. 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels

    DEFF Research Database (Denmark)

    Kobayashi, Takayuki; Nakamura, M.; Hamaoka, F.

    2017-01-01

    We demonstrate the first 1-Pb/s unidirectional inline-amplified transmission over 205.6-km of single-mode 32-core fiber within C-band only. 96-Gbaud LDPC-coded PDM-16QAM channels with FEC redundancy of 12.75% realize high-aggregate spectral efficiency of 217.6 b/s/Hz......We demonstrate the first 1-Pb/s unidirectional inline-amplified transmission over 205.6-km of single-mode 32-core fiber within C-band only. 96-Gbaud LDPC-coded PDM-16QAM channels with FEC redundancy of 12.75% realize high-aggregate spectral efficiency of 217.6 b/s/Hz...

  6. Plasmonic welded single walled carbon nanotubes on monolayer graphene for sensing target protein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jangheon; Kim, Soohyun [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-806 (Korea, Republic of); Kim, Gi Gyu; Jung, Wonsuk, E-mail: wonsuk81@wku.ac.kr [Department of Mechanical and Automotive Engineering, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2016-05-16

    We developed plasmonic welded single walled carbon nanotubes (SWCNTs) on monolayer graphene as a biosensor to detect target antigen molecules, fc fusion protein without any treatment to generate binder groups for linker and antibody. This plasmonic welding induces atomic networks between SWCNTs as junctions containing carboxylic groups and improves the electrical sensitivity of a SWCNTs and the graphene membrane to detect target protein. We investigated generation of the atomic networks between SWCNTs by field-emission scanning electron microscopy and atomic force microscopy after plasmonic welding process. We compared the intensity ratios of D to G peaks from the Raman spectra and electrical sheet resistance of welded SWCNTs with the results of normal SWCNTs, which decreased from 0.115 to 0.086 and from 10.5 to 4.12, respectively. Additionally, we measured the drain current via source/drain voltage after binding of the antigen to the antibody molecules. This electrical sensitivity of the welded SWCNTs was 1.55 times larger than normal SWCNTs.

  7. Growth kinetics of protein single crystals in the gel acupuncture technique

    Science.gov (United States)

    García-Ruiz, Juan Manuel; Moreno, Abel

    1997-07-01

    The growth of single crystals of tetragonal HEW lysozyme and thaumatin I into glass capillaries was monitored by time lapse video-microscopy. The crystals were obtained by unidirectional transport of the precipitating agent through capillaries of internal diameter ranging from 0.2 to 1.2 mm, using the gel acupuncture technique. For crystals growing from true protein solutions, the measured average growth rates varies with capillary diameter from 1.7 to 3.7 Å/s for thaumatin and from 2.8 to 22 Å/s for lysozyme. The measured average growth rates for crystals growing into gelled protein solutions were 1.8 Å/s for thaumatin and 2.5 Å/s for lysozyme. The trend in the variation of the growth rate with time is similar and suggests that, for capillaries with internal radius lower than 0.8 mm, diffusion dominates the global mass transport control. However, the existence of convection rolls near the crystal-solution interface and close to zones with high density gradient cannot be discarded.

  8. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    International Nuclear Information System (INIS)

    Glukhov, S; Berestovoy, M; Nabiev, I; Sukhanova, A; Chames, P; Baty, D

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or 'nanobodies') conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD–sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis. (paper)

  9. A novel two-zone protein uptake model for affinity chromatography and its application to the description of elution band profiles of proteins fused to a family 9 cellulose binding module affinity tag.

    Science.gov (United States)

    Kavoosi, Mojgan; Sanaie, Nooshafarin; Dismer, Florian; Hubbuch, Jürgen; Kilburn, Douglas G; Haynes, Charles A

    2007-08-10

    A novel two-zone model (TZM) is presented to describe the rate of solute uptake by the stationary phase of a sorption-type chromatography column. The TZM divides the porous stationary-phase particle into an inner protein-free core and an outer protein-containing zone where intraparticle transport is limited by pore diffusion and binding follows Langmuir theory. The TZM and the classic pore-diffusion model (PDM) of chromatography are applied to the prediction of stationary-phase uptake and elution bands within a cellulose-based affinity chromatography column designed to selectively purify proteins genetically labelled with a CBM9 (family 9 cellulose binding module) affinity tag. Under both linear and nonlinear loading conditions, the TZM closely matches rates of protein uptake within the stationary phase particles as measured by confocal laser scanning microscopy, while the PDM deviates from experiment in the linear-binding region. As a result, the TZM is shown to provide improved predictions of product breakthrough, including elution behavior from a bacterial lysate feed.

  10. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss

    OpenAIRE

    Weaver, Beth A.A.; Bonday, Zahid Q.; Putkey, Frances R.; Kops, Geert J.P.L.; Silk, Alain D.; Cleveland, Don W.

    2003-01-01

    Centromere-associated protein-E (CENP-E) is an essential mitotic kinesin that is required for efficient, stable microtubule capture at kinetochores. It also directly binds to BubR1, a kinetochore-associated kinase implicated in the mitotic checkpoint, the major cell cycle control pathway in which unattached kinetochores prevent anaphase onset. Here, we show that single unattached kinetochores depleted of CENP-E cannot block entry into anaphase, resulting in aneuploidy in 25% of divisions in p...

  11. Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Pajuelo-Reguera, David; Alán, Lukáš; Dlasková, Andrea; Ježek, Petr

    2015-01-01

    Roč. 12, č. 4 (2015), s. 5185-5190 ISSN 1791-2997 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondrial nucleoid * single- strand ed DNA -binding protein * photoconvertible fluorescent protein Eos Subject RIV: EA - Cell Biology Impact factor: 1.559, year: 2015

  12. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes.

    Science.gov (United States)

    Jonas, Kim C; Huhtaniemi, Ilpo; Hanyaloglu, Aylin C

    2016-01-01

    The organization of G protein-coupled receptors (GPCRs) into dimers and higher-order oligomers has provided a potential mechanistic system in defining complex GPCR responses. Despite being studied for nearly 20 years it has, and still is, been an area of controversy. Although technology has developed to quantitatively measure these associations in real time, identify the structural interfaces and even systems to understand the physiological significance of di/oligomerization, key questions remain outstanding including the role of each individual complex from the monomer to the higher-order oligomer, in their native system. Recently, single-molecule microscopy approaches have provided the tools to directly visualize individual GPCRs in dimers and oligomers, though as with any technological development each have their advantages and limitations. This chapter will describe these recent developments in single-molecule fluorescent microscopy, focusing on our recent application of super-resolution imaging of the GPCR for the luteinizing hormone/chorionic gonadotropin to quantify GPCR monomers and formation of protomers in to dimers and distinct oligomeric forms. We present our approach, considerations, strategy, and challenges to visualize this receptor beyond the light diffraction limit via photoactivated localization microscopy with photoactivatable dyes. The addition of super-resolution approaches to the GPCR "nano-tool kit" will pave the way for novel avenues to answer outstanding questions regarding the existence and significance of these complexes to GPCR signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Science.gov (United States)

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  14. Protein-Nanocrystal Conjugates Support a Single Filament Polymerization Model in R1 Plasmid Segregation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina L.; Claridge, Shelley A.; Garner, Ethan C.; Alivisatos, A. Paul; Mullins, R. Dyche

    2008-07-15

    To ensure inheritance by daughter cells, many low-copy number bacterial plasmids, including the R1 drug-resistance plasmid, encode their own DNA segregation systems. The par operon of plasmid R1 directs construction of a simple spindle structure that converts free energy of polymerization of an actin-like protein, ParM, into work required to move sister plasmids to opposite poles of rod-shaped cells. The structures of individual components have been solved, but little is known about the ultrastructure of the R1 spindle. To determine the number of ParM filaments in a minimal R1 spindle, we used DNA-gold nanocrystal conjugates as mimics of the R1 plasmid. Wefound that each end of a single polar ParM filament binds to a single ParR/parC-gold complex, consistent with the idea that ParM filaments bind in the hollow core of the ParR/parC ring complex. Our results further suggest that multifilament spindles observed in vivo are associated with clusters of plasmidssegregating as a unit.

  15. [Study of the adsorption behaviors of plasma proteins on the single-walled carbon nanotubes nonwoven].

    Science.gov (United States)

    Meng, Jie; Song, Li; Meng, Jie; Kong, Hua; Wang, Chaoying; Guo, Xiaotian; Xu, Haiyan; Xie, Sishen

    2007-02-01

    Single walled carbon nanotubes (SWNT) have attracted increasing research interests for the purpose of biomedical application because they provide not only nanostructured topography, but also chemical composition of pure carbon atoms, as well as ultra high strength and excellent flexibility. Regarding the interactions of nanomaterials to biological systems, non-specific adsorption of plasma proteins is one of the most important issues to be concerned, which plays a crucial role that would determine how biological systems response to the biomaterials. Motivated by application of SWNT materials in biomedical fields, in this study, the adsorption behaviors of plasma proteins on the surface of SWNT nonwoven, prepared directly by floating chemical vapor observation and energy deposition method were investigated by means of scanning electron microscope (SEM), dispersive X-ray (EDX) analysis and ELISA. Results indicated the SWNT non-woven showed a clear adsorption preference of fibrinogen over albumin. There was no human serum albumin detected using above analysis methods on the SWNT nonwoven even incubated in the albumin solution of 4 mg/ml. While more than 0.15 microg of human fibrinogen was detected by ELISA on the SWNT nonwoven with area of 40 mm x 40 mm incubated in the fibrinogen solution of 5 microg/ml. In addition, IgG of sheep-anti-human serum fibrinogen exhibited strong nonspecific adsorption on the surface of SWNT nonwoven. The adsorption behaviors are different significantly from those of other carbon materials and conventional biomaterials. The unique interaction of SWNT nonwoven to plasma proteins is of significance to further studies of blood cells responses.

  16. Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway.

    Science.gov (United States)

    Mullaney, Jane A; Rehm, Bernd H A

    2010-05-03

    Polyhydroxyalkanoates are biodegradable biocompatible polymers naturally produced by various bacteria and archaea. Biotechnological production in transgenic plants has already been demonstrated with efficient polyhydroxybutyrate production requiring targeting of the enzymes to the chloroplasts. Three enzymes are required to establish the polyhydroxybutyrate biosynthesis pathway in non-naturally producing microorganisms or plants. To facilitate production of biopolyesters in plants, a gene encoding a translational fusion of the polyhydroxybutyrate biosynthesis enzymes PhaA (beta-ketothiolase), PhaB (acetoacetyl-CoA reductase) and PhaC (PHA synthase) was constructed. Escherichia coli harboring a plasmid encoding this fusion protein (PhaA-PhaB-PhaC) under control of the lac promoter accumulated polyhydroxybutyrate contributing to 0.4% (w/w) of cellular dry weight. Insertion of an extended linker between PhaA and PhaB increased polyhydroxybutyrate accumulation to 3.9% (w/w) of cellular dry weight. Introduction of a second plasmid encoding PhaA and PhaB restored polyhydroxybutyrate accumulation to wildtype levels of about 35% (w/w) of cellular dry weight suggesting that the functions of PhaA and/or PhaB were limiting factors. Deletion of PhaA in trans led to significantly reduced polyhydroxybutyrate production suggesting that the PhaA activity in the fusion protein is reduced. This study showed that a single-chain translational fusion protein comprising the three enzymes essential for polyhydroxybutyrate synthesis can be engineered which will strongly facilitate the establishment of recombinant polyhydroxybutyrate production organisms particularly requiring targeting to sub-cellular compartments such as the chloroplasts in plants. 2010 Elsevier B.V. All rights reserved.

  17. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    Science.gov (United States)

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  18. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wierman

    2016-01-01

    Full Text Available X-ray free-electron lasers (XFELs have inspired the development of serial femtosecond crystallography (SFX as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that are kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using the EMC algorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ∼200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using the EMC algorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. This suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of the EMC algorithm even in cases

  19. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif.

    Science.gov (United States)

    Dathan, Nina; Zaccaro, Laura; Esposito, Sabrina; Isernia, Carla; Omichinski, James G; Riccio, Andrea; Pedone, Carlo; Di Blasio, Benedetto; Fattorusso, Roberto; Pedone, Paolo V

    2002-11-15

    The Arabidopsis SUPERMAN (SUP) gene has been shown to be important in maintaining the boundary between stamens and carpels, and is presumed to act by regulating cell proliferation. In this work, we show that the SUP protein, which contains a single Cys2-His2 zinc finger domain including the QALGGH sequence, highly conserved in the plant zinc finger proteins, binds DNA. Using a series of deletion mutants, it was determined that the minimal domain required for specific DNA binding (residues 15-78) includes the single zinc finger and two basic regions located on either side of this motif. Furthermore, amino acid substitutions in the zinc finger or in the basic regions, including a mutation that knocks out the function of the SUP protein in vivo (glycine 63 to aspartate), have been found to abolish the activity of the SUP DNA-binding domain. These results strongly suggest that the SUP protein functions in vivo by acting as a DNA-binding protein, likely involved in transcriptional regulation. The association of both an N-terminal and a C-terminal basic region with a single Cys2-His2 zinc finger represents a novel DNA-binding motif suggesting that the mechanism of DNA recognition adopted by the SUP protein is different from that described so far in other zinc finger proteins.

  20. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Balhorn, R.; Gledhill, B.L.; Wyrobek, A.J.

    1977-09-06

    Conditions are described that permit the quantitative extraction of chromatin proteins from the epididymal sperm of the mouse. These proteins have been isolated free of contaminating tail proteins following removal of the tails with cetyltrimethylammonium bromide (CTAB). Without this treatment, numerous acid-soluble tail proteins coextract with the nuclear proteins isolated from partially purified heads. The proteins isolated in this manner do not require prior modification with iodoacetamide and show no evidence of proteolytic degradation. In acid-urea polyacrylamide gels, 99% of the sperm protein migrates as one electrophoretic band. Evidence is presented that suggests that this single band contains two protamine-like proteins.

  1. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec......M in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  2. Sustained weight loss and improvement of quality of life after laparoscopic adjustable gastric banding for morbid obesity: a single surgeon experience in Ireland.

    LENUS (Irish Health Repository)

    Chang, K H

    2010-03-01

    Although substantial weight loss is the primary outcome following bariatric surgery, changes in obesity-related morbidity and quality of life (QoL) are equally important. This study reports on weight loss, QoL and health outcomes following laparoscopic adjustable gastric banding (LAGB).

  3. Oligoclonal Pattern/Abnormal Protein Bands in Post-Treatment Plasma Cell Myeloma Patients: Implications for Protein Electrophoresis and Serum Free Light Chain Assay Results.

    Science.gov (United States)

    Singh, Gurmukh

    2017-08-01

    The impact of autologous stem cell transplantation (ASCT) in plasma cell myeloma patients on the frequency, quality, and timing of oligoclonal pattern in serum protein electrophoresis/immunofixation electrophoresis (SPEP/SIFE) and serum free light chain assay (SFLCA) was evaluated. Laboratory results and clinical data for 251 patients with plasma cell myeloma, who had SPEP/SIFE and/or SFLCA performed between January 2010 and December 2016 were reviewed. The results for SPEP/SIFE and SFLCA were compared in patients with ASCT to those without ASCT. The implications of oligoclonal pattern in interpretation of SPEP/SIFE and SFLCA - κ/λ ratio were addressed. In 251 patients, a total of 3,134 observations, of either SPEP/SIFE and/or SFLCA, were reviewed. One hundred fifty-nine patients received ASCT. The incidence of oligoclonal patterns was significantly higher after ASCT. More than half of the oligoclonal patterns developed in the first year after transplantation. In 13 of the 84 patients with lambda chain restricted plasma cell myeloma, the κ/λ ratio was kappa dominant in the presence of oligoclonal pattern. There was no reversal of κ/λ ratio in patients with kappa chain restricted plasma cell myelomas. ASCT is associated with significantly higher incidence of oligoclonal patterns than with chemotherapy alone. The presence of oligoclonal patterns has the potential to interfere with the interpretation of SPEP/SIFE and ascertainment of complete remission. At a minimum, the oligoclonal pattern caused an incorrect kappa dominant κ/λ ratio in 15.5% of patients with lambda chain restricted plasma cell myeloma. If a similar rate were to be applied to the 167 kappa chain myeloma patients, about 26 of these would have displayed an erroneous kappa chain dominant κ/λ ratio. The presence of oligoclonal pattern further degrades the performance of already dubious SFLCA. The need for recording the location of monoclonal spike in SPEP/SIFE and higher resolution protein

  4. Evolutionary rate heterogeneity between multi- and single-interface hubs across human housekeeping and tissue-specific protein interaction network: Insights from proteins' and its partners' properties.

    Science.gov (United States)

    Biswas, Kakali; Acharya, Debarun; Podder, Soumita; Ghosh, Tapash Chandra

    2017-12-02

    Integrating gene expression into protein-protein interaction network (PPIN) leads to the construction of tissue-specific (TS) and housekeeping (HK) sub-networks, with distinctive TS- and HK-hubs. All such hub proteins are divided into multi-interface (MI) hubs and single-interface (SI) hubs, where MI hubs evolve slower than SI hubs. Here we explored the evolutionary rate difference between MI and SI proteins within TS- and HK-PPIN and observed that this difference is present only in TS, but not in HK-class. Next, we explored whether proteins' own properties or its partners' properties are more influential in such evolutionary discrepancy. Statistical analyses revealed that this evolutionary rate correlates negatively with protein's own properties like expression level, miRNA count, conformational diversity and functional properties and with its partners' properties like protein disorder and tissue expression similarity. Moreover, partial correlation and regression analysis revealed that both proteins' and its partners' properties have independent effects on protein evolutionary rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  6. Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes.

    Science.gov (United States)

    Komatsuzaki, Akihito; Ohyanagi, Tatsuya; Tsukasaki, Yoshikazu; Miyanaga, Yukihiro; Ueda, Masahiro; Jin, Takashi

    2015-03-25

    To detect single molecules within the optical diffraction limit (< ca. 200 nm), a multicolored imaging technique is developed using Halo-ligand conjugated quantum dots (Halo-QDs; <6 nm in diameter). Using three types of Halo-QDs, multicolored single-molecule fluorescence imaging of GPCR proteins in Dictyostelium cells is achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Murugaiyah, Vikneswaran; Kaur, Gurjeet; Maurer, Frans H J; Sudesh, Kumar

    2013-01-01

    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  8. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies.

    Directory of Open Access Journals (Sweden)

    Kevin A Henry

    Full Text Available Staphylococcal protein A (SpA and streptococcal protein G (SpG affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species.

  9. Characterization and quantification of proteins secreted by single human embryos prior to implantation.

    Science.gov (United States)

    Poli, Maurizio; Ori, Alessandro; Child, Tim; Jaroudi, Souraya; Spath, Katharina; Beck, Martin; Wells, Dagan

    2015-11-01

    The use of in vitro fertilization (IVF) has revolutionized the treatment of infertility and is now responsible for 1-5% of all births in industrialized countries. During IVF, it is typical for patients to generate multiple embryos. However, only a small proportion of them possess the genetic and metabolic requirements needed in order to produce a healthy pregnancy. The identification of the embryo with the greatest developmental capacity represents a major challenge for fertility clinics. Current methods for the assessment of embryo competence are proven inefficient, and the inadvertent transfer of non-viable embryos is the principal reason why most IVF treatments (approximately two-thirds) end in failure. In this study, we investigate how the application of proteomic measurements could improve success rates in clinical embryology. We describe a procedure that allows the identification and quantification of proteins of embryonic origin, present in attomole concentrations in the blastocoel, the enclosed fluid-filled cavity that forms within 5-day-old human embryos. By using targeted proteomics, we demonstrate the feasibility of quantifying multiple proteins in samples derived from single blastocoels and that such measurements correlate with aspects of embryo viability, such as chromosomal (ploidy) status. This study illustrates the potential of high-sensitivity proteomics to measure clinically relevant biomarkers in minute samples and, more specifically, suggests that key aspects of embryo competence could be measured using a proteomic-based strategy, with negligible risk of harm to the living embryo. Our work paves the way for the development of "next-generation" embryo competence assessment strategies, based on functional proteomics. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Kunasundari

    Full Text Available Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha was famous as a potential single cell protein (SCP in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  11. Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging.

    Science.gov (United States)

    Miyashita, Minoru; Gonda, Kohsuke; Tada, Hiroshi; Watanabe, Mika; Kitamura, Narufumi; Kamei, Takashi; Sasano, Hironobu; Ishida, Takanori; Ohuchi, Noriaki

    2016-10-01

    Overexpression of HER2 is one of the major causes of breast cancer, and therefore precise diagnosis of its protein expression level is important. However, current methods estimating the HER2-expression level are insufficient due to problem with the lack of quantification. This might result in a gap between diagnostics and therapeutics targeting HER2. Therefore, a new effective diagnostic method is needed. We developed a new immunohistochemical (IHC) technique with quantum dots (QD)-conjugated trastuzumab using single-particle imaging to quantitatively measure the HER2 expression level. Tissues from 37 breast cancer patients with available detailed clinical information were tested by IHC with QDs (IHC-QD) and the correlation with IHC with 3,3'-diaminobenzidine (DAB), fluorescence in situ hybridization (FISH), and IHC-QD was examined. The number of QD-conjugated trastuzumab particles binding specifically to a cancer cell was precisely calculated as the IHC-QD score. The IHC-QD score in 37 cases was correlated proportionally with the score of HER2 gene copy number as assessed by FISH (R = 0.83). When HER2 positivity was judged to be positive, the IHC-QD score with our cut-off level was exactly concordant with the FISH score with a cut-off value of 2.0. Furthermore, IHC-QDs score and time to progression (TTP) of trastuzumab therapy were well correlated in HER2-positive cases (R = 0.69). Conversely, the correlation between FISH score and TTP was not observed. We developed a precisely quantitative IHC method using trastuzumab-conjugated QDs and single-particle imaging analysis and propose the possibility of using IHC-QDs score as a predictive factor for trastuzumab therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address

    NARCIS (Netherlands)

    Jongsma, M.A.; Litjens, R.H.G.M.

    2006-01-01

    The high-throughput deposition of recombinant proteins on chips, beads or biosensor devices would be greatly facilitated by the implementation of self-assembly concepts. DNA-directed immobilization via conjugation of proteins to an oligonucleotide would be preeminently suited for this purpose. Here,

  13. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma.

    Science.gov (United States)

    Sousa, S R; Moradas-Ferreira, P; Saramago, B; Melo, L Viseu; Barbosa, M A

    2004-10-26

    In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In

  14. Mechanical unfolding of proteins: reduction to a single-reaction coordinate unfolding potential, and an application of the Jarzynski Relation

    Science.gov (United States)

    Olmsted, Peter; West, Daniel; Paci, Emanuele

    2007-03-01

    Single molecule force spectroscopy (AFM, optical tweezers, etc) has revolutionized the study of many biopolymers, including DNA, RNA, and proteins. In this talk I will discuss recent work on modelling of mechanical unfolding of proteins, as often probed by AFM. I will address two issues in obtaining a coarse-grained description of protein unfolding: how to project the entire energy landscape onto an effective one dimensional unfolding potential, and how to apply the Jarzynski Relation to extract equilibrium free energies from nonequilibrium unfolding experiments.

  15. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Winning, H.; Viereck, N.; Wollenweber, B.

    2009-01-01

    at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the H-1 NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development...... indicating that protein metabolism is influenced by multiple drought events, the H-1 NMR spectra of the methanol extracts of flour from mature grains revealed that the amount of fumaric acid is particularly sensitive to water deficits....

  16. Distribution and evolution of stable single α-helices (SAH domains in myosin motor proteins.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAHs are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.

  17. Single amino acid loss in the dystrophin protein associated with a mild clinical phenotype.

    Science.gov (United States)

    Pons, Roser; Kekou, Kyriaki; Gkika, Artemis; Papadimas, George; Vogiatzakis, Nikolaos; Svingou, Maria; Papadopooulos, Constantinos; Nikas, Ioanis; Dinopoulos, Argirios; Youroukos, Sotiris; Kanavakis, Emmanouel

    2017-01-01

    The dystrophinopathies include a spectrum of muscle diseases caused by mutations in the dystrophin (DMD) gene. The clinical phenotype ranges from severe Duchenne muscular dystrophy to a mild phenotype with elevated creatine kinase (CK). Clinical and molecular assessment of 7 patients carrying a single amino acid loss in the dystrophin protein (p.His1690del) caused by a c.5068_5070delCAC tri-nucleotide deletion in exon 36 of the DMD gene. All patients were asymptomatic or oligosymptomatic and had elevated CK levels. Febrile illness, but not exercise, induced muscle symptoms in some patients. None had evidence of cardiomyopathy. Analysis of the short tandem repeat (STR)45 locus and sequencing of exon 36 of the DMD gene indicates that c.5068_5070delCAC is a founder mutation. The c.5068_5070delCAC locus in the DMD gene is associated with a very mild phenotype. Further study is needed to evaluate disease progression in these patients. Muscle Nerve 55: 46-50, 2017. © 2016 Wiley Periodicals, Inc.

  18. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz

    2013-09-01

    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  19. Crystal orientation dependent optical transmittance and band gap of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–BaTiO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Chongjun, E-mail: hechongjun@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Deng, Chenguang; Wang, Jiming; Gu, Xiaorong; Wu, Tong [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Liu, Youwen, E-mail: ywliu@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-02-15

    Optical transmittance spectra of lead-free ferroelectric (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–xBaTiO{sub 3} (NBT–xBT) single crystals poled along different directions have been studied comprehensively. After poled along [001] direction, the transmittance of tetragonal NBT–8%BT crystal is about 70%, which is much higher than that of NBT–2%BT crystal with rhombohedral structure and NBT–5%BT crystal with morphotropic phase boundary (MPB) composition. However, after poled [111] direction, the transmittance of tetragonal NBT–8%BT crystal is the smallest among them. These properties are manifest in view of the crystal structure. Both direct and indirect optical energy band gaps, as well phonon energies were obtained from absorption coefficient spectra by Tauc equations. The band gaps of [001]-poled NBT–xBT crystals increase with BT content, yet the [111]-poled crystals have opposite trends.

  20. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  1. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M

    1992-01-01

    An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To fu...

  2. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    NARCIS (Netherlands)

    Dijkman, Ronald; Jebbink, Maarten F.; Wilbrink, Berry; Pyrc, Krzysztof; Zaaijer, Hans L.; Minor, Philip D.; Franklin, Sally; Berkhout, Ben; Thiel, Volker; van der Hoek, Lia

    2006-01-01

    BACKGROUND: The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a

  3. Reversible G Protein βγ9 Distribution-Based Assay Reveals Molecular Underpinnings in Subcellular, Single-Cell, and Multicellular GPCR and G Protein Activity.

    Science.gov (United States)

    Senarath, Kanishka; Ratnayake, Kasun; Siripurapu, Praneeth; Payton, John L; Karunarathne, Ajith

    2016-12-06

    Current assays to measure the activation of G protein coupled receptors (GPCRs) and G proteins are time-consuming, indirect, and expensive. Therefore, an efficient method which directly measures the ability of a ligand to govern GPCR-G protein interactions can help to understand the molecular underpinnings of the associated signaling. A live cell imaging-based approach is presented here to directly measure ligand-induced GPCR and G protein activity in real time. The number of active GPCRs governs G protein heterotrimer (αβγ) dissociation, thereby controlling the concentration of free βγ subunits. The described γ9 assay measures the GPCR activation-induced extent of the reversible βγ9 subunit exchange between the plasma membrane (PM) and internal membranes (IMs). Confocal microscopy-based γ9 assay quantitatively determines the concentration dependency of ligands on GPCR activation. Demonstrating the high-throughput screening (HTS) adaptability, the γ9 assay performed using an imaging plate reader measures the ligand-induced GPCR activation. This suggests that the γ9 assay can be employed to screen libraries of compounds for their ability to activate GPCRs. Together with subcellular optogenetics, the spatiotemporal sensitivity of the γ9 assay permits experimental determination of the limits of spatially restricted activation of GPCRs and G proteins in subcellular regions of single cells. This assay works effectively for GPCRs coupled to αi/o and αs heterotrimers, including light-sensitive GPCRs. In addition, computational modeling of experimental data from the assay is used to decipher intricate molecular details of the GPCR-G protein activation process. Overall, the γ9 assay provides a robust strategy for quantitative as well as qualitative determination of GPCR and G protein function on a single-cell, multicell, and subcellular level. This assay not only provides information about the inner workings of the signaling pathway, but it also strengthens

  4. A Flp-nick system to study repair of a single protein-bound nick in vivo

    DEFF Research Database (Denmark)

    Nielsen, Ida; Bentsen, Iben Bach; Lisby, Michael

    2009-01-01

    recombinase recognition target site that has been integrated in the yeast genome. The genetic requirement for cells to cope with this insult is the same as for cells treated with camptothecin, which traps topoisomerase I-DNA cleavage complexes genome-wide. Hence, a single protein-bound nick is enough to kill......We present the Flp-nick system, which allows introduction of a protein-bound nick at a single genomic site in Saccharomyces cerevisiae and thus mimics a stabilized topoisomerase I-DNA cleavage complex. We took advantage of a mutant Flp recombinase that can introduce a nick at a specific Flp...... cells if functional repair pathways are lacking. The Flp-nick system can be used to dissect repair, checkpoint and replication fork management pathways activated by a single genomic insult, and it allows the study of events at the damage site, which so far has been impossible to address....

  5. Verification of Single-Peptide Protein Identifications by the Application of Complementary Database Search Algorithms

    National Research Council Canada - National Science Library

    Rohrbough, James G; Breci, Linda; Merchant, Nirav; Miller, Susan; Haynes, Paul A

    2005-01-01

    .... One such technique, known as the Multi-Dimensional Protein Identification Technique, or MudPIT, involves the use of computer search algorithms that automate the process of identifying proteins...

  6. Characterization of the single-stranded DNA binding protein pV(VGJΦ) of VGJΦ phage from Vibrio cholerae.

    Science.gov (United States)

    Falero, Alina; Caballero, Andy; Trigueros, Sonia; Pérez, Celso; Campos, Javier; Marrero, Karen; Fando, Rafael

    2011-09-01

    pV(VGJΦ), a single-stranded DNA binding protein of the vibriophage VGJΦ was subject to biochemical analysis. Here, we show that this protein has a general affinity for single-stranded DNA (ssDNA) as documented by Electrophoretic Mobility Shift Assay (EMSA). The apparent molecular weight of the monomer is about 12.7kDa as measured by HPLC-SEC. Moreover, isoelectrofocusing showed an isoelectric point for pV(VGJΦ) of 6.82 pH units. Size exclusion chromatography in 150mM NaCl, 50mM sodium phosphate buffer, pH 7.0 revealed a major protein species of 27.0kDa, suggesting homodimeric protein architecture. Furthermore, pV(VGJΦ) binds ssDNA at extreme temperatures and the complex was stable after extended incubation times. Upon frozen storage at -20°C for a year the protein retained its integrity, biological activity and oligomericity. On the other hand, bioinformatics analysis predicted that pV(VGJΦ) protein has a disordered C-terminal, which might be involved in its functional activity. All the aforementioned features make pV(VGJΦ) interesting for biotechnological applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  8. Site-Specific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Single-Particle Imaging.

    Science.gov (United States)

    Wissler, Jörg; Bäcker, Sandra; Feis, Alessandro; Knauer, Shirley K; Schlücker, Sebastian

    2017-08-01

    An assay for Survivin, a small dimeric protein which functions as modulator of apoptosis and cell division and serves as a promising diagnostic biomarker for different types of cancer, is presented. The assay is based on switching on surface-enhanced Raman scattering (SERS) upon incubation of the Survivin protein dimer with Raman reporter-labeled gold nanoparticles (AuNP). Site-specificity is achieved by complexation of nickel-chelated N-nitrilo-triacetic acid (Ni-NTA) anchors on the particle surface by multiple histidines (His 6 -tag) attached to each C-terminus of the centrosymmetric protein dimer. Correlative single-particle analysis using light sheet laser microscopy enables the simultaneous observation of both elastic and inelastic light scattering from the same sample volume. Thereby, the SERS-inactive AuNP-protein monomers can be directly discriminated from the SERS-active AuNP-protein dimers/oligomers. This information, i.e. the percentage of SERS-active AuNP in colloidal suspension, is not accessible from conventional SERS experiments due to ensemble averaging. The presented correlative single-particle approach paves the way for quantitative site-specific SERS assays in which site-specific protein recognition by small chemical and in particular supramolecular ligands can be tested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes.

    Science.gov (United States)

    Wisecaver, Jennifer H; Alexander, William G; King, Sean B; Hittinger, Chris Todd; Rokas, Antonis

    2016-08-01

    Due to their functional independence, proteins that comprise standalone metabolic units, which we name single-protein metabolic modules, may be particularly prone to gene duplication (GD) and horizontal gene transfer (HGT). Flavohemoglobins (flavoHbs) are prime examples of single-protein metabolic modules, detoxifying nitric oxide (NO), a ubiquitous toxin whose antimicrobial properties many life forms exploit, to nitrate, a common source of nitrogen for organisms. FlavoHbs appear widespread in bacteria and have been identified in a handful of microbial eukaryotes, but how the distribution of this ecologically and biomedically important protein family evolved remains unknown. Reconstruction of the evolutionary history of 3,318 flavoHb protein sequences covering the family's known diversity showed evidence of recurrent HGT at multiple evolutionary scales including intrabacterial HGT, as well as HGT from bacteria to eukaryotes. One of the most striking examples of HGT is the acquisition of a flavoHb by the dandruff- and eczema-causing fungus Malassezia from Corynebacterium Actinobacteria, a transfer that growth experiments show is capable of mediating NO resistance in fungi. Other flavoHbs arose via GD; for example, many filamentous fungi possess two flavoHbs that are differentially targeted to the cytosol and mitochondria, likely conferring protection against external and internal sources of NO, respectively. Because single-protein metabolic modules such as flavoHb function independently, readily undergo GD and HGT, and are frequently involved in organismal defense and competition, we suggest that they represent "plug-and-play" proteins for ecological arms races. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Umemura, Kazuo, E-mail: meicun2006@163.com; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Highlights: • Conjugates of protein, DNA, and SWNTs were observed by AFM in liquid. • Non-uniform binding of proteins was visualized in liquid. • Thickness of DNA molecules on SWNT surfaces was well characterized in liquid. - Abstract: Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA–SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA–SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA–SWNT hybrids. The morphology of the SSB–ssDNA–SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB–ssDNA–SWNT hybrids showed much larger variance than the ssDNA–SWNT hybrids.

  11. Single chain variable fragment displaying M13 phage library functionalized magnetic microsphere-based protein equalizer for human serum protein analysis.

    Science.gov (United States)

    Zhu, Guijie; Zhao, Peng; Deng, Nan; Tao, Dingyin; Sun, Liangliang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-09-18

    Single chain variable fragment (scFv) displaying the M13 phage library was covalently immobilized on magnetic microspheres and used as a protein equalizer for the treatment of human serum. First, scFv displaying M13 phage library functionalized magnetic microspheres (scFv@M13@MM) was incubated with a human serum sample. Second, captured proteins on scFv@M13@MM were eluted with 2 M NaCl, 50 mM glycine-hydrochloric acid (Gly-HCl), and 20% (v/v) acetonitrile with 0.5% (v/v) trifluoroacetic acid in sequence. Finally, the tightly bonded proteins were released by the treatment with thrombin. The eluates were first analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Results indicated that the difference of protein concentration was reduced obviously in NaCl and Gly-HCl fractions compared with untreated human serum sample. The eluates were also digested with trypsin, followed by online 2D-strong cation exchange (SCX)-RPLC-ESI-MS/MS analysis. Results demonstrated that the number of proteins identified from an scFv@M13@MM treated human serum sample was improved 100% compared with that from the untreated sample. In addition, the spectral count of 10 high abundance proteins (serum albumin, serotransferrin, α-2-macroglobulin, α-1-antitrypsin, apolipoprotein B-100, Ig γ-2 chain C region, haptoglobin, hemopexin, α-1-acid glycoprotein 1, and α-2-HS-glycoprotein) decreased evidently after scFv@M13@MM treatment. All these results demonstrate that scFv@M13@MM could efficiently remove high-abundance proteins, reduce the protein concentration difference of human serum, and result in more protein identification.

  12. A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Sorensen, Boe S

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin......-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases......, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding...

  13. Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

    Science.gov (United States)

    Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu

    2014-04-01

    Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

  14. Estimating protein-protein interaction affinity in single living cells using Förster resonance energy transfer measurements

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Raarup, Merete Krog; Rubak, Ege

    Using Förster resonance energy transfer (FRET) images we study the possibility of estimating the equilibrium dissociation constant Kd and the intrinsic FRET efficiency Em from single cells. We model the measurement uncertainty in the acquired images and use the method of total least squares...

  15. Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay

    International Nuclear Information System (INIS)

    Qi Honglan; Ling Chen; Huang Ru; Qiu Xiaoying; Shangguan Li; Gao Qiang; Zhang Chengxiao

    2012-01-01

    Highlights: ► Single-walled carbon nanotubes were functionalized with protein by click chemistry. ► The SWNTs conjugated with protein showed excellent dispersion in water and kept good bioacitvity. ► A competitive electrochemical immunoassay for the determination of anti-IgG was developed with high sensitivity and good stability. - Abstract: The application of the Cu(I)-catalyzed [3 + 2] Huisgen cycloaddition to the functionalization of single-walled carbon nanotubes (SWNTs) with the protein and the use of the artificial SWNTs as a sensing platform for sensitive immunoassay were reported. Covalent functionalization of azide decorated SWNTs with alkyne modified protein was firstly accomplished by the Cu(I)-catalyzed [3 + 2] Huisgen cycloaddition. FT-IR spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron micrograph were used to characterize the protein-functionalized SWNTs. It was found that the SWNTs conjugated with the proteins showed excellent dispersion in water and kept good bioacitivity when immunoglobulin (IgG) and horseradish peroxidase (HRP) were chosen as model proteins. As a proof-of-concept, IgG-functionalized SWNTs were immobilized onto the surface of a glassy carbon electrode by simple casting method as immunosensing platform and a sensitive competitive electrochemical immunoassay was developed for the determination of anti-immunoglobulin (anti-IgG) using HRP as enzyme label. The fabrication of the immunosensor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the redox probe [Fe(CN) 6 ] 3−/4− . The SWNTs as immobilization platform showed better sensitizing effect, a detection limit of 30 pg mL −1 (S/N = 3) was obtained for anti-IgG. The proposed strategy provided a stable immobilization method and sensitized recognition platform for analytes. This work demonstrated that the click coupling of SWNTs with protein was an effective

  16. On-line separation of native proteins by two-dimensional liquid chromatography using a single column.

    Science.gov (United States)

    Geng, Xindu; Ke, Congyu; Chen, Gang; Liu, Peng; Wang, Fei; Zhang, Huiqiang; Sun, Xuan

    2009-04-17

    This paper reports the on-line separation of native (N) proteins by two-dimensional liquid chromatography (2D-LC) using a single column with one phase (called 2D column). The 2D column exhibits excellent resolution, selectivity, and retention of proteins in the N state and functions in two retention modes--hydrophobic interaction chromatography (HIC) and weak-cation exchange chromatography (WCX). We describe a new approach to on-line buffer exchange and collection of fractions from the first retention mode and their quantitative re-injection into the same column, followed by re-separation in the second retention mode. Thus, liquid chromatography in a closed system and in an on-line manner could be successfully carried out. This method was termed on-line protein separation by 2D-LC using only a single column (on-line 2D-LC-1C). The applicability of this method was experimentally demonstrated using standard proteins and a human serum sample. The total hypothetical maximum possible peak capacity n(c,total) and total sample peak capacity n(c,total)(*) of the 2D column were 329 and 199, respectively. By comparison against several popular commercially available columns, it was found that the 2D column had not only comparable resolution and better selectivity but also some unique characteristics. This 2D-LC-1C method could be applied to the fast purification of intact proteins in the N state, such protein drugs from natural products, and recombinant proteins and also for the fast pre-fractionation of intact proteins in the "top-down" MS strategy in proteomics.

  17. Effect of single-point sequence alterations on the aggregationpropensity of a model protein

    Energy Technology Data Exchange (ETDEWEB)

    Bratko, Dusan; Cellmer, Troy; Prausnitz, John M.; Blanch, Harvey W.

    2005-10-07

    Sequences of contemporary proteins are believed to have evolved through process that optimized their overall fitness including their resistance to deleterious aggregation. Biotechnological processing may expose therapeutic proteins to conditions that are much more conducive to aggregation than those encountered in a cellular environment. An important task of protein engineering is to identify alternative sequences that would protect proteins when processed at high concentrations without altering their native structure associated with specific biological function. Our computational studies exploit parallel tempering simulations of coarse-grained model proteins to demonstrate that isolated amino-acid residue substitutions can result in significant changes in the aggregation resistance of the protein in a crowded environment while retaining protein structure in isolation. A thermodynamic analysis of protein clusters subject to competing processes of folding and association shows that moderate mutations can produce effects similar to those caused by changes in system conditions, including temperature, concentration, and solvent composition that affect the aggregation propensity. The range of conditions where a protein can resist aggregation can therefore be tuned by sequence alterations although the protein generally may retain its generic ability for aggregation.

  18. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics.

    Science.gov (United States)

    Martinho, J M G; Santos, A M; Fedorov, A; Baptista, R P; Taipa, M A; Cabral, J M S

    2003-07-01

    The cutinase from Fusarium solani pisi is an enzyme with a single L-tryptophan (Trp) involved in a hydrogen bond with an alanine (Ala) residue and located close to a cystine formed by a disulfide bridge between two cysteine (Cys) residues. The Cys strongly quenches the fluorescence of Trp by both static and dynamic quenching mechanisms. The Trp fluorescence intensity increases by about fourfold on protein melting because of the disruption of the Ala-Trp hydrogen bond that releases the Trp from the vicinity of the cystine residue. The Trp forms charge-transfer complexes with the disulfide bridge, which is disrupted by UV light irradiation of the protein. This results in a 10-fold increase of the Trp fluorescence quantum yield because of the suppression of the static quenching by the cystine residue. The Trp fluorescence anisotropy decays are similar to those in other proteins and were interpreted in terms of the wobbling-in-cone model. The long relaxation time is attributed to the Brownian rotational correlation time of the protein as a whole below the protein-melting temperature and to protein-backbone dynamics above it. The short relaxation time is related to the local motion of the Trp, whose mobility increases on protein denaturation.

  19. Suppression of phospholipid biosynthesis by cerulenin in the condensed Single-Protein-Production (cSPP) system

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lili; Inoue, Koichi [Robert Wood Johnson Medical School, Department of Biochemistry, Center for Advanced Biotechnology and Medicine (United States); Tao, Yisong [Columbia University, Department of Chemistry (United States); Montelione, Gaetano T. [Robert Wood Johnson Medical School, Department of Biochemistry, Center for Advanced Biotechnology and Medicine (United States); McDermott, Ann E. [Columbia University, Department of Chemistry (United States); Inouye, Masayori, E-mail: inouye@umdnj.edu [Robert Wood Johnson Medical School, Department of Biochemistry, Center for Advanced Biotechnology and Medicine (United States)

    2011-02-15

    Using the single-protein-production (SPP) system, a protein of interest can be exclusively produced in high yield from its ACA-less gene in Escherichia coli expressing MazF, an ACA-specific mRNA interferase. It is thus feasible to study a membrane protein by solid-state NMR (SSNMR) directly in natural membrane fractions. In developing isotope-enrichment methods, we observed that {sup 13}C was also incorporated into phospholipids, generating spurious signals in SSNMR spectra. Notable, with the SPP system a protein can be produced in total absence of cell growth caused by antibiotics. Here, we demonstrate that cerulenin, an inhibitor of phospholipid biosynthesis, can suppress isotope incorporation in the lipids without affecting membrane protein yield in the SPP system. SSNMR analysis of ATP synthase subunit c, an E. coli inner membrane protein, produced by the SPP method using cerulenin revealed that {sup 13}C resonance signals from phospholipid were markedly reduced, while signals for the isotope-enriched protein were clearly present.

  20. Suppression of phospholipid biosynthesis by cerulenin in the condensed Single-Protein-Production (cSPP) system

    International Nuclear Information System (INIS)

    Mao, Lili; Inoue, Koichi; Tao, Yisong; Montelione, Gaetano T.; McDermott, Ann E.; Inouye, Masayori

    2011-01-01

    Using the single-protein-production (SPP) system, a protein of interest can be exclusively produced in high yield from its ACA-less gene in Escherichia coli expressing MazF, an ACA-specific mRNA interferase. It is thus feasible to study a membrane protein by solid-state NMR (SSNMR) directly in natural membrane fractions. In developing isotope-enrichment methods, we observed that 13 C was also incorporated into phospholipids, generating spurious signals in SSNMR spectra. Notable, with the SPP system a protein can be produced in total absence of cell growth caused by antibiotics. Here, we demonstrate that cerulenin, an inhibitor of phospholipid biosynthesis, can suppress isotope incorporation in the lipids without affecting membrane protein yield in the SPP system. SSNMR analysis of ATP synthase subunit c, an E. coli inner membrane protein, produced by the SPP method using cerulenin revealed that 13 C resonance signals from phospholipid were markedly reduced, while signals for the isotope-enriched protein were clearly present.

  1. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein.

    Science.gov (United States)

    Arpino, James A J; Rizkallah, Pierre J; Jones, D Dafydd

    2014-08-01

    Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP(D190Δ) containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP(A227Δ) revealed that a `flipping' mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  2. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  3. Optimal conditions for decorating outer surface of single-walled carbon nanotubes with RecA proteins

    Science.gov (United States)

    Oura, Shusuke; Umemura, Kazuo

    2016-03-01

    In this study, we estimated the optimal reaction conditions for decorating the outer surface of single-walled carbon nanotubes (SWNTs) with RecA proteins by comparison with hybrids of RecA and single-stranded DNA (ssDNA). To react SWNTs with RecA proteins, we first prepared ssDNA-SWNT hybrids. The heights of the ssDNA-SWNT hybrids increased as the amount of RecA used in the reaction increased, as determined from atomic force microscopy images. We further confirmed the increasing adsorption of RecA proteins onto ssDNA on SWNT surfaces by agarose gel electrophoresis. These results suggest that the combination of RecA proteins and ssDNA-SWNT hybrids forms RecA-ssDNA-SWNT hybrids. We also successfully controlled the amount of RecA adsorbed on the ssDNA-SWNT hybrids. Our results thus indicate the optimized reaction conditions for decorating the outer surface of SWNTs with RecA proteins, which is the key to the development of novel biosensors and nanomaterial-based bioelectronics.

  4. Single Particle Tracking to Characterize the Mechanism of Pore Formation by Pore Forming Proteins

    OpenAIRE

    Subburaj, Yamunadevi

    2014-01-01

    Pore formation is a common natural mechanism occurring in large number of organisms where proteins are involved as toxins, effectors in immune response or apoptosis. Despite intense research, the structural and dynamic aspects of oligomerization and membrane permeabilization by pore forming proteins remains poorly understood. In this work we have aimed to provide a better understanding on dynamics, oligomerization and pore forming process of two proteins; a) Equinatoxin II, b) Bax (Bcl2 famil...

  5. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis.

  6. Imatinib (Gleevec@) conformations observed in single crystals, protein-Imatinib co-crystals and molecular dynamics: Implications for drug selectivity

    Science.gov (United States)

    Golzarroshan, B.; Siddegowda, M. S.; Li, Hong qi; Yathirajan, H. S.; Narayana, B.; Rathore, R. S.

    2012-06-01

    Structure and dynamics of the Leukemia drug, Imatinib, were examined using X-ray crystallography and molecular dynamics studies. Comparison of conformations observed in single crystals with several reported co-crystals of protein-drug complexes suggests existence of two conserved conformations of Imatinib, extended and compact (or folded), corresponding to two binding modes of interaction with the receptor. Furthermore, these conformations are conserved throughout a dynamics simulation. The present study attempts to draw a parallel on conformations and binding patterns of interactions, obtained from small-molecule single-crystal and macromolecule co-crystal studies, and provides structural insights for understanding the high selectivity of this drug molecule.

  7. Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans

    Directory of Open Access Journals (Sweden)

    Baker Steven K

    2011-03-01

    Full Text Available Abstract Background Minimizing the number of muscle biopsies has important methodological implications and minimizes subject discomfort during a stable isotope amino acid infusion. We aimed to determine the reliability of obtaining a single muscle biopsy for the calculation of muscle protein fractional synthetic rate (FSR as well as the amount of incorporation time necessary to obtain that biopsy after initiating a stable isotope infusion (Study 1. The calculation of muscle protein FSR requires tracer steady-state during the stable isotope infusion. Therefore, a second aim was to examine if steady-state conditions are compromised in the precursor pools (plasma free or muscle intracellular [IC] after ingestion of a tracer enriched protein drink and after resistance exercise (Study 2. Methods Sixteen men (23 ± 3 years; BMI = 23.8 ± 2.2 kg/m2, means ± SD were randomized to perform Study 1 or Study 2 (n = 8, per study. Subjects received a primed, constant infusion of L-[ring-13C6]phenylalanine coupled with muscle biopsies of the vastus lateralis to measure rates of myofibrillar protein synthesis (MPS. Subjects in Study 2 were fed 25 g of whey protein immediately after an acute bout of unilateral resistance exercise. Results There was no difference (P = 0.3 in rates of MPS determined using the steady-state precursor-product equation and determination of tracer incorporation between sequential biopsies 150 min apart or using plasma protein as the baseline enrichment, provided the infusion length was sufficient (230 ± 0.3 min. We also found that adding a modest amount of tracer (4% enriched, calculated based on the measured phenylalanine content of the protein (3.5% in the drink, did not compromise steady-state conditions (slope of the enrichment curve not different from zero in the plasma free or, more importantly, the IC pool (both P > 0.05. Conclusions These data demonstrate that the single biopsy approach yields comparable rates of muscle

  8. Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans.

    Science.gov (United States)

    Burd, Nicholas A; West, Daniel Wd; Rerecich, Tracy; Prior, Todd; Baker, Steven K; Phillips, Stuart M

    2011-03-09

    Minimizing the number of muscle biopsies has important methodological implications and minimizes subject discomfort during a stable isotope amino acid infusion. We aimed to determine the reliability of obtaining a single muscle biopsy for the calculation of muscle protein fractional synthetic rate (FSR) as well as the amount of incorporation time necessary to obtain that biopsy after initiating a stable isotope infusion (Study 1). The calculation of muscle protein FSR requires tracer steady-state during the stable isotope infusion. Therefore, a second aim was to examine if steady-state conditions are compromised in the precursor pools (plasma free or muscle intracellular [IC]) after ingestion of a tracer enriched protein drink and after resistance exercise (Study 2). Sixteen men (23 ± 3 years; BMI = 23.8 ± 2.2 kg/m2, means ± SD) were randomized to perform Study 1 or Study 2 (n = 8, per study). Subjects received a primed, constant infusion of L-[ring-13C6]phenylalanine coupled with muscle biopsies of the vastus lateralis to measure rates of myofibrillar protein synthesis (MPS). Subjects in Study 2 were fed 25 g of whey protein immediately after an acute bout of unilateral resistance exercise. There was no difference (P = 0.3) in rates of MPS determined using the steady-state precursor-product equation and determination of tracer incorporation between sequential biopsies 150 min apart or using plasma protein as the baseline enrichment, provided the infusion length was sufficient (230 ± 0.3 min). We also found that adding a modest amount of tracer (4% enriched), calculated based on the measured phenylalanine content of the protein (3.5%) in the drink, did not compromise steady-state conditions (slope of the enrichment curve not different from zero) in the plasma free or, more importantly, the IC pool (both P > 0.05). These data demonstrate that the single biopsy approach yields comparable rates of muscle protein synthesis, provided a longer incorporation time is

  9. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX.

    Science.gov (United States)

    Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J

    2010-10-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.

  10. Control of transmembrane protein diffusion within the postsynaptic density assessed by simultaneous single-molecule tracking and localization microscopy

    Directory of Open Access Journals (Sweden)

    Thomas A Blanpied

    2016-07-01

    Full Text Available Postsynaptic transmembrane proteins are critical elements of synapses, mediating trans-cellular contact, sensitivity to neurotransmitters and other signaling molecules, and flux of Ca and other ions. Positioning and mobility of each member of this large class of proteins is critical to their individual function at the synapse. One critical example is that the position of glutamate receptors within the postsynaptic density (PSD strongly modulates their function by aligning or misaligning them with sites of presynaptic vesicle fusion. In addition, the regulated ability of receptors to move in or out of the synapse is critical for activity-dependent plasticity. However, factors that control receptor mobility within the boundaries of the synapse are not well understood. Notably, PSD scaffold molecules accumulate in domains much smaller than the synapse. Within these nanodomains, the density of proteins is considerably higher than that of the synapse as a whole, so high that steric hindrance is expected to reduce receptor mobility substantially. However, while numerical modeling has demonstrated several features of how the varying protein density across the face of a single PSD may modulate receptor motion, there is little experimental information about the extent of this influence. To address this critical aspect of synaptic organizational dynamics, we performed single-molecule tracking of transmembrane proteins using uPAINT over PSDs whose internal structure was simultaneously resolved using PALM. The results provide important experimental confirmation that PSD scaffold density protein strongly influences the mobility of transmembrane proteins. Tracking a protein with a cytosolic domain that does not bind PSD-95 still was slowed in regions of high PSD-95 density, suggesting that crowding by scaffold molecules and perhaps other proteins is sufficient to stabilize receptors even in the absence of binding. Because numerous proteins thought to be

  11. EPR and NMR spectroscopy on spin-labeled proteins

    NARCIS (Netherlands)

    Finiguerra, Michelina Giuseppina

    2011-01-01

    Spin labeling and electron paramagnetic resonance (EPR) have been employed to study structure and dynamics of proteins. The surface polarity of four single cysteine mutants of the Zn-azurin in frozen solution were studied using 275 GHz EPR (J-band), with the advantage compared to 9 GHz (X-band) and

  12. Efficient Fluorescence Based Protein Chip using Pseudo 3D Single-Walled Carbon Nanotube Film

    Science.gov (United States)

    2006-05-22

    due to its size and common biochemical nature as a protein, but also because of the complexity in pre- and post -treatment steps, such as protecting...by the software provided by ImaGene ®. Cross reactivity was also investigated by immersing a substrate containing the same arrays of probe proteins

  13. Single-molecule analysis of ligand efficacy in beta(2)AR-G-protein activation

    DEFF Research Database (Denmark)

    Gregorio, G. Glenn; Masureel, Matthieu; Hilger, Daniel

    2017-01-01

    G-protein-coupled receptor (GPCR)-mediated signal transduction is central to human physiology and disease intervention, yet the molecular mechanisms responsible for ligand-dependent signalling responses remain poorly understood. In class A GPCRs, receptor activation and G-protein coupling entail ...

  14. Single protein omission reconstitution studies of tetracycline binding to the 30S subunit of Escherichia coli ribosomes

    International Nuclear Information System (INIS)

    Buck, M.; Cooperman, B.S.

    1990-01-01

    In previous work the authors showed that on photolysis of Escherichia coli ribosomes in the presence of [ 3 H]tetracycline (TC) the major protein labeled is S7, and they presented strong evidence that such labeling takes place from a high-affinity site related to the inhibitory action of TC. In this work they use single protein omission reconstitution (SPORE) experiments to identify those proteins that are important for high-affinity TC binding to the 30S subunit, as measured by both cosedimentation and filter binding assays. With respect to both sedimentation coefficients and relative Phe-tRNA Phe binding, the properties of the SPORE particles they obtain parallel very closely those measured earlier, with the exception of the SPORE particle lacking S13. A total of five proteins, S3, S7, S8, S14, and S19, are shown to be important for TC binding, with the largest effects seen on omission of proteins S7 and S14. Determination of the protein compositions of the corresponding SPORE particles demonstrates that the observed effects are, for the most part, directly attributable to the omission of the given protein rather than reflecting an indirect effect of omitting one protein on the uptake of another. A large body of evidence supports the notion that four of these proteins, S3, S7, S14, and S19, are included, along with 16S rRNA bases 920-1,396, in one of the major domains of the 30S subunit. The results support the conclusion that the structure of this domain is important for the binding of TC and that, within this domain, TC binds directly to S7

  15. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  16. A transdisciplinary approach to the initial validation of a single cell protein as an alternative protein source for use in aquafeeds

    Directory of Open Access Journals (Sweden)

    Michael Tlusty

    2017-04-01

    Full Text Available The human population is growing and, globally, we must meet the challenge of increased protein needs required to feed this population. Single cell proteins (SCP, when coupled to aquaculture production, offer a means to ensure future protein needs can be met without direct competition with food for people. To demonstrate a given type of SCP has potential as a protein source for use in aquaculture feed, a number of steps need to be validated including demonstrating that the SCP is accepted by the species in question, leads to equivalent survival and growth, does not result in illness or other maladies, is palatable to the consumer, is cost effective to produce and can easily be incorporated into diets using existing technology. Here we examine white shrimp (Litopenaeus vannamei growth and consumer taste preference, smallmouth grunt (Haemulon chrysargyreum growth, survival, health and gut microbiota, and Atlantic salmon (Salmo salar digestibility when fed diets that substitute the bacterium Methylobacterium extorquens at a level of 30% (grunts, 100% (shrimp, or 55% (salmon of the fishmeal in a compound feed. In each of these tests, animals performed equivalently when fed diets containing M. extorquens as when fed a standard aquaculture diet. This transdisciplinary approach is a first validation of this bacterium as a potential SCP protein substitute in aquafeeds. Given the ease to produce this SCP through an aerobic fermentation process, the broad applicability for use in aquaculture indicates the promise of M. extorquens in leading toward greater food security in the future.

  17. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    Science.gov (United States)

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%.

  18. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin...... proteolysis of the labeled protein, the assignment of deuteriums to individual residues is typically not obtained, thereby limiting a detailed understanding of HX and the dynamics of protein structure. Here we use gas-phase fragmentation of peptic peptides by electron transfer dissociation (ETD) to measure...... the HX of individual amide linkages in the amyloidogenic protein beta2-microglobulin. A comparison of the deuterium levels of 60 individual backbone amides of beta2-microglobulin measured by HX-ETD-MS analysis to the corresponding values measured by NMR spectroscopy shows an excellent correlation...

  19. A Single Protein S-acyl Transferase Acts through Diverse Substrates to Determine Cryptococcal Morphology, Stress Tolerance, and Pathogenic Outcome.

    Directory of Open Access Journals (Sweden)

    Felipe H Santiago-Tirado

    2015-05-01

    Full Text Available Cryptococcus neoformans is an opportunistic yeast that kills over 625,000 people yearly through lethal meningitis. Host phagocytes serve as the first line of defense against this pathogen, but fungal engulfment and subsequent intracellular proliferation also correlate with poor patient outcome. Defining the interactions of this facultative intracellular pathogen with host phagocytes is key to understanding the latter's opposing roles in infection and how they contribute to fungal latency, dissemination, and virulence. We used high-content imaging and a human monocytic cell line to screen 1,201 fungal mutants for strains with altered host interactions and identified multiple genes that influence fungal adherence and phagocytosis. One of these genes was PFA4, which encodes a protein S-acyl transferase (PAT, one of a family of DHHC domain-containing proteins that catalyzes lipid modification of proteins. Deletion of PFA4 caused dramatic defects in cryptococcal morphology, stress tolerance, and virulence. Bioorthogonal palmitoylome-profiling identified Pfa4-specific protein substrates involved in cell wall synthesis, signal transduction, and membrane trafficking responsible for these phenotypic alterations. We demonstrate that a single PAT is responsible for the modification of a subset of proteins that are critical in cryptococcal pathogenesis. Since several of these palmitoylated substrates are conserved in other pathogenic fungi, protein palmitoylation represents a potential avenue for new antifungal therapeutics.

  20. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA.

    Science.gov (United States)

    Arad, Gali; Hendel, Ayal; Urbanke, Claus; Curth, Ute; Livneh, Zvi

    2008-03-28

    Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.

  1. Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology.

    Science.gov (United States)

    Suzuki, Yasuhiro

    2012-01-01

    Specific protein domains known as protein transduction domains (PTDs) can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs), we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP) in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT), to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  2. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  3. A network model to correlate conformational change and the impedance spectrum of single proteins

    Science.gov (United States)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2008-02-01

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  4. New in protein structure and function annotation: hotspots, single nucleotide polymorphisms and the 'Deep Web'.

    Science.gov (United States)

    Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard

    2009-05-01

    The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.

  5. Physical manipulation of single-molecule DNA using microbead and its application to analysis of DNA-protein interaction

    International Nuclear Information System (INIS)

    Kurita, Hirofumi; Yasuda, Hachiro; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2009-01-01

    We carried out an individual DNA manipulation using an optical trapping for a microbead. This manipulation system is based on a fluorescent microscopy equipped with an IR laser. Both ends of linear DNA molecule were labeled with a biotin and a thiol group, respectively. Then the biotinylated end was attached to a microbead, and the other was immobilized on a thiol-linkable glass surface. We controlled the form of an individual DNA molecule by moving the focal point of IR laser, which trapped the microbead. In addition, we applied single-molecule approach to analyze DNA hydrolysis. We also used microchannel for single-molecule observation of DNA hydrolysis. The shortening of DNA in length caused by enzymatic hydrolysis was observed in real-time. The single-molecule DNA manipulation should contribute to elucidate detailed mechanisms of DNA-protein interactions

  6. Characterization of InP and InGaN quantum dots for single photon sources and AlGaInAs quantum dots in intermediate band solar cells

    International Nuclear Information System (INIS)

    Kremling, Stefan

    2014-01-01

    This thesis describes the characterization of semiconductor quantum dots (QDs) in different material systems with potential applications as single photon emitters or intermediate band solar cells. All investigations were carried out by means of optical spectroscopy methods. First, the theoretical background regarding the physics of QDs with respect to their electronic structure and their associated statistical properties are presented. Especially peculiarities of photon statistics of light are explained. Moreover, a closer look at the physics of solar cells and the respective carrier transport is given. Then experimental methods, which were used to characterize the QD-samples, are briefly explained. First, the components and techniques of optical spectroscopy for the study of individual, isolated QDs are described. Second, different experimental technologies for the characterization of solar cells are discussed. The method for measuring the two-photon-absorption process is explained in detail. The section of experimental results begins with studies of individual and spectrally isolated InP QD. Due to the low surface density of one QD per μm 2 , it is possible to study the physical properties of individual QDs optically without additional lateral sample structuring. Based on power and polarization dependent measurements, various luminescence peaks of a single QD were associated with different exciton states. In addition, the QDs were tested subject to an external magnetic field in a Faraday configuration. Finally, the temporal photon statistics of a single QD was tested using autocorrelation measurement. Afterwards, InP QDs manufactured by cyclic material deposition with growth interruptions were investigated by means of PL spectroscopy. Based on excitation power and time-resolved measurements on the QD ensemble, a bimodal QD distribution of type-I and type-II band alignment was observed. In addition, different exciton states were identified on spectrally isolated

  7. Long-term outcomes of tension band wiring with a single K-wire in Rockwood type IV/V acute acromio-clavicular dislocations: 25 cases.

    Science.gov (United States)

    Lateur, G; Boudissa, M; Rubens-Duval, B; Mader, R; Rouchy, R C; Pailhé, R; Saragaglia, D

    2016-09-01

    Our objective was to evaluate the long-term functional and radiological outcomes of tension band wiring with a single K-wire for acute Rockwood types IV and V acromio-clavicular dislocation (ACD). Single-centre cross-sectional non-randomised observational cohort study of 25 shoulders treated surgically between January 2002 and December 2004, in 25 patients, 23 males and 2 females, with a mean age of 35±11years (24-46). The evaluation criteria were the absolute and weighted Constant scores, QuickDASH score, subjective shoulder value (SSV), visual analogue scale (VAS) pain score at rest and during activities, and radiographic features in clinically symptomatic patients. Mean values were as follows: follow-up, 150±17months (133-167); absolute Constant score, 88±17 (71-105); weighted Constant score, 92.5±12.5 (80-105); QuickDASH, 15.5±7 (8.5-22.5); SSV, 88±17% (71-105); VAS pain score at rest, 0.2±0.7 (0-0.9); and VAS pain score while active, 1.4±2.3 (0-3.7). The weighted Constant score was less than 70% in only 8% of patients. Of the 17 patients for whom radiographs were obtained, 8 had acromio-clavicular osteoarthritis. Mean coraco-clavicular distance was 12.3±4.3mm (8-16.6) and mean acromio-clavicular distance was 5±5mm (0-10). The recurrence rate was 8%. Tension band wiring with a single K-wire for acute acromio-clavicular dislocation reliably provides good long-term functional outcomes. Recurrences are uncommon and few patients experience symptoms (8%). IV, retrospective study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Huang Jian-dong

    2011-04-01

    Full Text Available Abstract Background SXT is an integrating conjugative element (ICE originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo and single strand annealing protein (S065, SXT-Bet encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. Results SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb. When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. Conclusions The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V

  9. Combined Protein A and size exclusion high performance liquid chromatography for the single-step measurement of mAb, aggregates and host cell proteins.

    Science.gov (United States)

    Gjoka, Xhorxhi; Schofield, Mark; Cvetkovic, Aleksandar; Gantier, Rene

    2014-12-01

    Quantification of monoclonal antibody (mAb) monomer, mAb aggregates, and host cell proteins (HCPs) is critical for the optimization of the mAb production process. The present work describes a single high throughput analytical tool capable of tracking the concentration of mAb, mAb aggregate and HCPs in a growing cell culture batch. By combining two analytical HPLC methods, Protein A affinity and size-exclusion chromatography (SEC), it is possible to detect a relative increase or decrease in the concentration of all three entities simultaneously. A comparison of the combined Protein A-SEC assay to SEC alone was performed, demonstrating that it can be useful tool for the quantification of mAb monomer along with trending data for mAb aggregate and HCP. Furthermore, the study shows that the Protein A-SEC method is at least as accurate as other commonly used analytical methods such as ELISA and Bradford. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Perturbation of discrete sites on a single protein domain with RNA aptamers: targeting of different sides of the TATA-binding protein (TBP).

    Science.gov (United States)

    Hohmura, Ken I; Shi, Hua; Hirayoshi, Kazunori

    2013-01-01

    Control of interactions among proteins is critical in the treatment of diseases, but the specificity required is not easily incorporated into small molecules. Macromolecules could be more suitable as antagonists in this situation, and RNA aptamers have become particularly promising. Here we describe a novel selection procedure for RNA aptamers against a protein that constitutes a single structural domain, the Drosophila TATA-binding protein (TBP). In addition to the conventional filter partitioning method with free TBP as target, we performed another experiment, in which the TATA-bound form of TBP was targeted. Aptamers generated by both selections were able to bind specifically to TBP, but the two groups showed characteristics which were clearly different in terms of their capability to compete with TATA-DNA, their effects on the TATA-bound form of TBP, and their effects on in vitro transcription. The method used to generate these two groups of aptamers can be used with other targets to direct aptamer specificity to discrete sites on the surface of a protein.

  11. Normal Growth in PKU Patients Under Low-Protein Diet in a Single-Center Cross-Sectional Study.

    Science.gov (United States)

    Matic, Jana; Zeltner, Nina A; Häberle, Johannes

    2018-02-25

    Dietary phenylalanine restriction in phenylketonuria (PKU) patients is usually mandatory in order to prevent cognitive impairment. The influence of a low-protein diet on growth has raised concerns in families and caregivers. This paper aims to investigate the growth in PKU patients treated with a low-protein diet including supplementation of amino acids and other nutrients according to standard protocols.We performed a single-center, cross-sectional study on growth in pediatric PKU patients (n = 51) treated with low-protein diet over a 20-month period. Height of healthy siblings (n = 44) and target height, calculated based on parents' height, served as controls.No statistically significant differences were found comparing mean height z-scores between patients and siblings (p = 0.261). Patients PKU patients treated with low-protein diet can achieve normal growth with patients making up the leeway after puberty. While prepubertal patients were shorter than expected based on their target height, older patients were within their expected target height. This study indicates that current practice of low-protein diet in PKU patients allows normal growth.

  12. Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein

    International Nuclear Information System (INIS)

    Langowski, J.; Benight, A.S.; Fujimoto, B.S.; Schurr, J.M.; Schomburg, U.

    1985-01-01

    The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D 0 ) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (D/sub app/) obtained from dynamic light scattering display the well-known increase with K 2 (K = scattering vector), leveling off toward a plateau value (D/sub plat/) at high K 2 . For both DNAs, the difference D/sub plat/ - D 0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed

  13. Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2.

    Science.gov (United States)

    Forslund, Carina; Aspenberg, Per

    2003-01-01

    Achilles tendon ruptures in humans might be treated more efficiently with the help of a growth factor. Cartilage-derived morphogenetic protein-2 has been shown to induce formation of tendon-like tissue. Cartilage-derived morphogenetic protein-2 has a positive effect on mechanical parameters for tendon healing in a rabbit model with Achilles tendon transection. Controlled laboratory study. The right Achilles tendon of 40 rabbits was transected without tendon suture. Cartilage-derived morphogenetic protein-2 (10 micro g) or vehicle control (acetate buffer) was injected locally 2 hours postoperatively. All tendons were tested biomechanically at 8 and 14 days, and treated tendons were histologically and radiographically evaluated at 56 days. At 14 days, both failure load and stiffness of treated tendons were increased by 35%. The treated tendons had significantly larger callus size at 8 and 14 days. Histologic and radiographic examination showed no signs of ossification in the treated tendons after 56 days. A single injection of cartilage-derived morphogenetic protein-2 led to a stronger and stiffer tendon callus than that in the controls without inducing bone formation. Similar results from a larger animal model would suggest a possible future use of cartilage-derived morphogenetic protein-2 in the treatment of human Achilles tendon ruptures.

  14. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product.

    Science.gov (United States)

    Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S

    2013-11-01

    Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pH

  15. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics.

    Directory of Open Access Journals (Sweden)

    Mafumi Abiko

    Full Text Available In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms.

  16. Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN

    Science.gov (United States)

    Amano, Hiroshi

    2013-05-01

    Thin films of III-V compound semiconductors such as GaAs and InP can be grown on native substrates, whereas such growth was difficult for group III nitride semiconductors. Despite this drawback, scientists have gradually become able to use the functions of group III nitride semiconductors by growing their thin films on non-native substrates such as sapphire and Si substrates. With the continuously increasing demand for the conservation and generation of energy, bulk substrates of group III nitride semiconductors are highly expected to maximize their potential. In this report, I review the current status of the growth methods for bulk GaN single crystals used for substrates as well as summarize the characteristics of blue light-emitting diodes (LEDs), heterojunction field-effect transistors (HFETs), and photovoltaic cells on GaN substrates.

  17. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana.

    Science.gov (United States)

    Olszewski, Marcin; Grot, Anna; Wojciechowski, Marek; Nowak, Marta; Mickiewicz, Małgorzata; Kur, Józef

    2010-10-15

    In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).

  18. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Mickiewicz Małgorzata

    2010-10-01

    Full Text Available Abstract Background In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA binding proteins (SSBs from the thermophilic bacteria Thermotoga maritima (TmaSSB and Thermotoga neapolitana (TneSSB. They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively. They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC the melting temperature (Tm was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. Conclusion The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR.

  19. A compounded rare-earth iron garnet single crystal exhibiting stable Faraday rotation against wavelength and temperature variation in the 1.55 μm band

    International Nuclear Information System (INIS)

    Xu, Z.C.; Huang, M.; Li Miao

    2006-01-01

    The Bi, Tb and Yb partially substituted iron garnet bulk single crystals of Tb 3- x - y Yb y Bi x Fe 5 O 12 were grown by using Bi 2 O 3 /B 2 O 3 as flux and accelerated crucible rotation technique for single-crystal growth. Faraday rotation (FR) spectra showed that the specific FR of the (Tb 0.91 Yb 1.38 Bi 0.71 )Fe 5 O 12 crystal under magnetic field at saturation was measured to be about -1617 o /cm at λ=1.55 μm, Faraday rotation wavelength coefficient (FWC, 0.009%/nm) in the wavelength range of 1.50-1.62 μm and Faraday rotation temperature coefficient (FTC, 3.92x10 -5 /K) at λ=1.55 μm were even smaller than that of YIG. It is proven that through combining two types of Bi-substituted rare-earth iron garnets with opposite FWC and FTC signs, the compound rare-earth iron garnets with low FWC and FTC may be obtained due to the compensation effect. The saturation magnetization of (Tb 0.91 Yb 1.38 Bi 0.71 ) Fe 5 O 12 crystal is 0.48x10 6 A/M and is also much smaller than that of YIG. We have found empirically that there is a simple relationship between the FR θ f (x) and Bi content x for Tb 3- x - y Yb y Bi x Fe 5 O 12 , which is given by θ f (x)=(-2759x+400) o /cm

  20. HYBASE : HYperspectral BAnd SElection

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2009-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of

  1. Nitrogen balance after a single oral consumption of sacha inchi (Plukenetia volúbilis L.) protein compared to soy protein: a randomized study in humans.

    Science.gov (United States)

    Gonzales, Gustavo F; Tello, Jennifer; Zevallos-Concha, Alisson; Baquerizo, Luis; Caballero, Lidia

    2018-02-01

    Sacha inchi is a seed produced in the Peruvian Amazonian and its oil is recognized by the lowering lipids effect in humans. The remaining material transformed to flour has a higher amount of protein, but, the nitrogen balance once ingested orally has not been studied. The present study was designed to evaluate the nitrogen balance after single consumption of 30 g of sacha inchi flour and compared with that obtained after consumption of 30 g soybean flour in adult men and women. This was a double-blind cohort study in 15 men and 15 women between 18 and 55 years old. Fifteen subjects received soy meal and 15 subjects received sacha inchi meal. Group receiving sacha inchi flour has comparable initial parameters as those receiving soybean flour (p > 0.05). Blood samples at different times were obtained. Urine for 24 h was collected to calculate nitrogen balance, p sacha inchi and soybean groups (p sacha inchi or soy flour administration. The nitrogen balance was negative in the study but similar between both groups (p > 0.05). In conclusion, protein consumption of sacha inchi flour has the same nitrogen balance as soybean flour, shows acceptability for a single consumption and does not present serious adverse effects.

  2. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    International Nuclear Information System (INIS)

    Jacobsen, Svein; Stauffer, Paul R

    2007-01-01

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized

  3. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  4. Neutron and X-ray single-crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels.

    Science.gov (United States)

    Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa

    2016-07-01

    Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.

  5. High-throughput investigation of single and binary protein adsorption isotherms in anion exchange chromatography employing multivariate analysis.

    Science.gov (United States)

    Field, Nicholas; Konstantinidis, Spyridon; Velayudhan, Ajoy

    2017-08-11

    The combination of multi-well plates and automated liquid handling is well suited to the rapid measurement of the adsorption isotherms of proteins. Here, single and binary adsorption isotherms are reported for BSA, ovalbumin and conalbumin on a strong anion exchanger over a range of pH and salt levels. The impact of the main experimental factors at play on the accuracy and precision of the adsorbed protein concentrations is quantified theoretically and experimentally. In addition to the standard measurement of liquid concentrations before and after adsorption, the amounts eluted from the wells are measured directly. This additional measurement corroborates the calculation based on liquid concentration data, and improves precision especially under conditions of weak or moderate interaction strength. The traditional measurement of multicomponent isotherms is limited by the speed of HPLC analysis; this analytical bottleneck is alleviated by careful multivariate analysis of UV spectra. Copyright © 2017. Published by Elsevier B.V.

  6. Anti-Human Endoglin (hCD105) Immunotoxin-Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1.

    Science.gov (United States)

    Barriuso, Begoña; Antolín, Pilar; Arias, F Javier; Girotti, Alessandra; Jiménez, Pilar; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Girbés, Tomás

    2016-06-10

    Endoglin (CD105) is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT)-containing recombinant musarmin 1 (single chain ribosome-inactivating proteins) linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10(-10) to 10(-9) M.

  7. Anti-Human Endoglin (hCD105 Immunotoxin—Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1

    Directory of Open Access Journals (Sweden)

    Begoña Barriuso

    2016-06-01

    Full Text Available Endoglin (CD105 is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT—containing recombinant musarmin 1 (single chain ribosome-inactivating proteins linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio propionate (SPDP. The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10−10 to 10−9 M.

  8. Characterization of the single stranded DNA binding protein SsbB encoded in the Gonoccocal Genetic Island.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins.In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg(2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity.We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands.

  9. Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems

    Directory of Open Access Journals (Sweden)

    Margaret E. Johnson

    2014-09-01

    Full Text Available We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green’s function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions.

  10. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9.

    Science.gov (United States)

    Cuculis, Luke; Schroeder, Charles M

    2017-06-07

    Exciting new advances in genome engineering have unlocked the potential to radically alter the treatment of human disease. In this review, we discuss the application of single-molecule techniques to uncover the mechanisms behind two premier classes of genome editing proteins: transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas). These technologies have facilitated a striking number of gene editing applications in a variety of organisms; however, we are only beginning to understand the molecular mechanisms governing the DNA editing properties of these systems. Here, we discuss the DNA search and recognition process for TALEs and Cas9 that have been revealed by recent single-molecule experiments.

  11. Selection of single grain seeds by 14N(n, γ)15N nuclear reaction for protein improvement

    International Nuclear Information System (INIS)

    Andras, L.; Balint, A.; Csoke, A.; Nagy, A.Z.

    1978-05-01

    A new, non-destructive screening technique was developed for determining the protein (total nitrogen) content of single grain seeds. Here, our first experiment is described where, in the case of maize samples, 300 s was used to perform one measurement on a seed with a semi-automatic device. This work was started in 1976 at the HFR reactor. Grenoble, in the Institut Max von Laue-Paul Langevin and is now continued in the framework of the scientific cooperation between the ILL and KFKI. (author)

  12. A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias

    DEFF Research Database (Denmark)

    Sergeev, Eugenia; Hansen, Anders Højgaard; Bolognini, Daniele

    2017-01-01

    that are able to block the human receptor. Docking of exemplar antagonists from two chemical series to homology models of both human and mouse Free Fatty Acid Receptor 2 suggested that a single lysine - arginine variation at the extracellular face of the receptor might provide the basis for antagonist...... selectivity and mutational swap studies confirmed this hypothesis. Extending these studies to agonist function indicated that although the lysine - arginine variation between human and mouse orthologs had limited effect on G protein-mediated signal transduction, removal of positive charge from this residue...

  13. Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers

    OpenAIRE

    Stary, Creed M.; Walsh, Brandon J.; Knapp, Amy E.; Brafman, David; Hogan, Michael C.

    2008-01-01

    The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis and either electrically stimulated for 15 min of tetanic contractions (EX; n = 26) or not stimulated ...

  14. Effect of the HIV-1 nucleocapsid protein on reverse transcriptase pause sites revealed by single molecule microscopy

    Science.gov (United States)

    Jouonang, A.; Przybilla, F.; Godet, J.; Sharma, K. K.; Restlé, T.; de Rocquigny, H.; Darlix, J.-L.; Kenfack, C.; Didier, P.; Mély, Y.

    2013-02-01

    During reverse transcription, the HIV-1 RNA is converted by the reverse transcriptase (RT) into proviral DNA. RT is assisted by the HIV-1 nucleocapsid (NCp7) protein that notably increases the ability of RT to synthesize DNA through pause sites. Using single molecule FRET, we monitored the NCp7 effect on the binding of RT to nucleic acid sequences corresponding to two different pause sites. NCp7 was found to modify the distribution of RT orientations on the oligonucleotides and decrease the residence time of RT on one of the pause sites. These results give direct insight into the NCp7 molecular mechanism in reverse transcription.

  15. A single amino acid substitution in the core protein of West Nile virus increases resistance to acidotropic compounds.

    Directory of Open Access Journals (Sweden)

    Miguel A Martín-Acebes

    Full Text Available West Nile virus (WNV is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu on the highly basic internal capsid or core (C protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.

  16. A single amino acid substitution in the core protein of West Nile virus increases resistance to acidotropic compounds.

    Science.gov (United States)

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; de Oya, Nereida Jiménez; Escribano-Romero, Estela; Shi, Pei-Yong; Saiz, Juan-Carlos

    2013-01-01

    West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.

  17. Single-input divergent flow IEF for preparative analysis of proteins

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Šlais, Karel

    2008-01-01

    Roč. 29, č. 22 (2008), s. 4503-4507 ISSN 0173-0835 R&D Projects: GA AV ČR IAAX00310701; GA ČR GA203/06/1179 Institutional research plan: CEZ:AV0Z40310501 Keywords : continuous divergent flow * IEF * preparative protein analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.509, year: 2008

  18. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria

    OpenAIRE

    Gefen, Orit; Gabay, Chana; Mumcuoglu, Michael; Engel, Giora; Balaban, Nathalie Q.

    2008-01-01

    Phenotypic variability in populations of cells has been linked to evolutionary robustness to stressful conditions. A remarkable example of the importance of cell-to-cell variability is found in bacterial persistence, where subpopulations of dormant bacteria, termed persisters, were shown to be responsible for the persistence of the population to antibiotic treatments. Here, we use microfluidic devices to monitor the induction of fluorescent proteins under synthetic promoters and characterize ...

  19. Single amino acid substitutions on the needle tip protein IpaD increased Shigella virulence.

    Science.gov (United States)

    Meghraoui, Alaeddine; Schiavolin, Lionel; Allaoui, Abdelmounaaïm

    2014-07-01

    Infection of colonic epithelial cells by Shigella is associated with the type III secretion system, which serves as a molecular syringe to inject effectors into host cells. This system includes an extracellular needle used as a conduit for secreted proteins. Two of these proteins, IpaB and IpaD, dock at the needle tip to control secretion and are also involved in the insertion of a translocation pore into host cell membrane allowing effector delivery. To better understand the function of IpaD, we substituted thirteen residues conserved among homologous proteins in other bacterial species. Generated variants were tested for their ability to surface expose IpaB and IpaD, to control secretion, to insert the translocation pore, and to invade host cells. In addition to a first group of seven ipaD variants that behaved similarly to the wild-type strain, we identified a second group with mutations V314D and I319D that deregulated secretion of all effectors, but remained fully invasive. Moreover, we identified a third group with mutations Y153A, T161D, Q165L and Y276A, that exhibited increased levels of translocators secretion, pore formation, and cell entry. Altogether, our results offer a better understanding of the role of IpaD in the control of Shigella virulence. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803 : Localization of the CupA subunit of NDH-1

    NARCIS (Netherlands)

    Folea, I. Mihaela; Zhang, Pengpeng; Nowaczyk, Marc M.; Ogawa, Teruo; Aro, Eva-Marl; Boekema, Egbert J.; Aro, Eva-Mari

    The larger protein complexes of the cyanobacterial photosynthetic membrane of Thermosynechoccus elongatus and Synechocystis 6803 were studied by single particle electron microscopy after detergent solubilization, without any purification steps. Besides the "standard" L-shaped NDH-1L complex, related

  1. UV-Visible intensity ratio (aggregates/single particles) as a measure to obtain stability of gold nanoparticles conjugated with protein A

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M. A. [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico); Garcia-Perez, B. E. [Instituto Politecnico Nacional, Departamento de Inmunologia, ENCB (Mexico); Jaramillo-Flores, M. E. [Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, ENCB (Mexico); Gayou, V. L.; Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico)

    2013-05-15

    We have analyzed the titration process of gold nanoparticles with several amounts of protein A (0.3, 0.5, 1, 3, 6, and 9 {mu}g/ml) in the presence of NaCl, which induces aggregation if the surface of particles is not fully covered with protein A. The colloidal solutions with different particle size (16, 18, 20, 33 nm) were synthesized by citrate reduction to be conjugated with protein A. UV-Visible spectroscopy was used to measure the absorption of the surface plasmon resonance of gold nanoparticles as a function of the concentration of protein A. Such dependence shows an aggregation region (0 < x<6 {mu}g/ml), where the amount of protein A was insufficient to cover the surface of particles, obtaining aggregation caused by NaCl. The next part is the stability region (x {>=} 6 {mu}g/ml), where the amount of protein used covers the surface of particles and protects it from the aggregation. In addition to that the ratio between the intensities of both: the aggregates and of the gold nanoparticle bands was plotted as a function of the concentration of protein A. It was determined that 6 {mu}g/ml is a sufficient value of protein A to stabilize the gold nanoparticle-protein A system. This method provides a simple way to stabilize gold nanoparticles obtained by citrate reduction, with protein A.

  2. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    International Nuclear Information System (INIS)

    Gai, Zuoqi; Nakamura, Akiyoshi; Tanaka, Yoshikazu; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2013-01-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly

  3. Membrane protein nanoclustering as a functional unit of immune cells : from nanoscopy to single molecule dynamics

    OpenAIRE

    Torreño Piña, Juan Andrés

    2015-01-01

    Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit de Ciències State-of-the-art biophysical techniques featuring high temporal and spatial resolution have allowed for the first time the direct visualization of individual transmembrane proteins on the cell membrane. These techniques have revealed that a large amount of molecular components of the cell membrane do not organize in a random manner but they rather grouped together forming so-called clusters at the nanoscale. Moreover, t...

  4. Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybee Apis mellifera L.

    Science.gov (United States)

    Lartigue, Audrey; Gruez, Arnaud; Briand, Loïc; Blon, Florence; Bézirard, Valérie; Walsh, Martin; Pernollet, Jean-Claude; Tegoni, Mariella; Cambillau, Christian

    2004-02-06

    Pheromone binding proteins (PBPs) are small helical proteins ( approximately 13-17 kDa) present in several sensory organs from moth and other insect species. They are involved in the transport of pheromones from the sensillar lymph to the olfactory receptors. We report here the crystal structure of a PBP (Amel-ASP1) originating from the honey-bee (Apis mellifera) antennae and expressed as recombinant protein in the yeast Pichia pastoris. Crystals of Amel-ASP1 were obtained at pH 5.5 using the nano-drops technique of crystallization with a novel optimization procedure, and the structure was solved initially with the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion. The structure of Amel-ASP1 has been refined at 1.6-A resolution. Its fold is roughly similar to that of other PBP/odorant binding proteins, presenting six helices and three disulfide bridges. Contrary to the PBPs from Bombyx mori (Sandler, B. H., Nikonova, L., Leal, W. S., and Clardy, J. (2000) Chem. Biol. 7, 143-151) and Leucophea maderae (Lartigue, A., Gruez, A., Spinelli, S., Riviere, S., Brossut, R., Tegoni, M., and Cambillau, C. (2003) J. Biol. Chem. 278, 30213-30218), the extended C terminus folds into the protein and forms a wall of the internal hydrophobic cavity. Its backbone groups establish two hydrogen bonds with a serendipitous ligand, n-butyl-benzene-sulfonamide, an additive used in plastics. This mode of binding might, however, mimic that used by one of the pheromonal blend components and illustrates the binding versatility of PBPs.

  5. Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation.

    Science.gov (United States)

    Liu, Xiao-Man; Wang, Yan-Kui; Liu, Yun-Hua; Yu, Xiao-Xia; Wang, Pei-Chao; Li, Xuan; Du, Zhi-Qiang; Yang, Cai-Xia

    2018-02-02

    The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as cdc5l , ldha , spata22 , rgs2 , paip1 , wee1b , and hsp27 , which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant. cdc5l /CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.

    Science.gov (United States)

    Schulmerich, Matthew V; Walsh, Michael J; Gelber, Matthew K; Kong, Rong; Kole, Matthew R; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Kull, Linda S; Bhargava, Rohit

    2012-08-22

    The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.

  7. Single-molecule measurements and dynamical simulations of protein molecules near silicon substrates

    International Nuclear Information System (INIS)

    Hanasaki, Itsuo; Kawano, Satoyuki; Takahashi, Hiroto; Sazaki, Gen; Nakajima, Kazuo

    2008-01-01

    Interactions between protein molecules and inorganic substrates were studied both experimentally and numerically to obtain fundamental insight into the assembly of biomacromolecules for engineering applications. We experimentally traced individual fluorescent-labelled lysozyme (F-lysozyme) molecules, diffusing in the vicinity of interfaces between a protein solution and oxidized Si(1 0 0) and glass plates. The results indicate that diffusion coefficients of F-lysozyme molecules on both substrates are more than three orders of magnitude smaller than those in a bulk solution. The molecular dynamics simulations reveal a drastically diminished diffusion coefficient of lysozyme on the substrates of pure Si(1 1 1) and oxidized Si(1 0 0) with a hydroxy-terminated surface compared with that in bulk solution due to molecular adsorption behaviour on the substrate, which is in good agreement with experimental results. Furthermore, full atomistic description of the behaviour provides detailed information of deformation due to the adsorption process. Lysozyme on pure Si(1 1 1) undergoes substantial deformation whereas that on oxidized Si(1 0 0) does not, which indicates the importance of substrate surface condition to preserve the structure, i.e. functionality of adsorbed biomolecules

  8. S100A4 Protein in Inflammatory Bowel Disease: Results of a Single Centre Prospective Study

    Directory of Open Access Journals (Sweden)

    Paula Morávková

    2018-02-01

    Full Text Available Introduction: The aim of our study was to assess association of serum S100A4 protein with ulcerative colitis (UC and Crohn’s disease (CD. Methods: Study included 118 subjects: 93 patients with CD, 16 with UC and 9 controls. In CD group, 20/93 patients had B1 phenotype, 19/93 B2, 20/93 B3 and 34/93 B2 + B3. L1 involvement was present in 15/93, L2 in 14/93 and L3 in 64/93 patients. Serum S100A4 concentration was investigated in peripheral venous blood samples by means of ELISA. Results: Serum S100A4 was significantly higher in UC (158.6 ± 56.2 ng/mL, p = 0.019 and in CD (154.4 ± 52.1 ng/mL, p = 0.007 compared to controls (104.8 ± 40.5 ng/mL. No difference in S100A4 was revealed between UC and CD, p > 0.05. Serum S100A4 in each CD subgroup (according to behaviour was significantly higher compared to controls, p < 0.05. Serum S100A4 was significantly higher in L2 (144.6 ± 44.2 ng/mL, p = 0.041 and in L3 (163.0 ± 52.8 ng/mL, p = 0.002 compared to controls and in L3 compared to L1 (126.9 ± 47.6 ng/mL, p = 0.017. Conclusion: Association of serum S100A4 protein with UC and CD was confirmed. In CD, disease behaviour did not influence serum concentration of S100A4 protein. In CD, higher levels of serum S100A4 were observed in patients with ileo-colonic and colonic involvement compared to those with isolated small bowel involvement.

  9. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  10. A Single Residue Mutation in the Gαq Subunit of the G Protein Complex Causes Blindness in Drosophila

    Directory of Open Access Journals (Sweden)

    Jinguo Cao

    2018-01-01

    Full Text Available Heterotrimeric G proteins play central roles in many signaling pathways, including the phototransduction cascade in animals. However, the degree of involvement of the G protein subunit Gαq is not clear since animals with previously reported strong loss-of-function mutations remain responsive to light stimuli. We recovered a new allele of Gαq in Drosophila that abolishes light response in a conventional electroretinogram assay, and reduces sensitivity in whole-cell recordings of dissociated cells by at least five orders of magnitude. In addition, mutant eyes demonstrate a rapid rate of degeneration in the presence of light. Our new allele is likely the strongest hypomorph described to date. Interestingly, the mutant protein is produced in the eyes but carries a single amino acid change of a conserved hydrophobic residue that has been assigned to the interface of interaction between Gαq and its downstream effector, PLC. Our study has thus uncovered possibly the first point mutation that specifically affects this interaction in vivo.

  11. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    Science.gov (United States)

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  12. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    Science.gov (United States)

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.

  13. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells.

    Science.gov (United States)

    Gunaseelan, Srithar; Balupillai, Agilan; Govindasamy, Kanimozhi; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugam, Mohana; Thangaiyan, Radhiga; Robert, Beaulah Mary; Prasad Nagarajan, Rajendra; Ponniresan, Veeramani Kandan; Rathinaraj, Pierson

    2017-01-01

    Ultraviolet-B radiation (285-320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages.

  14. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  15. Development of a peptidase-resistant substrate for single-cell measurement of protein kinase B activation.

    Science.gov (United States)

    Proctor, Angela; Wang, Qunzhao; Lawrence, David S; Allbritton, Nancy L

    2012-08-21

    An iterative design strategy using three criteria was utilized to develop a peptidase-resistant substrate peptide for protein kinase B. Libraries of peptides possessing non-native amino acids were screened for time to 50% phosphorylation, degradation half-life within a lysate, and appearance of a dominant fragment. The lead peptide possessed a half-life of 92 ± 7 and 16 ± 2 min in HeLa and LNCaP cytosolic lysates, respectively, representing a 4.6- and 2.7-fold lifetime improvement over that of the starting peptide. The redesigned peptide possessed a 4.5-fold improvement in phosphorylation efficiency compared to the starting peptide. The same peptide fragments were formed when the lead peptide was incubated in a lysate or loaded into single cells although the fragments formed in significantly different ratios suggesting that distinct peptidases metabolized the peptide in the two preparations. The rate of peptide degradation and phosphorylation was on average 0.1 ± 0.2 zmol pg(-1) s(-1) and 0.04 ± 0.08 zmol pg(-1) s(-1), respectively, for single LNCaP cells loaded with 4 ± 8 μM of peptide. Peptidase-resistant kinase substrates should find widespread utility in both lysate-based and single-cell assays of kinase activity.

  16. Single-Molecule Protein Folding: A Study of the Surface-Mediated Conformational Dynamics of a Model Amphipathic Peptide

    Science.gov (United States)

    Cunningham, Joy; English, Douglas

    2004-03-01

    Most surface-active polypeptides, composed of 10-50 amino acids, are devoid of well-defined tertiary structure. The conformation of these proteins is greatly dependent upon their environment and may assume totally different characteristics in an aqueous environment, in a detergent micelle, or in an organic solvent. Most antimicrobial peptides are helix-forming and are activated upon interaction with a membrane-mimicking environment. We are seeking to physically characterize the mechanism of membrane-peptide interaction through studying a simple model peptide, MT-1. MT-1 was designed as a nonhomologous analogue of melittin, the principle component in bee venom. We are using single molecule spectroscopy to examine the induction of secondary structure upon interaction of MT-1 with various membrane-mimicking interfaces. Specifically, we monitor coil-to-helix transition through single molecule fluorescence resonance energy transfer (sm-FRET) to determine conformational distributions of folded and unfolded peptides at an interface. Studies with MT-1 will focus upon the biologically relevant issues of orientation, aggregation, and folding at surfaces using both ensemble and single molecule experiments.

  17. Using enhanced green fluorescent protein (EGFP) promoter fusions to study gene regulation at single cell and population levels.

    Science.gov (United States)

    Utratna, Marta; O'Byrne, Conor P

    2014-01-01

    Reporter gene fusions based on the enhanced green fluorescent protein (EGFP) are powerful experimental tools that allow real-time changes in gene expression to be monitored both in single cells and in populations. Here we describe the development of a chromosomally integrated transcriptional reporter fusion in Listeria monocytogenes that allows real-time measurements of gene expression. To construct a single copy of an EGFP-based fluorescent reporter fused to a promoter of interest (Px) in L. monocytogenes, a suicide shuttle vector carrying the Px::egfp gene fusion is first constructed in Escherichia coli (as an intermediate host). Then, the vector is transformed into L. monocytogenes and integrated into its chromosome by homologous recombination within the selected promoter region. Subsequently, analysis of fluorescence exhibited by cells carrying a single copy reporter can be performed under selected experimental conditions by stringent sample preparation, optimized image acquisition, and processing of the digital data with the image analysis freeware ImageJ. Thus, the methodology described here can be adapted to investigate the activity and regulation of any promoter in L. monocytogenes both at the cell and population levels.

  18. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle.

    Science.gov (United States)

    Bori, Zoltan; Zhao, Zhongfu; Koltai, Erika; Fatouros, Ioannis G; Jamurtas, Athanasios Z; Douroudos, Ioannis I; Terzis, Gerasimos; Chatzinikolaou, Athanasios; Sovatzidis, Apostolos; Draganidis, Dimitrios; Boldogh, Istvan; Radak, Zsolt

    2012-06-01

    Aging results in a significant decline in aerobic capacity and impaired mitochondrial function. We have tested the effects of moderate physical activity on aerobic capacity and a single bout of exercise on the expression profile of mitochondrial biogenesis, and fusion and fission related genes in skeletal muscle of human subjects. Physical activity attenuated the aging-associated decline in VO2 max (pAging increased and a single exercise bout decreased the expression of nuclear respiratory factor-1 (NRF1), while the transcription factor A (TFAM) expression showed a strong relationship with VO(2max) and increased significantly in the young physically active group. Mitochondrial fission representing FIS1 was induced by regular physical activity, while a bout of exercise decreased fusion-associated gene expression. The expression of polynucleotide phosphorylase (PNPase) changed inversely in young and old groups and decreased with aging. The A2 subunit of cyclic AMP-activated protein kinase (AMPK) was induced by a single bout of exercise in skeletal muscle samples of both young and old subjects (pphysical activity increases a larger number of mitochondrial biogenesis-related gene expressions in young individuals than in aged subjects. Mitochondrial fission is impaired by aging and could be one of the most sensitive markers of the age-associated decline in the adaptive response to physical activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Error Analysis of Band Matrix Method

    OpenAIRE

    Taniguchi, Takeo; Soga, Akira

    1984-01-01

    Numerical error in the solution of the band matrix method based on the elimination method in single precision is investigated theoretically and experimentally, and the behaviour of the truncation error and the roundoff error is clarified. Some important suggestions for the useful application of the band solver are proposed by using the results of above error analysis.

  20. A single β-octyl glucoside molecule induces HIV-1 Nef dimer formation in the absence of partner protein binding.

    Directory of Open Access Journals (Sweden)

    Mousheng Wu

    Full Text Available The HIV-1 Nef accessory protein is essential for viral pathogenicity and AIDS progression. Nef forms complexes with multiple host cell factors to facilitate viral replication and promote immune escape of HIV-infected cells. Previous X-ray crystal structures demonstrate that Nef forms homodimers, the orientation of which are influenced by host cell binding partners. In cell-based fluorescence complementation assays, Nef forms homodimers at the plasma membrane. However, recombinant Nef proteins often exist as monomers in solution, suggesting that membrane interaction may also trigger monomer to dimer transitions. In this study, we show that monomeric Nef core proteins can be induced to form dimers in the presence of low concentrations of the non-ionic surfactant, β-octyl glucoside (βOG. X-ray crystallography revealed that a single βOG molecule is present in the Nef dimer, with the 8-carbon acyl chain of the ligand binding to a hydrophobic pocket formed by the dimer interface. This Nef-βOG dimer interface involves helix αB, as observed in previous dimer structures, as well as a helix formed by N-terminal residues 54-66. Nef dimer formation is stabilized in solution by the addition of βOG, providing biochemical validation for the crystal structure. These observations together suggest that the interaction with host cell lipid mediators or other hydrophobic ligands may play a role in Nef dimerization, which has been previously linked to multiple Nef functions including host cell protein kinase activation, CD4 downregulation, and enhancement of HIV-1 replication.

  1. Wide band ENDOR spectrometer

    International Nuclear Information System (INIS)

    Mendonca Filho, C.

    1973-01-01

    The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed

  2. Elaborating European Pharmacopoeia monographs for biotherapeutic proteins using substances from a single source.

    Science.gov (United States)

    Buda, M; Wicks, S; Charton, E

    2016-01-01

    For more than twenty years, the European Pharmacopoeia (Ph. Eur.) monographs for biotherapeutic proteins have been elaborated using the multisource approach (Procedure 1), which has led to robust quality standards for many of the first-generation biotherapeutics. In 2008, the Ph. Eur. opened up the way towards an alternative mechanism for the elaboration of monographs (Procedure 4-BIO pilot phase), which is applied to substances still under patent protection, based on a close collaboration with the Innovator company, to ensure a harmonised global standard and strengthen the quality of the upcoming products. This article describes the lessons learned during the P4-BIO pilot phase and addresses the current thinking on monograph elaboration in the field of biotherapeutics. Case studies are described to illustrate the standardisation challenges associated with the complexity of biotherapeutics and of analytical procedures, as well as the approaches that help ensure expectations are met when setting monograph specifications and allow for compatibility with the development of biosimilars. Emphasis is put on monograph flexibility, notably by including tests that measure process-dependent microheterogeneity (e.g. glycosylation) in the Production section of the monograph. The European Pharmacopoeia successfully concluded the pilot phase of the P4-BIO during its 156 th session on 22-23 November 2016.

  3. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis.

    Science.gov (United States)

    Olszewski, Marcin; Nowak, Marta; Cyranka-Czaja, Anna; Kur, Józef

    2014-01-01

    Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1

    Directory of Open Access Journals (Sweden)

    Morozov Vladimir A

    2012-08-01

    Full Text Available Abstract Background The mechanism by which HIV-1 induces AIDS is still unknown. Previously, synthetic peptides corresponding to the conserved immunosuppressive (isu domain in gp41 of HIV-1 had been shown to inhibit proliferation and to modulate cytokine expression of immune cells. The question is, whether the viral gp41 can do the same. Results We show for the first time that two trimeric forms of glycosylated gp41 released from transfected human cells modulated expression of cytokines and other genes in human PBMCs in the same manner, but at least seven hundred-fold stronger compared to that induced by the isu peptide. Single amino acid substitutions in the isu domain of gp41 introduced by site-directed mutagenesis abrogated this property. Furthermore, replication-competent HIV-1 with a mutation in the isu domain of gp41 did not modulate the cytokine expression, while wild-type virus did. Interestingly, most of the abrogating mutations were not reported in viral sequences derived from infected individuals, suggesting that mutated non-immunosuppressive viruses were eliminated by immune responses. Finally, immunisation of rats with gp41 mutated in the isu domain resulted in increased antibody responses compared with the non-mutated gp41. These results show that non-mutated gp41 is immunosuppressive in immunisation experiments, i.e. in vivo, and this has implications for the vaccine development. Conclusions These findings indicate that the isu domain of gp41 modulates cytokine expression in vitro and suppresses antibody response in vivo and therefore may contribute to the virus induced immunodeficiency.

  5. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  6. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  7. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    Science.gov (United States)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  8. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  9. Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles.

    Science.gov (United States)

    Wang, Jun; Ma, Kui; Yin, Huanshun; Zhou, Yunlei; Ai, Shiyun

    2017-12-20

    An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN) 6 3- which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%. Graphical abstract Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).

  10. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2011-05-01

    Full Text Available Abstract Background The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (pppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (pppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (pppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.

  11. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection

    Science.gov (United States)

    Kondo, Toru; Pinnola, Alberta; Chen, Wei Jia; Dall'Osto, Luca; Bassi, Roberto; Schlau-Cohen, Gabriela S.

    2017-08-01

    In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.

  12. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  13. A Simple Fractionated Extraction Method for the Comprehensive Analysis of Metabolites, Lipids, and Proteins from a Single Sample.

    Science.gov (United States)

    Salem, Mohamed; Bernach, Michal; Bajdzienko, Krzysztof; Giavalisco, Patrick

    2017-06-01

    Understanding of complex biological systems requires the measurement, analysis and integration of multiple compound classes of the living cell, usually determined by transcriptomic, proteomic, metabolomics and lipidomic measurements. In this protocol, we introduce a simple method for the reproducible extraction of metabolites, lipids and proteins from biological tissues using a single aliquot per sample. The extraction method is based on a methyl tert-butyl ether: methanol: water system for liquid: liquid partitioning of hydrophobic and polar metabolites into two immiscible phases along with the precipitation of proteins and other macromolecules as a solid pellet. This method, therefore, provides three different fractions of specific molecular composition, which are fully compatible with common high throughput 'omics' technologies such as liquid chromatography (LC) or gas chromatography (GC) coupled to mass spectrometers. Even though the method was initially developed for the analysis of different plant tissue samples, it has proved to be fully compatible for the extraction and analysis of biological samples from systems as diverse as algae, insects, and mammalian tissues and cell cultures.

  14. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  15. A single 60-min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6.

    Science.gov (United States)

    Martin, J S; Kephart, W C; Mobley, C B; Wilson, T J; Goodlett, M D; Roberts, M D

    2017-11-01

    We investigated whether a single 60-min bout of whole leg, peristaltic pulse external pneumatic compression (EPC) altered select growth factor-related mRNAs and/or various phospho(p)-proteins related to cell growth, proliferation, inflammation and apoptosis signalling (e.g. Akt-mTOR, Jak-Stat). Ten participants (8 males, 2 females; aged 22·2 ± 0·4 years) reported to the laboratory 4 h post-prandial, and vastus lateralis muscle biopsies were obtained prior to (PRE), 1 h and 4 h post-EPC treatment. mRNA expression was analysed using real-time RT-PCR and phosphophorylated and cleaved proteins were analysed using an antibody array. No changes in selected growth factor-related mRNAs were observed following EPC. All p-proteins significantly altered by EPC decreased, except for p-rps6 (Ser235/236) which increased 31% 1 h post-EPC compared to PRE levels (P = 0·016). Notable decreases also included p-BAD (Ser112; -28%, P = 0·004) at 4 h post-EPC compared to PRE levels. In summary, an acute bout of EPC transiently upregulates p-rps6 as well as affecting other markers in the Akt-mTOR signalling cascade. Future research should characterize whether chronic EPC application promotes alterations in lower-limb musculature and/or enhances exercise-induced training adaptations. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Single daily dosing of antibiotics: importance of in vitro killing rate, serum half-life, and protein binding.

    Science.gov (United States)

    Potel, G; Chau, N P; Pangon, B; Fantin, B; Vallois, J M; Faurisson, F; Carbon, C

    1991-10-01

    The relative importance of pharmacokinetic and pharmacodynamic parameters for the feasibility of a single daily dose (SDD) of antibiotics remains to be established. Therefore, we studied the relationship between in vitro bacteriological parameters (MIC, MBC, and killing rate [KR], defined as the reduction in the inoculum within 3 h), pharmacokinetic parameters (t1/2 and protein binding [PB], and in vivo antibacterial effect of a single antibiotic dose in an experimental rabbit model of Escherichia coli endocarditis. Nine antibiotics were investigated: two aminoglycosides, two quinolones, and five beta-lactams. For each drug, the minimal effective dose (MED) (in milligrams per kilogram) was defined as the lowest dose able to achieve a significant difference (P less than 0.05) of CFU in the vegetations in comparison with controls 24 h after a single intravenous injection. Aminoglycosides and quinolones had the lowest MEDs, followed by beta-lactams. Univariate regression analysis showed that KR was the major determinant of MED. A stepwise regression analysis showed that t1/2 significantly improved the predictive value of KR, while PB, MIC, and MBC did not. The final equation was MED = 1,586-238 KR-297 t1/2 (r = 0.90, P = 0.01). We concluded that the pharmacodynamic parameters (especially the high KR) of aminoglycosides and quinolones explained their low MEDs and might allow SDD. In contrast, the low KR of beta-lactams emphasized the critical importance of a long t1/2, as for ceftriaxone, allowing the use of this beta-lactam alone in SDD.

  17. Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Walsh, Brandon J; Knapp, Amy E; Brafman, David; Hogan, Michael C

    2008-08-01

    The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis and either electrically stimulated for 15 min of tetanic contractions (EX; n=26) or not stimulated to contract (REST; n=14). The relative mean developed tension of EX fibers decreased to 29+/-7% of initial peak tension at the stimulation end point. Following treatment, individual fibers were allowed to recover for 1 (n=9), 2 (n=8), or 4 h (n=9) prior to isolation of total cellular mRNA. HSP72, HSP60, and cardiac alpha-actin mRNA content were then assessed in individual fibers using quantitative PCR detection. Relative HSP72 mRNA content was significantly (Pelevated at the 2-h postcontraction time point relative to REST fibers when normalized to either HSP60 (18.5+/-7.5-fold) or cardiac alpha-actin (14.7+/-4.3-fold), although not at the 1- or 4-h time points. These data indicate that 1) extraction of RNA followed by relative quantification of mRNA of select genes in isolated single skeletal muscle fibers can be reliably performed, 2) HSP60 and cardiac alpha-actin are suitable endogenous normalizing genes in skeletal muscle following contractions, and 3) a significantly elevated content of HSP72 mRNA is detectable in skeletal muscle 2 h after a single bout of fatiguing contractions, despite minimal temperature changes and without influence from extracellular sources.

  18. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    Science.gov (United States)

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2–His2 zinc finger motif

    Science.gov (United States)

    Dathan, Nina; Zaccaro, Laura; Esposito, Sabrina; Isernia, Carla; Omichinski, James G.; Riccio, Andrea; Pedone, Carlo; Di Blasio, Benedetto; Fattorusso, Roberto; Pedone, Paolo V.

    2002-01-01

    The Arabidopsis SUPERMAN (SUP) gene has been shown to be important in maintaining the boundary between stamens and carpels, and is presumed to act by regulating cell proliferation. In this work, we show that the SUP protein, which contains a single Cys2–His2 zinc finger domain including the QALGGH sequence, highly conserved in the plant zinc finger proteins, binds DNA. Using a series of deletion mutants, it was determined that the minimal domain required for specific DNA binding (residues 15–78) includes the single zinc finger and two basic regions located on either side of this motif. Furthermore, amino acid substitutions in the zinc finger or in the basic regions, including a mutation that knocks out the function of the SUP protein in vivo (glycine 63 to aspartate), have been found to abolish the activity of the SUP DNA-binding domain. These results strongly suggest that the SUP protein functions in vivo by acting as a DNA-binding protein, likely involved in transcriptional regulation. The association of both an N-terminal and a C-terminal basic region with a single Cys2–His2 zinc finger represents a novel DNA-binding motif suggesting that the mechanism of DNA recognition adopted by the SUP protein is different from that described so far in other zinc finger proteins. PMID:12433998

  20. Functional analysis of multiple single-stranded DNA-binding proteins from Methanosarcina acetivorans and their effects on DNA synthesis by DNA polymerase BI.

    Science.gov (United States)

    Robbins, Justin B; Murphy, Mary C; White, Bryan A; Mackie, Roderick I; Ha, Taekjip; Cann, Isaac K O

    2004-02-20

    Single-stranded DNA-binding proteins and their functional homologs, replication protein A, are essential components of cellular DNA replication, repair and recombination. We describe here the isolation and characterization of multiple replication protein A homologs, RPA1, RPA2, and RPA3, from the archaeon Methanosarcina acetivorans. RPA1 comprises four single-stranded DNA-binding domains, while RPA2 and RPA3 are each composed of two such domains and a zinc finger domain. Gel filtration analysis suggested that RPA1 exists as homotetramers and homodimers in solution, while RPA2 and RPA3 form only homodimers. Unlike the multiple RPA proteins found in other Archaea and eukaryotes, each of the M. acetivorans RPAs can act as a distinct single-stranded DNA-binding protein. Fluorescence resonance energy transfer and fluorescence polarization anisotropy studies revealed that the M. acetivorans RPAs bind to as few as 10 single-stranded DNA bases. However, more stable binding is achieved with single-stranded DNA of 18-23 bases, and for such substrates the estimated Kd was 3.82 +/- 0.28 nM, 173.6 +/- 105.17 nM, and 5.92 +/- 0.23 nM, for RPA1, RPA2, and RPA3, respectively. The architectures of the M. acetivorans RPAs are different from those of hitherto reported homologs. Thus, these proteins may represent novel forms of replication protein A. Most importantly, our results show that the three RPAs and their combinations highly stimulate the primer extension capacity of M. acetivorans DNA polymerase BI. Although bacterial SSB and eukaryotic RPA have been shown to stimulate DNA synthesis by their cognate DNA polymerases, our findings provide the first in vitro biochemical evidence for the conservation of this property in an archaeon.

  1. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  2. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA-binding pro......Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA...... assays.Results: In addition to the known tyrosine phosphorylation of SsbA on tyrosine 82, we identified a new phosphorylation site: threonine 38. The in vitro assays demonstrated that SsbA is preferentially phosphorylated by the B. subtilis Hanks-type kinase YabT, and phosphorylation of threonine 38...... leads to enhanced cooperative binding to DNA.Conclusions: Our findings contribute to the emerging picture that bacterial proteins, exemplified here by SsbA, undergo phosphorylation at multiple residues. This results in a complex regulation of cellular functions, and suggests that the complexity...

  3. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein.

    Science.gov (United States)

    McDonald, Alex; Pushie, M Jake; Millhauser, Glenn L; George, Graham N

    2013-11-07

    Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu(2+) interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu(2+) binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [Cu(II) (Ac-HGGGW-NH2)(-2H)] but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu(2+) bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu(2+) with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu(2+) occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear two-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented, and EXAFS curve fitting of the photoreduced species

  4. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Shishmarev, Dmitry; Wang, Yao; Mason, Claire E.; Su, Xun-Cheng; Oakley, Aaron J.; Graham, Bim; Huber, Thomas; Dixon, Nicholas E.; Otting, Gottfried

    2013-01-01

    Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron den...

  5. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.

    Science.gov (United States)

    Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan

    2016-03-03

    By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.

  6. Antibody Banding Patterns of the Enzyme-Linked Immunoelectrotransfer Blot and Brain Imaging Findings in Patients With Neurocysticercosis.

    Science.gov (United States)

    Arroyo, Gianfranco; Rodriguez, Silvia; Lescano, Andres G; Alroy, Karen A; Bustos, Javier A; Santivañez, Saul; Gonzales, Isidro; Saavedra, Herbert; Pretell, E Javier; Gonzalez, Armando E; Gilman, Robert H; Tsang, Victor C W; Garcia, Hector H

    2018-01-06

    The enzyme-linked immunoelectrotransfer blot (EITB) assay is the reference serological test for neurocysticercosis (NCC). A positive result on EITB does not always correlate with the presence of active infections in the central nervous system (CNS), and patients with a single viable brain cyst may be EITB negative. Nonetheless, EITB antibody banding patterns appears to be related with the expression of 3 protein families of Taenia solium, and in turn with the characteristics of NCC in the CNS (type, stage, and burden of viable cysts). We evaluated EITB antibody banding patterns and brain imaging findings of 548 NCC cases. Similar banding patterns were grouped into homogeneous classes using latent class analysis. The association between classes and brain imaging findings was assessed. Four classes were identified. Class 1 (patients negative or only positive to the GP50 band, related to the protein family of the same name) was associated with nonviable or single viable parenchymal cysticerci; class 2 (patients positive to bands GP42-39 and GP24, related to the T24-42 protein family, with or without anti-GP50 antibodies) was associated with intraparenchymal viable and nonviable infections; classes 3 and 4 (positive to GP50, GP42-39, and GP24 but also responding to low molecular weight bands GP21, GP18, GP14, and GP13, related to the 8 kDa protein family) were associated with extraparenchymal and intraparenchymal multiple viable cysticerci. EITB antibody banding patterns correlate with brain imaging findings and complement imaging information for the diagnosis of NCC and for staging NCC patients. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. The effects of cell phone electromagnetic fields on the behavior of single OmpF nanochannel forming protein: a practical approach

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh M

    2013-05-01

    Full Text Available Background: Widespread of telecommunication systems in recent years, have raised the concerns on the possible danger of cell phone radiations on human body. Thus, the study of the electromagnetic fields on proteins, particularly the membrane nano channel forming proteins is of great importance. These proteins are responsible for keeping certain physic-chemical condition within cells and managing cell communication. Here, the effects of cell phones radiation on the activity of a single nanopore ion channel forming protein, OmpF, have been studied biophysically.Methods: Planar lipid bilayers were made based on Montal and Muller technique, and the activity of single OmpF channel reconstituted by electrical shock was recorded and analyzed by means of voltage-clamp technique at 20 ˚C. The planar lipid bilayers were formed from the monolayers made on a 60 μm diameter aperture in the 20 μm thick Teflon film that separated two (cis and trans compartments of the glass chamber. In this practical approach we were able to analyze characteristics of an individual channel at different chemical and physical experimental conditions. The voltage clamp was used to measure the channel’s conductance, voltage sensitivity, gating patterns in time scales as low as microseconds in real time.  Results: Our results showed that exposure of single voltage dependent channel, OmpF, to EMF of cell phone at high-frequency has a significant influence on the voltage sensitivity, gating properties and substate numbers of the single channel but has no effect on single-channel conductance. Regarding to the relaxation time, the channel also recovers in the millisecond time range when the field is removed. Conclusion: We observed an increase in the voltage sensitivity of the OmpF single channel while it had no effect on the single-channel conductance, which is remained to be further elucidated.

  8. A novel marker for terminal Schwann cells, homocysteine-responsive ER-resident protein, as isolated by a single cell PCR-differential display.

    Science.gov (United States)

    Oda, Ryo; Yaoi, Takeshi; Okajima, Seiichiro; Kobashi, Hiroaki; Kubo, Toshikazu; Fushiki, Shinji

    2003-09-05

    Terminal Schwann cells (TSCs) that cover motor neuron terminals are known to play important roles in maintaining neuromuscular junctions, as well as in the repair process after nerve injury. However, molecular characteristics of TSCs remain unknown, because of the difficulties in analyzing them due to their paucity. We have established a method of selectively and efficiently collecting TSCs so that cDNA analysis can be done properly. The expression of 1-2% of whole mRNAs was compared between myelinating Schwann cells (MSCs) and TSCs, and it turned out that approximately one-third of the bands could be categorized as cell-type-specific bands. TSCs thus constitute a distinct entity from the viewpoint of gene expression. As one of the cDNA clones belonging to TSC-specific bands was identified homocysteine-responsive ER-resident protein (Herp), and in situ hybridization confirmed that Herp mRNA is expressed in TSCs on motor nerve terminals but not in MSCs, both in developing and adult rats. In conclusion, we have been able to identify Herp as a novel molecular marker for TSCs.

  9. Bioinformatic Analysis of Deleterious Non-Synonymous Single Nucleotide Polymorphisms (nsSNPs in the Coding Regions of Human Prion Protein Gene (PRNP

    Directory of Open Access Journals (Sweden)

    Kourosh Bamdad

    2016-12-01

    Full Text Available Background & Objective: Single nucleotide polymorphisms are the cause of genetic variation to living organisms. Single nucleotide polymorphisms alter residues in the protein sequence. In this investigation, the relationship between prion protein gene polymorphisms and its relevance to pathogenicity was studied. Material & Method: Amino acid sequence of the main isoform from the human prion protein gene (PRNP was extracted from UniProt database and evaluated by FoldAmyloid and AmylPred servers. All non-synonymous single nucleotide polymorphisms (nsSNPs from SNP database (dbSNP were further analyzed by bioinformatics servers including SIFT, PolyPhen-2, I-Mutant-3.0, PANTHER, SNPs & GO, PHD-SNP, Meta-SNP, and MutPred to determine the most damaging nsSNPs. Results: The results of the first structure analyses by FoldAmyloid and AmylPerd servers implied that regions including 5-15, 174-178, 180-184, 211-217, and 240-252 were the most sensitive parts of the protein sequence to amyloidosis. Screening all nsSNPs of the main protein isoform using bioinformatic servers revealed that substitution of Aspartic acid with Valine at position 178 (ID code: rs11538766 was the most deleterious nsSNP in the protein structure. Conclusion:  Substitution of the Aspartic acid with Valine at position 178 (D178V was the most pathogenic mutation in the human prion protein gene. Analyses from the MutPred server also showed that beta-sheets’ increment in the secondary structure was the main reason behind the molecular mechanism of the prion protein aggregation.

  10. Construction and characterization of a fusion protein of single-chain anti-carcinoma antibody 323/A3 and human beta-glucuronidase

    NARCIS (Netherlands)

    Haisma, HJ; Brakenhoff, RH; Van der Meulen-Muileman, I.H.; Pinedo, HM; Boven, E

    We report the construction and expression of a fusion protein between a single-chain antibody specific for human carcinomas and human beta-glucuronidase by recombinant DNA technology. The sequences encoding the murine monoclonal antibody 323/A3 light- and heavy-chain variable genes were joined by a

  11. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.

    Science.gov (United States)

    Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred

    2014-07-16

    We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence

  12. Pharmacokinetics of the Protein Microbicide 5P12-RANTES in Sheep following Single-Dose Vaginal Gel Administration.

    Science.gov (United States)

    McBride, John W; Dias, Nicola; Cameron, David; Offord, Robin E; Hartley, Oliver; Boyd, Peter; Kett, Vicky L; Malcolm, R Karl

    2017-10-01

    5P12-RANTES, a chemokine analogue that potently blocks the HIV CCR5 coreceptor, is being developed as both a vaginal and rectal microbicide for prevention of sexual transmission of HIV. Here, we report the first pharmacokinetic data for 5P12-RANTES following single-dose vaginal gel administration in sheep. Aqueous gel formulations containing low (1.24-mg/ml), intermediate (6.18-mg/ml), and high (32.0-mg/ml; suspension-type gel) concentrations of 5P12-RANTES were assessed via rheology, syringeability, and in vitro release testing. Following vaginal gel administration to sheep, 5P12-RANTES concentrations were measured in vaginal fluid, vaginal tissue, and serum over a 96-h period. All gels showed non-Newtonian pseudoplastic behavior, with the high-concentration gels exhibiting a greater viscosity and cohesive structure than the intermediate- and low-concentration gels. In in vitro release testing, >90% 5P12-RANTES was released from the low- and intermediate-concentration gels after 72 h. For the high-concentration gel, ∼50% 5P12-RANTES was detected, attributed to protein denaturation during lyophilization and/or subsequent solvation of the protein within the gel matrix. In sheep, 5P12-RANTES concentrations in vaginal fluid, vaginal tissue, and serum increased in a dose-dependent manner. The highest concentrations were measured in vaginal fluid (10 5 to 10 7 ng/ml), followed by vaginal tissue (10 4 to 10 6 ng/ml). Both of these concentration ranges are several orders of magnitude above the reported half-maximal inhibitory concentrations. The lowest concentration was measured in serum (<10 2 ng/ml). The 5P12-RANTES pharmacokinetic data are similar to those reported previously for other candidate microbicides. These data, coupled with 5P12-RANTES's potency at picomolar concentrations, its strong barrier to resistance, and the full protection that it was observed to provide in a rhesus macaque vaginal challenge model, support the continued development of 5P12-RANTES as

  13. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  14. Use of a Cellulase-Derepressed Mutant of Cellulomonas in the Production of a Single-Cell Protein Product from Cellulose †

    Science.gov (United States)

    Hitchner, E. V.; Leatherwood, J. M.

    1980-01-01

    A cellulase-derepressed mutant of a Cellulomonas species was used to produce single-cell protein from crystalline cellulose. In preliminary tests, maximum yield of single-cell protein was obtained at 30°C (pH 7.0) with urea as the nitrogen source. A continuous-flow foam flotation procedure was developed for rapid and efficient separation of bacteria from the culture liquid and cellulose residue. A pH of 4.5 was optimum for foam flotation of this organism. In preliminary trials, recovery was 85% of the cells with the flotation procedure. Cellulomonas was 68% true protein and had an essential amino acid profile featuring a high lysine content (6.5% of protein). The Cellulomonas product was evaluated nutritionally with weanling rats. The net protein utilization value for the protein supplemented with methionine was 50.4% Weight gain of rats on the Cellulomonas diet was similar to that of rats fed a casein diet. PMID:16345511

  15. The marginal band system in nymphalid butterfly wings.

    Science.gov (United States)

    Taira, Wataru; Kinjo, Seira; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.

  16. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Science.gov (United States)

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  17. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  18. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization.

    Science.gov (United States)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-04-13

    Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [(125)I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr(130)-Val(131) sequence in the RAMP3 TMD with the corresponding sequence (Ile(157)-Pro(158)) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala(130)-Ala(131) did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    Science.gov (United States)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  20. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  1. [Association between single nucleotide polymorphismsin human heat shock protein 70 gene and susceptibility to noise-induced hearing loss].

    Science.gov (United States)

    Li, Y H; Chen, G S; Jiao, J; Zhou, W H; Wu, H; Gu, G Z; Zhang, H L; Zheng, Y X; Yu, S F

    2016-12-20

    Objective: To investigate the association between the single nucleotide polymorphisms (SNPs) at rs1043618, rs2075800, and rs2763979 in human heat shock protein 70 (HSP70) gene and susceptibility to noise - induced hearing loss (NIHL) . Methods: A case-control study was performed, and 5 934 workers exposed to noise in an iron and steel plant in Henan, China, who underwent physical examination from 2006 to 2015, were enrolled as study subjects. According to the criteria of binaural average high - frequency (3000, 4000, and 6000 Hz) hearing threshold≥40 dB (HL) and monauralaverage speech - frequency (500, 1000, 2000 Hz) hearing threshold≥26 dB (HL) on the basis of binauralhigh frequency loss measured by pure tone audiometry, as well as the exclusion of NIHL, a total of 286 workers were enrolled as hearing loss group; after the adjustment for sex, type of work, age (difference≤5 years) , and working years of noise exposure (difference ≤2 years) , 286 workers were enrolled as control group. A 2 ml blood genomic DNA extraction kit was used to perform DNA extraction for the peripheral blood samples, and a multiple SNP typing kit was used to determine the genotypes at the three loci in 572 samples. The association between the SNPs at the three loci and susceptibility to NIHL was analyzed. Results: In all workers, the equivalent sound level ( L (Aeq)) of noise was 75.0 ~ 96.8 dB (A) . The hearing loss group had a significantly higher binauralhigh - frequencyhearing threshold than the control group ( t =56.908, P 0.05) . After the adjustment for confounding factors including smoking and drinking, haplotype CCT was associated with the susceptibility to NIHL ( OR =1.425, 95% CI 1.035 - 1.961) . Conclusion: TT genotype at rs2763979 of HSP70 gene and haplotype CCT are risk factors for NIHL.

  2. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  3. Band - Weg interactie

    NARCIS (Netherlands)

    de Boer, Andries; ter Huerne, Henderikus L.; Noordermeer, Jacobus W.M.; Schipper, Dirk J.; prof.dr.ir. Molenaar, A.A.A.

    2008-01-01

    De huidige infrastructuur van wegen waarover men zich snel en comfortabel kan verplaatsen is niet meer weg te denken uit onze maatschappij. Twee “componenten” die hierbij een belangrijke rol spelen zijn het wegdek en de band. Het contact tussen band en wegdek is mede bepalend voor de veiligheid. De

  4. Photonic band structure computations.

    Science.gov (United States)

    Hermann, D; Frank, M; Busch, K; Wolfle, P

    2001-01-29

    We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

  5. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric

  6. Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer.

    Science.gov (United States)

    Wollman, Adam J M; Miller, Helen; Zhou, Zhaokun; Leake, Mark C

    2015-04-01

    DNA-interacting proteins have roles in multiple processes, many operating as molecular machines which undergo dynamic meta-stable transitions to bring about their biological function. To fully understand this molecular heterogeneity, DNA and the proteins that bind to it must ideally be interrogated at a single molecule level in their native in vivo environments, in a time-resolved manner, fast enough to sample the molecular transitions across the free-energy landscape. Progress has been made over the past decade in utilizing cutting-edge tools of the physical sciences to address challenging biological questions concerning the function and modes of action of several different proteins which bind to DNA. These physiologically relevant assays are technically challenging but can be complemented by powerful and often more tractable in vitro experiments which confer advantages of the chemical environment with enhanced detection signal-to-noise of molecular signatures and transition events. In the present paper, we discuss a range of techniques we have developed to monitor DNA-protein interactions in vivo, in vitro and in silico. These include bespoke single-molecule fluorescence microscopy techniques to elucidate the architecture and dynamics of the bacterial replisome and the structural maintenance of bacterial chromosomes, as well as new computational tools to extract single-molecule molecular signatures from live cells to monitor stoichiometry, spatial localization and mobility in living cells. We also discuss recent developments from our laboratory made in vitro, complementing these in vivo studies, which combine optical and magnetic tweezers to manipulate and image single molecules of DNA, with and without bound protein, in a new super-resolution fluorescence microscope.

  7. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response.

    Science.gov (United States)

    Lee, Kwanuk; Lee, Hwa Jung; Kim, Dong Hyun; Jeon, Young; Pai, Hyun-Sook; Kang, Hunseung

    2014-04-16

    Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts.

  8. A K/Ka band radiating element for Tx/Rx phased array

    KAUST Repository

    Sandhu, Ali Imran

    2017-01-20

    The paper presents a K/Ka band radiating element for TX/RX phased arrays. Dual band operations is obtained using a single radiating surface: a novel radiator is adopted and placed in a configuration in which dual band and single band elements are interleaved. The array elements are optimized to scan the beam in excess of 50° in both bands. A subarray with 49 Rx elements and 105 Tx elements was built and measured confirming the results obtained in simulations.

  9. Gateway-Assisted Vector Construction to Facilitate Expression of Foreign Proteins in the Chloroplast of Single Celled Algae

    OpenAIRE

    Oey, Melanie; Ross, Ian L.; Hankamer, Ben

    2014-01-01

    With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but t...

  10. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    -dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic......Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers......, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes...

  11. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692 (Japan); Nozaki, Naomi; Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer RAMP3 mediates CLR internalization much less effectively than does RAMP2. Black-Right-Pointing-Pointer The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. Black-Right-Pointing-Pointer A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [{sup 125}I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr{sup 130}-Val{sup 131} sequence in the RAMP3 TMD with the corresponding sequence (Ile{sup 157}-Pro{sup 158}) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala{sup 130}-Ala{sup 131} did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a

  12. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling.

    Science.gov (United States)

    Brockmann, Markus; Blomen, Vincent A; Nieuwenhuis, Joppe; Stickel, Elmer; Raaben, Matthijs; Bleijerveld, Onno B; Altelaar, A F Maarten; Jae, Lucas T; Brummelkamp, Thijn R

    2017-06-08

    As key executers of biological functions, the activity and abundance of proteins are subjected to extensive regulation. Deciphering the genetic architecture underlying this regulation is critical for understanding cellular signalling events and responses to environmental cues. Using random mutagenesis in haploid human cells, we apply a sensitive approach to directly couple genomic mutations to protein measurements in individual cells. Here we use this to examine a suite of cellular processes, such as transcriptional induction, regulation of protein abundance and splicing, signalling cascades (mitogen-activated protein kinase (MAPK), G-protein-coupled receptor (GPCR), protein kinase B (AKT), interferon, and Wingless and Int-related protein (WNT) pathways) and epigenetic modifications (histone crotonylation and methylation). This scalable, sequencing-based procedure elucidates the genetic landscapes that control protein states, identifying genes that cause very narrow phenotypic effects and genes that lead to broad phenotypic consequences. The resulting genetic wiring map identifies the E3-ligase substrate adaptor KCTD5 (ref. 1) as a negative regulator of the AKT pathway, a key signalling cascade frequently deregulated in cancer. KCTD5-deficient cells show elevated levels of phospho-AKT at S473 that could not be attributed to effects on canonical pathway components. To reveal the genetic requirements for this phenotype, we iteratively analysed the regulatory network linked to AKT activity in the knockout background. This genetic modifier screen exposes suppressors of the KCTD5 phenotype and mechanistically demonstrates that KCTD5 acts as an off-switch for GPCR signalling by triggering proteolysis of Gβγ heterodimers dissociated from the Gα subunit. Although biological networks have previously been constructed on the basis of gene expression, protein-protein associations, or genetic interaction profiles, we foresee that the approach described here will enable the

  13. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  14. Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.

    Science.gov (United States)

    Awayn, N H; Rosenberg, M F; Kamis, A B; Aleksandrov, L A; Riordan, J R; Ford, R C

    2005-11-01

    Cystic fibrosis, one of the major human inherited diseases, is caused by defects in the CFTR (cystic fibrosis transmembrane conductance regulator), a cell-membrane protein. CFTR acts as a chloride channel which can be opened by ATP. Low-resolution structural studies of purified recombinant human CFTR are described in the present paper. Localization of the C-terminal decahistidine tag in CFTR was achieved by Ni2+-nitriloacetate nanogold labelling, followed by electron microscopy and single-particle analysis. The presence of the gold label appears to improve the single-particle-alignment procedure. Projection structures of CFTR from two-dimensional crystals analysed by electron crystallography displayed two alternative conformational states in the presence of nucleotide and nanogold, but only one form of the protein was observed in the quiescent (nucleotide-free) state.

  15. Projection Structure by Single-Particle Electron Microscopy of Secondary Transport Proteins GItT, Cits, and GltS

    NARCIS (Netherlands)

    Moscicka, Katarzyna B.; Krupnik, Tomasz; Boekema, Egbert J.; Lolkema, Juke S.; Mościcka, Katarzyna B.

    2009-01-01

    The structure of three secondary transporter proteins, GltT of Bacillus stearothermophilus, CitS of Klebsiella pneumoniae, and GltS of Escherichia coli, was studied. The proteins were purified to homogeneity ill detergent solution by Ni(2+)-NTA affinity chromatography, and the complexes were

  16. Simultaneous measurement of sensor-protein dynamics and motility of a single cell by on-chip microcultivation system

    Directory of Open Access Journals (Sweden)

    Kawagishi Ikuro

    2004-04-01

    Full Text Available Abstract Measurement of the correlation between sensor-protein expression, motility and environmental change is important for understanding the adaptation process of cells during their change of generation. We have developed a novel assay exploiting the on-chip cultivation system, which enabled us to observe the change of the localization of expressed sensor-protein and the motility for generations. Localization of the aspartate sensitive sensor protein at two poles in Escherichia coli decreased quickly after the aspartate was added into the cultivation medium. However, it took more than three generations for recovering the localization after the removal of aspartate from the medium. Moreover, the tumbling frequency was strongly related to the localization of the sensor protein in a cell. The results indicate that the change of the spatial localization of sensor protein, which was inherited for more than three generations, may contribute to cells, motility as the inheritable information.

  17. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling.

    Science.gov (United States)

    Yin, Jun; Lin, Alison J; Buckett, Peter D; Wessling-Resnick, Marianne; Golan, David E; Walsh, Christopher T

    2005-09-01

    Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.

  18. Synthesis of a gene for the HIV transactivator protein TAT by a novel single stranded approach involving in vivo gap repair.

    OpenAIRE

    Adams, S E; Johnson, I D; Braddock, M; Kingsman, A J; Kingsman, S M; Edwards, R M

    1988-01-01

    The synthesis of a gene for the HIV TAT protein is described using a novel approach that capitalises on the ability to synthesise oligonucleotides of greater than 100 bp in length. It involves the synthesis of large oligomers covering one strand of the desired gene in its entirety and the use of small complementary bridging and adapter oligonucleotides to direct the assembly and cloning of the large oligomers. After ligation to the cloning vector the partially single stranded intermediate is ...

  19. Single Quantum Dot Tracking Reveals that an Individual Multivalent HIV-1 Tat Protein Transduction Domain Can Activate Machinery for Lateral Transport and Endocytosis

    OpenAIRE

    Suzuki, Yasuhiro; Roy, Chandra Nath; Promjunyakul, Warunya; Hatakeyama, Hiroyasu; Gonda, Kohsuke; Imamura, Junji; Vasudevanpillai, Biju; Ohuchi, Noriaki; Kanzaki, Makoto; Higuchi, Hideo; Kaku, Mitsuo

    2013-01-01

    The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine th...

  20. Laparoscopic gastric banding

    Science.gov (United States)

    ... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...

  1. HYBASE - HYperspectral BAnd SElection tool

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2008-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to calculate the minimum number of

  2. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Science.gov (United States)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  3. Hurricane Spiral Bands.

    Science.gov (United States)

    Guinn, Thomas A.; Schubert, Wayne H.

    1993-10-01

    The spiral bands that occur in tropical cyclones can be conveniently divided into two classes-outer bands and inner bands. Evidence is presented here that the outer bands form as the result of nonlinear effects during the breakdown of the intertropical convergence zone (ITCZ) through barotropic instability. In this process a zonal strip of high potential vorticity (the ITCZ shear zone or monsoon trough) begins to distort in a varicose fashion, with the potential vorticity (PV) becoming pooled in local regions that are connected by filaments of high PV. As the pooled regions become more axisymmetric, the filaments become thinner and begin to wrap around the PV centers.It is argued that inner bands form in a different manner. As a tropical cyclone intensifies due to latent heat release, the PV field becomes nearly circular with the highest values of PV in the cyclone center. The radial gradient of PV provides a state on which PV waves (the generalization of Rossby waves) can propagate. The nonlinear breaking of PV waves then leads to an irreversible distortion of the PV contours and a downgradient flux of PV. The continuation of this proem tends to erode the high PV core of the tropical cyclone, to produce a surrounding surf zone, and hence to spread the PV horizontally. In a similar fashion, inner bands can also form by the merger of a vortex with a patch of relatively high PV air. As the merger proem occurs the patch of PV is quickly elongated and wrapped around the vortex. The resulting vortex is generally larger in horizontal extent and exhibits a spiral band of PV.When the formation of outer and inner bands is interpreted in the context of a normal-mode spectral model, they emerge as slow manifold phenomena; that is, they have both rotational and (balanced or slaved) gravitational mode aspects. In this sense, regarding them as simply gravity waves leads to an incomplete dynamical picture.

  4. The Novel Microwave Stop-Band Filter

    Directory of Open Access Journals (Sweden)

    R. E. Chernobrovkin

    2008-01-01

    Full Text Available The stop-band filter with the new band-rejection element is proposed. The element is a coaxial waveguide with the slot in the centre conductor. In the frame of this research, the numerical and experimental investigations of the amplitude-frequency characteristics of the filter are carried out. It is noted that according to the slot parameters the two typical resonances (half-wave and quarter-wave can be excited. The rejection band of the single element is defined by the width, depth, and dielectric filling of the slot. Fifth-order Chebyshev filter utilizing the aforementioned element is also synthesized, manufactured, and tested. The measured and simulated results are in good agreement. The experimental filter prototype exhibits the rejection band 0.86 GHz at the level −40 dB.

  5. Effect of single and three months treatment with Ukrain on aminotransferases (ALT and AST) and on the serum protein level in rodents.

    Science.gov (United States)

    Jagiełło-Wójtowicz, E; Kleinrok, Z; Surmaczyńska, B; Baran, E; Feldo, M; Nowicky, J W

    1992-01-01

    The influence of Ukrain on the activity of aminotransferases (ALT and AST) and on the serum total protein content was estimated in mice and rats of both sexes receiving single or repeated doses of the drug. It was found that one hour after intraperitoneal (i.p.) administration of Ukrain no characteristic changes were recorded in the activity of the investigated enzymes, or in the serum protein content of animals of either sex. Similar effects were observed after three months treatment with Ukrain in rats of either sex. Only in mice receiving Ukrain for three months was a rise in ALT and AST activity found. No particular changes were observed in the total serum protein level, except for a small decreases in the sera of male mice.

  6. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  7. Forces and Kinetics of the Bacillus subtilis Spore Coat Proteins CotY and CotX Binding to CotE Inspected by Single Molecule Force Spectroscopy.

    Science.gov (United States)

    Liu, Huiqing; Krajcikova, Daniela; Wang, Nan; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin

    2016-02-18

    Spores are uniquely stable cell types that are produced when bacteria encounter nutrient limitations. Spores are encased in a complex multilayered coat, which provides protection against environmental insults. The spore coat of Bacillus subtilis is composed of around 70 individual proteins that are organized into four distinct layers. Here we explored how morphogenetic protein CotE guides formation of the outermost layer of the coat, the crust, around the forespore by focusing on three proteins: CotE, CotY, and CotX. Single molecule force spectroscopy (SMFS) was used to investigate the interactions among CotE, CotY, and CotX at the single-molecule level. Direct interactions among these three proteins were observed. Additionally, the dissociation kinetics was also studied by measuring the unbinding forces of the complexes at different loading rates. A series of kinetic data of these complexes were acquired. It was found that the interaction of CotE and CotY was stronger than that of CotE and CotX.

  8. GelBandFitter – A computer program for analysis of closely spaced electrophoretic and immunoblotted bands

    Science.gov (United States)

    Mitov, Mihail I.; Greaser, Marion L.; Campbell, Kenneth S.

    2009-01-01

    GelBandFitter is a computer program that uses non-linear regression techniques to fit mathematical functions to densitometry profiles of protein gels. This allows for improved quantification of gels with partially overlapping and potentially asymmetric protein bands. The program can also be used to analyze immunoblots with closely spaced bands. GelBandFitter was developed in Matlab and the source code and/or a Windows executable file can be downloaded at no cost to academic users from http://www.gelbandfitter.org. PMID:19197901

  9. High expression of fusion proteins consisting of a single-chain variable fragment antibody against a tumor-associated antigen and interleukin-2 in Escherichia coli.

    Science.gov (United States)

    Napathorn, Suchada Chanprateep; Kuroki, Motomu; Kuroki, Masahide

    2014-08-01

    The aim of this study was to establish a strategy for high-level production of single-chain variable fragment (scFv) antibodies fused with interleukin-2 (IL-2) in Escherichia coli. We constructed two fusion sequences consisting of a scFv gene derived from a mouse monoclonal antibody against a tumor-associated antigen (MK-1) and human Interleukin-2(IL-2) gene, ligated the fusions into pET15b and transformed into three different E. coli strains. The effects of temperature, isopropyl-β-D-thiogalactopyranoside (IPTG) concentration and duration of IPTG induction were investigated. Employing E. coli strain Rosetta-gami B, which has an oxidizing cytoplasm that facilitates cytoplasmic disulfide bond formation, improved the level of soluble protein expression. Under optimal conditions, the highest levels of fusion protein expression and high percentages of the proteins were found in their soluble form. Specifically, 89.29% (0.28 g/l) of one fusion protein was soluble after a 10-h induction and 84.61% (0.26 g/l) of the other fusion protein was soluble after a separate 10-h induction. When analyzed by enzyme-linked immunosorbent assay, the partially-purified fusion proteins retained a specific binding activity to the cell lysate of Chinese hamster ovary (CHO) cells expressing MK-1. Taken together, the methods described herein permit the production of substantial amounts of the fusion proteins for conducting functional studies on the biological role of these fusion proteins. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera

    OpenAIRE

    Federici, Antoine; Dubois, Arnaud

    2014-01-01

    International audience; Full-field optical coherence microscopy is an established optical technology based on low-coherence interference microscopy for high-resolution imaging of semitransparent samples. In this Letter, we demonstrate an extension of the technique using a visible to short-wavelength infrared camera and a halogen lamp to image in three distinct bands centered at 635, 870, and 1170 nm. Reflective microscope objectives are employed to minimize chromatic aberrations of the imagin...

  11. Radio Band Observations of Blazar Variability

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging. Such measurements now available in all four Stokes parameters, together with theoretical simulations, identify the ...

  12. Fluorescence bands and chlorophyll a forms

    NARCIS (Netherlands)

    Goedheer, J.C.

    1964-01-01

    Fluorescence spectra were determined at temperatures between 20° and −196° for a number of photosynthetic organisms. Below −90° the single fluorescence maximum around 685 mμ was replaced by a system of three bands, at 686, 696 and 717–720 mμ in algal cells. Cooling usually resulted in a decrease of

  13. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling

    International Nuclear Information System (INIS)

    Jiang Dafeng; Liu Chunxia; Wang Lei; Jiang Wei

    2010-01-01

    A single-molecule counting approach for quantifying the antibody affixed to a surface using quantum dots and epi-fluorescence microscopy is presented. Modifying the glass substrates with carboxyl groups provides a hydrophilic surface that reacts with amine groups of an antibody to allow covalent immobilization of the antibody. Nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, quantum dots were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. Epi-fluorescence microscopy was chosen as the tool for single-molecule fluorescence detection here. The generated fluorescence signals were taken by an electron multiplying charge-coupled device and were found to be proportional to the sample concentrations. Under optimal conditions, a linear response range of 5.0 x 10 -14 -3.0 x 10 -12 mol L -1 was obtained between the number of single molecules and sample concentration via a single-molecule counting approach.

  14. Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Johannes [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich (Germany); Hillmer, Andreas S. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany); Högen, Tobias [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); McLean, Pamela J. [Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 (United States); Giese, Armin, E-mail: armin.giese@med.uni-muenchen.de [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany)

    2016-08-12

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregation process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein

  15. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  16. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  17. Fluoride export (FEX proteins from fungi, plants and animals are 'single barreled' channels containing one functional and one vestigial ion pore.

    Directory of Open Access Journals (Sweden)

    Tetyana Berbasova

    Full Text Available The fluoride export protein (FEX in yeast and other fungi provides tolerance to fluoride (F-, an environmentally ubiquitous anion. FEX efficiently eliminates intracellular fluoride that otherwise would accumulate at toxic concentrations. The FEX homolog in bacteria, Fluc, is a 'double-barreled' channel formed by dimerization of two identical or similar subunits. FEX in yeast and other eukaryotes is a monomer resulting from covalent fusion of the two subunits. As a result, both potential fluoride pores are created from different parts of the same protein. Here we identify FEX proteins from two multicellular eukaryotes, a plant Arabidopsis thaliana and an animal Amphimedon queenslandica, by demonstrating significant fluoride tolerance when these proteins are heterologously expressed in the yeast Saccharomyces cerevisiae. Residues important for eukaryotic FEX function were determined by phylogenetic sequence alignment and functional analysis using a yeast growth assay. Key residues of the fluoride channel are conserved in only one of the two potential fluoride-transporting pores. FEX activity is abolished upon mutation of residues in this conserved pore, suggesting that only one of the pores is functional. The same topology is conserved for the newly identified FEX proteins from plant and animal. These data suggest that FEX family of fluoride channels in eukaryotes are 'single-barreled' transporters containing one functional pore and a second non-functional vestigial remnant of a homologous gene fusion event.

  18. Structural basis for replication origin unwinding by an initiator primase of plasmid ColE2-P9: duplex DNA unwinding by a single protein.

    Science.gov (United States)

    Itou, Hiroshi; Yagura, Masaru; Shirakihara, Yasuo; Itoh, Tateo

    2015-02-06

    Duplex DNA is generally unwound by protein oligomers prior to replication. The Rep protein of plasmid ColE2-P9 (34 kDa) is an essential initiator for plasmid DNA replication. This protein binds the replication origin (Ori) in a sequence-specific manner as a monomer and unwinds DNA. Here we present the crystal structure of the DNA-binding domain of Rep (E2Rep-DBD) in complex with Ori DNA. The structure unveils the basis for Ori-specific recognition by the E2Rep-DBD and also reveals that it unwinds DNA by the concerted actions of its three contiguous structural modules. The structure also shows that the functionally unknown PriCT domain, which forms a compact module, plays a central role in DNA unwinding. The conservation of the PriCT domain in the C termini of some archaeo-eukaryotic primases indicates that it probably plays a similar role in these proteins. Thus, this is the first report providing the structural basis for the functional importance of the conserved PriCT domain and also reveals a novel mechanism for DNA unwinding by a single protein. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Restrictive techniques: gastric banding

    Directory of Open Access Journals (Sweden)

    Katia Cristina da Cunha

    2006-03-01

    Full Text Available Surgery for the treatment of severe obesity has a definite role onthe therapeutic armamentarium all over the world. Initiated 40years ago, bariatric surgery has already a long way thanks tohundred of surgeons, who had constantly searched for the besttechnique for the adequate control of severe obesity. Among theimportant breakthroughs in obesity surgery there is theadjustable gastric band. It is a sylastic band, inflatable andadjustable, which is placed on the top of the stomach in order tocreate a 15-20 cc pouch, with an outlet of 1.3cm. The adjustablegastric band has also a subcutaneous reservoir through whichadjustments can be made, according to the patient evolution.The main feature of the adjustable gastric band is the fact thatis minimal invasive, reversible, adjustable and placedlaparoscopically. Then greatly diminishing the surgical traumato the severe obese patient. Belachew and Favretti’s techniqueof laparoscopic application of the adjustable gastric band isdescribed and the evolution of the technique during this years,as we has been practiced since 1998. The perioperative care ofthe patient is also described, as well as the follow-up and shortand long term controls.

  20. Modulation of protein A binding allows single-step purification of mouse bispecific antibodies that retain FcRn binding

    Science.gov (United States)

    Armstrong, Anthony A.; Pardinas, Jose R.; Zheng, Songmao; Brosnan, Kerry; Emmell, Eva; Luo, Jeffrey; Chiu, Mark L.

    2017-01-01

    ABSTRACT The increased number of bispecific antibodies (BsAb) under therapeutic development has resulted in a need for mouse surrogate BsAbs. Here, we describe a one-step method for generating highly pure mouse BsAbs suitable for in vitro and in vivo studies. We identify two mutations in the mouse IgG2a and IgG2b Fc region: one that eliminates protein A binding and one that enhances protein A binding by 8-fold. We show that BsAbs harboring these mutations can be purified from the residual parental monoclonal antibodies in one step using protein A affinity chromatography. The structural basis for the effects of these mutations was analyzed by X-ray crystallography. While the mutation that disrupted protein A binding also inhibited FcRn interaction, a bispecific mutant in which one subunit retained the ability to bind protein A could still interact with FcRn. Pharmacokinetic analysis of the serum half-lives of the mutants showed that the mutant BsAb had a serum half-life comparable to a wild-type Ab. The results describe a rapid method for generating panels of mouse BsAbs that could be used in mouse studies. PMID:28898162

  1. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  2. Ferritin associates with marginal band microtubules

    International Nuclear Information System (INIS)

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich

    2007-01-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir

  3. Using guanidine-hydrochloride for fast and efficient protein digestion and single-step affinity-purification mass spectrometry

    DEFF Research Database (Denmark)

    Poulsen, Jon Wriedt; Madsen, Christian Toft; Young, Clifford

    2013-01-01

    be optimally completed within 30 min with endoprotease Lys-C. No chemical artifacts were introduced when samples were incubated in Gnd-HCl at 95 °C, making Gnd-HCl an appropriate digestion buffer for shotgun proteomics. Current methodologies for investigating protein-protein interactions (PPIs) often require...... several preparation steps, which prolongs any parallel operation and high-throughput interaction analysis. Gnd-HCl allow the efficient elution and subsequent fast digestion of PPIs to provide a convenient high-throughput methodology for affinity-purification mass spectrometry (AP-MS) experiments...

  4. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  5. Effects of Calorie Restriction and Fiber Type on Glucose Uptake and Abundance of Electron Transport Chain and Oxidative Phosphorylation Proteins in Single Fibers from Old Rats.

    Science.gov (United States)

    Wang, Haiyan; Arias, Edward B; Yu, Carmen S; Verkerke, Anthony R P; Cartee, Gregory D

    2017-11-09

    Calorie restriction (CR; reducing calorie intake by ~40% below ad libitum) can increase glucose uptake by insulin-stimulated muscle. Because skeletal muscle is comprised of multiple, heterogeneous fiber types, our primary aim was to determine the effects of CR (initiated at 14 weeks old) and fiber type on insulin-stimulated glucose uptake by single fibers of diverse fiber types in 23-26-month-old rats. Isolated epitrochlearis muscles from AL and CR rats were incubated with [3H]-2-deoxyglucose ± insulin. Glucose uptake and fiber type were determined for single fibers dissected from the muscles. We also determined CR-effects on abundance of several key metabolic proteins in single fibers. CR resulted in: (a) significantly (p glucose uptake by insulin-stimulated type I, IIA, IIB, IIBX, and IIX fibers; (b) significantly (p glucose uptake in each fiber type of rat skeletal muscle in the absence of upregulation of the abundance of hexokinase II or key mitochondrial ETC and OxPhos proteins. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    NARCIS (Netherlands)

    Jain, Samta; Zweig, Maria; Peeters, Eveline; Siewering, Katja; Hackett, Kathleen T.; Dillard, Joseph P.; van der Does, Chris

    2012-01-01

    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in

  7. High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme.

    Science.gov (United States)

    Han, Bin; Zhao, Chao; Yin, Junfa; Wang, Hailin

    2012-08-15

    A DNA aptamer based high-performance affinity chromatography is developed for selective extraction and screening of a basic protein lysozyme. First, a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic column was synthesized in situ by thermally initiated radical polymerization, and then an anti-lysozyme DNA aptamer was covalently immobilized on the surface of the monolith through a 16-atom spacer arm. The target protein lysozyme but non-target proteins can be trapped by the immobilized anti-lysozyme DNA aptamer. In contrast, lysozyme cannot be trapped by the immobilized oligodeoxynucleotide that does not contain the sequence of the anti-lysozyme DNA aptamer. The study clearly demonstrates the trapping of lysozyme by the immobilized anti-lysozyme DNA aptamer is mainly due to specific recognition rather than simple electrostatic interaction of positively charged protein and the negatively charged DNA. The inter-day precision was determined as 0.8% for migration time and 4.2% for peak area, respectively. By the use of aptamer affinity monolith, a screening strategy is developed to selectively extract lysozyme from chicken egg white, showing the advantages of high efficiency, low cost and ease-of-operation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  9. Analysis of MDM2 and MDM4 Single Nucleotide Polymorphisms, mRNA Splicing and Protein Expression in Retinoblastoma

    Science.gov (United States)

    McEvoy, Justina; Ulyanov, Anatoly; Brennan, Rachel; Wu, Gang; Pounds, Stanley; Zhang, Jinghui; Dyer, Michael A.

    2012-01-01

    Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX) and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191) was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma. PMID:22916154

  10. Open reading frame 122 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel structurual protein of occlusion-derived virions

    NARCIS (Netherlands)

    Long, G.; Chen Xinwen,; Peters, D.; Vlak, J.M.; Hu, Z.

    2003-01-01

    Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) and its closely related variant H. zea SNPV (HzSNPV) contain 20 open reading frames (ORFs) unique among baculoviruses. In this report, the function of HaSNPV ORF 122 (Ha122) is investigated. Ha122 was transcribed as a

  11. Minimal dose of milk protein concentrate to enhance the anabolic signalling response to a single bout of resistance exercise; a randomised controlled trial.

    Science.gov (United States)

    Mitchell, Cameron J; Zeng, Nina; D'Souza, Randall F; Mitchell, Sarah M; Aasen, Kirsten; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2017-01-01

    Resistance training is a potent stimulus to induce muscle hypertrophy. Supplemental protein intake is known to enhance gains in muscle mass through activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, which initiates protein translation. While the optimal dose of high quality protein to promote post exercise anabolism in young or older men has been investigated, little is known about the minimum doses of protein required to potentiate the resistance exercise activation of anabolic signalling in middle aged men. Twenty healthy men (46.3 ± 5.7 years, BMI: 23.9 ± 6.6 kg/m 2 ) completed a single bout of unilateral resistance exercise consisting of 4 sets of leg extension and press at 80% of 1 repetition maximum. Participants were randomised to consume either formulated milk product containing 9 g milk protein (FMP) or an isoenergetic carbohydrate placebo (CHO) immediately post exercise, in a double blind fashion. A single muscle biopsy was collected at pre-exercise baseline and then bilateral biopsies were collected 90 and 240 min after beverage consumption. P70S6K Thr389 phosphorylation was increased with exercise irrespective of group, P70S6K Thr421/Ser424 was increased with exercise only in the FMP group at 240 min. Likewise, rpS6 Ser235/236 phosphorylation was increased with exercise irrespective of group, rpS6 Ser240/244 increased to a greater extent following exercise in the FMP group. mRNA expression of the amino acid transporter, LAT1/ SLC7A5 increased with both exercise and beverage consumption irrespective of group. PAT1/ SLC36A1 , CAT1/ SLC7A1 and SNAT2/ SLC38A2 mRNA increased only after exercise regardless of group. Nine grams of milk protein is sufficient to augment some measures of downstream mTORC1 signalling after resistance exercise but does not potentiate exercise induced increases in amino acid transporter expression. Formulated products containing nine grams of milk protein would be expected stimulate muscle

  12. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  13. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  14. Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy

    Science.gov (United States)

    Salih, Anya; Cox, Guy C.; Larkum, Anthony W.

    2003-07-01

    Tissues of many marine invertebrates of class Anthozoa contain intensely fluorescent or brightly coloured pigments. These pigments belong to a family of photoactive proteins closely related to Green Fluorescent Protein (GFP), and their emissions range from blue to red wavelengths. The great diversity of these pigments has only recently been realised. To investigate the role of these proteins in corals, we have performed an in vivo fluorescent pigment (FP) spectral and cellular distribution analyses in live coral cells using single and multi-photon laser scanning imaging and microspectroscopy. These analyses revealed that even single colour corals contain spectroscopically heterogeneous pigment mixtures, with 2-5 major colour types in the same area of tissue. They were typically arranged in step-wise light emission energy gradients (e.g. blue, green, yellow, red). The successive overlapping emission-excitation spectral profiles of differently coloured FPs suggested that they were suited for sequential energy coupling. Traces of red FPs (emission = 570-660 nm) were present, even in non-red corals. We confirmed that radiative energy transfer could occur between separate granules of blue and green FPs and that energy transfer was inversely proportional to the square of the distance between them. Multi-photon micro-spectrofluorometric analysis gave significantly improved spectral resolution by restricting FP excitation to a single point in the focal plane of the sample. Pigment heterogeneity at small scales within granules suggested that fluorescence resonance energy transfer (FRET) might be occurring, and we confirmed that this was the case. Thus, energy transfer can take place both radiatively and by FRET, probably functioning in photoprotection by dissipation of excessive solar radiation.

  15. The impact of pre-analytical variables on the stability of neurofilament proteins in CSF, determined by a novel validated SinglePlex Luminex assay and ELISA.

    Science.gov (United States)

    Koel-Simmelink, Marleen J A; Vennegoor, Anke; Killestein, Joep; Blankenstein, Marinus A; Norgren, Niklas; Korth, Carsten; Teunissen, Charlotte E

    2014-01-15

    Neurofilament (Nf) proteins have been shown to be promising biomarkers for monitoring and predicting disease progression for various neurological diseases. The aim of this study was to evaluate the effects of pre-analytical variables on the concentration of neurofilament heavy (NfH) and neurofilament light (NfL) proteins. For NfH an in-house newly-developed and validated SinglePlex Luminex assay was used; ELISA was used to analyze NfL. For the NfL ELISA assay, the intra- and inter-assay variation was respectively, 1.5% and 16.7%. Analytical performance of the NfH SinglePlex Luminex assay in terms of sensitivity (6.6pg/mL), recovery in cerebrospinal fluid (CSF) (between 90 and 104%), linearity (from 6.6-1250pg/mL), and inter- and intra-assay variation (<8%) were good. Concentrations of both NfL and NfH appeared not negatively affected by blood contamination, repeated freeze-thaw cycles (up to 4), delayed processing (up to 24hours) and during long-term storage at -20°C, 4°C, and room temperature. A decrease in concentration was observed during storage of both neurofilament proteins up to 21days at 37°C, which was significant by day 5. The newly developed NfH SinglePlex Luminex assay has a good sensitivity and is robust. Moreover, both NfH and NfL are stable under the most prevalent pre-analytical variations. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training.

    Directory of Open Access Journals (Sweden)

    Evelyn B Parr

    Full Text Available INTRODUCTION: The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS following strenuous exercise with carbohydrate (CHO or protein ingestion. METHODS: In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum followed by continuous (30 min, 63% peak power output (PPO and high intensity interval (10×30 s, 110% PPO cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO, alcohol (1.5 g·kg body mass⁻¹, 12±2 standard drinks co-ingested with protein (ALC-PRO, or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO. Subjects also consumed a CHO meal (1.5 g CHO·kg body mass⁻¹ 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. RESULTS: Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05. Phosphorylation of mTOR(Ser2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05, while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05. Rates of MPS increased above rest for all conditions (∼29-109%, P<0.05. However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05 and with ALC-CHO (37%, P<0.05. CONCLUSION: We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation

  17. NMR studies of Borrelia burgdorferi OspA, a 28 kDa protein containing a single-layer {beta}-sheet

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thuy-Nga; Koide, Shohei

    1998-05-15

    The crystal structure of outer surface protein A (OspA) from Borrelia burgdorferi contains a single-layer {beta}-sheet connecting the N- and C-terminal globular domains. The central {beta}-sheet consists largely of polar amino acids and it is solvent-exposed on both faces, which so far appears to be unique among known protein structures. We have accomplished nearly complete backbone H, C and N and C{sup ;}/H{sup {beta}} assignments of OspA (28 kDa) using standard triple resonance techniques without perdeuteration. This was made possible by recording spectra at a high temperature (45 {sup o}C ). The chemical shift index and {sup 15}N T{sub 1}/T{sub 2} ratios show that both the secondary structure and the global conformation of OspA in solution are similar to the crystal structure, suggesting that the unique central {beta}-sheet is fairly rigid.

  18. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  19. Measurements of plasma colloid osmotic pressure, total protein and sodium concentration during haemodialysis: can single-pool sodium modelling explain the results?

    Science.gov (United States)

    Ahrenholz, P; Falkenhagen, D; Hähling, D; Sitarek, U; Förster, J; Nonnemann, M; Holtz, M; Ernst, B; Brown, G S; Klinkmann, H

    1990-01-01

    Considering the plasma colloid osmotic pressure (COP) as a possible parameter for the monitoring of dialysis treatment compatibility, a characteristic time course was found. The COP and the total protein concentration very often do not increase significantly during the first treatment hour in spite of ultrafiltration. An increase in the plasma sodium concentration, which was higher than expected, was found to be the reason for a plasma dilution effect. This can be explained by a transcapillary sodium transfer coefficient which is not infinitely high as assumed in single-pool sodium modelling. From a 2-pool model considering the plasma volume as a separate pool and including capillary filtration time courses for plasma sodium, total protein concentration and COP could be calculated, which was very similar to the measured curves.