WorldWideScience

Sample records for single processing step

  1. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  2. Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield

    NARCIS (Netherlands)

    Yu, Liyang; Li, X.; Pavlica, E.; Loth, M.A.; Anthony, J.E.; Bratina, G.; Kjellander, B.K.C.; Gelinck, G.H.; Stutzmann, N.

    2011-01-01

    Here, we report a simple, alternative route towards high-mobility structures of the small-molecular semiconductor 5,11-bis(triethyl silylethynyl) anthradithiophene that requires one single processing step without the need for any post-deposition processing. The method relies on careful control of

  3. Comparison study on mechanical properties single step and three step artificial aging on duralium

    Science.gov (United States)

    Tsamroh, Dewi Izzatus; Puspitasari, Poppy; Andoko, Sasongko, M. Ilman N.; Yazirin, Cepi

    2017-09-01

    Duralium is kind of non-ferro alloy that used widely in industrial. That caused its properties such as mild, high ductility, and resistance from corrosion. This study aimed to know mechanical properties of duralium on single step and three step articial aging process. Mechanical properties that discussed in this study focused on toughness value, tensile strength, and microstructure of duralium. Toughness value of single step artificial aging was 0.082 joule/mm2, and toughness value of three step artificial aging was 0,0721 joule/mm2. Duralium tensile strength of single step artificial aging was 32.36 kgf/mm^2, and duralium tensile strength of three step artificial aging was 32,70 kgf/mm^2. Based on microstructure photo of duralium of single step artificial aging showed that precipitate (θ) was not spreading evenly indicated by black spot which increasing the toughness of material. While microstructure photo of duralium that treated by three step artificial aging showed that it had more precipitate (θ) spread evenly compared with duralium that treated by single step artificial aging.

  4. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    Science.gov (United States)

    Holko, K. H. (Inventor)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  5. Single-step syngas-to-distillates (S2D) process based on biomass-derived syngas--a techno-economic analysis.

    Science.gov (United States)

    Zhu, Yunhua; Jones, Susanne B; Biddy, Mary J; Dagle, Robert A; Palo, Daniel R

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Wang, Xiao-Dong

    2016-01-01

    DME (Dimethyl ether) synthesis from syngas with CO_2 utilization through two-step and single step processes is analyzed thermodynamically. The influences of reaction temperature, H_2/CO molar ratio, and CO_2/CO molar ratio on CO and CO_2 conversions, DME selectivity and yield, and thermal behavior are evaluated. Particular attention is paid to the comparison of the performance of DME synthesis between the two different methods. In the two-step method, the addition of CO_2 suppresses the CO conversion during methanol synthesis. An increase in CO_2/CO ratio decreases the CO_2 conversion (negative effect), but increases the total consumption amount of CO_2 (positive effect). At a given reaction temperature with H_2/CO = 4, the maximum DME yield develops at CO_2/CO = 1. In the single step method, over 98% of CO can be converted and the DME yield can be as high as 0.52 mol (mol CO)"−"1 at CO_2/CO = 2. The comparison of the single step and two-step processes indicates that the maximum CO conversion, DME selectivity, and DME yield in the former are higher than those in the latter, whereas an opposite result in the maximum CO_2 conversion is observed. These results reveal that the single step process has lower thermodynamic limitation and is a better option for DME synthesis. From CO_2 utilization point of view, the operation with low temperature, high H_2/CO ratio, and low CO_2/CO ratio results in higher CO_2 conversion, irrespective of two-step or single step DME synthesis. - Highlights: • DME (Dimethyl ether) synthesis with CO_2 utilization is analyzed thermodynamically. • Single step and two-step DME syntheses are studied and compared with each other. • CO_2 addition suppresses CO conversion in MeOH synthesis but increases MeOH yield. • The performance of the single step DME synthesis is better than that of the two-step one. • Increase CO_2/CO ratio decreases CO_2 conversion but increases CO_2 consumption amount.

  7. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Considering dominance in reduced single-step genomic evaluations.

    Science.gov (United States)

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  9. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Antibacterial and cytocompatible nanotextured Ti surface incorporating silver via single step hydrothermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Mohandas, Anu; Krishnan, Amit G.; Biswas, Raja; Menon, Deepthy, E-mail: deepthymenon@aims.amrita.edu; Nair, Manitha B., E-mail: manithanair@aims.amrita.edu

    2017-06-01

    Nanosurface modification of Titanium (Ti) implants and prosthesis is proved to enhance osseointegration at the tissue–implant interface. However, many of these products lack adequate antibacterial capability, which leads to implant loosening. As a curative strategy, in this study, nanotextured Ti substrates embedded with silver nanoparticles were developed through a single step hydrothermal processing in an alkaline medium containing silver nitrate at different concentrations (15, 30 and 75 μM). Scanning electron micrographs revealed a non-periodically oriented nanoleafy structure on Ti (TNL) decorated with Ag nanoparticles (nanoAg), which was verified by XPS, XRD and EDS analysis. This TNLAg substrate proved to be mechanically stable upon nanoindentation and nanoscratch tests. Silver ions at detectable levels were released for a period of ~ 28 days only from substrates incorporating higher nanoAg content. The samples demonstrated antibacterial activity towards both Escherichia coli and Staphylococcus aureus, with a more favorable response to the former. Simultaneously, Ti substrates incorporating nanoAg at all concentrations supported the viability, proliferation and osteogenic differentiation of mesenchymal stem cells. Overall, nanoAg incorporation into surface modified Ti via a simple one-step thermochemical method is a favorable strategy for producing implants with dual characteristics of antibacterial activity and cell compatibility. - Highlights: • Nanosilver was incorporated within Ti nanoleafy topography by simple one-step thermochemical method • The nanosurface demonstrated antibacterial activity against gram positive and gram negative bacteria • The nanosurface promoted the viability, proliferation and osteogenic differentiation of mesenchymal stem cells.

  11. A direct, single-step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes

    International Nuclear Information System (INIS)

    Feng, X.; Einziger, R.E.; Eschenbach, R.C.

    1997-01-01

    A single-step plasma arc-vitreous ceramic (PAVC) process is described for converting spent nuclear fuel (SNF), SNF sludges, and associated wastes into a vitreous ceramic waste form. This proposed technology is built on extensive experience of nuclear waste form development and nuclear waste treatment using the commercially available plasma arc centrifugal (PAC) system. SNF elements will be loaded directly into a PAC furnace with minimum additives and converted into vitreous ceramics with up to 90 wt% waste loading. The vitreous ceramic waste form should meet the functional requirements for borosilicate glasses for permanent disposal in a geologic repository and for interim storage. Criticality safety would be ensured through the use of batch modes, and controlling the amount of fuel processed in one batch. The minimum requirements on SNF characterization and pretreatment, the one-step process, and minimum secondary waste generation may reduce treatment duration, radiation exposure, and treatment cost

  12. Factors affecting GEBV accuracy with single-step Bayesian models.

    Science.gov (United States)

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  13. A multi-step electrochemical etching process for a three-dimensional micro probe array

    International Nuclear Information System (INIS)

    Kim, Yoonji; Youn, Sechan; Cho, Young-Ho; Park, HoJoon; Chang, Byeung Gyu; Oh, Yong Soo

    2011-01-01

    We present a simple, fast, and cost-effective process for three-dimensional (3D) micro probe array fabrication using multi-step electrochemical metal foil etching. Compared to the previous electroplating (add-on) process, the present electrochemical (subtractive) process results in well-controlled material properties of the metallic microstructures. In the experimental study, we describe the single-step and multi-step electrochemical aluminum foil etching processes. In the single-step process, the depth etch rate and the bias etch rate of an aluminum foil have been measured as 1.50 ± 0.10 and 0.77 ± 0.03 µm min −1 , respectively. On the basis of the single-step process results, we have designed and performed the two-step electrochemical etching process for the 3D micro probe array fabrication. The fabricated 3D micro probe array shows the vertical and lateral fabrication errors of 15.5 ± 5.8% and 3.3 ± 0.9%, respectively, with the surface roughness of 37.4 ± 9.6 nm. The contact force and the contact resistance of the 3D micro probe array have been measured to be 24.30 ± 0.98 mN and 2.27 ± 0.11 Ω, respectively, for an overdrive of 49.12 ± 1.25 µm.

  14. Single-step brazing process for mono-block joints and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S. [Politecnico di Torino, Materials Science and Chemical Engineering Dept., Torino (Italy); Merola, M. [ITER International Team, llER Joint Work Site, Cadarache, 13 - St Paul Lez Durance (France)

    2007-07-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non

  15. Single-step brazing process for mono-block joints and mechanical testing

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S.; Merola, M.

    2007-01-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non-active brazing

  16. Accuracy of Single-Step versus 2-Step Double-Mix Impression Technique

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; da Cunha, Leonardo Fernandes; Herrera, Francyle Simões

    2011-01-01

    Objective. To investigate the accuracy of dies obtained from single-step and 2-step double-mix impressions. Material and Methods. Impressions (n = 10) of a stainless steel die simulating a complete crown preparation were performed using a polyether (Impregum Soft Heavy and Light body) and a vinyl...

  17. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-01-01

    . To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal

  18. Percutaneous Cystgastrostomy as a Single-Step Procedure

    International Nuclear Information System (INIS)

    Curry, L.; Sookur, P.; Low, D.; Bhattacharya, S.; Fotheringham, T.

    2009-01-01

    The purpose of this study was to evaluate the success of percutaneous transgastric cystgastrostomy as a single-step procedure. We performed a retrospective analysis of single-step percutaneous transgastric cystgastrostomy carried out in 12 patients (8 male, 4 female; mean age 44 years; range 21-70 years), between 2002 and 2007, with large symptomatic pancreatic pseudocysts for whom up to 1-year follow-up data (mean 10 months) were available. All pseudocysts were drained by single-step percutaneous cystgastrostomy with the placement of either one or two stents. The procedure was completed successfully in all 12 patients. The pseudocysts showed complete resolution on further imaging in 7 of 12 patients with either enteric passage of the stent or stent removal by endoscopy. In 2 of 12 patients, the pseudocysts showed complete resolution on imaging, with the stents still noted in situ. In 2 of 12 patients, the pseudocysts became infected after 1 month and required surgical intervention. In 1 of 12 patients, the pseudocyst showed partial resolution on imaging, but subsequently reaccumulated and later required external drainage. In our experience, percutaneous cystgastrostomy as a single-step procedure has a high success rate and good short-term outcomes over 1-year follow-up and should be considered in the treatment of large symptomatic cysts.

  19. Nanopatterning of magnetic disks by single-step Ar+ Ion projection

    NARCIS (Netherlands)

    Dietzel, A.H.; Berger, R.; Loeschner, H.; Platzgummer, E.; Stengl, G.; Bruenger, W.H.; Letzkus, F.

    2003-01-01

    Large-area Ar+ projection has been used to generate planar magnetic nanostructures on a 1¿-format hard disk in a single step (see Figure). The recording pattern was transferred to a Co/Pt multilayer without resist processes or any other contact to the delicate media surface. It is conceivable that

  20. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  1. Process analysis and modeling of a single-step lutein extraction method for wet microalgae.

    Science.gov (United States)

    Gong, Mengyue; Wang, Yuruihan; Bassi, Amarjeet

    2017-11-01

    Lutein is a commercial carotenoid with potential health benefits. Microalgae are alternative sources for the lutein production in comparison to conventional approaches using marigold flowers. In this study, a process analysis of a single-step simultaneous extraction, saponification, and primary purification process for free lutein production from wet microalgae biomass was carried out. The feasibility of binary solvent mixtures for wet biomass extraction was successfully demonstrated, and the extraction kinetics of lutein from chloroplast in microalgae were first evaluated. The effects of types of organic solvent, solvent polarity, cell disruption method, and alkali and solvent usage on lutein yields were examined. A mathematical model based on Fick's second law of diffusion was applied to model the experimental data. The mass transfer coefficients were used to estimate the extraction rates. The extraction rate was found more significantly related with alkali ratio to solvent than to biomass. The best conditions for extraction efficiency were found to be pre-treatment with ultrasonication at 0.5 s working cycle per second, react 0.5 h in 0.27 L/g solvent to biomass ratio, and 1:3 ether/ethanol (v/v) with 1.25 g KOH/L. The entire process can be controlled within 1 h and yield over 8 mg/g lutein, which is more economical for scale-up.

  2. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21

    Energy Technology Data Exchange (ETDEWEB)

    Verma, G.; Singh, D.; Chaudhary, K. [CCS Haryana Agricultural Univ., Hisar (India). Dept. of Biotechnology and Molecular Biology; Nigam, P. [Ulster Univ., Coleraine, Northern Ireland (United Kingdom). School of Applied Biological and Chemical Sciences

    2000-05-01

    Ethanol production by a coculture of Saccharomyces diastaticus and Saccharomyces cerevisiae 21 was 24.8 g/l using raw unhydrolysed starch in a single-step fermentation. This was 48% higher than the yield obtained with the monoculture of S. diastaticus (16.8 g/l). The maximum ethanol fermentation efficiency was achieved (93% of the theoretical value) using 60 g/l starch concentration. In another coculture fermentation with E. capsularis and S. cerevisiae 21, maximum ethanol yield was 16.0 g/l, higher than the yield with the monoculture of Endomycopsis capsularis. In batch fermentations using cocultures maximum ethanol production occurred in 48 h of fermentation at 30{sup o}C using 60 g/l starch. Fermentation efficiency was found lower in a two-step process using {alpha}-amylase and glucoamylase-treated starch. (Author)

  3. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was......, on the other hand, lighter than the single-step method....

  4. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  5. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  6. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  7. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  8. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Science.gov (United States)

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  9. Ultralow-density SiO2 aerogels prepared by a two-step sol-gel process

    International Nuclear Information System (INIS)

    Wang Jue; Li Qing; Shen Jun; Zhou Bin; Chen Lingyan; Jiang; Weiyang

    1996-01-01

    Low density SiO 2 gels are prepared by a two-step sol-gel process from TEOS. The influence of various solution ratios on the gelation process is investigated. The comparative characterization of gels using different solvent, such as ethanol, acetone and methyl cyanide, is also given. The ultralow-density SiO 2 aerogels with density less than 10 kg/m 3 are prepared by CO 2 supercritical drying technique. The structure difference between SiO 2 aerogels prepared by conventional single-step process and the two-step process is also presented

  10. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    Science.gov (United States)

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  11. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  12. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    Science.gov (United States)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-01

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.

  13. Improving Genetic Evaluation of Litter Size Using a Single-step Model

    DEFF Research Database (Denmark)

    Guo, Xiangyu; Christensen, Ole Fredslund; Ostersen, Tage

    A recently developed single-step method allows genetic evaluation based on information from phenotypes, pedigree and markers simultaneously. This paper compared reliabilities of predicted breeding values obtained from single-step method and the traditional pedigree-based method for two litter size...... traits, total number of piglets born (TNB), and litter size at five days after birth (Ls 5) in Danish Landrace and Yorkshire pigs. The results showed that the single-step method combining phenotypic and genotypic information provided more accurate predictions than the pedigree-based method, not only...

  14. An approach to eliminate stepped features in multistage incremental sheet forming process: Experimental and FEA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nirala, Harish Kumar; Jain, Prashant K.; Tandon, Puneet [PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur Jabalpur-482005, Madhya Pradesh (India); Roy, J. J.; Samal, M. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-15

    Incremental sheet forming (ISF) is a recently developed manufacturing technique. In ISF, forming is done by applying deformation force through the motion of Numerically controlled (NC) single point forming tool on the clamped sheet metal blank. Single Point Incremental sheet forming (SPISF) is also known as a die-less forming process because no die is required to fabricate any component by using this process. Now a day it is widely accepted for rapid manufacturing of sheet metal components. The formability of SPISF process improves by adding some intermediate stages into it, which is known as Multi-stage SPISF (MSPISF) process. However during forming in MSPISF process because of intermediate stages stepped features are generated. This paper investigates the generation of stepped features with simulation and experimental results. An effective MSPISF strategy is proposed to remove or eliminate this generated undesirable stepped features.

  15. Single-step link of the superdeformed band in 143Eu

    International Nuclear Information System (INIS)

    Atac, A.; Bergstroem, M.H.; Nyberg, J.; Persson, J.; Herskind, B.; Joss, D.T.; Lipoglavsek, M.; Tucek, K.

    1996-01-01

    A discrete γ-ray ransition with an energy of 3360.6 keV deexciting the second lowest SD state in 143 Eu has been discovered. It carries 3.2 % of the full intensity of the band and feeds into a nearly spherical state which is above the I = 35/2 (+) , E x =4947 keV level. The exact placement of the single-step link is, however, not established due to the specially complicated level scheme in the region of interest. The energy of the single-step link agrees well with the previously determined two-step links. (orig.)

  16. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  17. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  18. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  20. Simplified nuclear fuel reprocessing flowsheet: a single-cycle Purex process

    International Nuclear Information System (INIS)

    Montuir, M.; Dinh, B.; Baron, P.

    2004-01-01

    A simplified flowsheet with only one purification cycle instead of three is proposed for reprocessing spent nuclear fuel using the Purex process. A single-cycle flowsheet minimizes the process equipment required, the number of control points before transfer between process units, and the solvent and effluent quantities. For the uranium stream, an alpha barrier is used to strip any residual contaminants (Np, Th, Pu) from the uranium-loaded solvent. This additional step eliminates the need for a second uranium cycle. For the plutonium stream, an additional βγ co-decontamination step and a higher plutonium concentration are required before the oxalate conversion step; a plutonium 'half-cycle' is added downstream. The unloaded solvent from this half-cycle is returned to the selective plutonium stripping step, allowing significant plutonium half-cycle losses. It should be possible to reduce the number of stages in the half-cycle extraction step by recycling the raffinate to the upstream separation process. (authors)

  1. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product.

    Science.gov (United States)

    Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S

    2013-11-01

    Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pHproduct variants using the combined pH and salt based elution gradient and removal of the host cell impurities in flow-through are the key novel features of the developed multimodal chromatographic purification step. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide

    International Nuclear Information System (INIS)

    Rojas, J.V.; Molina Higgins, M.C.; Toro Gonzalez, M.; Castano, C.E.

    2015-01-01

    Graphical abstract: - Highlights: • Ir nanoparticles were synthesized through a single step gamma irradiation process. • Homogeneously distributed Ir nanoparticles on graphene oxide are ∼2.3 nm in size. • Ir−O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: In this work a new approach to synthesize iridium nanoparticles on reduced graphene oxide is presented. The nanoparticles were directly deposited and grown on the surface of the carbon-based support using a single step reduction method through gamma irradiation. In this process, an aqueous isopropanol solution containing the iridium precursor, graphene oxide, and sodium dodecyl sulfate was initially prepared and sonicated thoroughly to obtain a homogeneous dispersion. The samples were irradiated with gamma rays with energies of 1.17 and 1.33 MeV emitted from the spontaneous decay of the 60 Co irradiator. The interaction of gamma rays with water in the presence of isopropanol generates highly reducing species homogeneously distributed in the solution that can reduce the Ir precursor down to a zero valence state. An absorbed dose of 60 kGy was used, which according to the yield of reducing species is sufficient to reduce the total amount of precursor present in the solution. This novel approach leads to the formation of 2.3 ± 0.5 nm Ir nanoparticles distributed along the surface of the support. The oxygenated functionalities of graphene oxide served as nucleation sites for the formation of Ir nuclei and their subsequent growth. XPS results revealed that the interaction of Ir with the support occurs through Ir−O bonds.

  3. The Point Zoro Symmetric Single-Step Procedure for Simultaneous Estimation of Polynomial Zeros

    Directory of Open Access Journals (Sweden)

    Mansor Monsi

    2012-01-01

    Full Text Available The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This procedure is modified by adding another single-step, which is the third step in PSS1. This modified procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1, and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding simple zeros simultaneously.

  4. Low-field multi-step magnetization of GaV4S8 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Kajinami, Y; Tabata, Y [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Ikeno, R; Motoyama, G; Kohara, T, E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2009-01-01

    The magnetization process of single crystalline GaV4S8 including tetrahedral magnetic clusters was measured in the magnetically ordered state below T{sub C} {approx_equal} 13 K. Just below TC, steps were observed at very low fields of the order of 100 Oe, suggesting the competition of several intra- and inter-cluster interactions in a low energy range.

  5. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  6. Effects of acute alcohol intoxication on automated processing: evidence from the double-step paradigm.

    Science.gov (United States)

    Vorstius, Christian; Radach, Ralph; Lang, Alan R

    2012-02-01

    Reflexive and voluntary levels of processing have been studied extensively with respect to possible impairments due to alcohol intoxication. This study examined alcohol effects at the 'automated' level of processing essential to many complex visual processing tasks (e.g., reading, visual search) that involve ongoing modifications or reprogramming of well-practiced routines. Data from 30 participants (16 male) were collected in two counterbalanced sessions (alcohol vs. no-alcohol control; mean breath alcohol concentration = 68 mg/dL vs. 0 mg/dL). Eye movements were recorded during a double-step task where 75% of trials involved two target stimuli in rapid succession (inter-stimulus interval [ISI]=40, 70, or 100 ms) so that they could elicit two distinct saccades or eye movements (double steps). On 25% of trials a single target appeared. Results indicated that saccade latencies were longer under alcohol. In addition, the proportion of single-step responses and the mean saccade amplitude (length) of primary saccades decreased significantly with increasing ISI. The key novel finding, however, was that the reprogramming time needed to cancel the first saccade and adjust saccade amplitude was extended significantly by alcohol. The additional time made available by prolonged latencies due to alcohol was not utilized by the saccade programming system to decrease the number of two-step responses. These results represent the first demonstration of specific alcohol-induced programming deficits at the automated level of oculomotor processing.

  7. Genomic prediction in a nuclear population of layers using single-step models.

    Science.gov (United States)

    Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning

    2018-02-01

    Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.

  8. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    International Nuclear Information System (INIS)

    Hagmann, C; Pruet, J

    2006-01-01

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence

  9. Response of single polymers to localized step strains

    NARCIS (Netherlands)

    Panja, D.

    2009-01-01

    In this paper, the response of single three-dimensional phantom and self-avoiding polymers to localized step strains are studied for two cases in the absence of hydrodynamic interactions: (i) Polymers tethered at one end with the strain created at the point of tether, and (ii) free polymers with the

  10. Characterization of cyclic deformation behaviour of tempered and quenched 42CrMoS4 at single step and variable amplitude loading

    International Nuclear Information System (INIS)

    Schelp, M.; Eifler, D.

    2000-01-01

    Cyclic single steps tests were performed on tempered and quenched specimens of the steel 42CrMoS4. Strain, temperature and electrical resistance measurements yielded an empirical prediction of fatigue life according to Coffin, Manson and Morrow. All measured values are based on physical processes and therefore show a strong interaction. A new testing procedure was developed permitting hysteresis measurements to be used for the characterization and description of fatigue behaviour under variable amplitude loading. The basic idea is to combine fatigue tests with any kind of load spectrum with single step tests. This offers the possibility to apply lifetime prediction methods normally used for single step tests for those with random or service loading. (orig.)

  11. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  12. The Effects of Multiple-Step and Single-Step Directions on Fourth and Fifth Grade Students' Grammar Assessment Performance

    Science.gov (United States)

    Mazerik, Matthew B.

    2006-01-01

    The mean scores of English Language Learners (ELL) and English Only (EO) students in 4th and 5th grade (N = 110), across the teacher-administered Grammar Skills Test, were examined for differences in participants' scores on assessments containing single-step directions and assessments containing multiple-step directions. The results indicated no…

  13. Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal.

    Science.gov (United States)

    Balazs, Daniel M; Rizkia, Nisrina; Fang, Hong-Hua; Dirin, Dmitry N; Momand, Jamo; Kooi, Bart J; Kovalenko, Maksym V; Loi, Maria Antonietta

    2018-02-14

    Colloidal quantum dots are a class of solution-processed semiconductors with good prospects for photovoltaic and optoelectronic applications. Removal of the surfactant, so-called ligand exchange, is a crucial step in making the solid films conductive, but performing it in solid state introduces surface defects and cracks in the films. Hence, the formation of thick, device-grade films have only been possible through layer-by-layer processing, limiting the technological interest for quantum dot solids. Solution-phase ligand exchange before the deposition allows for the direct deposition of thick, homogeneous films suitable for device applications. In this work, fabrication of field-effect transistors in a single step is reported using blade-coating, an upscalable, industrially relevant technique. Most importantly, a postdeposition washing step results in device properties comparable to the best layer-by-layer processed devices, opening the way for large-scale fabrication and further interest from the research community.

  14. Multi-step wrought processing of TiAl-based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1997-04-01

    Wrought processing will likely be needed for fabrication of a variety of TiAl-based alloy structural components. Laboratory and development work has usually relied on one-step forging to produce test material. Attempts to scale-up TiAl-based alloy processing has indicated that multi-step wrought processing is necessary. The purpose of this study was to examine potential multi-step processing routes, such as two-step isothermal forging and extrusion + isothermal forging. The effects of processing (I/M versus P/M), intermediate recrystallization heat treatments and processing route on the tensile and creep properties of Ti-48Al-2Nb-2Cr alloys were examined. The results of the testing were then compared to samples from the same heats of materials processed by one-step routes. Finally, by evaluating the effect of processing on microstructure and properties, optimized and potentially lower cost processing routes could be identified

  15. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund

    2012-01-01

    Single-step methods for genomic prediction have recently become popular because they are conceptually simple and in practice such a method can completely replace a pedigree-based method for routine genetic evaluation. An issue with single-step methods is compatibility between the marker-based rel...

  16. Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step.

    Science.gov (United States)

    Barrett, Angela N; Thadani, Henna A; Laureano-Asibal, Cecille; Ponnusamy, Sukumar; Choolani, Mahesh

    2014-12-01

    Cell-free fetal DNA can be used for prenatal testing with no procedure-related risk to the fetus. However, yield of fetal DNA is low compared with maternal cell-free DNA fragments, resulting in technical challenges for some downstream applications. To maximize the fetal fraction, careful blood processing procedures are essential. We demonstrate that fetal fraction can be preserved using a single centrifugation step followed by postage of plasma to the laboratory for further processing. Digital PCR was used to quantify copies of total, maternal, and fetal DNA present in single-spun plasma at time points over a two-week period, compared with immediately processed double-spun plasma, with storage at room temperature, 4°C, and -80°C representing different postage scenarios. There was no significant change in total, maternal, or fetal DNA copy numbers when single-spun plasma samples were stored for up to 1 week at room temperature and 2 weeks at -80°C compared with plasma processed within 4 h. Following storage at 4°C no change in composition of cell-free DNA was observed. Single-spun plasma can be transported at room temperature if the journey is expected to take one week or less; shipping on dry ice is preferable for longer journeys. © 2014 John Wiley & Sons, Ltd.

  17. Single step vacuum-free and hydrogen-free synthesis of graphene

    Directory of Open Access Journals (Sweden)

    Christian Orellana

    2017-08-01

    Full Text Available We report a modified method to grow graphene in a single-step process. It is based on chemical vapor deposition and considers the use of methane under extremely adverse synthesis conditions, namely in an open chamber without requiring the addition of gaseous hydrogen in any of the synthesis stages. The synthesis occurs between two parallel Cu plates, heated up via electromagnetic induction. The inductive heating yields a strong thermal gradient between the catalytic substrates and the surrounding environment, promoting the enrichment of hydrogen generated as fragments of the methane molecules within the volume confined by the Cu foils. This induced density gradient is due to thermo-diffusion, also known as the Soret effect. Hydrogen and other low mass molecular fractions produced during the process inhibit oxidative effects and simultaneously reduce the native oxide on the Cu surface. As a result, high quality graphene is obtained on the inner surfaces of the Cu sheets as confirmed by Raman spectroscopy.

  18. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    Science.gov (United States)

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  19. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  20. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  1. Ten steps to successful software process improvement

    Science.gov (United States)

    Kandt, R. K.

    2003-01-01

    This paper identifies ten steps for managing change that address organizational and cultural issues. Four of these steps are critical, that if not done, will almost guarantee failure. This ten-step program emphasizes the alignment of business goals, change process goals, and the work performed by the employees of an organization.

  2. Electric field dependent paramagnetic defect creation in single step implanted Simox films

    International Nuclear Information System (INIS)

    Leray, J.L.; Margail, J.

    1991-01-01

    X irradiation induced oxygen-vacancy defect creation has been studied in SIMOX produced by single step implantation and annealing. It is shown that SIMOX is substantially more radiation sensitive (for these defects) than thermal or bulk oxide. Irradiation in the presence of an electric field 0.5 -1 MV cm -1 is found to enhance the rate of defect creation by ≥ 2 times. Further enhanced defect creation is observed in SIMOX samples whose substrate has been chemically thinned prior to irradiation. This enhancement is attributed to modification of the network induced by hydrogen introduced during the thinning process

  3. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  4. Multivariate statistical analysis of a multi-step industrial processes

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Høskuldsson, Agnar

    2007-01-01

    Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized...... efficiently, even if this information may reveal significant knowledge about process dynamics or ongoing phenomena. When studying the process data, it may be important to analyse the data in the light of the physical or time-wise development of each process step. In this paper, a unified approach to analyse...... multivariate multi-step processes, where results from each step are used to evaluate future results, is presented. The methods presented are based on Priority PLS Regression. The basic idea is to compute the weights in the regression analysis for given steps, but adjust all data by the resulting score vectors...

  5. A Single-step Process to Convert Karanja Oil to Fatty Acid Methyl Esters Using Amberlyst15 as a Catalyst

    Directory of Open Access Journals (Sweden)

    Arun K. Gupta

    2018-03-01

    Full Text Available Karanja oil was successfully converted to fatty acid methyl esters (FAME in a single- step process using Amberlyst15 as a catalyst. A methanol to oil ratio of 6 was required to retain the physical structure of the Amberlyst15 catalyst. At higher methanol to oil ratios, the Amberlyst15 catalyst disintegrated. Disintegration of Amberlyst15 caused an irreversible loss in catalytic activity. This loss in activity was due to a decrease in surface area of Amberlyst15, which was caused by a decrease in its mesoporous volume. It appeared that the chemical nature of Amberlyst15 was unaffected. Reuse of Amberlyst15 with a methanol to oil ratio of 6:1 also revealed a loss in FAME yield. However, this loss in activity was recovered by heating the used Amberlyst15 catalyst to 393 K. The kinetic parameters of a power law model were successfully determined for a methanol to oil ratio of 6:1. An activation energy of 54.9 kJ mol–1 was obtained.

  6. Single-step linking transition from superdeformed to spherical states in {sup 143}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Atac, A.; Axelsson, A.; Persson, J. [Uppsala Univ. (Sweden)] [and others

    1996-12-31

    A discrete {gamma}-ray transition which connects the second lowest SD state with a normally deformed one in {sup 143}Eu has been discovered. It has an energy of 3360.6 keV and carries 3.2 % of the full intensity of the SD band. It feeds into a nearly spherical state which is above the I = 35/2{sup +}, E=4947 keV level. The exact placement of the single-step link could, however, not be established due to the especially complicated level scheme in the region of interest. The angular correlation study favours a stretched dipole character for the 3360.6 keV transition. The single-step link agrees well with the previously determined two-step links, both with respect to energy and spin.

  7. Data-based control of a multi-step forming process

    Science.gov (United States)

    Schulte, R.; Frey, P.; Hildenbrand, P.; Vogel, M.; Betz, C.; Lechner, M.; Merklein, M.

    2017-09-01

    The fourth industrial revolution represents a new stage in the organization and management of the entire value chain. However, concerning the field of forming technology, the fourth industrial revolution has only arrived gradually until now. In order to make a valuable contribution to the digital factory the controlling of a multistage forming process was investigated. Within the framework of the investigation, an abstracted and transferable model is used to outline which data have to be collected, how an interface between the different forming machines can be designed tangible and which control tasks must be fulfilled. The goal of this investigation was to control the subsequent process step based on the data recorded in the first step. The investigated process chain links various metal forming processes, which are typical elements of a multi-step forming process. Data recorded in the first step of the process chain is analyzed and processed for an improved process control of the subsequent process. On the basis of the gained scientific knowledge, it is possible to make forming operations more robust and at the same time more flexible, and thus create the fundament for linking various production processes in an efficient way.

  8. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  9. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  10. Development process and data management of TurnSTEP, a STEP-compliant CNC system for turning

    NARCIS (Netherlands)

    Choi, I.; Suh, S.-H; Kim, K.; Song, M.S.; Jang, M.; Lee, B.-E.

    2006-01-01

    TurnSTEP is one of the earliest STEP-compliant CNC systems for turning. Based on the STEP-NC data model formalized as ISO 14649-12 and 121, it is designed to support intelligent and autonomous control of NC machines for e-manufacturing. The present paper introduces the development process and data

  11. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  12. Virtual substitution scan via single-step free energy perturbation.

    Science.gov (United States)

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  13. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    Science.gov (United States)

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.

    Directory of Open Access Journals (Sweden)

    Cara L Lewis

    Full Text Available The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16 cm and 24 cm. The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003, but more hip external rotation and knee abduction (p ≤ 0.030, than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24 cm step down task (p ≤ 0.029. While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001. Angles at the knee and hip had a moderate to excellent correlation (r = 0.51-0.98, but less consistently so at the pelvis and trunk (r = 0.21-0.96. The differences in movement patterns between the single leg squat and the step down should be considered when selecting a

  15. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique

    Science.gov (United States)

    Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi

    2017-01-01

    We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH. PMID:28531106

  16. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique

    Directory of Open Access Journals (Sweden)

    Paola Fanzio

    2017-05-01

    Full Text Available We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT, and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline. The patterning of the fluidic (microfluidic channels and conductive (wiring and electrodes functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.

  17. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique.

    Science.gov (United States)

    Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi

    2017-05-20

    We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.

  18. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  19. Single step synthesis and organization of gold colloids assisted by copolymer templates

    Science.gov (United States)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-06-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.

  20. A single-step method for rapid extraction of total lipids from green microalgae.

    Directory of Open Access Journals (Sweden)

    Martin Axelsson

    Full Text Available Microalgae produce a wide range of lipid compounds of potential commercial interest. Total lipid extraction performed by conventional extraction methods, relying on the chloroform-methanol solvent system are too laborious and time consuming for screening large numbers of samples. In this study, three previous extraction methods devised by Folch et al. (1957, Bligh and Dyer (1959 and Selstam and Öquist (1985 were compared and a faster single-step procedure was developed for extraction of total lipids from green microalgae. In the single-step procedure, 8 ml of a 2∶1 chloroform-methanol (v/v mixture was added to fresh or frozen microalgal paste or pulverized dry algal biomass contained in a glass centrifuge tube. The biomass was manually suspended by vigorously shaking the tube for a few seconds and 2 ml of a 0.73% NaCl water solution was added. Phase separation was facilitated by 2 min of centrifugation at 350 g and the lower phase was recovered for analysis. An uncharacterized microalgal polyculture and the green microalgae Scenedesmus dimorphus, Selenastrum minutum, and Chlorella protothecoides were subjected to the different extraction methods and various techniques of biomass homogenization. The less labour intensive single-step procedure presented here allowed simultaneous recovery of total lipid extracts from multiple samples of green microalgae with quantitative yields and fatty acid profiles comparable to those of the previous methods. While the single-step procedure is highly correlated in lipid extractability (r² = 0.985 to the previous method of Folch et al. (1957, it allowed at least five times higher sample throughput.

  1. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  2. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    Science.gov (United States)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  3. One step processing for future diesel specifications

    International Nuclear Information System (INIS)

    Brierley, G.R.

    1997-01-01

    The trend in diesel fuel specifications is to limit the sulfur level to less than 0.05 wt- per cent. Many regions have also specified that diesel fuels must have lower aromatic levels, higher cetane numbers, and lower distillation end points. These changes will require significant refinery investment to meet the new diesel fuel specifications. The changes may also significantly affect the value of synthetic crude stocks. UOP has developed a new hydroprocessing catalyst which makes it possible to meet the new diesel specifications in one single processing step and at minimal cost. The catalyst saturates aromatics while opening ring structures at the same time. By selectively cracking heavy components into the diesel range with minimal cracking to gas or naphtha, heavier feedstocks can be upgraded to diesel, and refinery diesel yield can be augmented. Synthetic crude distillate is often high in aromatics and low in cetane number. This new UOP hydroprocessing system will allow synthetic crude producers and refiners to produce diesel fuels with higher cetane numbers, high-quality distillate blendstocks and distillate fuels. 26 figs

  4. Economic assessment of single-walled carbon nanotube processes

    Science.gov (United States)

    Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.

    2010-02-01

    The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  5. Economic assessment of single-walled carbon nanotube processes

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, J. A., E-mail: jaisaacs@coe.neu.ed [Northeastern University, NSF Center for High-rate Nanomanufacturing (United States); Tanwani, A. [Infojini Solutions Inc. (United States); Healy, M. L. [Babcock Power Inc. (United States); Dahlben, L. J. [Northeastern University, NSF Center for High-rate Nanomanufacturing (United States)

    2010-02-15

    The carbon nanotube market is steadily growing and projected to reach $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling $1,906, $1,706, and $485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  6. Single step synthesis and organization of gold colloids assisted by copolymer templates

    International Nuclear Information System (INIS)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-01-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future. (papers)

  7. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.

    Science.gov (United States)

    Farazdaghi, Hadi

    2011-02-01

    Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at

  8. Out of the picture: a study of family drawings by children from step-, single-parent, and non-step families.

    Science.gov (United States)

    Dunn, Judy; O'Connor, Thomas G; Levy, Irit

    2002-12-01

    Investigated the family drawings of 180 children ages 5 to 7 years in various family settings, including stepfather, single-parent, complex stepfamilies, and 2-parent control families. The relations of family type and biological relatedness to omission of family members and grouping of parents were examined. Children from step- and single-parent families were more likely to exclude family members than children from "control" non-step families, and exclusion was predicted from biological relatedness. Children who were biologically related to both resident parents were also more likely to group their parents together. Omission of family members was found to be associated with children's adjustment (specifically more externalizing and internalizing behavior) as reported by teachers and parents. The results indicate that biological relatedness is a salient aspect of very young children's representations of their families. The association between adjustment and exclusion of family members and grouping of parents indicates that family drawings may be useful research and clinical tools, when used in combination with other methods of assessment.

  9. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    Science.gov (United States)

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  10. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  11. "Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step

    Science.gov (United States)

    Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon

    2013-04-01

    During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.

  12. The Material Supply Adjustment Process in RAMF-SM, Step 2

    Science.gov (United States)

    2016-06-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S The Material Supply Adjustment Process in RAMF-SM, Step 2 Eleanor L. Schwartz James S...5564 The Material Supply Adjustment Process in RAMF-SM, Step 2 Eleanor L. Schwartz James S. Thomason, Project Leader This page is intentionally blank...9 1. Inputs and Outputs .......................................................................................10 2. Specific Steps of the PEAP

  13. Comparison on genomic predictions using GBLUP models and two single-step blending methods with different relationship matrices in the Nordic Holstein population

    DEFF Research Database (Denmark)

    Gao, Hongding; Christensen, Ole Fredslund; Madsen, Per

    2012-01-01

    Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may...... not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16......) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted...

  14. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  15. Effects of V{sub 2}O{sub 5} addition on NiZn ferrite synthesized using two-step sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Shi Gang; Ni Zheming; Zheng Li [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Aimin, E-mail: hjzjut@zjut.edu.cn [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-06-15

    The combined influence of a two-step sintering (TSS) process and addition of V{sub 2}O{sub 5} on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V{sub 2}O{sub 5} additive, the sample sintered by the two-step sintering process at a high temperature of 1250 Degree-Sign C for 30 min and a lower temperature of 1180 Degree-Sign C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.

  16. Comparison of single-entry and double-entry two-step couple screening for cystic fibrosis carriers

    NARCIS (Netherlands)

    tenKate, LP; Verheij, JBGM; Wildhagen, MF; Hilderink, HBM; Kooij, L; Verzijl, JG; Habbema, JDF

    1996-01-01

    Both single-entry two-step (SETS) couple screening and double-entry two-step (DETS) couple screening have been recommended as methods to screen for cystic fibrosis gene carriers. In this paper we compare the expected results from both types of screening. In general, DETS results in a higher

  17. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    Science.gov (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  18. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  19. Biased Brownian motion mechanism for processivity and directionality of single-headed myosin-VI.

    Science.gov (United States)

    Iwaki, Mitsuhiro; Iwane, Atsuko Hikikoshi; Ikebe, Mitsuo; Yanagida, Toshio

    2008-01-01

    Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.

  20. Peyton’s four-step approach: differential effects of single instructional steps on procedural and memory performance – a clarification study

    Directory of Open Access Journals (Sweden)

    Krautter M

    2015-05-01

    Full Text Available Markus Krautter,1 Ronja Dittrich,2 Annette Safi,2 Justine Krautter,1 Imad Maatouk,2 Andreas Moeltner,2 Wolfgang Herzog,2 Christoph Nikendei2 1Department of Nephrology, 2Department of General Internal and Psychosomatic Medicine, University of Heidelberg Medical Hospital, Heidelberg, Germany Background: Although Peyton’s four-step approach is a widely used method for skills-lab training in undergraduate medical education and has been shown to be more effective than standard instruction, it is unclear whether its superiority can be attributed to a specific single step. Purpose: We conducted a randomized controlled trial to investigate the differential learning outcomes of the separate steps of Peyton’s four-step approach. Methods: Volunteer medical students were randomly assigned to four different groups. Step-1 group received Peyton’s Step 1, Step-2 group received Peyton’s Steps 1 and 2, Step-3 group received Peyton’s Steps 1, 2, and 3, and Step-3mod group received Peyton’s Steps 1 and 2, followed by a repetition of Step 2. Following the training, the first independent performance of a central venous catheter (CVC insertion using a manikin was video-recorded and scored by independent video assessors using binary checklists. The day after the training, memory performance during delayed recall was assessed with an incidental free recall test. Results: A total of 97 participants agreed to participate in the trial. There were no statistically significant group differences with regard to age, sex, completed education in a medical profession, completed medical clerkships, preliminary memory tests, or self-efficacy ratings. Regarding checklist ratings, Step-2 group showed a superior first independent performance of CVC placement compared to Step-1 group (P<0.001, and Step-3 group showed a superior performance to Step-2 group (P<0.009, while Step-2 group and Step-3mod group did not differ (P=0.055. The findings were similar in the incidental

  1. The partner selection process : Steps, effectiveness, governance

    NARCIS (Netherlands)

    Duisters, D.; Duijsters, G.M.; de Man, A.P.

    2011-01-01

    Selecting the right partner is important for creating value in alliances. Even though prior research suggests that a structured partner selection process increases alliance success, empirical research remains scarce. This paper presents an explorative empirical study that shows that some steps in

  2. The partner selection process : steps, effectiveness, governance

    NARCIS (Netherlands)

    Duisters, D.; Duysters, G.M.; Man, de A.P.

    2011-01-01

    Selecting the right partner is important for creating value in alliances. Even though prior research suggests that a structured partner selection process increases alliance success, empirical research remains scarce. This paper presents an explorative empirical study that shows that some steps in

  3. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  4. A three-step vehicle detection framework for range estimation using a single camera

    CSIR Research Space (South Africa)

    Kanjee, R

    2015-12-01

    Full Text Available This paper proposes and validates a real-time onroad vehicle detection system, which uses a single camera for the purpose of intelligent driver assistance. A three-step vehicle detection framework is presented to detect and track the target vehicle...

  5. Structural Studies of Silver Nanoparticles Obtained Through Single-Step Green Synthesis

    Science.gov (United States)

    Prasad Peddi, Siva; Abdallah Sadeh, Bilal

    2015-10-01

    Green synthesis of silver Nanoparticles (AGNP's) has been the most prominent among the metallic nanoparticles for research for over a decade and half now due to both the simplicity of preparation and the applicability of biological species with extensive applications in medicine and biotechnology to reduce and trap the particles. The current article uses Eclipta Prostrata leaf extract as the biological species to cap the AGNP's through a single step process. The characterization data obtained was used for the analysis of the sample structure. The article emphasizes the disquisition of their shape and size of the lattice parameters and proposes a general scheme and a mathematical model for the analysis of their dependence. The data of the synthesized AGNP's has been used to advantage through the introduction of a structural shape factor for the crystalline nanoparticles. The properties of the structure of the AGNP's proposed and evaluated through a theoretical model was undeviating with the experimental consequences. This modus operandi gives scope for the structural studies of ultrafine particles prepared using biological methods.

  6. Quickest single-step one pot mechanosynthesis and characterization of ZnTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Patra, S. [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India)

    2011-05-05

    Research highlights: > First time quickest mechanosynthesis of ZnTe QDs starting from Zn and Te powders. > Cubic ZnTe are formed in a single pot at RT in a single step within 1 h of milling. > The existence of stacking faults and twin faults are evident from HRTEM images. > Distinct blue shift has been observed in UV-vis absorption spectra. > First time report that ZnTe QDs with faults can also show the quantum size effect. - Abstract: ZnTe quantum dots (QDs) are synthesized at room temperature in a single step by mechanical alloying the stoichiometric equimolar mixture (1:1 mol) of Zn and Te powders under Ar within 1 h of milling. Both XRD and HRTEM characterizations reveal that these QDs having size {approx}5 nm contain stacking faults of different kinds. A distinct blue-shift in absorption spectra with decreasing particle size of QDs confirms the quantum size confinement effect (QSCE). It is observed for first time that the QDs with considerable amount of faults can also show the QSCE. Optical band gaps of these QDs increase with increasing milling time and their band gaps can be fine-tuned easily by varying milling time of QDs.

  7. Lyondell develops one step isobutylene process

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Lyondell Petrochemical Co., Houston, has developed a one step process to convert normal butylenes to isobutylene, a key component of methyl tertiary butyl ether (MTBE). MTBE is expected to become the additive of choice among U.S. refiners to blend oxygenated gasolines required by 1990 amendments to the Clean Air Act. Lyondell Pres. and Chief Executive Officer Bob Gower the the new process could help assure adequate supplies of MTBE to meet U.S. demand for cleaner burning fuels. Lyondell estimates the capital cost of building a grassroots plant to produce isobutylene with the new process would be less than half the cost of a grassroot plant to produce isobutylene with existing technology starting with normal butane

  8. Aesthetic rehabilitation of a patient with an anterior maxillectomy defect, using an innovative single-step, single unit, plastic-based hollow obturator

    Directory of Open Access Journals (Sweden)

    Vishwas Bhatia

    2015-06-01

    Full Text Available What could be better than improving the comfort and quality of life of a patient with a life-threatening disease? Maxillectomy, the partial or total removal of the maxilla in patients suffering from benign or malignant neoplasms, creates a challenging defect for the maxillofacial prosthodontist when attempting to provide an effective obturator. Although previous methods have been described for rehabilitation of such patients, our goal should be to devise one stage techniques that will allow the patient an improved quality of life as soon as possible. The present report describes the aesthetic rehabilitation of a maxillectomy patient by use of a hollow obturator. The obturator is fabricated through a processing technique which is a variation of other well-known techniques, consisting of the use of a single-step flasking procedure to fabricate a single-unit hollow obturator using the lost salt technique. As our aim is to aesthetically and functionally rehabilitate the patient as soon as possible, the present method of restoring the maxillectomy defect is cost-effective, time-saving and beneficial for the patient.

  9. A single step methane conversion into synthetic fuels using microplasma reactor

    NARCIS (Netherlands)

    Nozaki, Tomohiro; Agiral, A.; Gardeniers, Johannes G.E.; Yuzawa, Shuhei; Okazaki, Ken

    2011-01-01

    Direct conversion of natural gas into synthetic fuels such as methanol attracts keen attention because direct process can reduce capital and operating costs of high temperature, energy intensive, multi-step processes. We report a direct and selective synthesis of organic oxygenates such as methanol,

  10. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    Science.gov (United States)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  11. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  12. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  13. Development of single step RT-PCR for detection of Kyasanur forest disease virus from clinical samples

    Directory of Open Access Journals (Sweden)

    Gouri Chaubal

    2018-02-01

    Discussion and conclusion: The previously published sensitive real time RT-PCR assay requires higher cost in terms of reagents and machine setup and technical expertise has been the primary reason for development of this assay. A single step RT-PCR is relatively easy to perform and more cost effective than real time RT-PCR in smaller setups in the absence of Biosafety Level-3 facility. This study reports the development and optimization of single step RT-PCR assay which is more sensitive and less time-consuming than nested RT-PCR and cost effective for rapid diagnosis of KFD viral RNA.

  14. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    Science.gov (United States)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  15. One-Step Real-Image Reflection Holograms

    Science.gov (United States)

    Buah-Bassuah, Paul K.; Vannoni, Maurizio; Molesini, Giuseppe

    2007-01-01

    A holographic process is presented where the object is made of the real image produced by a two-mirror system. Single-step reflection hologram recording is achieved. Details of the process are given, optics concepts are outlined and demonstrative results are presented. (Contains 6 figures and 2 footnotes.)

  16. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon

    Science.gov (United States)

    Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung

    2017-11-01

    Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.

  17. A novel single-step procedure for the calibration of the mounting parameters of a multi-camera terrestrial mobile mapping system

    Science.gov (United States)

    Habib, A.; Kersting, P.; Bang, K.; Rau, J.

    2011-12-01

    Mobile Mapping Systems (MMS) can be defined as moving platforms which integrates a set of imaging sensors and a position and orientation system (POS) for the collection of geo-spatial information. In order to fully explore the potential accuracy of such systems and guarantee accurate multi-sensor integration, a careful system calibration must be carried out. System calibration involves individual sensor calibration as well as the estimation of the inter-sensor geometric relationship. This paper tackles a specific component of the system calibration process of a multi-camera MMS - the estimation of the relative orientation parameters among the cameras, i.e., the inter-camera geometric relationship (lever-arm offsets and boresight angles among the cameras). For that purpose, a novel single step procedure, which is easy to implement and not computationally intensive, will be introduced. The proposed method is implemented in such a way that it can also be used for the estimation of the mounting parameters among the cameras and the IMU body frame, in case of directly georeferenced systems. The performance of the proposed method is evaluated through experimental results using simulated data. A comparative analysis between the proposed single-step and the two-step, which makes use of the traditional bundle adjustment procedure, is demonstrated.

  18. Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism

    International Nuclear Information System (INIS)

    Stolterfoht, N.

    1993-01-01

    The semiclassical approximation is applied in second order to describe time ordering of two-step processes in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of associated paths involving a second-order process and its time-inverted process. Combining these paths within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of time ordering modifies the second-order amplitude so that its ability to interfere with the first-order amplitude is essentially reduced. Time ordering and the capability for interference is regained, as one path is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for papers dealing with collision experiments of single excitation [Stolterfoht et al., following paper, Phys. Rev. A 48, 2986 (1993)] and double excitation [Stolterfoht et al. (unpublished)

  19. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.

    Science.gov (United States)

    Cai, Xi; Han, Guang; Song, Xin; Wang, Jinkuan

    2017-11-01

    single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc. single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring

  20. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  1. Calculation of the MSD two-step process with the sudden approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shiro [Tohoku Univ., Sendai (Japan). Dept. of Physics; Kawano, Toshihiko [Kyushu Univ., Advanced Energy Engineering Science, Kasuga, Fukuoka (Japan)

    2000-03-01

    A calculation of the two-step process with the sudden approximation is described. The Green's function which connects the one-step matrix element to the two-step one is represented in {gamma}-space to avoid the on-energy-shell approximation. Microscopically calculated two-step cross sections are averaged together with an appropriate level density to give a two-step cross section. The calculated cross sections are compared with the experimental data, however the calculation still contains several simplifications at this moment. (author)

  2. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  3. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S.

    2012-01-01

    Fucose-containing sulfated polysaccharides can be extracted from the brown seaweed, Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects....... Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multiple-step, hot acid, or CaCl2 treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature...... on the yield of fucosecontaining sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive...

  4. Simulation of dynamic processes when machining transition surfaces of stepped shafts

    Science.gov (United States)

    Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.

    2018-03-01

    The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.

  5. Voluntary stepping behavior under single- and dual-task conditions in chronic stroke survivors: A comparison between the involved and uninvolved legs.

    Science.gov (United States)

    Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit

    2010-12-01

    If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution

  6. Single-step synthesis of [18F]haloperidol from the chloro-precursor and its applications in PET imaging of a cat's brain

    International Nuclear Information System (INIS)

    Hashizume, Kazunari; Tamakawa, Hiroki; Hashimoto, Naoto; Miyake, Yoshihiro

    1997-01-01

    We have established a convenient synthesis process for the synthesis of [ 18 F]haloperidol using a single-step 18 F - for -Cl exchange reaction and a new elution system for the preparative high performance liquid chromatography (HPLC) using C18 bonded vinylalcohol copolymer gel (ODP) and a basic eluent. We successfully applied the product to cat-PET study and got clear images of the striatum, showing the usefulness of this synthesis. (author)

  7. Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, M.; Borm, P.E.M.; Quant, M.

    2014-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.

  8. Netherlands : An ‘Echternach’ Procession in Different Directions: Oscillating Steps Towards Reform

    NARCIS (Netherlands)

    Westerheijden, Donald F.; de Boer, Harry F.; Enders, Jürgen; Paradeise, C.; Reale, E.; Bleiklie, I.; Ferlie, E.

    2009-01-01

    The annual procession in the Luxemburg town of Echternach is famous for its laborious manner of reaching its end: two steps forward, one step back. In this paper, we will maintain that the policy of the Dutch government over the period of c.1982–2007 resembles an Echternach procession in reverse:

  9. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects. (paper)

  10. Step out-step in sequencing games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2015-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,

  11. Single-step controlled-NOT logic from any exchange interaction

    Science.gov (United States)

    Galiautdinov, Andrei

    2007-11-01

    A self-contained approach to studying the unitary evolution of coupled qubits is introduced, capable of addressing a variety of physical systems described by exchange Hamiltonians containing Rabi terms. The method automatically determines both the Weyl chamber steering trajectory and the accompanying local rotations. Particular attention is paid to the case of anisotropic exchange with tracking controls, which is solved analytically. It is shown that, if computational subspace is well isolated, any exchange interaction can always generate high fidelity, single-step controlled-NOT (CNOT) logic, provided that both qubits can be individually manipulated. The results are then applied to superconducting qubit architectures, for which several CNOT gate implementations are identified. The paper concludes with consideration of two CNOT gate designs having high efficiency and operating with no significant leakage to higher-lying noncomputational states.

  12. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-step process for concentrating magnetic particles in waste sludges

    Science.gov (United States)

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  14. 48 CFR 15.202 - Advisory multi-step process.

    Science.gov (United States)

    2010-10-01

    ... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Solicitation and Receipt of Proposals and Information 15.202 Advisory multi-step process. (a) The agency may publish a presolicitation notice (see 5.204) that provides a general description of the scope or purpose of the acquisition and invites potential...

  15. Strategic planning: the first step in the planning process.

    Science.gov (United States)

    Gelinas, Marc A

    2003-01-01

    Strategic planning is a systematic process through which an organization builds commitment among key stakeholders to goals and priorities which are essential to its mission and vision, and responsive to the operating environment. Strategic planning is the first step in a comprehensive planning process that also includes business planning and implementation planning. If all three steps are carried out in sequence, strategic planning can be a very effective means of educating the stakeholders about where the cancer program is and where it is going, gaining support and commitment for the direction that the cancer program will take, and assuring that everyone's expectations can be managed effectively. Unfortunately, some organizations and cancer program leaders misunderstand the process. Too often, strategic planning is used as a stand-alone activity. This article will describe what strategic planning is, how it should smoothly lead into business planning and implementation planning, and how to avoid the pitfalls that sometimes arise during the strategic planning effort.

  16. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule.

    Science.gov (United States)

    Smith, Derrick M; Kapoor, Yash; Klinzing, Gerard R; Procopio, Adam T

    2018-06-10

    Fused deposition modeling (FDM) 3D printing (3DP) has a potential to change how we envision manufacturing in the pharmaceutical industry. A more common utilization for FDM 3DP is to build upon existing hot melt extrusion (HME) technology where the drug is dispersed in the polymer matrix. However, reliable manufacturing of drug-containing filaments remains a challenge along with the limitation of active ingredients which can sustain the processing risks involved in the HME process. To circumvent this obstacle, a single step FDM 3DP process was developed to manufacture thin-walled drug-free capsules which can be filled with dry or liquid drug product formulations. Drug release from these systems is governed by the combined dissolution of the FDM capsule 'shell' and the dosage form encapsulated in these shells. To prepare the shells, the 3D printer files (extension '.gcode') were modified by creating discrete zones, so-called 'zoning process', with individual print parameters. Capsules printed without the zoning process resulted in macroscopic print defects and holes. X-ray computed tomography, finite element analysis and mechanical testing were used to guide the zoning process and printing parameters in order to manufacture consistent and robust capsule shell geometries. Additionally, dose consistencies of drug containing liquid formulations were investigated in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Bridge flap technique as a single-step solution to mucogingival problems: A case series

    Directory of Open Access Journals (Sweden)

    Vivek Gupta

    2011-01-01

    Full Text Available Shallow vestibule, gingival recession, inadequate width of attached gingiva (AG and aberrant frenum pull are an array of mucogingival problems for which several independent and effective surgical solutions are reported in the literature. This case series reports the effectiveness of the bridge flap technique as a single-step surgical entity for increasing the depth of the vestibule, root coverage, increasing the width of the AG and solving the problem of abnormal frenum pull. Eight patients with 18 teeth altogether having Millers class I, II or III recession along with problems of shallow vestibule, inadequate width of AG and with or without frenum pull underwent this surgical procedure and were followed-up till 9 months post-operatively. The mean root coverage obtained was 55% and the mean average gain in width of the AG was 3.5 mm. The mean percentage gain in clinical attachment level was 41%. The bridge flap technique can be an effective single-step solution for the aforementioned mucogingival problems if present simultaneously in any case, and offers considerable advantages over other mucogingival surgical techniques in terms of simplicity, limited chair-time for the patient and the operator, single surgical intervention for manifold mucogingival problems and low morbidity because of the absence of palatal donor tissue.

  18. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    Science.gov (United States)

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the

  19. cisTEM, user-friendly software for single-particle image processing

    Science.gov (United States)

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  20. cisTEM, user-friendly software for single-particle image processing.

    Science.gov (United States)

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  1. Sintering behavior of porous wall tile bodies during fast single-firing process

    Directory of Open Access Journals (Sweden)

    Sidnei José Gomes Sousa

    2005-06-01

    Full Text Available In ceramic wall tile processing, fast single-firing cycles have been widely used. In this investigation a fast single-firing porous wall tile mixture was prepared using raw materials from the North Fluminense region.Specimens were obtained by uniaxial pressing and sintered in air at various temperatures (1080 - 1200 °C using a fast-firing cycle (60 minutes. Evolution of the microstructure was followed by XRD and SEM. The results revealed that the main phases formed during the sintering step are anorthite, gehlenite and hematite. It appears that the sintering process is characterized by the presence of a small amount of a liquid phase below 1140 °C. As a result, the microstructure of the ceramic bodies showed a network of small dense zones interconnected with a porous phase. In addition, the strength of the material below 1140 °C appeared to be related to the type and quantity of crystalline phases in the sintered bodies.

  2. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  3. Evaluating tamsulosin hydrochloride-released microparticles prepared using single-step matrix coating.

    Science.gov (United States)

    Maeda, Atsushi; Shinoda, Tatsuki; Ito, Naoki; Baba, Keizo; Oku, Naoto; Mizumoto, Takao

    2011-04-15

    The objective of the present study was to determine the optimum composition for sustained-release of tamsulosin hydrochloride from microparticles intended for orally disintegrating tablets. Microparticles were prepared from an aqueous ethylcellulose dispersion (Aquacoa®), and an aqueous copolymer based on ethyl acrylate and methyl methacrylate dispersion (Eudragit®) NE30D), with microcrystalline cellulose as core particles with a fluidized bed coating process. Prepared microparticles were about 200 μm diameter and spherical. The microparticles were evaluated for in vitro drug release and in vivo absorption to assess bioequivalence in a commercial product, Harnal® pellets. The optimum ratio of Aquacoat® and Eudragit® NE30D in the matrix was 9:1. We observed similar drug release profiles in microparticles and Harnal® pellets. Higuchi model analysis of the in vitro drug release from microparticles was linear up to 80% release, typical of Fickian diffusion sustained-release profile. The in vivo absorption properties from microparticles were comparable to Harnal® pellets, and there was a linear relationship between in vitro drug release and in vivo drug release. In conclusion, this development produces microparticles in single-step coating, that provided a sustained-release of tamsulosin hydrochloride comparable to Harnal® pellets. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.

    Science.gov (United States)

    Knowlton, Stephanie; Yenilmez, Bekir; Tasoglu, Savas

    2016-09-01

    Organ-on-a-chip engineering employs microfabrication of living tissues within microscale fluid channels to create constructs that closely mimic human organs. With the advent of 3D printing, we predict that single-step fabrication of these devices will enable rapid design and cost-effective iterations in the development stage, facilitating rapid innovation in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Single-step electrochemical method for producing very sharp Au scanning tunneling microscopy tips

    International Nuclear Information System (INIS)

    Gingery, David; Buehlmann, Philippe

    2007-01-01

    A single-step electrochemical method for making sharp gold scanning tunneling microscopy tips is described. 3.0M NaCl in 1% perchloric acid is compared to several previously reported etchants. The addition of perchloric acid to sodium chloride solutions drastically shortens etching times and is shown by transmission electron microscopy to produce very sharp tips with a mean radius of curvature of 15 nm

  6. Simulation of Unique Pressure Changing Steps and Situations in Psa Processes

    Science.gov (United States)

    Ebner, Armin D.; Mehrotra, Amal; Knox, James C.; LeVan, Douglas; Ritter, James A.

    2007-01-01

    A more rigorous cyclic adsorption process simulator is being developed for use in the development and understanding of new and existing PSA processes. Unique features of this new version of the simulator that Ritter and co-workers have been developing for the past decade or so include: multiple absorbent layers in each bed, pressure drop in the column, valves for entering and exiting flows and predicting real-time pressurization and depressurization rates, ability to account for choked flow conditions, ability to pressurize and depressurize simultaneously from both ends of the columns, ability to equalize between multiple pairs of columns, ability to equalize simultaneously from both ends of pairs of columns, and ability to handle very large pressure ratios and hence velocities associated with deep vacuum systems. These changes to the simulator now provide for unique opportunities to study the effects of novel pressure changing steps and extreme process conditions on the performance of virtually any commercial or developmental PSA process. This presentation will provide an overview of the cyclic adsorption process simulator equations and algorithms used in the new adaptation. It will focus primarily on the novel pressure changing steps and their effects on the performance of a PSA system that epitomizes the extremes of PSA process design and operation. This PSA process is a sorbent-based atmosphere revitalization (SBAR) system that NASA is developing for new manned exploration vehicles. This SBAR system consists of a 2-bed 3-step 3-layer system that operates between atmospheric pressure and the vacuum of space, evacuates from both ends of the column simultaneously, experiences choked flow conditions during pressure changing steps, and experiences a continuously changing feed composition, as it removes metabolic CO2 and H20 from a closed and fixed volume, i.e., the spacecraft cabin. Important process performance indicators of this SBAR system are size, and the

  7. AN EFFICIENT ANALYSIS FOR ABSORPTION AND GAIN COEFFICIENTS IN 'SINGLE STEP-INDEX WAVEGUIDE'S BY USING THE ALPHA METHOD

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    2008-02-01

    Full Text Available In this study, some design parameters such as normalized frequency and especially normalized propagation constant have been obtained, depending on some parameters which are functions of energy eigenvalues of the carriers such as electrons and holes confined in a single step-index waveguide laser (SSIWGL or single stepindex waveguide (SSIWG. Some optical expressions about the optical power and probability quantities for the active region and cladding layers of the SSIWG or SSIWGL have been investigated. Investigations have been undertaken in terms of these parameters and also individually the optical even and odd electric field waves with the lowest-modes were theoretically computed. Especially absorption coefficients and loss coefficients addition to some important quantities of the single step-index waveguide lasers for the even and odd electric field waves are evaluated.

  8. 42 CFR 50.406 - What are the steps in the process?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What are the steps in the process? 50.406 Section 50.406 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Public Health Service Grant Appeals Procedure § 50.406 What are the steps in...

  9. Single step synthesis of GdAlO3 powder

    International Nuclear Information System (INIS)

    Sinha, Amit; Nair, S.R.; Sinha, P.K.

    2011-01-01

    Research highlights: → First report on direct formation of GdAlO 3 powder using a novel combustion process. → Study of combustion characteristics of Gd(NO 3 ) 3 and Al(NO 3 ) 3 towards three fuels. → Preparation of highly sinterable GdAlO 3 powders through fuel-mixture approach. → Significant reduction in energy consumption for production of GdAlO 3 sintered body. - Abstract: A novel method for preparation of nano-crystalline gadolinium aluminate (GdAlO 3 ) powder, based on combustion synthesis, is reported. It was observed that aluminium nitrate and gadolinium nitrate exhibit different combustion characteristics with respect to urea, glycine and β-alanine. While urea was proven to be a suitable fuel for direct formation of crystalline α-Al 2 O 3 from its nitrate, glycine and β-alanine are suitable fuels for gadolinium nitrate for preparation of its oxide after combustion reaction. Based on the observed chemical characteristics of gadolinium and aluminium nitrates with respect to above mentioned fuels for the combustion reaction, the fuel mixture composition could be predicted that could lead to phase pure perovskite GdAlO 3 directly after the combustion reaction without any subsequent calcination step. The use of single fuel, on the other hand, leads to formation of amorphous precursor powders that call for subsequent calcination for the formation of crystalline GdAlO 3 . The powders produced directly after combustion reactions using fuel mixtures were found to be highly sinterable. The sintering of the powders at 1550 o C for 4 h resulted in GdAlO 3 with sintered density of more than 95%. T.D.

  10. HETC-3STEP included fragmentation process

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; Iga, Kiminori; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    High Energy Transport Code (HETC) based on the cascade-evaporation model is modified to calculate the fragmentation cross section. For the cascade process, nucleon-nucleon cross sections are used for collision computation; effective in-medium-corrected cross sections are adopted instead of the original free-nucleon collision. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The fragmentation reaction is incorporated into the original HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG) reproduces experimental fragment yields to a reasonable degree. (author)

  11. Single-step digital backpropagation for nonlinearity mitigation

    DEFF Research Database (Denmark)

    Secondini, Marco; Rommel, Simon; Meloni, Gianluca

    2015-01-01

    Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier...... in the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for bulk dispersion compensation....

  12. Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Sirota, A.M.; Húsek, Dušan; Muraviev, I. P.

    2004-01-01

    Roč. 14, č. 2 (2004), s. 139-152 ISSN 1210-0552 R&D Projects: GA ČR GA201/01/1192 Grant - others:BARRANDE(EU) 99010-2/99053; Intellectual computer Systems(EU) Grant 2.45 Institutional research plan: CEZ:AV0Z1030915 Keywords : nonlinear binary factor analysis * feature extraction * recurrent neural network * Single-Step approximation * neurodynamics simulation * attraction basins * Hebbian learning * unsupervised learning * neuroscience * brain function modeling Subject RIV: BA - General Mathematics

  13. Blastocyst utilization rates after continuous culture in two commercial single-step media: a prospective randomized study with sibling oocytes.

    Science.gov (United States)

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G

    2017-10-01

    The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.

  14. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2015-01-01

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  15. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa

    2015-07-17

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  16. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    Science.gov (United States)

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  17. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  18. Single-step synthesis of [{sup 18}F]haloperidol from the chloro-precursor and its applications in PET imaging of a cat`s brain

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Kazunari; Tamakawa, Hiroki; Hashimoto, Naoto; Miyake, Yoshihiro [National Cardiovascular Center, Suita (Japan). Inst. of Biofunctional Research

    1997-09-01

    We have established a convenient synthesis process for the synthesis of [{sup 18}F]haloperidol using a single-step {sup 18}F - for -Cl exchange reaction and a new elution system for the preparative high performance liquid chromatography (HPLC) using C18 bonded vinylalcohol copolymer gel (ODP) and a basic eluent. We successfully applied the product to cat-PET study and got clear images of the striatum, showing the usefulness of this synthesis. (author).

  19. PID controller auto-tuning based on process step response and damping optimum criterion.

    Science.gov (United States)

    Pavković, Danijel; Polak, Siniša; Zorc, Davor

    2014-01-01

    This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  1. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    International Nuclear Information System (INIS)

    Deng Xin; Fang Zhen; Liu Yunhu

    2010-01-01

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H 2 SO 4 or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H 2 SO 4 as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H 2 SO 4 for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  2. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Science.gov (United States)

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  3. Efficient Hydrolysis of Rice Straw into Xylose and Glucose by a Two-step Process

    Directory of Open Access Journals (Sweden)

    YAN Lu-lu

    2016-07-01

    Full Text Available The hydrolysis of rice straw into xylose and glucose in dilute sulfuric acid aqueous solution was studied with a two-step process in batch autoclave reactor. The results showed that compared with the traditional one-step acid hydrolysis, both xylose and glucose could be produced in high yields from rice straw by using the two-step acid hydrolysis process. The effects of reaction temperature, reaction time, the amount of rice straw and acid concentration on the hydrolysis of rice straw were systematically studied, and showed that except initial rice straw loading amount, the other parameters had remarkable influence on the products distribution and yields. In the first-step of the hydrolysis process, a high xylose yield of 162.6 g·kg-1 was obtained at 140℃ after 120 min reaction time. When the solid residues from the first step were subjected to a second-step hydrolysis, a glucose yield as high as 216.5 g·kg-1 could be achieved at 180℃ after 120 min. This work provides a promising strategy for the efficient and value-added utilization of agricultural wastes such as rice straw.

  4. Positive steps turning into a process

    Directory of Open Access Journals (Sweden)

    Božičević Goran

    2004-01-01

    Full Text Available The conclusion of the research conducted in Croatia for QPSW in 2003 is there is no systematic, accountable and structural confrontation with the past in Croatia, but there is growing concern within the civil society about the problems incurred by the lack of such a confrontation. Two different approaches can be discerned: individual work with particular persons or target groups and advocacy that could influence the alteration of the public opinion and decision-making. Both levels are necessary and they should unfold simultaneously. The systematization and regional cooperation of documentation centers, cooperation between victim organizations and peace initiatives, the inclusion of former warriors into peace building processes the cooperation of artists and activists - represent some of the new and promising steps on the civilian scene in Croatia. The constant strengthening of the independent media and the judiciary, coupled with constant efforts on both levels - the personal and the public - raises hopes that the confrontation with the past in Croatia is a process and not a trend.

  5. Preparation of biodiesel from waste cooking oil via two-step catalyzed process

    International Nuclear Information System (INIS)

    Wang Yong; Liu Pengzhan; Ou Shiyi; Zhang Zhisen

    2007-01-01

    Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. In this research, a two step catalyzed process was adopted to prepare biodiesel from waste cooking oil whose acid value was 75.92 ± 0.036 mgKOH/g. The free fatty acids of WCO were esterified with methanol catalyzed by ferric sulfate in the first step, and the triglycerides (TGs) in WCO were transesterified with methanol catalyzed by potassium hydroxide in the second step. The results showed that ferric sulfate had high activity to catalyze the esterification of free fatty acids (FFA) with methanol, The conversion rate of FFA reached 97.22% when 2 wt% of ferric sulfate was added to the reaction system containing methanol to TG in10:1 (mole ratio) composition and reacted at 95 deg. C for 4 h. The methanol was vacuum evaporated, and transesterification of the remained triglycerides was performed at 65 deg. C for 1 h in a reaction system containing 1 wt% of potassium hydroxide and 6:1 mole ratio of methanol to TG. The final product with 97.02% of biodiesel, obtained after the two step catalyzed process, was analyzed by gas chromatography. This new process has many advantages compared with the old processes, such as no acidic waste water, high efficiency, low equipment cost and easy recovery of the catalyst

  6. High pressure as an alternative processing step for ham production.

    Science.gov (United States)

    Pingen, Sylvia; Sudhaus, Nadine; Becker, André; Krischek, Carsten; Klein, Günter

    2016-08-01

    As high pressure processing (HPP) is becoming more and more important in the food industry, this study examined the application of HPP (500 and 600MPa) as a manufacturing step during simulated ham production. By replacing conventional heating with HPP steps, ham-like texture or color attributes could not be achieved. HPP products showed a less pale, less red appearance, softer texture and higher yields. However, a combination of mild temperature (53°C) and 500MPa resulted in parameters more comparable to cooked ham. We conclude that HPP can be used for novel food development, providing novel textures and colors. However, when it comes to ham production, a heating step seems to be unavoidable to obtain characteristic ham properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xin; Fang, Zhen; Liu, Yun-hu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil. (author)

  8. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xin [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Fang Zhen, E-mail: zhenfang@xtbg.ac.c [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Liu Yunhu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  9. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Matyas Flemr

    2015-07-01

    Full Text Available Induction of double-strand DNA breaks (DSBs by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs, stimulates knockin of exogenous DNA fragments via homologous recombination (HR. However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs, we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.

  10. Single step biotransformation of corn oil phytosterols to boldenone by a newly isolated Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mohamed Eisa

    2016-09-01

    Full Text Available A new potent Pseudomonas aeruginosa isolate capable for biotransformation of corn oil phytosterol (PS to 4-androstene-3, 17-dione (AD, testosterone (T and boldenone (BOL was identified by phenotypic analysis and 16S rRNA gene sequencing. Sequential statistical strategy was used to optimize the biotransformation process mainly concerning BOL using Factorial design and response surface methodology (RSM. The production of BOL in single step microbial biotransformation from corn oil phytosterols by P. aeruginosa was not previously reported. Results showed that the pH concentration of the medium, (NH42SO4 and KH2PO4 were the most significant factors affecting BOL production. By analyzing the statistical model of three-dimensional surface plot, BOL production increased from 36.8% to 42.4% after the first step of optimization, and the overall biotransformation increased to 51.9%. After applying the second step of the sequential statistical strategy BOL production increased to 53.6%, and the overall biotransformation increased to 91.9% using the following optimized medium composition (g/l distilled water (NH42SO4, 2; KH2PO4, 4; Na2HPO4. 1; MgSO4·7H2O, 0.3; NaCl, 0.1; CaCl2·2H2O, 0.1; FeSO4·7H2O, 0.001; ammonium acetate 0.001; Tween 80, 0.05%; corn oil 0.5%; 8-hydroxyquinoline 0.016; pH 8; 200 rpm agitation speed and incubation time 36 h at 30 °C. Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values.

  11. Core-shell polymer nanorods by a two-step template wetting process

    International Nuclear Information System (INIS)

    Dougherty, S; Liang, J

    2009-01-01

    One-dimensional core-shell polymer nanowires offer many advantages and great potential for many different applications. In this paper we introduce a highly versatile two-step template wetting process to fabricate two-component core-shell polymer nanowires with controllable shell thickness. PLLA and PMMA were chosen as model polymers to demonstrate the feasibility of this process. Solution wetting with different concentrations of polymer solutions was used to fabricate the shell layer and melt wetting was used to fill the shell with the core polymer. The shell thickness was analyzed as a function of the polymer solution concentration and viscosity, and the core-shell morphology was observed with TEM. This paper demonstrates the feasibility of fabricating polymer core-shell nanostructures using our two-step template wetting process and opens the arena for optimization and future experiments with polymers that are desirable for specific applications.

  12. Spectral Difference in the Image Domain for Large Neighborhoods, a GEOBIA Pre-Processing Step for High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Roeland de Kok

    2012-08-01

    Full Text Available Contrast plays an important role in the visual interpretation of imagery. To mimic visual interpretation and using contrast in a Geographic Object Based Image Analysis (GEOBIA environment, it is useful to consider an analysis for single pixel objects. This should be done before applying homogeneity criteria in the aggregation of pixels for the construction of meaningful image objects. The habit or “best practice” to start GEOBIA with pixel aggregation into homogeneous objects should come with the awareness that feature attributes for single pixels are at risk of becoming less accessible for further analysis. Single pixel contrast with image convolution on close neighborhoods is a standard technique, also applied in edge detection. This study elaborates on the analysis of close as well as much larger neighborhoods inside the GEOBIA domain. The applied calculations are limited to the first segmentation step for single pixel objects in order to produce additional feature attributes for objects of interest to be generated in further aggregation processes. The equation presented functions at a level that is considered an intermediary product in the sequential processing of imagery. The procedure requires intensive processor and memory capacity. The resulting feature attributes highlight not only contrasting pixels (edges but also contrasting areas of local pixel groups. The suggested approach can be extended and becomes useful in classifying artificial areas at national scales using high resolution satellite mosaics.

  13. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    Science.gov (United States)

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  14. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, Mohamed N.; Wang, Q. X.; Alshareef, Husam N.

    2014-01-01

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling

  15. Two-step estimation procedures for inhomogeneous shot-noise Cox processes

    DEFF Research Database (Denmark)

    Prokesová, Michaela; Dvorák, Jirí; Jensen, Eva B. Vedel

    In the present paper we develop several two-step estimation procedures for inhomogeneous shot-noise Cox processes. The intensity function is parametrized by the inhomogeneity parameters while the pair-correlation function is parametrized by the interaction parameters. The suggested procedures...

  16. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  17. One step HIP canning of powder metallurgy composites

    Science.gov (United States)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  18. Simulation and analysis of single-ribosome translation

    International Nuclear Information System (INIS)

    Tinoco, Ignacio Jr; Wen, Jin-Der

    2009-01-01

    In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation

  19. Two-step estimation for inhomogeneous spatial point processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Guan, Yongtao

    This paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second order properties (K-function). Regression parameters are estimated using a Poisson likelihood score estimating function and in a second...... step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rain forests....

  20. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    Science.gov (United States)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  1. Penerapan Metode Diagnosis Cepat Virus Avian Influenza H5N1 dengan Metode Single Step Multiplex RT-PCR

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2010-12-01

    Full Text Available Avian influenza (AI virus is a segmented single stranded (ss RNA virus with negative polarity andbelong to the Orthomyxoviridae family. Diagnose of AI virus can be performed using conventional methodsbut it has low sensitivity and specificity. The objective of the research was to apply rapid, precise, andaccurate diagnostic method for AI virus and also to determine its type and subtype based on the SingleStep Multiplex Reverse Transcriptase-Polymerase Chain Reaction targeting M, H5, and N1 genes. In thismethod M, H5 and NI genes were simultaneously amplified in one PCR tube. The steps of this researchconsist of collecting viral RNAs from 10 different AI samples originated from Maros Disease InvestigationCenter during 2007. DNA Amplification was conducted by Simplex RT-PCR using M primer set. Then, bysingle step multiplex RT-PCR were conducted simultaneously using M, H5 and N1 primers set. The RTPCRproducts were then separated on 1.5% agarose gel, stained by ethidum bromide and visualized underUV transilluminator. Results showed that 8 of 10 RNA virus samples could be amplified by Simplex RTPCRfor M gene which generating a DNA fragment of 276 bp. Amplification using multiplex RT-PCRmethod showed two of 10 samples were AI positive using multiplex RT-PCR, three DNA fragments weregenerated consisting of 276 bp for M gene, 189 bp for H5 gene, and 131 bp for N1. In this study, rapid andeffective diagnosis method for AI virus can be conducted by using simultaneous Single Step Multiplex RTPCR.By this technique type and subtype of AI virus, can also be determined, especially H5N1.

  2. Single droplet drying step characterization in microsphere preparation.

    Science.gov (United States)

    Al Zaitone, Belal; Lamprecht, Alf

    2013-05-01

    Spray drying processes are difficult to characterize since process parameters are not directly accessible. Acoustic levitation was used to investigate microencapsulation by spray drying on one single droplet facilitating the analyses of droplet behavior upon drying. Process parameters were simulated on a poly(lactide-co-glycolide)/ethyl acetate combination for microencapsulation. The results allowed quantifying the influence of process parameters such as temperature (0-40°C), polymer concentration (5-400 mg/ml), and droplet size (0.5-1.37 μl) on the drying time and drying kinetics as well as the particle morphology. The drying of polymer solutions at temperature of 21°C and concentration of 5 mg/ml, shows that the dimensionless particle diameter (Dp/D0) approaches 0.25 and the particle needs 350 s to dry. At 400 mg/ml, Dp/D0=0.8 and the drying time increases to one order of magnitude and a hollow particle is formed. The study demonstrates the benefit of using the acoustic levitator as a lab scale method to characterize and study the microparticle formation. This method can be considered as a helpful tool to mimic the full scale spray drying process by providing identical operational parameters such as air velocity, temperature, and variable droplet sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    for instrument-based PoC blood biomarker analysis systems. Motivated by the complexity of associating high-accuracy biosensing using silicon nanowire field effect transistors with ease of use for the PoC system user, we propose a novel one-step, multipoint calibration method for LoC-based systems. Our approach...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...

  4. Cognitive processing for step precision increases beta and gamma band modulation during overground walking

    DEFF Research Database (Denmark)

    Oliveira, Anderson Souza; Arguissain, Federico Gabriel; Andersen, Ole Kæseler

    2018-01-01

    The aim of this study was to investigate whether cognitive processing for defining step precision during walking could induce changes in electrocortical activity. Ten healthy adults (21-36 years) were asked to walk overground in three different conditions: (1) normal walking in a straight path (N...... activity in cognitive, motor and sensorimotor areas may be relevant to produce patterned and safe locomotion through challenging paths.......The aim of this study was to investigate whether cognitive processing for defining step precision during walking could induce changes in electrocortical activity. Ten healthy adults (21-36 years) were asked to walk overground in three different conditions: (1) normal walking in a straight path (NW....../sensorimotor regions, a phase in the gait cycle in which participants define the correct foot placement for the next step. These results suggest that greater cognitive demands during precision stepping influences electrocortical dynamics especially towards step transitions. Therefore, increased electrocortical...

  5. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    Science.gov (United States)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  6. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

    2011-05-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  7. SPAR-H Step-by-Step Guidance

    International Nuclear Information System (INIS)

    Galyean, W.J.; Whaley, A.M.; Kelly, D.L.; Boring, R.L.

    2011-01-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  8. Two-step estimation for inhomogeneous spatial point processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Guan, Yongtao

    2009-01-01

    The paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second-order properties (K-function). Regression parameters are estimated by using a Poisson likelihood score estimating function and in the ...... and in the second step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rainforests....

  9. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    Science.gov (United States)

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  10. Statistical theory of multi-step compound and direct reactions

    International Nuclear Information System (INIS)

    Feshbach, H.; Kerman, A.; Koonin, S.

    1980-01-01

    The theory of nuclear reactions is extended so as to include a statistical treatment of multi-step processes. Two types are distinguished, the multi-step compound and the multi-step direct. The wave functions for the system are grouped according to their complexity. The multi-step direct process involves explicitly those states which are open, while the multi-step compound involves those which are bound. In addition to the random phase assumption which is applied differently to the multi-step direct and to the multi-step compound cross-sections, it is assumed that the residual interaction will have non-vanishing matrix elements between states whose complexities differ by at most one unit. This is referred to as the chaining hypothesis. Explicit expressions for the double differential cross-section giving the angular distribution and energy spectrum are obtained for both reaction types. The statistical multi-step compound cross-sections are symmetric about 90 0 . The classical statistical theory of nuclear reactions is a special limiting case. The cross-section for the statistical multi-step direct reaction consists of a set of convolutions of single-step direct cross-sections. For the many step case it is possible to derive a diffusion equation in momentum space. Application is made to the reaction 181 Ta(p,n) 181 W using the statistical multi-step compound formalism

  11. Production of the Q2 doubly excited states of the hydrogen molecule by electron impact in a single step

    Science.gov (United States)

    Santos, Leonardo O.; Rocha, Alexandre B.; Faria, Nelson Velho de Castro; Jalbert, Ginette

    2017-03-01

    We calculate the single step cross sections for excitation of Q 2 states of H2 and its subsequent dissociation. The cross section calculations were performed within the first Born approximation and the electronic wave functions were obtained via State-Averaged Multiconfigurational Self-Consistent Field followed by Configuration Interaction. We have assumed autoionization is the only important process competing with dissociation into neutral atoms. We have estimated its probability through a semi classical approach and compared with results of literature. Special attention was given to the Q 2 1Σg +(1) state which, as has been shown in a previous work, may dissociate into H(2 sσ) + H(2 sσ) fragments (some figures in this article are in colour only in the electronic version).

  12. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    Science.gov (United States)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  13. A ten-step process to develop case management plans.

    Science.gov (United States)

    Tahan, Hussein A

    2002-01-01

    The use of case management plans has contained cost and improved quality of care successfully. However, the process of developing these plans remains a great challenge for healthcare executives, in this article, the author presents the answer to this challenge by discussing a 10-step formal process that administrators of patient care services and case managers can adapt to their institutions. It also can be used by interdisciplinary team members as a practical guide to develop a specific case management plan. This process is applicable to any care setting (acute, ambulatory, long term, and home care), diagnosis, or procedure. It is particularly important for those organizations that currently do not have a deliberate and systematic process to develop case management plans and are struggling with how to improve the efficiency and productivity of interdisciplinary teams charged with developing case management plans.

  14. An evaluation of a single-step extraction chromatography separation method for Sm-Nd isotope analysis of micro-samples of silicate rocks by high-sensitivity thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Li Chaofeng; Li Xianhua; Li Qiuli; Guo Jinghui; Li Xianghui; Liu Tao

    2011-01-01

    Graphical abstract: Distribution curve of all eluting fractions for a BCR-2 (1-2-3.5-7 mg) on LN column using HCl and HF as eluting reagent. Highlights: → This analytical protocol affords a simple and rapid analysis for Sm and Nd isotope in minor rock samples. → The single-step separation method exhibits satisfactory separation effect for complex silicate samples. → Corrected 143 Nd/ 144 Nd data show excellent accuracy even if the 140 Ce 16 O + / 144 Nd 16 O + ratio reached to 0.03. - Abstract: A single-step separation scheme is presented for Sm-Nd radiogenic isotope system on very small samples (1-3 mg) of silicate rock. This method is based on Eichrom LN Spec chromatographic material and affords a straightforward separation of Sm-Nd from complex matrix with good purity and satisfactory blank levels, suitable for thermal ionization mass spectrometry (TIMS). This technique, characterized by high efficiency (single-step Sm-Nd separation) and high sensitivity (TIMS on NdO + ion beam), is able to process rapidly (3-4 h), with low procedure blanks ( 143 Nd/ 144 Nd ratios and Sm-Nd concentrations are presented for eleven international silicate rock reference materials, spanning a wide range of Sm-Nd contents and bulk compositions. The analytical results show a good agreement with recommended values within ±0.004% for the 143 Nd/ 144 Nd isotopic ratio and ±2% for Sm-Nd quantification at the 95% confidence level. It is noted that the uncertainty of this method is about 3 times larger than typical precision achievable with two-stage full separation followed by state-of-the-art conventional TIMS using Nd + ion beams which require much larger amounts of Nd. Hence, our single-step separation followed by NdO + ion beam technique is preferred to the analysis for microsamples.

  15. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    Science.gov (United States)

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step

  16. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

    2012-06-01

    Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

  17. Comparison of Stepped Care Delivery Against a Single, Empirically Validated Cognitive-Behavioral Therapy Program for Youth With Anxiety: A Randomized Clinical Trial.

    Science.gov (United States)

    Rapee, Ronald M; Lyneham, Heidi J; Wuthrich, Viviana; Chatterton, Mary Lou; Hudson, Jennifer L; Kangas, Maria; Mihalopoulos, Cathrine

    2017-10-01

    Stepped care is embraced as an ideal model of service delivery but is minimally evaluated. The aim of this study was to evaluate the efficacy of cognitive-behavioral therapy (CBT) for child anxiety delivered via a stepped-care framework compared against a single, empirically validated program. A total of 281 youth with anxiety disorders (6-17 years of age) were randomly allocated to receive either empirically validated treatment or stepped care involving the following: (1) low intensity; (2) standard CBT; and (3) individually tailored treatment. Therapist qualifications increased at each step. Interventions did not differ significantly on any outcome measures. Total therapist time per child was significantly shorter to deliver stepped care (774 minutes) compared with best practice (897 minutes). Within stepped care, the first 2 steps returned the strongest treatment gains. Stepped care and a single empirically validated program for youth with anxiety produced similar efficacy, but stepped care required slightly less therapist time. Restricting stepped care to only steps 1 and 2 would have led to considerable time saving with modest loss in efficacy. Clinical trial registration information-A Randomised Controlled Trial of Standard Care Versus Stepped Care for Children and Adolescents With Anxiety Disorders; http://anzctr.org.au/; ACTRN12612000351819. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor [version 2; referees: 1 approved, 4 approved with reservations

    Directory of Open Access Journals (Sweden)

    Aaron T.L. Lun

    2016-10-01

    Full Text Available Single-cell RNA sequencing (scRNA-seq is widely used to profile the transcriptome of individual cells. This provides biological resolution that cannot be matched by bulk RNA sequencing, at the cost of increased technical noise and data complexity. The differences between scRNA-seq and bulk RNA-seq data mean that the analysis of the former cannot be performed by recycling bioinformatics pipelines for the latter. Rather, dedicated single-cell methods are required at various steps to exploit the cellular resolution while accounting for technical noise. This article describes a computational workflow for low-level analyses of scRNA-seq data, based primarily on software packages from the open-source Bioconductor project. It covers basic steps including quality control, data exploration and normalization, as well as more complex procedures such as cell cycle phase assignment, identification of highly variable and correlated genes, clustering into subpopulations and marker gene detection. Analyses were demonstrated on gene-level count data from several publicly available datasets involving haematopoietic stem cells, brain-derived cells, T-helper cells and mouse embryonic stem cells. This will provide a range of usage scenarios from which readers can construct their own analysis pipelines.

  19. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    Science.gov (United States)

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  20. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Mokuno, Yoshiaki, E-mail: mokuno-y@aist.go.jp; Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400 cm{sup −2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  1. Xylose Isomerization with Zeolites in a Two-Step Alcohol–Water Process

    DEFF Research Database (Denmark)

    Paniagua, Marta; Shunmugavel, Saravanamurugan; Melián Rodriguez, Mayra

    2015-01-01

    Isomerization of xylose to xylulose was efficiently catalyzed by large-pore zeolites in a two-step methanol–water process that enhanced the product yield significantly. The reaction pathway involves xylose isomerization to xylulose, which, in part, subsequently reacts with methanol to form methyl...

  2. Optimization of the single point incremental forming process for titanium sheets by using response surface

    Directory of Open Access Journals (Sweden)

    Saidi Badreddine

    2016-01-01

    Full Text Available The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution& Moreover considerable forces can occur. They must be controlled in order to preserve the tooling. In this paper, a numerical approach is proposed in order to minimize the maximum force achieved during the incremental forming of titanium sheets and to maximize the minimal thickness. A surface response methodology is used to find the optimal values of two input parameters of the process, the punch diameter and the vertical step size of the tool path.

  3. Separation of Be and Al for AMS using single-step column chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Binnie, Steven A., E-mail: sbinnie@uni-koeln.de [Institute for Geology und Mineralogy, University of Cologne, 4-6 Greinstrasse, Cologne D-50939 (Germany); Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz [Institute for Geology und Mineralogy, University of Cologne, 4-6 Greinstrasse, Cologne D-50939 (Germany); Heinze, Stefan; Dewald, Alfred [University of Cologne, Institut für Kernphysik, Zülpicher Str. 77, Cologne D-50937 (Germany)

    2015-10-15

    With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC–Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. {sup 10}Be and {sup 26}Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC–Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.

  4. Separation of Be and Al for AMS using single-step column chromatography

    Science.gov (United States)

    Binnie, Steven A.; Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred

    2015-10-01

    With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC-Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. 10Be and 26Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC-Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.

  5. Integrating social media and social marketing: a four-step process.

    Science.gov (United States)

    Thackeray, Rosemary; Neiger, Brad L; Keller, Heidi

    2012-03-01

    Social media is a group of Internet-based applications that allows individuals to create, collaborate, and share content with one another. Practitioners can realize social media's untapped potential by incorporating it as part of the larger social marketing strategy, beyond promotion. Social media, if used correctly, may help organizations increase their capacity for putting the consumer at the center of the social marketing process. The purpose of this article is to provide a template for strategic thinking to successfully include social media as part of the social marketing strategy by using a four-step process.

  6. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction

    OpenAIRE

    Kaluzny, Bartlomiej J.; Cieslinska, Iwona; Mosquera, Samuel A.; Verma, Shwetabh

    2016-01-01

    Abstract Transepithelial photorefractive keratectomy (tPRK), where both the epithelium and stroma are removed in a single-step, is a relatively new procedure of laser refractive error correction. This study compares the 3-month results of myopia and compound myopic astigmatism correction by tPRK or conventional alcohol-assisted PRK (aaPRK). This prospective, nonrandomized, case?control study recruited 148 consecutive patients; 93 underwent tPRK (173 eyes) and 55 aaPRK (103 eyes). Refractive r...

  7. Effect of annealing temperature on a single step processed Cu{sub 2}ZnSnS{sub 4} thin film via solution method

    Energy Technology Data Exchange (ETDEWEB)

    Prabeesh, P.; Selvam, I. Packia; Potty, S.N.

    2016-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is a promising material for thin film solar cell applications because of its excellent photovoltaic properties, high abundance and non-toxicity. Thin films of CZTS are generally fabricated by vacuum based techniques or by using toxic solvents and these routes reduce its attention as a low cost and environmental friendly material. In this study, we have prepared CZTS through a solution based single step approach using non-toxic chemicals by spin coating and studied the effect of annealing temperature in the range 350–550 °C in nitrogen atmosphere on structural, optical and electrical properties. XRD results revealed the formation of kesterite phase at all annealing temperatures, while the Raman studies indicated Cu{sub 2}SnS{sub 2} impurity phase in the film annealed at 550 °C. Band gap of the films annealed in nitrogen varies from 1.46 eV to 1.56 eV, depending on the annealing temperature. Optimum properties, such as, good crystallinity, dense structure, ideal band gap (1.49 eV) and good absorption coefficient (10{sup 4} cm{sup −1}), were obtained for the film annealed at 500 °C for 30 min in nitrogen. - Highlights: • Prepared CZTS film through one-step liquid based approach using non-toxic chemicals. • Studied the effect of N{sub 2} annealing on structural, optical and electrical properties. • The phase pure CZTS absorber film exhibited excellent photovoltaic properties • The film annealed at 500 °C for 30 min in nitrogen exhibited optimum properties.

  8. Is it Feasible to Use Students' Self-reported Step Data in a Local School Policy Process?

    DEFF Research Database (Denmark)

    Bonde, Ane Høstgaard; Bruselius-Jensen, Maria

    2017-01-01

    Objective: We examined students’ self-reported step data and discussed the feasibility of using these data in a local school policy process. Methods: For 5 days during school hours, 281 stu- dents from grades 5–7 participating in a health education program, measured their steps using a pedometer......: Student-collected data showed similar patterns as reported in the literature, and therefore, a feasible perspective could be to use students’ self-reported step data in a local school policy process....

  9. An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit

    International Nuclear Information System (INIS)

    Wei, L.F.; Nori, Franco

    2003-01-01

    Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed

  10. Balanced Photodetection in One-Step Liquid-Phase-Synthesized CsPbBr3 Micro-/Nanoflake Single Crystals.

    Science.gov (United States)

    Zheng, Wei; Xiong, Xufan; Lin, Richeng; Zhang, Zhaojun; Xu, Cunhua; Huang, Feng

    2018-01-17

    Here, we reported a low-cost and high-compatibility one-step liquid-phase synthesis method for synthesizing high-purity CsPbBr 3 micro-/nanoflake single crystals. On the basis of the high-purity CsPbBr 3 , we further prepared a low-dimensional photodetector capable of balanced photodetection, involving both high external quantum efficiency and rapid temporal response, which is barely realized in previously reported low-dimensional photodetectors.

  11. Determination of beam intensity in a single step for IMRT inverse planning

    International Nuclear Information System (INIS)

    Chuang, Keh-Shih; Chen, Tzong-Jer; Kuo, Shan-Chi; Jan, Meei-Ling; Hwang, Ing-Ming; Chen, Sharon; Lin, Ying-Chuan; Wu, Jay

    2003-01-01

    In intensity modulated radiotherapy (IMRT), targets are treated by multiple beams at different orientations each with spatially-modulated beam intensities. This approach spreads the normal tissue dose to a greater volume and produces a higher dose conformation to the target. In general, inverse planning is used for IMRT treatment planning. The inverse planning requires iterative calculation of dose distribution in order to optimize the intensity profile for each beam and is very computation intensive. In this paper, we propose a single-step method utilizing a figure of merit (FoM) to estimate the beam intensities for IMRT treatment planning. The FoM of a ray is defined as the ratio between the delivered tumour dose and normal tissue dose and is a good index for the dose efficacy of the ray. To maximize the beam utility, it is natural to irradiate the tumour with intensity of each ray proportional to the value of the FoM. The nonuniform beam intensity profiles are then fixed and the weights of the beam are determined iteratively in order to yield a uniform tumour dose. In this study, beams are employed at equispaced angles around the patient. Each beam with its field size that just covers the tumour is divided into a fixed number of beamlets. The FoM is calculated for each beamlet and this value is assigned to be the beam intensity. Various weighting factors are incorporated in the FoM computation to accommodate different clinical considerations. Two clinical datasets are used to test the feasibility of the algorithm. The resultant dose-volume histograms of this method are presented and compared to that of conformal therapy. Preliminary results indicate that this method reduces the critical organ doses at a small expense of uniformity in tumour dose distribution. This method estimates the beam intensity in one single step and the computation time is extremely fast and can be finished in less than one minute using a regular PC

  12. The effects of strength and power training on single-step balance recovery in older adults: a preliminary study.

    Science.gov (United States)

    Pamukoff, Derek N; Haakonssen, Eric C; Zaccaria, Joseph A; Madigan, Michael L; Miller, Michael E; Marsh, Anthony P

    2014-01-01

    Improving muscle strength and power may mitigate the effects of sarcopenia, but it is unknown if this improves an older adult's ability to recover from a large postural perturbation. Forward tripping is prevalent in older adults and lateral falls are important due to risk of hip fracture. We used a forward and a lateral single-step balance recovery task to examine the effects of strength training (ST) or power (PT) training on single-step balance recovery in older adults. Twenty older adults (70.8±4.4 years, eleven male) were randomly assigned to either a 6-week (three times/week) lower extremity ST or PT intervention. Maximum forward (FLean(max)) and lateral (LLean(max)) lean angle and strength and power in knee extension and leg press were assessed at baseline and follow-up. Fifteen participants completed the study (ST =7, PT =8). Least squares means (95% CI) for ΔFLean(max) (ST: +4.1° [0.7, 7.5]; PT: +0.6° [-2.5, 3.8]) and ΔLLean(max) (ST: +2.2° [0.4, 4.1]; PT: +2.6° [0.9, 4.4]) indicated no differences between groups following training. In exploratory post hoc analyses collapsed by group, ΔFLean(max) was +2.4° (0.1, 4.7) and ΔLLean(max) was +2.4° (1.2, 3.6). These improvements on the balance recovery tasks ranged from ~15%-30%. The results of this preliminary study suggest that resistance training may improve balance recovery performance, and that, in this small sample, PT did not lead to larger improvements in single-step balance recovery compared to ST.

  13. Single-Step Seeded-Growth of Graphene Nanoribbons (GNRs) via Plasma-Enhanced Chemical Vapor Deposition (PECVD)

    Science.gov (United States)

    Hsu, C.-C.; Yang, K.; Tseng, W.-S.; Li, Yiliang; Li, Yilun; Tour, J. M.; Yeh, N.-C.

    One of the main challenges in the fabrication of GNRs is achieving large-scale low-cost production with high quality. Current techniques, including lithography and unzipped carbon nanotubes, are not suitable for mass production. We have recently developed a single-step PECVD growth process of high-quality graphene sheets without any active heating. By adding some substituted aromatic as seeding molecules, we are able to rapidly grow GNRs vertically on various transition-metal substrates. The morphology and electrical properties of the GNRs are dependent on the growth parameters such as the growth time, gas flow and species of the seeding molecules. On the other hand, all GNRs exhibit strong infrared and optical absorption. From studies of the Raman spectra, scanning electron microscopic images, and x-ray/ultraviolet photoelectron spectra of these GNRs as functions of the growth parameters, we propose a model for the growth mechanism. Our findings suggest that our approach opens up a pathway to large-scale, inexpensive production of GNRs for applications to supercapacitors and solar cells. This work was supported by the Grubstake Award and NSF through IQIM at Caltech.

  14. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Science.gov (United States)

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  15. Step size of the rotary proton motor in single FoF1-ATP synthase from a thermoalkaliphilic bacterium by DCO-ALEX FRET

    Science.gov (United States)

    Hammann, Eva; Zappe, Andrea; Keis, Stefanie; Ernst, Stefan; Matthies, Doreen; Meier, Thomas; Cook, Gregory M.; Börsch, Michael

    2012-02-01

    Thermophilic enzymes operate at high temperatures but show reduced activities at room temperature. They are in general more stable during preparation and, accordingly, are considered to be more rigid in structure. Crystallization is often easier compared to proteins from bacteria growing at ambient temperatures, especially for membrane proteins. The ATP-producing enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We applied a single-molecule Förster resonance energy transfer (FRET) approach using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor the expected 13-stepped rotary Fo motor at work. New FRET transition histograms were developed to identify the smaller step sizes compared to the 10-stepped Fo motor of the Escherichia coli enzyme. Dwell time analysis revealed the temperature and the LDAO dependence of the Fo motor activity on the single molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating a high flexibility in the membrane part of this thermophilic enzyme.

  16. Single-Step Electrophoretic Deposition of Non-noble Metal Catalyst Layer with Low Onset Voltage for Ethanol Electro-oxidation.

    Science.gov (United States)

    Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques

    2016-06-29

    A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.

  17. Low-temperature process steps for realization of non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Boogaard, A.; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.; Holleman, J.; Schmitz, Jurriaan

    2007-01-01

    In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the

  18. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  19. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    Administrator

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.

  20. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    Science.gov (United States)

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  1. Step-by-step cyclic processes scheduling

    DEFF Research Database (Denmark)

    Bocewicz, G.; Nielsen, Izabela Ewa; Banaszak, Z.

    2013-01-01

    Automated Guided Vehicles (AGVs) fleet scheduling is one of the big problems in Flexible Manufacturing System (FMS) control. The problem is more complicated when concurrent multi-product manufacturing and resource deadlock avoidance policies are considered. The objective of the research is to pro......Automated Guided Vehicles (AGVs) fleet scheduling is one of the big problems in Flexible Manufacturing System (FMS) control. The problem is more complicated when concurrent multi-product manufacturing and resource deadlock avoidance policies are considered. The objective of the research...... is to provide a declarative model enabling to state a constraint satisfaction problem aimed at AGVs fleet scheduling subject to assumed itineraries of concurrently manufactured product types. In other words, assuming a given layout of FMS’s material handling and production routes of simultaneously manufactured...... orders, the main objective is to provide the declarative framework aimed at conditions allowing one to calculate the AGVs fleet schedule in online mode. An illustrative example of the relevant algebra-like driven step-by-stem cyclic scheduling is provided....

  2. Distributed Feedback Laser Based on Single Crystal Perovskite

    Science.gov (United States)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  3. The Value of Step-by-Step Risk Assessment for Unmanned Aircraft

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2018-01-01

    The new European legislation expected in 2018 or 2019 will introduce a step-by-step process for conducting risk assessments for unmanned aircraft flight operations. This is a relatively simple approach to a very complex challenge. This work compares this step-by-step process to high fidelity risk...... modeling, and shows that at least for a series of example flight missions there is reasonable agreement between the two very different methods....

  4. Carotenoid content of the varieties Jaranda and Jariza (Capsicumannuum L.) and response during the industrial slow drying and grinding steps in paprika processing.

    Science.gov (United States)

    Mínguez-Mosquera, M I; Pérez-Gálvez, A; Garrido-Fernández, J

    2000-07-01

    Fruits of the pepper varieties Jaranda and Jariza (Capsicum annuum L. ) ripen as a group, enabling a single harvesting, showed a uniform carotenoid content that is high enough (7.9 g/kg) for the production of paprika. The drying system at mild temperature showed that fruits with moisture content of 85-88% generated a dry product with carotenoid content equal to or higher than the initial one. Those high moisture levels allowed the fruits to have a longer period of metabolic activity, increasing the yellow fraction, the red fraction, or both as a function of what biosynthetic process was predominant. This fact indicates under-ripeness of the fruits in the drying step. The results obtained allow us to establish that both varieties, Jaranda and Jariza, fit the dehydration process employed, yielding a dry fruit with carotenoid concentration similar to that the initial one. During the grinding step of the dry fruit, the heat generated by the hammers of the mill caused degradation of the yellow fraction, while the red fraction is maintained. The ripeness state of the harvested fruits and the appropriateness or severity of the processing steps are indicated by the ratio of red to yellow (R/Y) and/or red to total (R/T) pigments, since fluctuations in both fractions and in total pigments are reflected in and monitored by these parameters.

  5. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials

    International Nuclear Information System (INIS)

    Sardar, R; Shem, P M; Pecchia-Bekkum, C; Bjorge, N S; Shumaker-Parry, J S

    2010-01-01

    We report a simple route to produce fluorophore-encapsulated gold nanoparticles (AuNPs) in a single step under aqueous conditions using the fluorophore 1-pyrenemethylamine (PMA). Different amounts of PMA were used and the resulting core-shell gold nanoparticles were analyzed using UV-visible absorption spectroscopy, fluorescence spectroscopy, and transmission and scanning electron microscopy. Electron microscopy analysis shows nanoparticles consisting of a gold nanoparticle core which is encapsulated with a lower contrast shell. In the UV-visible spectra, we observed a significant red shift (37 nm) of the localized surface plasmon resonance (LSPR) absorption maximum (λ max ) compared to citrate-stabilized AuNPs of a similar size. We attribute the prominent LSPR wavelength shift for PMA-AuNP conjugates to the increase in the local dielectric environment near the gold nanoparticles due to the shell formation. This simple, aqueous-based synthesis is a new approach to the production of fluorophore-encapsulated AuNPs that could be applicable in biological sensing systems and photonic device fabrication.

  6. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    Science.gov (United States)

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  7. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  8. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus.

    Science.gov (United States)

    Huang, Xuenian; Liang, Yajing; Yang, Yong; Lu, Xuefeng

    2017-07-01

    Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    Science.gov (United States)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  10. Cp2 TiX Complexes for Sustainable Catalysis in Single-Electron Steps.

    Science.gov (United States)

    Richrath, Ruben B; Olyschläger, Theresa; Hildebrandt, Sven; Enny, Daniel G; Fianu, Godfred D; Flowers, Robert A; Gansäuer, Andreas

    2018-04-25

    We present a combined electrochemical, kinetic, and synthetic study with a novel and easily accessible class of titanocene catalysts for catalysis in single-electron steps. The tailoring of the electronic properties of our Cp 2 TiX-catalysts that are prepared in situ from readily available Cp 2 TiX 2 is achieved by varying the anionic ligand X. Of the complexes investigated, Cp 2 TiOMs proved to be either equal or substantially superior to the best catalysts developed earlier. The kinetic and thermodynamic properties pertinent to catalysis have been determined. They allow a mechanistic understanding of the subtle interplay of properties required for an efficient oxidative addition and reduction. Therefore, our study highlights that efficient catalysts do not require the elaborate covalent modification of the cyclopentadienyl ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Field theoretical approach to proton-nucleus reactions: II-Multiple-step excitation process

    International Nuclear Information System (INIS)

    Eiras, A.; Kodama, T.; Nemes, M.

    1989-01-01

    A field theoretical formulation to multiple step excitation process in proton-nucleus collision within the context of a relativistic eikonal approach is presented. A closed form expression for the double differential cross section can be obtained whose structure is very simple and makes the physics transparent. Glauber's formulation of the same process is obtained as a limit of ours and the necessary approximations are studied and discussed. (author) [pt

  12. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles.

    Science.gov (United States)

    Jiang, Canping; Flansburg, Lisa; Ghose, Sanchayita; Jorjorian, Paul; Shukla, Abhinav A

    2010-12-15

    The concept of design space has been taking root under the quality by design paradigm as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot-to-lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi-dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high-molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality. © 2010 Wiley Periodicals, Inc.

  13. A First Step in Learning Analytics: Pre-Processing Low-Level Alice Logging Data of Middle School Students

    Science.gov (United States)

    Werner, Linda; McDowell, Charlie; Denner, Jill

    2013-01-01

    Educational data mining can miss or misidentify key findings about student learning without a transparent process of analyzing the data. This paper describes the first steps in the process of using low-level logging data to understand how middle school students used Alice, an initial programming environment. We describe the steps that were…

  14. Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing

    International Nuclear Information System (INIS)

    Mugendiran, V.; Gnanavelbabu, A.

    2017-01-01

    In this study, a surface based strain measurement was used to determine the formability of the sheet metal. A strain measurement may employ manual calculation of plastic strains based on the reference circle and the deformed circle. The manual calculation method has a greater margin of error in the practical applications. In this paper, an attempt has been made to compare the formability by implementing three different theoretical approaches: Namely conventional method, least square method and digital based strain measurements. As the sheet metal was formed by a single point incremental process the etched circles get deformed into elliptical shapes approximately, image acquisition has been done before and after forming. The plastic strains of the deformed circle grids are calculated based on the non- deformed reference. The coordinates of the deformed circles are measured by various image processing steps. Finally the strains obtained from the deformed circle are used to plot the forming limit diagram. To evaluate the accuracy of the system, the conventional, least square and digital based method of prediction of the forming limit diagram was compared. Conventional method and least square method have marginal error when compared with digital based processing method. Measurement of strain based on image processing agrees well and can be used to improve the accuracy and to reduce the measurement error in prediction of forming limit diagram.

  15. Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Mugendiran, V.; Gnanavelbabu, A. [Anna University, Chennai, Tamilnadu (India)

    2017-06-15

    In this study, a surface based strain measurement was used to determine the formability of the sheet metal. A strain measurement may employ manual calculation of plastic strains based on the reference circle and the deformed circle. The manual calculation method has a greater margin of error in the practical applications. In this paper, an attempt has been made to compare the formability by implementing three different theoretical approaches: Namely conventional method, least square method and digital based strain measurements. As the sheet metal was formed by a single point incremental process the etched circles get deformed into elliptical shapes approximately, image acquisition has been done before and after forming. The plastic strains of the deformed circle grids are calculated based on the non- deformed reference. The coordinates of the deformed circles are measured by various image processing steps. Finally the strains obtained from the deformed circle are used to plot the forming limit diagram. To evaluate the accuracy of the system, the conventional, least square and digital based method of prediction of the forming limit diagram was compared. Conventional method and least square method have marginal error when compared with digital based processing method. Measurement of strain based on image processing agrees well and can be used to improve the accuracy and to reduce the measurement error in prediction of forming limit diagram.

  16. Single step preparation of NdFeB alloy by magnesiothermic reduction-diffusion process

    International Nuclear Information System (INIS)

    Singha, Vinay Kant; Surendranathana, A.O.; John Berchmans, L.

    2014-01-01

    Magnesiothermic reduction is a new approach to produce the NdFeB alloy on a commercial scale. Similar studies were conducted for the preparation of LaNi 5 and SmCo 5 using magnesium as the reductant. In the present investigation NdFeB Hard magnetic bulk materials were synthesized by metallothermic 'Reduction – Diffusion (R-D) Process' using Magnesium as a reductant. For this process oxide precursors of Nd, Fe and B were blended with flux (LiCl/CaCl 2 ) and Mg chips were sandwiched in alternate layers. Thermal analysis (TGA/DTA) was carried out to find the dissociation and decomposition temperature of the reactants. The phase analysis, structure, and elemental composition were assessed by X-ray diffraction (XRD) and electron dispersive spectrometry (EDS). The infrared (IR) spectra were recorded by Fourier transform infrared spectrometer (FTIR). The morphological features and particle size was assessed by scanning electron microscope (SEM). The magnetic behaviour of the alloy was assessed using electron paramagnetic resonance (EPR) and vibratory sample magnetometer (VSM). From these studies it has been concluded that the NdFeB magnetic particles can be prepared using magnesium as the reductant. The process is faster and consumes very less amount of energy for the completion as compared to conventional calciothermic reduction process. Traces of MgO were detected in the alloy which increases the perpendicular anisotropy, thus increasing the coercivity of the material

  17. Fire-through Ag contact formation for crystalline Si solar cells using single-step inkjet printing.

    Science.gov (United States)

    Kim, Hyun-Gang; Cho, Sung-Bin; Chung, Bo-Mook; Huh, Joo-Youl; Yoon, Sam S

    2012-04-01

    Inkjet-printed Ag metallization is a promising method of forming front-side contacts on Si solar cells due to its non-contact printing nature and fine grid resolution. However, conventional Ag inks are unable to punch through the SiN(x) anti-reflection coating (ARC) layer on emitter Si surfaces. In this study, a novel formulation of Ag ink is examined for the formation of fire-through contacts on a SiN(x)-coated Si substrate using the single-step printing of Ag ink, followed by rapid thermal annealing at 800 degrees C. In order to formulate Ag inks with fire-through contact formation capabilities, a liquid etching agent was first formulated by dissolving metal nitrates in an organic solvent and then mixing the resulting solution with a commercial Ag nanoparticle ink at various volume ratios. During the firing process, the dissolved metal nitrates decomposed into metal oxides and acted in a similar manner to the glass frit contained in Ag pastes for screen-printed Ag metallization. The newly formulated ink with a 1 wt% loading ratio of metal oxides to Ag formed finely distributed Ag crystallites on the Si substrate after firing at 800 degrees C for 1 min.

  18. Single step production of Cas9 mRNA for zygote injection.

    Science.gov (United States)

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  19. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  20. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    Science.gov (United States)

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  1. Sci-Thur PM - Colourful Interactions: Highlights 08: ARC TBI using Single-Step Optimized VMAT Fields

    International Nuclear Information System (INIS)

    Hudson, Alana; Gordon, Deborah; Moore, Roseanne; Balogh, Alex; Pierce, Greg

    2016-01-01

    Purpose: This work outlines a new TBI delivery technique to replace a lateral POP full bolus technique. The new technique is done with VMAT arc delivery, without bolus, treating the patient prone and supine. The benefits of the arc technique include: increased patient experience and safety, better dose conformity, better organ at risk sparing, decreased therapist time and reduction of therapist injuries. Methods: In this work we build on a technique developed by Jahnke et al. We use standard arc fields with gantry speeds corrected for varying distance to the patient followed by a single step VMAT optimization on a patient CT to increase dose inhomogeneity and to reduce dose to the lungs (vs. blocks). To compare the arc TBI technique to our full bolus technique, we produced plans on patient CTs for both techniques and evaluated several dosimetric parameters using an ANOVA test. Results and Conclusions: The arc technique is able reduce both the hot areas to the body (D2% reduced from 122.2% to 111.8% p<0.01) and the lungs (mean lung dose reduced from 107.5% to 99.1%, p<0.01), both statistically significant, while maintaining coverage (D98% = 97.8% vs. 94.6%, p=0.313, not statistically significant). We developed a more patient and therapist-friendly TBI treatment technique that utilizes single-step optimized VMAT plans. It was found that this technique was dosimetrically equivalent to our previous lateral technique in terms of coverage and statistically superior in terms of reduced lung dose.

  2. Sci-Thur PM - Colourful Interactions: Highlights 08: ARC TBI using Single-Step Optimized VMAT Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Alana; Gordon, Deborah; Moore, Roseanne; Balogh, Alex; Pierce, Greg [Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: This work outlines a new TBI delivery technique to replace a lateral POP full bolus technique. The new technique is done with VMAT arc delivery, without bolus, treating the patient prone and supine. The benefits of the arc technique include: increased patient experience and safety, better dose conformity, better organ at risk sparing, decreased therapist time and reduction of therapist injuries. Methods: In this work we build on a technique developed by Jahnke et al. We use standard arc fields with gantry speeds corrected for varying distance to the patient followed by a single step VMAT optimization on a patient CT to increase dose inhomogeneity and to reduce dose to the lungs (vs. blocks). To compare the arc TBI technique to our full bolus technique, we produced plans on patient CTs for both techniques and evaluated several dosimetric parameters using an ANOVA test. Results and Conclusions: The arc technique is able reduce both the hot areas to the body (D2% reduced from 122.2% to 111.8% p<0.01) and the lungs (mean lung dose reduced from 107.5% to 99.1%, p<0.01), both statistically significant, while maintaining coverage (D98% = 97.8% vs. 94.6%, p=0.313, not statistically significant). We developed a more patient and therapist-friendly TBI treatment technique that utilizes single-step optimized VMAT plans. It was found that this technique was dosimetrically equivalent to our previous lateral technique in terms of coverage and statistically superior in terms of reduced lung dose.

  3. Development of a method to extract and purify target compounds from medicinal plants in a single step: online hyphenation of expanded bed adsorption chromatography and countercurrent chromatography.

    Science.gov (United States)

    Li, Yang; Wang, Nan; Zhang, Min; Ito, Yoichiro; Zhang, Hongyang; Wang, Yuerong; Guo, Xin; Hu, Ping

    2014-04-01

    Pure compounds extracted and purified from natural sources are crucial to lead discovery and drug screening. This study presents a novel two-dimensional hyphenation of expanded bed adsorption chromatography (EBAC) and high-speed countercurrent chromatography (HSCCC) for extraction and purification of target compounds from medicinal plants in a single step. The EBAC and HSCCC were hyphenated via a six-port injection valve as an interface. Fractionation of ingredients of Salvia miltiorrhiza and Rhizoma coptidis was performed on the hyphenated system to verify its efficacy. Two compounds were harvested from Salvia miltiorrhiza, one was 52.9 mg of salvianolic acid B with an over 95% purity and the other was 2.1 mg of rosmarinic acid with a 74% purity. Another two components were purified from Rhizoma coptidis, one was 4.6 mg of coptisine with a 98% purity and one was 4.1 mg of berberine with a 82% purity. The processing time was nearly 50% that of the multistep method. The results indicate that the present method is a rapid and green way to harvest targets from medicinal plants in a single step.

  4. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  5. Fast Synthesis of High Quality Biodiesel from ‘Waste Fish Oil’ by Single Step Transesterification

    Directory of Open Access Journals (Sweden)

    Yogesh C. Sharma

    2014-09-01

    Full Text Available A large volume of fish wastes is produced on a daily basis in the Indian sub-continent. This abundant waste source could serve as an economic feedstock for bioenergy generation. In the present study, oil extracted from discarded fish parts was used for high quality biodiesel production. More specifically, a single step transesterification of ‘waste fishoil’ with methanol using sodium methoxide (CH3ONa as homogeneous catalyst under moderate operational conditions resulted in highly pure biodiesel of > 98% of fatty acid methyl ester (FAME content. Characterization was performed by Fourier Transform-Nuclear Magnetic Resonance (FT-NMR.

  6. Analytic observations for the d=1+ 1 bridge site (or single-step) deposition model

    International Nuclear Information System (INIS)

    Evans, J.W.; Kang, H.C.

    1991-01-01

    Some exact results for a reversible version of the d=1+1 bridge site (or single-step) deposition model are presented. Exact steady-state properties are determined directly for finite systems with various mean slopes. These show explicitly how the asymptotic growth velocity and fluctuations are quenched as the slope approaches its maximum allowed value. Next, exact hierarchial equations for the dynamics are presented. For the special case of ''equilibrium growth,'' these are analyzed exactly at the pair-correlation level directly for an infinite system. This provided further insight into asymptotic scaling behavior. Finally, the above hierarchy is compared with one generated from a discrete form of the Kardar--Parisi--Zhang equations. Some differences are described

  7. Impacting student anxiety for the USMLE Step 1 through process-oriented preparation

    Directory of Open Access Journals (Sweden)

    Roy E. Strowd

    2010-02-01

    Full Text Available Background: Standardized examinations are the key components of medical education. The USMLE Step 1 is the first of these important milestones. Success on this examination requires both content competency and efficient strategies for study and review. Students employ a wide variety of techniques in studying for this examination, with heavy reliance on personal study habits and advice from other students. Nevertheless, few medical curricula formally address these strategies. Methods: In response to student-generated critique at our institution, a five-part seminar series on process-oriented preparation was developed and implemented to address such concerns. The series focused on early guidance and preparation strategies for Step 1 and the many other important challenges in medical school. Emphasis was placed on facilitating conversation and mentorship opportunities between students. Results & Conclusions: A profoundly positive experience was reported by our medical students that included a decreased anxiety level for the Step 1 examination.

  8. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept.

    Science.gov (United States)

    Yuan, Yuan; Macquarrie, Duncan J

    2015-12-01

    The biorefinery is an important concept for the development of alternative routes to a range of interesting and important materials from renewable resources. It ensures that the resources are used fully and that all parts of them are valorized. This paper develops this concept, using brown macroalgae Ascophyllum nodosum as an example, by assistance of microwave technology. A step-by-step process was designed to obtain fucoidan, alginates, sugars and biochar (alga residue) consecutively. The yields of fucoidan, alginates, sugars and biochar were 14.09%, 18.24%, 10.87% and 21.44%, respectively. To make an evaluation of the biorefinery process, seaweed sample was also treated for fucoidan extraction only, alginate extraction only and hydrothermal treatment for sugars and biochar only. The chemical composition and properties of each product were also analyzed. The results indicated that A. nodosum could be potentially used as feedstock for a biorefinery process to produce valuable chemicals and fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  10. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization of the ferroelectric gamma-phase during the first step and enhancement of the PVDF film dense morphology during the second step. Moreover, when we extended the processing time of the second step, we obtained good hysteresis curves down to 1 Hz, the first such report for ferroelectric PVDF films. The PVDF films also exhibit a coercive field of 113 MV m-1 and a ferroelectric polarization of 5.4 μC cm-2. © The Royal Society of Chemistry 2015.

  11. Addition of Zinc Improves the Physical Stability of Insulin in the Primary Emulsification Step of the Poly(lactide-co-glycolide Microsphere Preparation Process

    Directory of Open Access Journals (Sweden)

    Chandrasekar Manoharan

    2015-04-01

    Full Text Available In this study, the effect of zinc on insulin stability during the primary emulsification step of poly(lactide-co-glycolide microspheres preparation by the water-in-oil-in-water (w/o/w double emulsion solvent evaporation technique was evaluated. Insulin was emulsified at homogenization speeds of 5000 and 10,000 rpm. Insulin was extracted from the primary w/o emulsion by a method previously reported from our laboratory and analyzed by comprehensive analytical techniques. The differential scanning calorimetry thermograms of insulin with zinc showed a single peak around 83 °C with calorimetric enthalpy values similar to native insulin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE of extracted insulin showed a single intense band around 6 kDa, demonstrating the preservation of primary structure. High performance liquid chromatography (HPLC analysis revealed that no degradation products were formed during the homogenization process. Insulin aggregates residing at the w/o interfaces were found to be of non-covalent nature. In addition, observation of a single characteristic peak for insulin at m/z 5808 in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrum confirmed the absence of insulin degradation products and covalent dimers. Presence of zinc preserved the secondary structure of insulin as indicated by circular dichroism. In conclusion, these results show that with the addition of zinc, insulin stability can be improved during the primary emulsification step.

  12. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    Science.gov (United States)

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  13. Extended Kalman filter (EKF) application in vitamin C two-step fermentation process.

    Science.gov (United States)

    Wei, D; Yuan, W; Yuan, Z; Yin, G; Chen, M

    1993-01-01

    Based on kinetic model study of vitamin C two-step fermentation, the extended Kalman filter (EKF) theory is conducted for studying the process which is disturbed by white noise to some extent caused by the model, the fermentation system and operation fluctuation. EKF shows that calculated results from estimated process parameters agree with the experimental results considerably better than model prediction without using estimated parameters. Parameter analysis gives a better understanding of the kinetics and provides a basis for state estimation and state prediction.

  14. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  15. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    Science.gov (United States)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  16. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  17. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  18. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  19. Hydrogen with intrinsic CO{sub 2} sequestration: the ENI 'One Step Hydrogen' process

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, S.; Cornaro, U.; Mizia, F.; Malandrino, A.; Piccoli, V. [Enitecnologie SpA, S. Donata Milanese (Italy); Sanfilippo, D.; Miracca, I. [Snamprogetti SpA, S. Donato Milanese (Italy)

    2003-07-01

    The new process, under development in our companies, is aimed to hydrogen production with intrinsic carbon dioxide sequestration. This is made possible combining in a cycle the water oxidative potential with a reverse action by a reducing agent like hydrocarbons, the preferred being natural gas. In the first step a suitable oxide takes up the oxygen from water splitting producing hydrogen. The solid act as an oxygen storage medium. Such 'lattice' oxygen is in turn released through one or more elemental steps. The process fits very well with a circulating fluid bed reactor which allows the movement of the solid from one reactive environment to the other. (orig.)

  20. Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable

    Directory of Open Access Journals (Sweden)

    M.A. Rahman

    2017-04-01

    Full Text Available Biodiesel from green energy source is gaining tremendous attention for ecofriendly and economically aspect. In this investigation, a two-step process was developed for the production of biodiesel from microalgae Spirulina maxima and determined best operating conditions for the steps. In the first stage, acid esterification was conducted to lessen acid value (AV from 10.66 to 0.51 mgKOH/g of the feedstock and optimal conditions for maximum esterified oil yielding were found at molar ratio 12:1, temperature 60°C, 1% (wt% H2SO4, and mixing intensity 400 rpm for a reaction time of 90 min. The second stage alkali transesterification was carried out for maximum biodiesel yielding (86.1% and optimal conditions were found at molar ratio 9:1, temperature 65°C, mixing intensity 600 rpm, catalyst concentration 0.75% (wt% KOH for a reaction time of 20 min. Biodiesel were analyzed according to ASTM standards and results were within standards limit. Results will helpful to produce third generation algal biodiesel from microalgae Spirulina maxima in an efficient manner.

  1. Development of F2 two-step fluorination process for non-aqueous reprocessing

    International Nuclear Information System (INIS)

    1976-02-01

    To establish the F 2 two-step fluorination for stable and high recoveries of plutonium, the fluorination process has been studied with the simulated fuel to a FBR containing UO 2 - PuO 2 and non-radioactive fission products in the 2''phi fluid-bed. The process principle was demonstrated and the effect of FPs on fluorination of U and Pu and the possibility of reducing the Pu loss could be clarified. The feasibility of separating PuF 6 from UF 6 onto UO 2 F 2 by adsorption, was also indicated. (auth.)

  2. Disciplinary Counseling: The First Step toward Due Process.

    Science.gov (United States)

    Cunningham, Patrick J.

    1980-01-01

    The oral reprimand is seen as the most important step in a corrective discipline procedure. Steps of disciplinary counseling include: always counsel in a private place; identify the problem; identify the desired behavior; define the consequences; get commitment from employee; identify session as oral reprimand; and monitor and follow up.(MLW)

  3. Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data.

    Science.gov (United States)

    Greenfeld, Max; van de Meent, Jan-Willem; Pavlichin, Dmitri S; Mabuchi, Hideo; Wiggins, Chris H; Gonzalez, Ruben L; Herschlag, Daniel

    2015-01-16

    Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [Trends Biochem Sci 38:30-37, 2013; Nat Rev Genet 14:9-22, 2013; Curr Opin Struct Biol 2014, 28C:112-121; Annu Rev Biophys 43:19-39, 2014]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [J Phys Chem B 114:5386-5403, 2010; Biophys J 79:1915-1927, 2000; Biophys J 91:1941-1951, 2006; Biophys J 79:1928-1944, 2000; Biophys J 86:4015-4029, 2004; Biophys J 97:3196-3205, 2009; PLoS One 7:e30024, 2012; BMC Bioinformatics 288 11(8):S2, 2010; Biophys J 106:1327-1337, 2014; Proc Int Conf Mach Learn 28:361-369, 2013], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices.

  4. Method for making a single-step etch mask for 3D monolithic nanostructures

    International Nuclear Information System (INIS)

    Grishina, D A; Harteveld, C A M; Vos, W L; Woldering, L A

    2015-01-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures. (paper)

  5. Home-based step training using videogame technology in people with Parkinson's disease: a single-blinded randomised controlled trial.

    Science.gov (United States)

    Song, Jooeun; Paul, Serene S; Caetano, Maria Joana D; Smith, Stuart; Dibble, Leland E; Love, Rachelle; Schoene, Daniel; Menant, Jasmine C; Sherrington, Cathie; Lord, Stephen R; Canning, Colleen G; Allen, Natalie E

    2018-03-01

    To determine whether 12-week home-based exergame step training can improve stepping performance, gait and complementary physical and neuropsychological measures associated with falls in Parkinson's disease. A single-blinded randomised controlled trial. Community (experimental intervention), university laboratory (outcome measures). Sixty community-dwelling people with Parkinson's disease. Home-based step training using videogame technology. The primary outcomes were the choice stepping reaction time test and Functional Gait Assessment. Secondary outcomes included physical and neuropsychological measures associated with falls in Parkinson's disease, number of falls over six months and self-reported mobility and balance. Post intervention, there were no differences between the intervention ( n = 28) and control ( n = 25) groups in the primary or secondary outcomes except for the Timed Up and Go test, where there was a significant difference in favour of the control group ( P = 0.02). Intervention participants reported mobility improvement, whereas control participants reported mobility deterioration-between-group difference on an 11-point scale = 0.9 (95% confidence interval: -1.8 to -0.1, P = 0.03). Interaction effects between intervention and disease severity on physical function measures were observed ( P = 0.01 to P = 0.08) with seemingly positive effects for the low-severity group and potentially negative effects for the high-severity group. Overall, home-based exergame step training was not effective in improving the outcomes assessed. However, the improved physical function in the lower disease severity intervention participants as well as the self-reported improved mobility in the intervention group suggest home-based exergame step training may have benefits for some people with Parkinson's disease.

  6. Statistical modeling of tear strength for one step fixation process of reactive printing and easy care finishing

    International Nuclear Information System (INIS)

    Asim, F.; Mahmood, M.

    2017-01-01

    Statistical modeling imparts significant role in predicting the impact of potential factors affecting the one step fixation process of reactive printing and easy care finishing. Investigation of significant factors on tear strength of cotton fabric for single step fixation of reactive printing and easy care finishing has been carried out in this research work using experimental design technique. The potential design factors were; concentration of reactive dye, concentration of crease resistant, fixation method and fixation temperature. The experiments were designed using DoE (Design of Experiment) and analyzed through software Design Expert. The detailed analysis of significant factors and interactions including ANOVA (Analysis of Variance), residuals, model accuracy and statistical model for tear strength has been presented. The interaction and contour plots of vital factors has been examined. It has been found from the statistical analysis that each factor has an interaction with other factor. Most of the investigated factors showed curvature effect on other factor. After critical examination of significant plots, quadratic model of tear strength with significant terms and their interaction at alpha = 0.05 has been developed. The calculated correlation coefficient, R2 of the developed model is 0.9056. The high values of correlation coefficient inferred that developed equation of tear strength will precisely predict the tear strength over the range of values. (author)

  7. Elementary steps in electrical doping of organic semiconductors

    KAUST Repository

    Tietze, Max Lutz

    2018-03-15

    Fermi level control by doping is established since decades in inorganic semiconductors and has been successfully introduced in organic semiconductors. Despite its commercial success in the multi-billion OLED display business, molecular doping is little understood, with its elementary steps controversially discussed and mostly-empirical-materials design. Particularly puzzling is the efficient carrier release, despite a presumably large Coulomb barrier. Here we quantitatively investigate doping as a two-step process, involving single-electron transfer from donor to acceptor molecules and subsequent dissociation of the ground-state integer-charge transfer complex (ICTC). We show that carrier release by ICTC dissociation has an activation energy of only a few tens of meV, despite a Coulomb binding of several 100 meV. We resolve this discrepancy by taking energetic disorder into account. The overall doping process is explained by an extended semiconductor model in which occupation of ICTCs causes the classically known reserve regime at device-relevant doping concentrations.

  8. Complex single step skull reconstruction in Gorham's disease - a technical report and review of the literature.

    Science.gov (United States)

    Ohla, Victoria; Bayoumi, Ahmed B; Hefty, Markus; Anderson, Matthew; Kasper, Ekkehard M

    2015-03-11

    Gorham's disease is a rare osteolytic disorder characterized by progressive resorption of bone and replacement of osseous matrix by a proliferative non-neoplastic vascular or lymphatic tissue. A standardized treatment protocol has not yet been defined due to the unpredictable natural history of the disease and variable clinical presentations. No single treatment has proven to be superior in arresting the course of the disease. Trials have included surgery, radiation and medical therapies using drugs such as calcium salts, vitamin D supplements and hormones. We report on our advantageous experience in the management of this osteolyic disorder in a case when it affected only the skull vault. A brief review of pertinent literature about Gorham's disease with skull involvement is provided. A 25-year-old Caucasian male presented with a skull depression over the left fronto-temporal region. He noticed progressive enlargement of the skull defect associated with local pain and mild headache. Physical examination revealed a tender palpable depression of the fronto-temporal convexity. Conventional X-ray of the skull showed widespread loss of bone substance. Subsequent CT scans showed features of patchy erosions indicative of an underlying osteolysis. MRI also revealed marginal enhancement at the site of the defect. The patient was in need of a pathological diagnosis as well as complex reconstruction of the afflicted area. A density graded CT scan was done to determine the variable degrees of osteolysis and a custom made allograft was designed for cranioplasty preoperatively to allow for a single step excisional craniectomy with synchronous skull repair. Gorham's disease was diagnosed based on histopathological examination. No neurological deficit or wound complications were reported postoperatively. Over a two-year follow up period, the patient had no evidence of local recurrence or other systemic involvement. A single step excisional craniectomy and cranioplasty can be an

  9. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction.

    Science.gov (United States)

    Kaluzny, Bartlomiej J; Cieslinska, Iwona; Mosquera, Samuel A; Verma, Shwetabh

    2016-02-01

    Transepithelial photorefractive keratectomy (tPRK), where both the epithelium and stroma are removed in a single-step, is a relatively new procedure of laser refractive error correction. This study compares the 3-month results of myopia and compound myopic astigmatism correction by tPRK or conventional alcohol-assisted PRK (aaPRK).This prospective, nonrandomized, case-control study recruited 148 consecutive patients; 93 underwent tPRK (173 eyes) and 55 aaPRK (103 eyes). Refractive results, predictability, safety, and efficacy were evaluated during the 3-month follow-up. The main outcome measures were uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and mean refractive spherical equivalent (MRSE).Mean preoperative MRSE was -4.30 ± 1.72 D and -4.33 ± 1.96 D, respectively (P = 0.87). The 3-month follow-up rate was 82.1% in the tPRK group (n = 145) and 86.4% in aaPRK group (n = 90), P = 0.81. Postoperative UDVA was 20/20 or better in 97% and 94% of eyes, respectively (P = 0.45). In the tPRK and aaPRK groups, respectively, 13% and 21% of eyes lost 1 line of CDVA, and 30% and 31% gained 1 or 2 lines (P = 0.48). Mean postoperative MRSE was -0.14 ± 0.26 D in the tPRK group and -0.12 ± 0.20 D in the aaPRK group (P = 0.9). The correlation between attempted versus achieved MRSE was equally high in both groups.Single-step transepithelial PRK and conventional PRK provide very similar results 3 months postoperatively. These procedures are predictable, effective, and safe for correction of myopia and compound myopic astigmatism.

  10. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    Science.gov (United States)

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Analyses of one-step liquid hydrogen production from methane and landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2007-11-15

    Conventional liquid hydrogen (LH{sub 2}) production consists of two basic steps: (1) gaseous hydrogen (GH{sub 2}) production via steam methane reformation followed by purification by means of pressure swing adsorption (PSA), and (2) GH{sub 2} liquefaction. LH{sub 2} produced by the conventional processes is not carbon neutral because of the carbon dioxide (CO{sub 2}) emission from PSA operation. A novel concept is herein presented and flowsheeted for LH{sub 2} production with zero carbon emission using methane (CH{sub 4}) or landfill gas as feedstock. A cryogenic process is used for both H{sub 2} separation/purification and liquefaction. This one-step process can substantially increase the efficiency and reduce costs because no PSA step is required. Furthermore, the integrated process results in no CO{sub 2} emissions and minimal H{sub 2} losses. Of the five flowsheets presented, one that combines low and high temperature CO/CH{sub 4} reforming reactions in a single reactor shows the highest overall efficiency with the first and second law efficiencies of 85% and 56%, respectively. The latter figure assumes 10% overall energy loss and 30% efficiency for the cryogenic process. (author)

  12. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    Science.gov (United States)

    Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Chattopadhyay, Goutam (Inventor); Perez, Jose Vicente Siles (Inventor); Lin, Robert H. (Inventor); Mehdi, Imran (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  13. Neptunium control in co-decontamination step of purex process

    International Nuclear Information System (INIS)

    Zhang Zefu; He Jianyu; Zhu Zhaowu; Ye Guoan; Zhao Zhiqiang

    2002-01-01

    A new alternative method for separation of Np in the first co-decontamination step is proposed. It comprises two steps, namely, preconditioning of Np valence state in the dissolved solution of spent fuel by NO gas bubbling in HNO 3 medium to produce HNO 2 , which is considered as salt-free process to convert Np(VI) to Np(V) and stabilization of Np(V) with urea, finally, the demonstrative counter current cascade extraction of Np(IV) and Np(V) in a miniature mixer-settler was carried out. The batch experiments show that Np(V) produced after conditioning may be slowly oxidized again to Np(VI) during standing time. Addition of urea in the HNO 3 solution might enhance the stability of Np(V). On the other hand, the solvent extraction by 30% TBP/kerosene could greatly accelerate the oxidation rate of Np(V). The chemical flow sheet study at 25degC shows that, more than 98% of Np could be routed into HLLW if urea is added in the HNO 3 solution. The operating temperature has great influence on the kinetics of Np(V) oxidation. If operation temperature races to 36degC and urea is not added, about 38% of Np will go along with U and Pu into organic phase. The behavior of Np(IV) during extraction shows great accumulation in the middle stages of battery. (author)

  14. Two step esterification-transesterification process of wet greasy sewage sludge for biodiesel production.

    Science.gov (United States)

    Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R

    2016-01-01

    Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process

    International Nuclear Information System (INIS)

    Lu, X.Y.; Nagata, A.; Sugawara, K.

    2008-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process were investigated. The tapes were then subjected to two heat treatments with an intermediate rolling. All the tapes were sintered at 835 deg. C for 24 h at initial sintering stage. A two-step sintering procedure was then used in the final sintering stage. In the first step, the tapes are sintered at 840-865 deg. C for 1 h. In the second step, they were sintered at 835 deg. C for 120 h. The results show that the first step sintering temperature has significant influence on the microstructure and the critical current density J c . The observed microstructures are consistent well with the different J c performances of the tapes first-step-sintered at different temperatures. The tape first-step-sintered at 850 deg. C, which has small secondary phases, stronger c-axis grain alignment, higher proportion of Bi-2223 phase, and no cracks, exhibits the highest J c value

  16. Packaging signals in single-stranded RNA viruses: nature?s alternative to a purely electrostatic assembly mechanism

    OpenAIRE

    Stockley, Peter G.; Twarock, Reidun; Bakker, Saskia E.; Barker, Amy M.; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J.; Pearson, Arwen R.; Phillips, Simon E. V.; Ranson, Neil A.; Tuma, Roman

    2013-01-01

    The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative the...

  17. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2013-01-01

    Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

  18. Role of step stiffness and kinks in the relaxation of vicinal (001) with zigzag [110] steps

    Science.gov (United States)

    Mahjoub, B.; Hamouda, Ajmi BH.; Einstein, TL.

    2017-08-01

    We present a kinetic Monte Carlo study of the relaxation dynamics and steady state configurations of 〈110〉 steps on a vicinal (001) simple cubic surface. This system is interesting because 〈110〉 (fully kinked) steps have different elementary excitation energetics and favor step diffusion more than 〈100〉 (nominally straight) steps. In this study we show how this leads to different relaxation dynamics as well as to different steady state configurations, including that 2-bond breaking processes are rate determining for 〈110〉 steps in contrast to 3-bond breaking processes for 〈100〉-steps found in previous work [Surface Sci. 602, 3569 (2008)]. The analysis of the terrace-width distribution (TWD) shows a significant role of kink-generation-annihilation processes during the relaxation of steps: the kinetic of relaxation, toward the steady state, is much faster in the case of 〈110〉-zigzag steps, with a higher standard deviation of the TWD, in agreement with a decrease of step stiffness due to orientation. We conclude that smaller step stiffness leads inexorably to faster step dynamics towards the steady state. The step-edge anisotropy slows the relaxation of steps and increases the strength of step-step effective interactions.

  19. A Renormalisation Group Method. V. A Single Renormalisation Group Step

    Science.gov (United States)

    Brydges, David C.; Slade, Gordon

    2015-05-01

    This paper is the fifth in a series devoted to the development of a rigorous renormalisation group method applicable to lattice field theories containing boson and/or fermion fields, and comprises the core of the method. In the renormalisation group method, increasingly large scales are studied in a progressive manner, with an interaction parametrised by a field polynomial which evolves with the scale under the renormalisation group map. In our context, the progressive analysis is performed via a finite-range covariance decomposition. Perturbative calculations are used to track the flow of the coupling constants of the evolving polynomial, but on their own perturbative calculations are insufficient to control error terms and to obtain mathematically rigorous results. In this paper, we define an additional non-perturbative coordinate, which together with the flow of coupling constants defines the complete evolution of the renormalisation group map. We specify conditions under which the non-perturbative coordinate is contractive under a single renormalisation group step. Our framework is essentially combinatorial, but its implementation relies on analytic results developed earlier in the series of papers. The results of this paper are applied elsewhere to analyse the critical behaviour of the 4-dimensional continuous-time weakly self-avoiding walk and of the 4-dimensional -component model. In particular, the existence of a logarithmic correction to mean-field scaling for the susceptibility can be proved for both models, together with other facts about critical exponents and critical behaviour.

  20. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  1. The effect of a cognitive-motor intervention on voluntary step execution under single and dual task conditions in older adults: a randomized controlled pilot study

    Directory of Open Access Journals (Sweden)

    Pichierri G

    2012-07-01

    Full Text Available Giuseppe Pichierri,1 Amos Coppe,1 Silvio Lorenzetti,2 Kurt Murer,1 Eling D de Bruin11Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Switzerland; 2Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, SwitzerlandBackground: This randomized controlled pilot study aimed to explore whether a cognitive-motor exercise program that combines traditional physical exercise with dance video gaming can improve the voluntary stepping responses of older adults under attention demanding dual task conditions.Methods: Elderly subjects received twice weekly cognitive-motor exercise that included progressive strength and balance training supplemented by dance video gaming for 12 weeks (intervention group. The control group received no specific intervention. Voluntary step execution under single and dual task conditions was recorded at baseline and post intervention (Week 12.Results: After intervention between-group comparison revealed significant differences for initiation time of forward steps under dual task conditions (U = 9, P = 0.034, r = 0.55 and backward steps under dual task conditions (U = 10, P = 0.045, r = 0.52 in favor of the intervention group, showing altered stepping levels in the intervention group compared to the control group.Conclusion: A cognitive-motor intervention based on strength and balance exercises with additional dance video gaming is able to improve voluntary step execution under both single and dual task conditions in older adults.Keywords: fall prevention, exercise, dance, video game

  2. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Daehyeok Kim

    2017-06-01

    Full Text Available In this paper, we present a multi-resolution mode CMOS image sensor (CIS for intelligent surveillance system (ISS applications. A low column fixed-pattern noise (CFPN comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution with supply voltages of 3.3 V (analog and 1.8 V (digital and 14 frame/s of frame rates.

  3. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    Science.gov (United States)

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  4. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    Science.gov (United States)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  5. S-process studies using single and pulsed neutron exposures

    Science.gov (United States)

    Beer, H.

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A = 90 to 200. For the isotopes from iron to zirconium an additional 'weak' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, the inclusion of new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of an s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process.

  6. S-process studies using single and pulsed neutron exposures

    International Nuclear Information System (INIS)

    Beer, H.

    1986-01-01

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A=90 to 200. For the isotopes from iron to zirconium an additional ''weak'' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, including new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of a s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process

  7. A qualitative single case study of parallel processes

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    2007-01-01

    Parallel process in psychotherapy and supervision is a phenomenon manifest in relationships and interactions, that originates in one setting and is reflected in another. This article presents an explorative single case study of parallel processes based on qualitative analyses of two successive...... randomly chosen psychotherapy sessions with a schizophrenic patient and the supervision session given in between. The author's analysis is verified by an independent examiner's analysis. Parallel processes are identified and described. Reflections on the dynamics of parallel processes and supervisory...

  8. Critical steps in learning from incidents: using learning potential in the process from reporting an incident to accident prevention.

    Science.gov (United States)

    Drupsteen, Linda; Groeneweg, Jop; Zwetsloot, Gerard I J M

    2013-01-01

    Many incidents have occurred because organisations have failed to learn from lessons of the past. This means that there is room for improvement in the way organisations analyse incidents, generate measures to remedy identified weaknesses and prevent reoccurrence: the learning from incidents process. To improve that process, it is necessary to gain insight into the steps of this process and to identify factors that hinder learning (bottlenecks). This paper presents a model that enables organisations to analyse the steps in a learning from incidents process and to identify the bottlenecks. The study describes how this model is used in a survey and in 3 exploratory case studies in The Netherlands. The results show that there is limited use of learning potential, especially in the evaluation stage. To improve learning, an approach that considers all steps is necessary.

  9. Seven-step problem-based learning in an interaction design course

    DEFF Research Database (Denmark)

    Schultz, Nette; Christensen, Hans Peter

    2004-01-01

    The objective in this paper is the implementation of the highly structured seven-step PBL procedure as part of the learning process in a human-computer interaction design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction de...... others in a single course. The evaluation results showed that the students definitely took a deep approach to learning, and indicated clearly that the students had obtained competences not only within the traditional HCI curriculum but also in terms of team-work skills.......The objective in this paper is the implementation of the highly structured seven-step PBL procedure as part of the learning process in a human-computer interaction design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction...... individual reports after each case in the PBL-process in order to explore the students’ inter- and intra-personal team skills development in the learning process. Different qualitative and quantitative evaluation methods have been used to obtain a thorough evaluation of PBL used as a learning method among...

  10. Flexible single molecule simulation of reaction-diffusion processes

    International Nuclear Information System (INIS)

    Hellander, Stefan; Loetstedt, Per

    2011-01-01

    An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.

  11. Fostering Autonomy through Syllabus Design: A Step-by-Step Guide for Success

    Science.gov (United States)

    Ramírez Espinosa, Alexánder

    2016-01-01

    Promoting learner autonomy is relevant in the field of applied linguistics due to the multiple benefits it brings to the process of learning a new language. However, despite the vast array of research on how to foster autonomy in the language classroom, it is difficult to find step-by-step processes to design syllabi and curricula focused on the…

  12. Single banking supervision and the single supervisory mechanism

    Directory of Open Access Journals (Sweden)

    Gheorghe, C. A.

    2013-06-01

    Full Text Available A resolution seems to have been found for the banking crisis. The first steps have been made towards the construction of the Economic and Monetary Union, steps involving the single supervision of banks, in order to avoid the discount of a new financial crisis on the expense of the EU state members. The Single Supervisory Mechanism – SSM is to become effective as of March 1, 2014, at the earliest.

  13. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  14. Developing a workbook to support the contextualisation of global health systems guidance: a case study identifying steps and critical factors for success in this process at WHO.

    Science.gov (United States)

    Alvarez, Elizabeth; Lavis, John N; Brouwers, Melissa; Schwartz, Lisa

    2018-03-02

    Global guidance can help countries strengthen their health systems to deliver effective interventions to their populations. However, to have an impact, guidance needs to be contextualised or adapted to local settings; this process includes consideration of health system arrangements and political system factors. To date, methods to support contextualisation do not exist. In response, a workbook was designed to provide specific methods and strategies to enable the contextualisation of WHO's 'Optimizing health worker roles to improve maternal and newborn health' (OptimizeMNH) guidance at the national or subnational level. The objective of this study was to describe the process of developing the workbook and identify key steps of the development process, barriers that arose and facilitators that helped overcome some of these barriers. A qualitative single case study design was carried out. Interviews, documents and a reflexive journal were used. Constant comparison and an edit-style of organisation were used during data analysis to develop concepts, themes, subthemes and relationships among them. Thirteen interviews were conducted and 52 documents were reviewed. Three main steps were identified in the process of developing the workbook for health systems guidance contextualisation, namely (1) determining the need for and gaining approval to develop the workbook, (2) developing the workbook (taking on the task, creating the structure of the workbook, operationalising its components, undergoing approval processes and editing it), and (3) implementing the workbook both at the WHO level and at the national/subnational level. Five barriers and/or facilitators emerged relevant to each step, namely (1) having well-placed and credible champions, (2) creating and capitalising on opportunities, (3) finding the right language to engage various actors and obtain buy-in, (4) obtaining and maintaining meaningful buy-in, and (5) ensuring access to resources. Understanding the key

  15. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    Science.gov (United States)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  16. The typical steps of radiation processes development. Experience in investigation, designing and application

    International Nuclear Information System (INIS)

    Babkin, I. Yu.

    1983-01-01

    The typical steps of radiation processes development are discussed as: primary laboratory investigations; primary economic evaluation; more exact estimation of situation in industry; comparative analysis; development of a flow sheet; pilot plant; obtaining of initial data for designing of industrial scale plant; prediction of industrial situation; designing of semi-industrial or industrial plant; industrial plant. (U.K.)

  17. The Mixing of Methods: a three-step process for improving rigour in impact evaluations

    NARCIS (Netherlands)

    Ton, G.

    2012-01-01

    This article describes a systematic process that is helpful in improving impact evaluation assignments, within restricted budgets and timelines. It involves three steps: a rethink of the key questions of the evaluation to develop more relevant, specific questions; a way of designing a mix of

  18. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  19. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    Science.gov (United States)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  20. A high-yield, one-step synthesis of surfactant-free gold nanostars and numerical study for single-molecule SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S.; Ringane, A. B.; Arya, A.; Das, G. M.; Dantham, V. R., E-mail: dantham@iitp.ac.in; Laha, R. [Indian Institute of Technology Patna, Department of Physics (India); Hussian, S. [Indian Institute of Technology Patna, Department of Chemistry (India)

    2016-08-15

    We report a high-yield synthesis of star-shaped gold nanostructures in one step, using a new surfactant-free wet chemistry method. Compared to the existing reports, these nanostars were found to have longer and sharper spikes anchored uniformly on the surface of the spherical core, allowing at least a few hot spots irrespective of the incident light polarization. The average experimental values of core radius and spike length were found to be 88.5 and 72 nm, respectively. Using these values in numerical simulations, the local electric field enhancement (η) and localized surface plasmon resonance (LSPR) spectrum were obtained. Moreover, the single-molecule surface-enhanced Raman scattering (SERS) enhancement factor was found to vary from 10{sup 10} to 10{sup 13} depending on the excitation wavelengths. Our theoretical calculations suggest that these nanostructures can be used to fabricate efficient SERS-based biosensors for the detection of single molecules in real time and for predicting structural information of single molecules.

  1. Quality of structural steel melted by single-slag process

    International Nuclear Information System (INIS)

    Levin, A.M.; Andreev, V.I.; Monastyrskij, A.V.; Drozdova, M.F.; Pashchenko, V.E.; Orzhekh, M.B.

    1982-01-01

    The 40Kh and 12KhN3A steels were used to compare the quality of the metal manufactured according to several variants of a single-slag process with the metal of a conventional melting technology. Investigation results show, that a single-slag process metal has higher sulfides and oxides contents as well as an increased anisotropy of mechanical properties while its tendency to flake formation is weaker due to a less degree of gas saturation. It is marked that anisotropy in the properties and a sulfide content may be decreased by out-of-furnace treatment of steels

  2. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  3. On the Convexity of Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2016-01-01

    The main result of this paper is the convexity of Step out - Step in (SoSi) sequencing games, a class of relaxed sequencing games first analyzed by Musegaas, Borm, and Quant (2015). The proof makes use of a polynomial time algorithm determining the value and an optimal processing order for an

  4. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Byrne, D.; McGlynn, E.; Henry, M.O.; Kumar, K.; Hughes, G.

    2010-01-01

    We report a three-step deposition process for uniform arrays of ZnO nanorods, involving chemical bath deposition of aligned seed layers followed by nanorod nucleation sites and subsequent vapour phase transport growth of nanorods. This combines chemical bath deposition techniques, which enable substrate independent seeding and nucleation site generation with vapour phase transport growth of high crystalline and optical quality ZnO nanorod arrays. Our data indicate that the three-step process produces uniform nanorod arrays with narrow and rather monodisperse rod diameters (∼ 70 nm) across substrates of centimetre dimensions. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction were used to study the growth mechanism and characterise the nanostructures.

  5. Single-Receiver GPS Phase Bias Resolution

    Science.gov (United States)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  6. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    OpenAIRE

    Parida Manmohan; Shrivastava Ambuj; Santhosh SR; Dash Paban; Saxena Parag; Rao PV

    2008-01-01

    Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Jap...

  7. Using Aspen plus in thermodynamics instruction a step-by-step guide

    CERN Document Server

    Sandler, Stanley I

    2015-01-01

    A step-by-step guide for students (and faculty) on the use of Aspen in teaching thermodynamics Used for a wide variety of important engineering tasks, Aspen Plus software is a modeling tool used for conceptual design, optimization, and performance monitoring of chemical processes. After more than twenty years, it remains one of the most popular and powerful chemical engineering simulation programs used both industrially and academically. Using Aspen Plus in Thermodynamics Instruction: A Step by Step Guide introduces the reader to the use of Aspen Plus in courses in thermodynamics. It prov

  8. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  9. Changes in step-width during dual-task walking predicts falls.

    Science.gov (United States)

    Nordin, E; Moe-Nilssen, R; Ramnemark, A; Lundin-Olsson, L

    2010-05-01

    The aim was to evaluate whether gait pattern changes between single- and dual-task conditions were associated with risk of falling in older people. Dual-task cost (DTC) of 230 community living, physically independent people, 75 years or older, was determined with an electronic walkway. Participants were followed up each month for 1 year to record falls. Mean and variability measures of gait characteristics for 5 dual-task conditions were compared to single-task walking for each participant. Almost half (48%) of the participants fell at least once during follow-up. Risk of falling increased in individuals where DTC for performing a subtraction task demonstrated change in mean step-width compared to single-task walking. Risk of falling decreased in individuals where DTC for carrying a cup and saucer demonstrated change compared to single-task walking in mean step-width, mean step-time, and step-length variability. Degree of change in gait characteristics related to a change in risk of falling differed between measures. Prognostic guidance for fall risk was found for the above DTCs in mean step-width with a negative likelihood ratio of 0.5 and a positive likelihood ratio of 2.3, respectively. Findings suggest that changes in step-width, step-time, and step-length with dual tasking may be related to future risk of falling. Depending on the nature of the second task, DTC may indicate either an increased risk of falling, or a protective strategy to avoid falling. Copyright 2010. Published by Elsevier B.V.

  10. A green two-step process for adipic acid production from cyclohexene. A study on parameters affecting selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Cavani, F.; Macchia, F.; Pino, R.; Raabova, K.; Rozhko, E. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Alini, S.; Accorinti, P.; Babini, G. [Radici Chimica SpA, Novara (Italy)

    2011-07-01

    In this paper, we report about the effect of reaction parameters on catalytic behavior in a twostep process aimed at the synthesis of adipic acid from cyclohexene. In the first step, cyclohexene reacts with an aqueous solution of hydrogen peroxide, under conditions leading to the formation of trans-1,2-cyclohexandiol as the prevailing product; the reaction is catalysed by tungstic acid, in the presence of phosphoric acid and of a PT agent. In the second step, 1,2-cyclohexandiol is oxidized with air, in the presence of an heterogeneous catalyst made of alumina-supported Ru(OH){sub 3}. This process is aimed at using the minimal amount of the costly hydrogen peroxide, since only one mole is theoretically needed per mole of cyclohexene. The first step afforded very high yield to the glycol, using only a slight excess of hydrogen peroxide. However, the second step turned out to be the more critical one, since the selectivity to adipic acid was very low because of the concomitant occurrence of several undesired side reactions. The latter were in part due to the reaction conditions used, which were necessary for the activation of cyclohexandiol. (orig.)

  11. Physical Analysis of Cross-Wedge Rolling Process of a Stepped Shaft

    Directory of Open Access Journals (Sweden)

    Łukasz Wójcik

    2017-12-01

    Full Text Available The paper presents experimental- model research results on the process of cross-wedge rolling of an axially-symmetrical element (stepped shaft. During research was used plastic mass on the basis of waxes in black and white colour. The aim of this experimental research was to determine the best option of forming in terms of values obtained and the course of forces. Physical examination was carried out using specialist machines, that is model and laboratory cross-wedge rolling mill. Experimental analysis was carried out using billets with the temperature of 15°C, whereas the actual process was carried out for billet from C45 carbon steel of temperature 1150°C. The study compared the dimensions of the components obtained during rolling tests and forming forces obtained in the result of physical modeling with forces obtained during real tests.

  12. Evaluating Web-Scale Discovery Services: A Step-by-Step Guide

    Directory of Open Access Journals (Sweden)

    Joseph Deodato

    2015-06-01

    Full Text Available Selecting a web-scale discovery service is a large and important undertaking that involves a significant investment of time, staff, and resources. Finding the right match begins with a thorough and carefully planned evaluation process. In order to be successful, this process should be inclusive, goal-oriented, data-driven, user-centered, and transparent. The following article offers a step-by-step guide for developing a web-scale discovery evaluation plan rooted in these five key principles based on best practices synthesized from the literature as well as the author’s own experiences coordinating the evaluation process at Rutgers University. The goal is to offer academic libraries that are considering acquiring a web-scale discovery service a blueprint for planning a structured and comprehensive evaluation process.

  13. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations.

    Science.gov (United States)

    Stoffelsma, Chantal; Rodriguez, Paramaconi; Garcia, Gonzalo; Garcia-Araez, Nuria; Strmcnik, Dusan; Marković, Nenad M; Koper, Marc T M

    2010-11-17

    The role of alkali cations (Li(+), Na(+), K(+), Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces.

  14. A step-by-step methodology for enterprise interoperability projects

    Science.gov (United States)

    Chalmeta, Ricardo; Pazos, Verónica

    2015-05-01

    Enterprise interoperability is one of the key factors for enhancing enterprise competitiveness. Achieving enterprise interoperability is an extremely complex process which involves different technological, human and organisational elements. In this paper we present a framework to help enterprise interoperability. The framework has been developed taking into account the three domains of interoperability: Enterprise Modelling, Architecture and Platform and Ontologies. The main novelty of the framework in comparison to existing ones is that it includes a step-by-step methodology that explains how to carry out an enterprise interoperability project taking into account different interoperability views, like business, process, human resources, technology, knowledge and semantics.

  15. Kinematic Differences During Single-Leg Step-Down Between Individuals With Femoroacetabular Impingement Syndrome and Individuals Without Hip Pain.

    Science.gov (United States)

    Lewis, Cara L; Loverro, Kari L; Khuu, Anne

    2018-04-01

    Study Design Controlled laboratory study, case-control design. Background Despite recognition that femoroacetabular impingement syndrome (FAIS) is a movement-related disorder, few studies have examined dynamic unilateral tasks in individuals with FAIS. Objectives To determine whether movements of the pelvis and lower extremities in individuals with FAIS differ from those in individuals without hip pain during a single-leg step-down, and to analyze kinematic differences between male and female participants within groups. Methods Individuals with FAIS and individuals without hip pain performed a single-leg step-down while kinematic data were collected. Kinematics were evaluated at 60° of knee flexion. A linear regression analysis assessed the main effects of group, sex, and side, and the interaction of sex by group. Results Twenty individuals with FAIS and 40 individuals without hip pain participated. Individuals with FAIS performed the step-down with greater hip flexion (4.9°; 95% confidence interval [CI]: 0.5°, 9.2°) and anterior pelvic tilt (4.1°; 95% CI: 0.9°, 7.3°) than individuals without hip pain. Across groups, female participants performed the task with more hip flexion (6.1°; 95% CI: 1.7°, 10.4°), hip adduction (4.8°; 95% CI: 2.2°, 7.4°), anterior pelvic tilt (5.8°; 95% CI: 2.6°, 9.0°), pelvic drop (1.4°; 95% CI: 0.3°, 2.5°), and thigh adduction (2.7°; 95% CI: 1.3°, 4.2°) than male participants. Conclusion The results of this study suggest that individuals with FAIS have alterations in pelvic motion during a dynamic unilateral task. The noted altered movement patterns in the FAIS group may contribute to the development of hip pain and may be due to impairments that are modifiable through rehabilitation. J Orthop Sports Phys Ther 2018;48(4):270-279. Epub 6 Mar 2018. doi:10.2519/jospt.2018.7794.

  16. Rapid decay of vacancy islands at step edges on Ag(111): step orientation dependence

    International Nuclear Information System (INIS)

    Shen, Mingmin; Thiel, P A; Jenks, Cynthia J; Evans, J W

    2010-01-01

    Previous work has established that vacancy islands or pits fill much more quickly when they are in contact with a step edge, such that the common boundary is a double step. The present work focuses on the effect of the orientation of that step, with two possibilities existing for a face centered cubic (111) surface: A- and B-type steps. We find that the following features can depend on the orientation: (1) the shapes of islands while they shrink; (2) whether the island remains attached to the step edge; and (3) the rate of filling. The first two effects can be explained by the different rates of adatom diffusion along the A- and B-steps that define the pit, enhanced by the different filling rates. The third observation-the difference in the filling rate itself-is explained within the context of the concerted exchange mechanism at the double step. This process is facile at all regular sites along B-steps, but only at kink sites along A-steps, which explains the different rates. We also observe that oxygen can greatly accelerate the decay process, although it has no apparent effect on an isolated vacancy island (i.e. an island that is not in contact with a step).

  17. A single-step synthesis of nitrogen-doped graphene sheets decorated with cobalt hydroxide nanoflakes for the determination of dopamine

    Directory of Open Access Journals (Sweden)

    Muhammad Mehmood Shahid

    2017-10-01

    Full Text Available Nitrogen-doped reduced graphene oxide (NrGO sheets decorated with Co(OH2 nanoflakes were prepared by a single-step hydrothermal process. The morphological and structural characterizations of as synthesized NrGO@Co(OH2 nanoflakes were performed by field emission scanning electron microscopy (FESEM, EDX-mapping and X-ray diffraction (XRD. NrGO@Co(OH2 nanoflakes modified glassy carbon electrode (GCE was used for electrochemical sensing of dopamine in neutral medium. The nanocomposite modified electrode showed enhanced electrochemical sensing ability for the detection of dopamine and the limit of detection (LoD was found to be 0.201 μM with a sensitivity value of 0.0286 ± 0.002 mA mM−1. Interference studies revealed that NrGO@Co(OH2─GCE endow excellent selectivity for DA detection even in the presence of higher concentration of common co-existing physiological interfering analytes. Additionally, proposed sensor demonstrated excellent performance in urine samples with promising reproducibility and stability. Keywords: Nitrogen doped graphene, Dopamine, Electrochemical sensor, Amperometric detection

  18. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process.

    Science.gov (United States)

    de Wilt, Arnoud; van Gijn, Koen; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette

    2018-07-01

    Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a cost-effective pharmaceutical removal. A three-step biological-ozone-biological (BO 3 B) treatment process was therefore designed for the enhanced pharmaceutical removal from wastewater effluent. The first biological step removed 38% of ozone scavenging TOC, thus proportionally reducing the absolute ozone input for the subsequent ozonation. Complementariness between biological and ozone treatment, i.e. targeting different pharmaceuticals, resulted in cost-effective pharmaceutical removal by the overall BO 3 B process. At a low ozone dose of 0.2 g O 3 /g TOC and an HRT of 1.46 h in the biological reactors, the removal of 8 out of 9 pharmaceuticals exceeded 85%, except for metoprolol (60%). Testing various ozone doses and HRTs revealed that pharmaceuticals were ineffectively removed at 0.1 g O3/g TOC and an HRT of 0.3 h. At HRTs of 0.47 and 1.46 h easily and moderately biodegradable pharmaceuticals such as caffeine, gemfibrozil, ibuprofen, naproxen and sulfamethoxazole were over 95% removed by biological treatment. The biorecalcitrant carbamazepine was completely ozonated at a dose of 0.4 g O 3 /g TOC. Ozonation products are likely biodegraded in the last biological reactor as a 17% TOC removal was found. No appreciable acute toxicity towards D. magna, P. subcapitata and V. fischeri was found after exposure to the influents and effluents of the individual BO 3 B reactors. The BO 3 B process is estimated to increase the yearly wastewater treatment tariff per population equivalent in the Netherlands by less than 10%. Overall, the BO 3 B process is a cost-effective treatment process for the removal of pharmaceuticals from secondary clarified effluents. Copyright

  19. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Y.; Lu, X.W. [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, X.C.; Min, Y.A. [School of Materials Science and Engineering, Shanghai University, Shanghai 200240 (China); Jin, X.J., E-mail: jin@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-09-15

    Research highlights: In this paper, SEM and TEM were used to characterize microstructure of Q and P steels with different partitioning time at 300 deg. C. The interesting phenomena were discovered and discussed: 1.Lower bainite (bainitic ferrite plus {epsilon}-carbide) rather than carbide-free bainite was observed during partitioning process. 2.The mechanical properties of Q and P steels can be tailored and adjusted through balance volume fraction of retained austenite and lower bainite during partitioning process. 3.The final amount of austenite was influenced by the transformation kinetics of lower bainite during partitioning process. According to the analysis, it can be concluded that associated with carbon partitioning from martensite to austenite, lower bainite transformation inevitably occurred. More importantly, lower bainite transformation seriously affected the mechanical properties of Q and P steels and final amount of austenite. - Abstract: A study of 40SiMnNiCr steel subjected to a two-step quenching and partitioning process (Q and P) is presented. The result suggests that strength variation of Q and P steels during the two-step Q and P process was a cumulative effect of increase of retained austenite fraction, decrease of carbon supersaturation of virgin martensite, and particularly much of lower bainite formation. A trade-off between high strength and good ductility of two-step Q and P steels can be tailored and adjusted by controlling lower bainite fraction. The final amount of austenite was influenced by the transformation kinetics of lower bainite during the partitioning process.

  20. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon

    International Nuclear Information System (INIS)

    Li, H.Y.; Lu, X.W.; Wu, X.C.; Min, Y.A.; Jin, X.J.

    2010-01-01

    Research highlights: In this paper, SEM and TEM were used to characterize microstructure of Q and P steels with different partitioning time at 300 deg. C. The interesting phenomena were discovered and discussed: 1.Lower bainite (bainitic ferrite plus ε-carbide) rather than carbide-free bainite was observed during partitioning process. 2.The mechanical properties of Q and P steels can be tailored and adjusted through balance volume fraction of retained austenite and lower bainite during partitioning process. 3.The final amount of austenite was influenced by the transformation kinetics of lower bainite during partitioning process. According to the analysis, it can be concluded that associated with carbon partitioning from martensite to austenite, lower bainite transformation inevitably occurred. More importantly, lower bainite transformation seriously affected the mechanical properties of Q and P steels and final amount of austenite. - Abstract: A study of 40SiMnNiCr steel subjected to a two-step quenching and partitioning process (Q and P) is presented. The result suggests that strength variation of Q and P steels during the two-step Q and P process was a cumulative effect of increase of retained austenite fraction, decrease of carbon supersaturation of virgin martensite, and particularly much of lower bainite formation. A trade-off between high strength and good ductility of two-step Q and P steels can be tailored and adjusted by controlling lower bainite fraction. The final amount of austenite was influenced by the transformation kinetics of lower bainite during the partitioning process.

  1. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Hansen, Niels

    2008-01-01

    temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4.......8) by accumulative roll-bonding at room temperature. Isochronal annealing for 0.5 h of the deformed samples shows the occurrence of recrystallization at 200 °C and above. However, when introducing an annealing step for 6 h at 175 °C, no significant recrystallization is observed and relatively homogeneous structures...... are obtained when the samples afterwards are annealed at higher temperatures up to 300 °C. To underpin these observations, the structural evolution has been characterized by transmission electron microscopy, showing that significant annihilation of high-angle boundaries, low-angle dislocation boundaries...

  2. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  3. Single step thermal decomposition approach to prepare supported γ-Fe2O3 nanoparticles

    International Nuclear Information System (INIS)

    Sharma, Geetu; Jeevanandam, P.

    2012-01-01

    γ-Fe 2 O 3 nanoparticles supported on MgO (macro-crystalline and nanocrystalline) were prepared by an easy single step thermal decomposition method. Thermal decomposition of iron acetylacetonate in diphenyl ether, in the presence of the supports followed by calcination, leads to iron oxide nanoparticles supported on MgO. The X-ray diffraction results indicate the stability of γ-Fe 2 O 3 phase on MgO (macro-crystalline and nanocrystalline) up to 1150 °C. The scanning electron microscopy images show that the supported iron oxide nanoparticles are agglomerated while the energy dispersive X-ray analysis indicates the presence of iron, magnesium and oxygen in the samples. Transmission electron microscopy images indicate the presence of smaller γ-Fe 2 O 3 nanoparticles on nanocrystalline MgO. The magnetic properties of the supported magnetic nanoparticles at various calcination temperatures (350-1150 °C) were studied using a superconducting quantum interference device which indicates superparamagnetic behavior.

  4. Synthesis of highly ordered nanopores on alumina by two-step anodization process

    Energy Technology Data Exchange (ETDEWEB)

    Bwana, Nicholas N. [University of Oxford, Department of Engineering Science (United Kingdom)], E-mail: Nicholas.Bwana@eng.ox.ac.uk

    2008-02-15

    Highly ordered anodic alumina was produced, on RF sputtered aluminium on a conductive glass substrate, by two step anodizing process in 0.4 M sulphuric acid at constant cell potentials of between 5 and 25 V and at a constant current density of 20 mA cm{sup -2}. The temperature was kept constant at 15 deg. C during both anodization processes. The effects of the anodizing potential, current density, and time on the pore diameters were established. Longer anodization periods result in wider irregular pores with reduced porosity for both constant potential and constant current density anodization processes. The current density increases with increasing constant anodizing potential and generally remains constant with time after a sharp rise. Potential drop during constant current density anodization behaves in a similar manner. We confirm that sulphuric acid has a self-ordering potential of 25 V above which burning occurs.

  5. Electron diffraction of CBr{sub 4} in superfluid helium droplets: A step towards single molecule diffraction

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (United States)

    2016-07-21

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr{sub 4} as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr{sub 4} similar to those of gas phase molecules can be observed. The experimental data from CBr{sub 4} doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  6. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.

    Science.gov (United States)

    van den Tillaar, Roland; Gamble, Paul

    2018-03-26

    This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2  ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2  ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.

  7. Experimental study of the pressure discharge process for the hydraulic control rod drive system stepped cylinder

    International Nuclear Information System (INIS)

    Wang, Jinhua; Bo, Hanliang; Zheng, Wenxiang

    2002-01-01

    The pressure discharge process from the stepped cylinder of the Hydraulic Control Rod Drive System (HCRDS) was studied experimentally in the HCRDS experimental loop for the 200 MW Nuclear Heating Reactor (NHR-200). The results showed that the differential pressure between the outside and the inside of the stepped cylinder increased rapidly to the desired value so that the force induced by the differential pressure which pushes the out tube of stepped cylinder was large enough. Therefore, if the hydraulic control rod were jammed, the pressure could push the hydraulic control rod to overcome the frictional resistance to insert the control rod into the reactor core. The experimental results verified that this design would solve the problem of hydraulic control rod jamming during an accident. (author)

  8. Computational Abstraction Steps

    DEFF Research Database (Denmark)

    Thomsen, Lone Leth; Thomsen, Bent; Nørmark, Kurt

    2010-01-01

    and class instantiations. Our teaching experience shows that many novice programmers find it difficult to write programs with abstractions that materialise to concrete objects later in the development process. The contribution of this paper is the idea of initiating a programming process by creating...... or capturing concrete values, objects, or actions. As the next step, some of these are lifted to a higher level by computational means. In the object-oriented paradigm the target of such steps is classes. We hypothesise that the proposed approach primarily will be beneficial to novice programmers or during...... the exploratory phase of a program development process. In some specific niches it is also expected that our approach will benefit professional programmers....

  9. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  10. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  11. Double-step annealing and ambient effects on phosphorus implanted emitters in silicon

    International Nuclear Information System (INIS)

    Koji, T.; Tseng, W.F.; Mayer, J.W.; Suganuma, T.

    1979-01-01

    Emitters of npn silicon bipolar transistors have been made by a phosphorus implantation at 50 keV P + to a dose of 1 x 10 16 cm -2 . This was followed by high temperature processes to reduce lattice disorder, to drive-in the phosphorus atoms, and to form oxide layers. The first process step was carried out by using single- and double-step anneals in various ambients (dry N 2 , dry 0 2 and steam) while the drive-in and oxidation steps were common for all structures. Electrical measurements on emitter/base leakage current, low frequency (popcorn) noise and current gain showed that the annealing ambient had a major influence. The transistors with implanted emitters annealed in a dry N 2 ambient are comparable to commercial ones with thermally-diffused emitters. Transmission electron microscopy observations on samples annealed in steam ambients revealed dislocations extending into the sidewall of the emitter/base junction. This sidewell penetration of dislocations is the main origin of the degradation of the emitter/base junction characteristics. (author)

  12. Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII*

    Science.gov (United States)

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-01-01

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  13. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Rangaraj [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Sousbie, Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lugardon, Aurelien [Naskeo Environnment, 52 rue Paul Vaillant Couturier, F-92240 Malakoff (France); Steyer, Jean Philippe; Delgenes, Jean Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2014-05-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of

  14. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    International Nuclear Information System (INIS)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-01-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

  15. Particularities of the recombination electron emission of single crystals of tungsten and niobium

    International Nuclear Information System (INIS)

    Mashtakova, V.A.; Shishkin, B.B.

    1984-01-01

    The volt-ampere characteristics (vac) of vacuum diodes with metal single cr ystal electrodes are measured. Studied were: crystallographic plane (100) of a tungsten single crystal and (110) face of a niobium single crystal. Anomalies o n the initial portions of the vac of diodes with niobium ((110) face) electrodes are discovered. Anomalies appear at cathode temperatures t exceeding characteri stic thermoionic temperatures thetasub(the). The ''steps'' on the vac at t >thetasub(the) for tungsten are considered as voltage jumps. The ''steps'' on th e vac for niobium are considered as diode current jumps due to fluctuation processes resulting in the formation of small amount of slow electrons

  16. Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion.

    Science.gov (United States)

    Wang, Jin; Lin, Yaochen; Pinault, Mathieu; Filoramo, Arianna; Fabert, Marc; Ratier, Bernard; Bouclé, Johann; Herlin-Boime, Nathalie

    2015-01-14

    This paper presents the continuous-flowand single-step synthesis of a TiO2/MWCNT (multiwall carbon nanotubes) nanohybrid material. The synthesis method allows achieving high coverage and intimate interface between the TiO2particles and MWCNTs, together with a highly homogeneous distribution of nanotubes within the oxide. Such materials used as active layer in theporous photoelectrode of solid-state dye-sensitized solar cells leads to a substantial performance improvement (20%) as compared to reference devices.

  17. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  18. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  19. Real-time multi-GNSS single-frequency precise point positioning

    NARCIS (Netherlands)

    de Bakker, P.F.; Tiberius, C.C.J.M.

    2017-01-01

    Precise Point Positioning (PPP) is a popular Global Positioning System (GPS) processing strategy, thanks to its high precision without requiring additional GPS infrastructure. Single-Frequency PPP (SF-PPP) takes this one step further by no longer relying on expensive dual-frequency GPS receivers,

  20. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    Directory of Open Access Journals (Sweden)

    Diego Tresinari SANTOS

    2015-01-01

    Full Text Available AbstractIn this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions. Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.

  1. Room-temperature current blockade in atomically defined single-cluster junctions

    Science.gov (United States)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  2. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    International Nuclear Information System (INIS)

    Molnar, P.; Sittner, P.; Novak, V.; Lukas, P.

    2008-01-01

    A neutron single crystal diffraction method for inspecting the quality of martensite single crystals is introduced. True interface-free martensite single crystals are indispensable for, e.g. measurement of elastic constants of phases by ultrasonic techniques. The neutron diffraction method was used to detect and distinguish the presence of individual lattice correspondence variants of the 2H orthorhombic martensite phase in Cu-Al-Ni as well as to follow the activity of twinning processes during the deformation test on the martensite variant single crystals. When preparing the martensite single variant prism-shaped crystals by compression deformation method, typically a small fraction of second unwanted martensitic variant (compound twin) remains in the prism samples. Due to the very low stress (∼1 MPa) for the compound twinning in many shape memory alloys, it is quite difficult not only to deplete the martensite prisms of all internal interfaces but mainly to keep them in the martensite single variant state for a long time needed for further investigations

  3. How to define 'best practice' for use in Knowledge Translation research: a practical, stepped and interactive process.

    Science.gov (United States)

    Bosch, Marije; Tavender, Emma; Bragge, Peter; Gruen, Russell; Green, Sally

    2013-10-01

    Defining 'best practice' is one of the first and crucial steps in any Knowledge Translation (KT) research project. Without a sound understanding of what exactly should happen in practice, it is impossible to measure the extent of existing gaps between 'desired' and 'actual' care, set implementation goals, and monitor performance. The aim of this paper is to present a practical, stepped and interactive process to develop best practice recommendations that are actionable, locally applicable and in line with the best available research-based evidence, with a view to adapt these into process measures (quality indicators) for KT research purposes. Our process encompasses the following steps: (1) identify current, high-quality clinical practice guidelines (CPGs) and extract recommendations; (2) select strong recommendations in key clinical management areas; (3) update evidence and create evidence overviews; (4) discuss evidence and produce agreed 'evidence statements'; (5) discuss the relevance of the evidence with local stakeholders; and (6) develop locally applicable actionable best practice recommendations, suitable for use as the basis of quality indicators. Actionable definitions of local best practice are a prerequisite for doing KT research. As substantial resources go into rigorously synthesizing evidence and developing CPGs, it is important to make best use of such available resources. We developed a process for efficiently developing locally applicable actionable best practice recommendations from existing high-quality CPGs that are in line with current research evidence. © 2012 John Wiley & Sons Ltd.

  4. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States); Easley, S. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States)

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  5. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  7. Conversation on data mining strategies in LC-MS untargeted metabolomics: pre-processing and pre-treatment steps

    CSIR Research Space (South Africa)

    Tugizimana, F

    2016-11-01

    Full Text Available -MS)-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode...

  8. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads

    International Nuclear Information System (INIS)

    Kingsley, D M; Dias, A D; Corr, D T; Chrisey, D B

    2013-01-01

    Alginate can be used to encapsulate mammalian cells and for the slow release of small molecules. Packaging alginate as microbead structures allows customizable delivery for tissue engineering, drug release, or contrast agents for imaging. However, state-of-the-art microbead fabrication has a limited range in achievable bead sizes, and poor control over bead placement, which may be desired to localize cellular signaling or delivery. Herein, we present a novel, laser-based method for single-step fabrication and precise planar placement of alginate microbeads. Our results show that bead size is controllable within 8%, and fabricated microbeads can remain immobilized within 2% of their target placement. Demonstration of this technique using human breast cancer cells shows that cells encapsulated within these microbeads survive at a rate of 89.6%, decreasing to 84.3% after five days in culture. Infusing rhodamine dye into microbeads prior to fluorescent microscopy shows their 3D spheroidal geometry and the ability to sequester small molecules. Microbead fabrication and patterning is compatible with conventional cellular transfer and patterning by laser direct-write, allowing location-based cellular studies. While this method can also be used to fabricate microbeads en masse for collection, the greatest value to tissue engineering and drug delivery studies and applications lies in the pattern registry of printed microbeads. (paper)

  9. Valuing Euro rating-triggered step-up telecom bonds

    NARCIS (Netherlands)

    P. Houweling (Patrick); A.A. Mentink; A.C.F. Vorst (Ton)

    2003-01-01

    textabstractWe value rating-triggered step-up bonds with three methods: (i) the Jarrow, Lando and Turnbull (1997, JLT) framework, (ii) a similar framework using historical probabilities and (iii) as plain vanilla bonds. We find that the market seems to value single step-up bonds according to the JLT

  10. Valuing Euro Rating-Triggered Step-Up Telecom Bonds

    NARCIS (Netherlands)

    P. Houweling (Patrick); A.A. Mentink; A.C.F. Vorst (Ton)

    2003-01-01

    textabstractWe value rating-triggered step-up bonds with three methods: (i) the Jarrow, Lando and Turnbull (1997, JLT) framework, (ii) a similar framework using historical probabilities and (iii) as plain vanilla bonds. We find that the market seems to value single step-up bonds according to the JLT

  11. Roles of multi-step transfer in fusion process induced by heavy-ion reactions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1993-06-01

    In nucleus-nucleus collisions of the systems, 12 C+ 13 C and 13 C+ 16 O- 12 C+ 17 O, the effects of the multi-step transfers and inelastic excitations on the fusion cross sections are investigated in the framework of the coupled-reaction-channel (CRC) method. Strong CRC effects of the multi-step processes are observed. Namely, the valence neutron in 13 C or 17 O plays an important role in the enhancement of the fusion. The potential barrier is effectively lowered with the formation of the covalent molecule of the configuration, 12 C+n+ 12 C or 12 C+n+ 16 O. In the analyses of the system 12 C+ 13 C, however, it is still required to introduce core-core optical potential of lower barrier height in the state of the positive total parity. This could be due to the neck formation with the nucleons contained in two core nuclei. (author)

  12. The Seven Step Strategy

    Science.gov (United States)

    Schaffer, Connie

    2017-01-01

    Many well-intended instructors use Socratic or leveled questioning to facilitate the discussion of an assigned reading. While this engages a few students, most can opt to remain silent. The seven step strategy described in this article provides an alternative to classroom silence and engages all students. Students discuss a single reading as they…

  13. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial...... Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two......-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors...

  14. Determination of oil reservoir radiotracer (S14CN−) in a single step using a plastic scintillator extractive resin

    International Nuclear Information System (INIS)

    Bagán, H.; Tarancón, A.; Stavsetra, L.; Rauret, G.; García, J.F.

    2012-01-01

    Highlights: ► A new procedure for S 14 CN − radiotracer determination using PS resin was established. ► The minimum detectable activity for a 100 mL sample is 0.08 Bq L −1 . ► The minimum quantifiable activity for a 100 mL sample is 0.31 Bq L −1 . ► PS resin is capable to quantify S 14 CN − radiotracer samples with errors lower than 5%. ► PS resin is also capable to quantify complex matrices obtained from oil reservoirs. - Abstract: The analysis of radiotracers is important in the study of oil reservoir dynamics. One of the most widely used radiotracer is S 14 CN − . Prior to activity measurements by Liquid Scintillation (LS), routine determinations require the pretreatment steps of purification and concentration of the samples using anion exchange columns. The final elution media produces samples with high salt concentration that may lead to problems with phase separation during the LS measurement. Plastic Scintillation (PS) is an alternative technique that provides a solid surface that can be used as a platform for the immobilisation of selective extractants to obtain a PS resin. The proposed procedure unifies chemical separation and sample measurement preparation in a single step, serving to reduce the number of reagents needed and manpower required for the analysis while also avoiding mixed waste production by LS. The objective of this study is to develop a PS resin for the determination of 14 C-labelled thiocyanate radiotracer in water samples. For this purpose, the immobilisation procedure was optimised, including optimisation of the proportion of PS microspheres:extractant and the use of a control blank to monitor the PS resin immobilisation process. The breakthrough volume was studied and the detection and quantification limits for 100 mL of sample were determined to be 0.08 Bq L −1 and 0.31 Bq L −1 , respectively. The established procedure was applied to active samples from oil reservoirs and errors lower than 5% in the sample

  15. A successful backward step correlates with hip flexion moment of supporting limb in elderly people.

    Science.gov (United States)

    Takeuchi, Yahiko

    2018-01-01

    The objective of this study was to determine the positional relationship between the center of mass (COM) and the center of pressure (COP) at the time of step landing, and to examine their relationship with the joint moments exerted by the supporting limb, with regard to factors of the successful backward step response. The study population comprised 8 community-dwelling elderly people that were observed to take successive multi steps after the landing of a backward stepping. Using a motion capture system and force plate, we measured the COM, COP and COM-COP deviation distance on landing during backward stepping. In addition, we measured the moment of the supporting limb joint during backward stepping. The multi-step data were compared with data from instances when only one step was taken (single-step). Variables that differed significantly between the single- and multi-step data were used as objective variables and the joint moments of the supporting limb were used as explanatory variables in single regression analyses. The COM-COP deviation in the anteroposterior was significantly larger in the single-step. A regression analysis with COM-COP deviation as the objective variable obtained a significant regression equation in the hip flexion moment (R2 = 0.74). The hip flexion moment of supporting limb was shown to be a significant explanatory variable in both the PS and SS phases for the relationship with COM-COP distance. This study found that to create an appropriate backward step response after an external disturbance (i.e. the ability to stop after 1 step), posterior braking of the COM by a hip flexion moment are important during the single-limbed standing phase.

  16. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    OpenAIRE

    SANTOS, Diego Tresinari; MEIRELES, Maria Angela de Almeida

    2015-01-01

    Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extr...

  17. A novel single-step synthesis of N-doped TiO2 via a sonochemical method

    International Nuclear Information System (INIS)

    Wang, Xi-Kui; Wang, Chen; Guo, Wei-Lin; Wang, Jin-Gang

    2011-01-01

    Graphical abstract: The N-doped anatase TiO 2 nanoparticles were synthesized by sonochemical method. The as-prepared sample is characterized by XRD, TEM, XPS and UV-Vis DRS. The photocatalytic activity of the photocatalyst was evaluated by the photodegradation of an azo dye direct sky blue 5B. Highlights: → A novel singal-step sonochemical synthesis method for the preparation of anatase N-doped TiO 2 nanocrystalline at low temperature has been devoleped. → The as-prepared sample is characterized by XRD, TEM, XPS and UV-Vis DRS. → The photodegradation of azo dye direct sky blue 5 showed that the N-doped TiO 2 catalyst is of high visible-light photocatalytic activity. -- Abstract: A novel single-step synthetic method for the preparation of anatase N-doped TiO 2 nanocrystalline at low temperature has been devoleped. The N-doped anatase TiO 2 nanoparticles were synthesized by sonication of the solution of tetraisopropyl titanium and urea in water and isopropyl alcohol at 80 o C for 150 min. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis absorption spectrum. The product structure depends on the reaction temperature and reaction time. The photocatalytic activity of the as-prepared photocatalyst was evaluated via the photodegradation of an azo dye direct sky blue 5B. The results show that the N-doped TiO 2 nanocrystalline prepared via sonication exhibit an excellent photocatalytic activity under UV light and simulated sunlight.

  18. A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99.

    Science.gov (United States)

    Barrera, J; Tarancón, A; Bagán, H; García, J F

    2016-09-14

    Technetium is a synthetic element with no stable isotopes, produced as waste in nuclear power plants and in cyclotrons used for nuclear medicine. The element has high mobility, in the form of TcO4(-); its determination is therefore important for environmental protection. Technetium is found in low concentrations and therefore common methods for its analysis include long treatments in several steps and require large amounts of reagents for its purification and preconcentration. Plastic scintillation resins (PSresin) are novel materials used to separate, preconcentrate and measure radionuclides in a single step. The objective of this study is to prepare and characterise a PSresin for the preconcentration and measurement of (99)Tc. The study first evaluates the reproducibility of the production of PSresins between batches and over time; showing good reproducibility and storage stability. Next, we studied the effect of some common non-radioactive interferences, showing small influences on measurement, and radioactive interferences ((36)Cl and (238)U/(234)U). (36)Cl can be removed by a simple treatment with 0.5 M HCl and (238)U/(234)U can be removed from the column by cleaning with a mixture of 0.1 M HNO3 and 0.1 M HF. In the latter case, a slight change in the morphology of the PSresin caused an increase in detection efficiency. Finally, the PSresin was applied to the measurement of real spiked samples (sea water and urine) with deviations lower than 10% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  20. Relationship between single-event upset immunity and fabrication processes of recent memories

    International Nuclear Information System (INIS)

    Nemoto, N.; Shindou, H.; Kuboyama, S.; Matsuda, S.; Itoh, H.; Okada, S.; Nashiyama, I.

    1999-01-01

    Single-Event upset (SEU) immunity for commercial devices were evaluated by irradiation tests using high-energy heavy ions. We show test results and describe the relationship between observed SEU and structures/fabrication processes. We have evaluated single-even upset (SEU) tolerance of recent commercial memory devices using high energy heavy ions in order to find relationship between SEU rate and their fabrication process. It was revealed that the change of the process parameter gives much effect for the SEU rate of the devices. (authors)

  1. Combination of electromembrane extraction and liquid-phase microextraction in a single step: Simultaneous group separation of acidic and basic drugs

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid

    2015-01-01

    at high concentration. This approach was further investigated from human plasma. Extraction recoveries were strongly dependent on dilution of plasma with buffer and on extraction time. Finally, this simultaneous EME/LPME approach was evaluated in combination with liquid chromatography (LC......Electromembrane extraction (EME) and liquid-phase microextraction (LPME) were combined in a single step for the first time to realize simultaneous and clear group separation of basic and acidic drugs. Using 2-nitrophenyl octyl ether as the supported liquid membrane (SLM) for EME and dihexyl ether...

  2. Giant Components in Biased Graph Processes

    OpenAIRE

    Amir, Gideon; Gurel-Gurevich, Ori; Lubetzky, Eyal; Singer, Amit

    2005-01-01

    A random graph process, $\\Gorg[1](n)$, is a sequence of graphs on $n$ vertices which begins with the edgeless graph, and where at each step a single edge is added according to a uniform distribution on the missing edges. It is well known that in such a process a giant component (of linear size) typically emerges after $(1+o(1))\\frac{n}{2}$ edges (a phenomenon known as ``the double jump''), i.e., at time $t=1$ when using a timescale of $n/2$ edges in each step. We consider a generalization of ...

  3. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    Science.gov (United States)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  4. Fluoroscopic-guided primary single-step percutaneous gastrostomy. Initial results using the Freka {sup registered} GastroTube; Primaere einzeitige durchleuchtungsgesteuerte perkutane Gastrostomie (PG). Erste Ergebnisse mit dem Freka {sup registered} GastroTube

    Energy Technology Data Exchange (ETDEWEB)

    Hahne, J.D.; Schoennagel, B.P.; Arndt, C.; Bannas, P.; Koops, A.; Adam, G.; Habermann, C.R. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Zentrum fuer Radiologie; Herrmann, J. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Zentrum fuer Radiologie; Universitaetsklinikum Hamburg-Eppendorf (Germany). Abt. Paediatrische Radiologie

    2011-07-15

    Purpose: To determine the practicability and outcome of fluoroscopic-guided primary one-step treatment of percutaneous gastrostomy (PG) with the system Freka {sup registered} Gastro Tube (Fresenius Kabi, Germany). Materials and Methods: In 39 patients (mean age 62.7 {+-} 12.0 years), primary PG was performed based on clinical indication from August 2009 to April 2010. The intervention was performed by an experienced radiologist under aseptic conditions by direct puncture with Freka {sup registered} Gastro Tube under fluoroscopic guidance. The clinical data and outcome as well as any complications originated from the electronic archive of the University Medical Center Hamburg-Eppendorf. Results: The intervention was technically successful in all 39 patients. Within the mean follow-up time of 155.3 {+-} 73.6 days, 29 patients (74.4 %) did not experience complications. 10 patients (25.6 %) had to be revised. Complications manifested after a mean of 135.6 {+-} 61.2 days and mainly corresponded to accidental dislocation (50 %). One patient had to be surgically revised under suspicion of a malpositioned tube and suspected intestinal perforation. Clinically relevant wound infections were not detected. The total costs per patient were 553.17 Euro for our single-step treatment (OPS 5 - 431.x) vs. 963.69 Euro (OPS 5 - 431.x and OPS 8 - 123.0) for the recommended two-step treatment. Conclusion: Fluoroscopic-guided primary single-step treatment with Freka {sup registered} Gastro Tube system is feasible and not associated with an increased complication rate when compared to published literature applying a two-step treatment approach. Material costs as well as human and time resources could be significantly reduced using the single-step treatment. (orig.)

  5. Fastdata processing with Spark

    CERN Document Server

    Karau, Holden

    2013-01-01

    This book will be a basic, step-by-step tutorial, which will help readers take advantage of all that Spark has to offer.Fastdata Processing with Spark is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too much to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.

  6. Effects of the multi-step activation process on the carrier concentration of p-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Kwan [Department of Materials Science and Metallurgical Engineering, Sunchon National University, Sunchon, Chonnam 540-742 (Korea, Republic of); Jeon, Seong-Ran [LED Research and Business Division, Korea Photonics Technology Institute, Gwanju 500-779 (Korea, Republic of); Lee, Ji-Myon, E-mail: jimlee@sunchon.ac.kr [Department of Printed Electronics Engineering, Sunchon National University, Sunchon, Chonnam 540-742 (Korea, Republic of)

    2014-06-25

    Highlights: • Hole concentration of p-GaN was enhanced by multi-step activation process. • The O{sub 2} plasma treatment is attributed to the enhanced hole concentration of p-GaN. • PL peak intensity was also enhanced by MS activation process. - Abstract: A multi-step activation method, which include an oxygen plasma treatment, chemical treatment, and post annealing in N{sub 2} was proposed to enhance the hole concentration of a p-type GaN epitaxial layer. This process was found to effectively activate p-GaN by increasing the hole concentration compared to that of the conventionally annealed sample. After the optimal oxygen plasma treatment (10 min at a source and table power of 500 W and 100 W, respectively), followed by a HCl and buffered oxide etchant treatment, and then by a post-RTA process in a N{sub 2} environment, the hole concentration was increased from 4.0 × 10{sup 17} to 2.0 × 10{sup 18} cm{sup −3}. The oxygen plasma was found to effectively remove the remaining H atoms and subsequent wet treatment can effectively remove the GaO{sub x} that had formed during O plasma treatment, resulting in the higher intensity of photoluminescence.

  7. Hybrid processing of Ti-6Al-4V using plasma immersion ion implantation combined with plasma nitriding

    Directory of Open Access Journals (Sweden)

    Silva Maria Margareth da

    2006-01-01

    Full Text Available Based on the fact that the Ti-6Al-4V alloy has good mechanical properties, excellent resistance to corrosion and also excellent biocompatibility, however with low wear resistance, this work aims to test plasma processes or combination of plasma and ion implantation processes to improve these characteristics. Two types of processing were used: two steps PIII (Plasma Immersion Ion Implantation combined with PN (Plasma Nitriding and single step PIII treatment. According to Auger Electron Spectroscopy (AES results, the best solution was obtained by PIII for 150 minutes resulting in ~ 65 nm of nitrogen implanted layer, while the sample treated with PIII (75 minutes and PN (75 minutes reached ~ 35 nm implanted layer. The improvement of surface properties could also be confirmed by the nanoindentation technique, with values of hardness increasing for both processes. AFM (Atomic Force Microscopy characterization showed that the single step PIII process presented greater efficiency than the duplex process (PIII + PN, probably due to the sputtering occurring during the second step (PN removing partially the implanted layer of first step (PIII.

  8. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines.

    Science.gov (United States)

    Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis; Krampis, Konstantinos

    2017-08-01

    Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a "meta-script" that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. © The Authors 2017. Published by Oxford University Press.

  9. The portal protein plays essential roles at different steps of the SPP1 DNA packaging process

    International Nuclear Information System (INIS)

    Isidro, Anabela; Henriques, Adriano O.; Tavares, Paulo

    2004-01-01

    A large number of viruses use a specialized portal for entry of DNA to the viral capsid and for its polarized exit at the beginning of infection. These families of viruses assemble an icosahedral procapsid containing a portal protein oligomer in one of its 12 vertices. The viral ATPase (terminase) interacts with the portal vertex to form a powerful molecular motor that translocates DNA to the procapsid interior against a steep concentration gradient. The portal protein is an essential component of this DNA packaging machine. Characterization of single amino acid substitutions in the portal protein gp6 of bacteriophage SPP1 that block DNA packaging identified sequential steps in the packaging mechanism that require its action. Gp6 is essential at early steps of DNA packaging and for DNA translocation to the capsid interior, it affects the efficiency of DNA packaging, it is a central component of the headful sensor that determines the size of the packaged DNA molecule, and is essential for closure of the portal pore by the head completion proteins to prevent exit of the DNA encapsidated. Functional regions of gp6 necessary at each step are identified within its primary structure. The similarity between the architecture of portal oligomers and between the DNA packaging strategies of viruses using portals strongly suggests that the portal protein plays the same roles in a large number of viruses

  10. Dynamics Of Innovation Diffusion With Two Step Decision Process

    Directory of Open Access Journals (Sweden)

    Szymczyk Michał

    2014-02-01

    Full Text Available The paper discusses the dynamics of innovation diffusion among heterogeneous consumers. We assume that customers’ decision making process is divided into two steps: testing the innovation and later potential adopting. Such a model setup is designed to imitate the mobile applications market. An innovation provider, to some extent, can control the innovation diffusion by two parameters: product quality and marketing activity. Using the multi-agent approach we identify factors influencing the saturation level and the speed of innovation adaptation in the artificial population. The results show that the expected level of innovation adoption among customer’s friends and relative product quality and marketing campaign intensity are crucial factors explaining them. It has to be stressed that the product quality is more important for innovation saturation level and marketing campaign has bigger influence on the speed of diffusion. The topology of social network between customers is found important, but within investigated parameter range it has lover impact on innovation diffusion dynamics than the above mentioned factors

  11. Single-crossover recombination in discrete time.

    Science.gov (United States)

    von Wangenheim, Ute; Baake, Ellen; Baake, Michael

    2010-05-01

    Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.

  12. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    Science.gov (United States)

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  13. Moving towards a Competitive Fully Enzymatic Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Silvia Cesarini

    2015-06-01

    Full Text Available Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification but it has the drawback of being too expensive to be considered competitive. Costs can be reduced by lipase improvement, use of unrefined oils, evaluation of soluble/immobilized lipase preparations, and by combination of phospholipases with a soluble lipase for biodiesel production in a single step. As shown here, convenient natural tools have been developed that allow synthesis of high quality FAMEs (EN14214 from unrefined oils in a completely enzymatic single-step process, making it fully competitive.

  14. Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity

    Science.gov (United States)

    Arif Sher Shah, Md. Selim; Zhang, Kan; Park, A. Reum; Kim, Kwang Su; Park, Nam-Gyu; Park, Jong Hyeok; Yoo, Pil J.

    2013-05-01

    With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction of AgNO3 and graphene oxide and the hydrolysis of titanium tetraisopropoxide were spontaneously performed in a mixed solvent system of ethylene glycol, N,N-dimethylformamide and a stoichiometric amount of water without resorting to the use of typical reducing agents. The nanocomposites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, along with different microscopic and spectroscopic techniques, enabling us to confirm the successful reduction of AgNO3 and graphite oxide to metallic Ag and reduced graphene oxide, respectively. Due to the highly facilitated electron transport of well distributed Ag nanoparticles, the synthesized ternary nanocomposite showed enhanced photocatalytic activity for degradation of rhodamine B dye under visible light irradiation.With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction

  15. Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants.

    Science.gov (United States)

    Lazzarino, Giacomo; Longo, Salvatore; Amorini, Angela Maria; Di Pietro, Valentina; D'Urso, Serafina; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-12-08

    Fat-soluble vitamins and antioxidants are of relevance in health and disease. Current methods to extract these compounds from biological fluids mainly need use of multi-steps and multi organic solvents. They are time-consuming and difficult to apply to treat simultaneously large sample number. We here describe a single-step, one solvent extraction of fat-soluble vitamins and antioxidants from biological fluids, and the chromatographic separation of all-trans-retinoic acid, 25-hydroxycholecalciferol, all-trans-retinol, astaxanthin, lutein, zeaxanthin, trans-β-apo-8'-carotenal, γ-tocopherol, β-cryptoxanthin, α-tocopherol, phylloquinone, lycopene, α-carotene, β-carotene and coenzyme Q 10 . Extraction is obtained by adding one volume of biological fluid to two acetonitrile volumes, vortexing for 60s and incubating for 60min at 37°C under agitation. HPLC separation occurs in 30min using Hypersil C18, 100×4.6mm, 5μm particle size column, gradient from 70% methanol+30% H 2 O to 100% acetonitrile, flow rate of 1.0ml/min and 37°C column temperature. Compounds are revealed using highly sensitive UV-VIS diode array detector. The HPLC method suitability was assessed in terms of sensitivity, reproducibility and recovery. Using the present extraction and chromatographic conditions we obtained values of the fat-soluble vitamins and antioxidants in serum from 50 healthy controls similar to those found in literature. Additionally, the profile of these compounds was also measured in seminal plasma from 20 healthy fertile donors. Results indicate that this simple, rapid and low cost sample processing is suitable to extract fat-soluble vitamins and antioxidants from biological fluids and can be applied in clinical and nutritional studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.

    Science.gov (United States)

    Sharma, Damyanti

    2013-07-01

    Gold nanoparticle (AuNP) chains have been formed by a single step method in a lecithin/water system where lecithin itself plays the role of a reductant and a template for AuNP chain formation. Two preparative strategies were explored: (1) evaporating lecithin solution with aqueous gold chloride (HAuCl4) at different pHs and (2) dispersing lecithin vesicles in aqueous HAuCl4 solutions of various pHs in the range of 2.5-11.3. In method 1, at initial pH 2.5, 20-50 nm AuNPs are found attached to lecithin vesicles. When pH is raised to 5.5 there are no vesicles present and 20 nm monodisperse particles are found aggregating. Chain formation of fine nanoparticles (3-5 nm) is observed from neutral to basic pH, between 6.5-10.3 The chains formed are hundreds of nanometers to micrometer long and are usually 2-3 nanoparticles wide. On further increasing pH to 11.3, particles form disk-like or raft-like structures. When method (ii) was used a little chain formation was observed. Most of the nanoparticles formed were found either sitting together as raft like structures or scattered on lecithin structures. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  18. Parallel workflow tools to facilitate human brain MRI post-processing

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2015-05-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues.

  19. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium.

    Science.gov (United States)

    Carrillo-Reyes, Julian; Buitrón, Germán

    2016-12-01

    A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Single-reagent one-step procedures for the purification of ovine IgG, F(ab')2 and Fab antivenoms by caprylic acid.

    Science.gov (United States)

    Al-Abdulla, Ibrahim; Casewell, Nicholas R; Landon, John

    2014-01-15

    Antivenoms are typically produced in horses or sheep and often purified using salt precipitation of immunoglobulins or F(ab')2 fragments. Caprylic (octanoic) acid fractionation of antiserum has the advantage of not precipitating the desired antibodies, thereby avoiding potential degradation that can lead to the formation of aggregates, which may be the cause of some adverse reactions to antivenoms. Here we report that when optimising the purification of immunoglobulins from ovine antiserum raised against snake venom, caprylic acid was found to have no effect on the activity of the enzymes pepsin and papain, which are employed in antivenom manufacturing to digest immunoglobulins to obtain F(ab')2 and Fab fragments, respectively. A "single-reagent" method was developed for the production of F(ab')2 antivenom whereby whole ovine antiserum was mixed with both caprylic acid and pepsin and incubated for 4h at 37°C. For ovine Fab antivenom production from whole antiserum, the "single reagent" comprised of caprylic acid, papain and l-cysteine; after incubation at 37°C for 18-20h, iodoacetamide was added to stop the reaction. Caprylic acid facilitated the precipitation of albumin, resulting in a reduced protein load presented to the digestion enzymes, culminating in substantial reductions in processing time. The ovine IgG, F(ab')2 and Fab products obtained using these novel caprylic acid methods were comparable in terms of yield, purity and specific activity to those obtained by multi-step conventional salt fractionation with sodium sulphate. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing.

    Science.gov (United States)

    Tamaki, Takashi; Ogawa, Takuji

    2017-09-05

    This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

  2. A Comprehensive Study of One-Step Selenization Process for Cu(In1-x Ga x )Se2 Thin Film Solar Cells.

    Science.gov (United States)

    Chen, Shih-Chen; Wang, Sheng-Wen; Kuo, Shou-Yi; Juang, Jenh-Yih; Lee, Po-Tsung; Luo, Chih Wei; Wu, Kaung-Hsiung; Kuo, Hao-Chung

    2017-12-01

    In this work, aiming at developing a rapid and environmental-friendly process for fabricating CuIn 1-x Ga x Se 2 (CIGS) solar cells, we demonstrated the one-step selenization process by using selenium vapor as the atmospheric gas instead of the commonly used H 2 Se gas. The photoluminescence (PL) characteristics indicate that there exists an optimal location with superior crystalline quality in the CIGS thin films obtained by one-step selenization. The energy dispersive spectroscopy (EDS) reveals that the Ga lateral distribution in the one-step selenized CIGS thin film is intimately correlated to the blue-shifted PL spectra. The surface morphologies examined by scanning electron microscope (SEM) further suggested that voids and binary phase commonly existing in CIGS films could be successfully eliminated by the present one-step selenization process. The agglomeration phenomenon attributable to the formation of MoSe 2 layer was also observed. Due to the significant microstructural improvement, the current-voltage (J-V) characteristics and external quantum efficiency (EQE) of the devices made of the present CIGS films have exhibited the remarkable carrier transportation characteristics and photon utilization at the optimal location, resulting in a high conversion efficiency of 11.28%. Correlations between the defect states and device performance of the one-step selenized CIGS thin film were convincingly delineated by femtosecond pump-probe spectroscopy.

  3. Single-step simultaneous side-by-side placement of a self-expandable metallic stent with a 6-Fr delivery system for unresectable malignant hilar biliary obstruction: a feasibility study.

    Science.gov (United States)

    Kawakubo, Kazumichi; Kawakami, Hiroshi; Kuwatani, Masaki; Kudo, Taiki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya

    2015-02-01

    Bilateral self-expandable metallic stent (SEMS) placement for the management of unresectable malignant hilar biliary obstruction (UMHBO) is technically challenging to perform using the existing metallic stents with thick delivery systems. The recently developed 6-Fr delivery systems could facilitate a single-step simultaneous side-by-side placement through the accessory channel of the duodenoscope. The aim of this study was to evaluate the feasibility of this procedure. Between May and September 2013, 13 consecutive patients with UMHBO underwent a single-step simultaneous side-by-side placement of SEMS with the 6-Fr delivery system. The technical success rate, stent patency, and rate of complications were evaluated from the prospectively collected database. Technical success was achieved in 11 (84.6%, 95% confidence interval [CI]: 57.8-95.8) patients. The median procedure time was 25 min. Early and late complications were observed in 23% (one segmental cholangitis and two liver abscesses) and 15% (one segmental cholangitis and one cholecystitis) patients, respectively. Median dysfunction free patency was 263 days (95% CI: 37-263). Five patients (38%) experienced stent occlusion that was successfully managed by endoscopic stent placement. A single-step simultaneous side-by-side placement of SEMS with a 6-Fr delivery system was feasible for the management of UMHBO. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  4. Some calculated (p,α) cross-sections using the alpha particle knock-on and triton pick-up reaction mechanisms: An optimisation of the single-step Feshbach-Kerman-Koonin (FKK) theory

    Energy Technology Data Exchange (ETDEWEB)

    Olise, Felix S.; Ajala, Afis; Olamiyl, Hezekiah B. [Dept. of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria)

    2016-04-15

    The Feshbach-Kerman-Koonin (FKK) multi-step direct (MSD) theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α) reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core) by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process) and proton-triton (for the pick-up process) interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  5. Some Calculated (p,α Cross-Sections Using the Alpha Particle Knock-On and Triton Pick-Up Reaction Mechanisms: An Optimisation of the Single-Step Feshbach–Kerman–Koonin (FKK Theory

    Directory of Open Access Journals (Sweden)

    Felix S. Olise

    2016-04-01

    Full Text Available The Feshbach–Kerman–Koonin (FKK multi-step direct (MSD theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process and proton-triton (for the pick-up process interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  6. Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs

    Directory of Open Access Journals (Sweden)

    Eva Vargas

    2017-11-01

    Full Text Available This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs. The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21 with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs, and labeling of the resulting heteroduplexes with a specific DNA–RNA antibody and the bacterial protein A (ProtA conjugated with an horseradish peroxidase (HRP homopolymer (Poly-HRP40 as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs using the H2O2/hydroquinone (HQ system. The magnitude of the cathodic signal obtained at −0.20 V (vs. the Ag pseudo-reference electrode demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD of 10 attomoles (in a 25 μL sample without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared. This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA–RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt extracted from human mammary epithelial normal (MCF-10A and cancer (MCF-7 cells and tumor tissues.

  7. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  8. Do lightning positive leaders really "step"?

    Science.gov (United States)

    Petersen, D.

    2015-12-01

    It has been known for some time that positive leaders exhibit impulsive charge motion and optical emissions as they extend. However, laboratory and field observations have not produced any evidence of a process analogous to the space leader mechanism of negative leader extension. Instead, observations have suggested that the positive leader tip undergoes a continuous to intermittent series of corona streamer bursts, each burst resulting in a small forward extension of the positive leader channel. Traditionally, it has been held that lightning positive leaders extend in a continuous or quasi-continuous fashion. Lately, however, many have become concerned that this position is incongruous with observations of impulsive activity during lightning positive leader extension. It is increasingly suggested that this impulsive activity is evidence that positive leaders also undergo "stepping". There are two issues that must be addressed. The first issue concerns whether or not the physical processes underlying impulsive extension in negative and positive leaders are distinct. We argue that these processes are in fact physically distinct, and offer new high-speed video evidence to support this position. The second issue regards the proper use of the term "step" as an identifier for the impulsive forward extension of a leader. Traditional use of this term has been applied only to negative leaders, due primarily to their stronger impulsive charge motions and photographic evidence of clearly discontinuous forward progression of the luminous channel. Recently, due to the increasing understanding of the distinct "space leader" process of negative leader extension, the term "step" has increasingly come to be associated with the space leader process itself. Should this emerging association, "step" = space leader attachment, be canonized? If not, then it seems reasonable to use the term "step" to describe impulsive positive leader extension. If, however, we do wish to associate the

  9. FEA Simulation of Free-Bending - a Preforming Step in the Hydroforming Process Chain

    Science.gov (United States)

    Beulich, N.; Craighero, P.; Volk, W.

    2017-09-01

    High-strength steel and aluminum alloys are essential for developing innovative, lightly-weighted space frame concepts. The intended design is built from car body parts with high geometrical complexity and reduced material-thickness. Over the past few years, many complex car body parts have been produced using hydroforming. To increase the accuracy of hydroforming in relation to prospective car concepts, the virtual manufacturing of forming becomes more important. As a part of process digitalization, it is necessary to develop a simulation model for the hydroforming process chain. The preforming of longitudinal welded tubes is therefore implemented by the use of three-dimensional free-bending. This technique is able to reproduce complex deflection curves in combination with innovative low-thickness material design for hydroforming processes. As a first step to the complete process simulation, the content of this paper deals with the development of a finite element simulation model for the free-bending process with 6 degrees of freedom. A mandrel built from spherical segments connected by a steel rope is located inside of the tube to prevent geometrical instability. Critical parameters for the result of the bending process are therefore evaluated and optimized. The simulation model is verified by surface measurements of a two-dimensional bending test.

  10. Two-step versus one-step FT4 assays in heparin treated patients and non-thyroidal illness

    International Nuclear Information System (INIS)

    Reiners, C.; Bieler, G.; Ertl, G.; Gloss, H.; Boerner, W.

    1985-01-01

    The primary intention of this study is to inform the clinician about the direction and the order of magnitude of possible disturbances of different FT 4 parameters under the condition mentioned last, which is not uncommon in daily routine. No single FT 4 -RIA proved be valid in severe NTI. There is the risk to misinterprete hyperthyroidism as euthyroidism with 1step assays and the possibility to classify euthyroid patients falsely as hyperthyroid with 2step assays. In relation to this problem, the sometimes lowered FT 4 values by 1step methods are clinically not so important. It has to be established, wether TSH assays of high sensitivity are able to overcome some of the difficulties with determinations of peripheral thyroid hormones in NTI. (orig./MG)

  11. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  12. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  13. THE SEQUENTIAL WATER TREATMENT CONTAINING MYCOESTROGENS IN PHOTOCATALYSIS AND NANOFILTRATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Mariusz Dudziak

    2014-10-01

    Full Text Available The results of the study focused on the impact of membrane on the performance of the integrated system photocatalysis/nanofiltration applied to remove mycoestrogens from water are discussed in the paper. The results were compared with ones obtained during single step photocatalysis and nanofiltration processes. The subject of the study were simulated waters containing difference concentration of humic acids to which mycoestrogens were added to the concentration level 500 μg/dm3. It was shown, that the application of integrated system improved the efficiency of mycoestrogens removal in comparison with single step photocatalysis process. In case of nanofiltration, the efficiency of the treatment was comparable in both, integrated and single nanofiltration processes regardless of the membrane type applied. However, it was found that investigated membranes differ in the affinity to fouling and removal rate of inorganic compounds, what should be considered during water treatment technology development.

  14. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  15. Single photon laser altimeter simulator and statistical signal processing

    Science.gov (United States)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  16. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  17. Evaluating Knowledge of Business Processes

    Directory of Open Access Journals (Sweden)

    Andra TURDASAN

    2016-01-01

    Full Text Available Any organization relies on processes/procedures in order to organize the operations. Those processes can be explicit (e.g. textual descriptions of workflow steps or graphical descriptions or implicit (e.g. employees have learned by experience the steps needed to ‘get things done’. A widely acknowledged fact is that processes change due to internal and/or external factors. How can managers make sure the employees know the last version of the process? The current practice is to test employees by multiple-choice questions. This paper proposes a novel knowledge-testing approach based on graphical and interactive questions. To validate our approach, we set up a single-factor controlled experiment with novices and experts in a faculty admission process. The results show that our approach has better results in terms of correct answers.

  18. A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models

    Science.gov (United States)

    Radtke, H.; Burchard, H.

    2015-01-01

    In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.

  19. Atomic-scale friction on stepped surfaces of ionic crystals.

    Science.gov (United States)

    Steiner, Pascal; Gnecco, Enrico; Krok, Franciszek; Budzioch, Janusz; Walczak, Lukasz; Konior, Jerzy; Szymonski, Marek; Meyer, Ernst

    2011-05-06

    We report on high-resolution friction force microscopy on a stepped NaCl(001) surface in ultrahigh vacuum. The measurements were performed on single cleavage step edges. When blunt tips are used, friction is found to increase while scanning both up and down a step edge. With atomically sharp tips, friction still increases upwards, but it decreases and even changes sign downwards. Our observations extend previous results obtained without resolving atomic features and are associated with the competition between the Schwöbel barrier and the asymmetric potential well accompanying the step edges.

  20. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin

    2014-10-14

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct an inexpensive MFC cathode using a poly(vinylidene fluoride) (PVDF) binder and an activated carbon catalyst. The phase inversion process enabled cathode preparation at room temperatures, without the need for additional heat treatment, and it produced for the first time a cathode that did not require a separate diffusion layer to prevent water leakage. MFCs using this new type of cathode produced a maximum power density of 1470 ± 50 mW m–2 with acetate as a substrate, and 230 ± 10 mW m–2 with domestic wastewater. These power densities were similar to those obtained using cathodes made using more expensive materials or more complex procedures, such as cathodes with a polytetrafluoroethylene (PTFE) binder and a poly(dimethylsiloxane) (PDMS) diffusion layer, or a Pt catalyst. Even though the PVDF cathodes did not have a diffusion layer, they withstood up to 1.22 ± 0.04 m of water head (∼12 kPa) without leakage, compared to 0.18 ± 0.02 m for cathodes made using PTFE binder and PDMS diffusion layer. The cost of PVDF and activated carbon ($3 m–2) was less than that of the stainless steel mesh current collector ($12 m–2). PVDF-based AC cathodes therefore are inexpensive, have excellent performance in terms of power and water leakage, and they can be easily manufactured using a single phase inversion process at room temperature.

  1. How the Use of ICT can Contribute to a Misleading Picture of Conditions – A Five-Step Process

    Directory of Open Access Journals (Sweden)

    Stefan Holgersson

    2015-11-01

    Full Text Available This paper contributes to the limited research on roles ICT can play in impression-management strategies and is based on case studies done in the Swedish Police. It also gives a theoretical contribution by adopting a holistic approach to explain how ICT can contribute to giving a misleading picture of conditions. Output generated by ICT has nowadays a central role in follow-up activities and decision-making. Even if this type of output, often in colourful, presentable, graphical arrangements, gives the impression of being accurate and reliable there is a risk of defective data quality. The phenomena can be described as a process divided into five steps. The first step is about how the data is generated and/or collected. The second step is linked to how the data is registered. The third step is about the output generated from the ICT-systems. The fourth step is how the output of ICT is selected for presentation. The fifth step concerns how output generated by ICT is interpreted. This paper shows that ICT can easily be used in impression-management strategies. For example, that personnel take shortcuts to affect the statistics rather than applying methods that may give the desired effects.

  2. Electric-current-induced step bunching on Si(111)

    International Nuclear Information System (INIS)

    Homma, Yoshikazu; Aizawa, Noriyuki

    2000-01-01

    We experimentally investigated step bunching induced by direct current on vicinal Si(111)'1x1' surfaces using scanning electron microscopy and atomic force microscopy. The scaling relation between the average step spacing l b and the number of steps N in a bunch, l b ∼N -α , was determined for four step-bunching temperature regimes above the 7x7-'1x1' transition temperature. The step-bunching rate and scaling exponent differ between neighboring step-bunching regimes. The exponent α is 0.7 for the two regimes where the step-down current induces step bunching (860-960 and 1210-1300 deg. C), and 0.6 for the two regimes where the step-up current induces step bunching (1060-1190 and >1320 deg. C). The number of single steps on terraces also differs in each of the four temperature regimes. For temperatures higher than 1280 deg. C, the prefactor of the scaling relation increases, indicating an increase in step-step repulsion. The scaling exponents obtained agree reasonably well with those predicted by theoretical models. However, they give unrealistic values for the effective charges of adatoms for step-up-current-induced step bunching when the 'transparent' step model is used

  3. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    Science.gov (United States)

    Gesta, E.; Skovmand, O.; Espuche, E.; Fulchiron, R.

    2015-12-01

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives' ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  4. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    Energy Technology Data Exchange (ETDEWEB)

    Gesta, E. [Ingénierie des Matériaux Polymères - UMR CNRS 5223, Université de Lyon - Université Lyon 1, Bâtiment POLYTECH Lyon - 15 boulevard Latarjet, 69622, Villeurbanne (France); Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170 (France); Skovmand, O., E-mail: osk@insectcontrol.net [Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170 (France); Espuche, E., E-mail: eliane.espuche@univ-lyon1.fr; Fulchiron, R., E-mail: rene.fulchiron@univ-lyon1.fr [Ingénierie des Matériaux Polymères - UMR CNRS 5223, Université de Lyon - Université Lyon 1, Bâtiment POLYTECH Lyon - 15 boulevard Latarjet, 69622, Villeurbanne (France)

    2015-12-17

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  5. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    International Nuclear Information System (INIS)

    Gesta, E.; Skovmand, O.; Espuche, E.; Fulchiron, R.

    2015-01-01

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration

  6. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step.

    Science.gov (United States)

    Porfirif, María C; Milatich, Esteban J; Farruggia, Beatriz M; Romanini, Diana

    2016-06-01

    A one-step method as a strategy of alpha-amylase concentration and purification was developed in this work. This methodology requires the use of a very low concentration of biodegradable polyelectrolyte (Eudragit(®) E-PO) and represents a low cost, fast, easy to scale up and non-polluting technology. Besides, this methodology allows recycling the polymer after precipitation. The formation of reversible soluble/insoluble complexes between alpha-amylase and the polymer Eudragit(®) E-PO was studied, and their precipitation in selected conditions was applied with bioseparation purposes. Turbidimetric assays allowed to determine the pH range where the complexes are insoluble (4.50-7.00); pH 5.50 yielded the highest turbidity of the system. The presence of NaCl (0.05M) in the medium totally dissociates the protein-polymer complexes. When the adequate concentration of polymer was added under these conditions to a liquid culture of Aspergillus oryzae, purification factors of alpha-amylase up to 7.43 and recoveries of 88% were obtained in a simple step without previous clarification. These results demonstrate that this methodology is suitable for the concentration and production of alpha-amylase from this source and could be applied at the beginning of downstream processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge

    CSIR Research Space (South Africa)

    Mallajosyula, JK

    2014-03-01

    Full Text Available 50% survival, or 100% survival with adjuvant, compared with 10% survival after vaccination with a commercially available H 1 N 1 vaccine. TMV-HA is an effective dose-sparing influenza vaccine, using a single-step process to rapidly generate large...

  8. Double-step processes in the 12C(p,d)11C reaction at 45 MeV

    International Nuclear Information System (INIS)

    Couvert, Pierre.

    1974-01-01

    12 C(p,d) 11 C pick-up reaction was performed with a 45 MeV proton beam. A 130keV energy resolution was obtained and angular distributions of nine of the ten first levels of 11 C have been extracted within a large angular range. Assuming only neutron direct transfert, the strong relative excitation of high spin levels cannot be reproduced by a DWBA analysis. The double-step process assumption seems to be verified by a systematical analysis of the (p,d) reaction mechanisms. This analysis is done in the coupled-channel formalism for the five first negative parity states of 11 C. The 3/2 - ground state is essentially populated by the direct transfer of a Psub(3/2) neutron. The contribution of a double-step process, via the 2 + inelastic excitation of 12 C, is important for the four other states. A mechanism which assumes a deuteron inelastic scattering on the 11 C final nucleus after the neutron transfer cannot be neglected and improves the fits when it is taken into account [fr

  9. Single wafer rapid thermal multiprocessing

    International Nuclear Information System (INIS)

    Saraswat, K.C.; Moslehi, M.M.; Grossman, D.D.; Wood, S.; Wright, P.; Booth, L.

    1989-01-01

    Future success in microelectronics will demand rapid innovation, rapid product introduction and ability to react to a change in technological and business climate quickly. These technological advances in integrated electronics will require development of flexible manufacturing technology for VLSI systems. However, the current approach of establishing factories for mass manufacturing of chips at a cost of more than 200 million dollars is detrimental to flexible manufacturing. The authors propose concepts of a micro factory which may be characterized by more economical small scale production, higher flexibility to accommodate many products on several processes, and faster turnaround and learning. In-situ multiprocessing equipment where several process steps can be done in sequence may be a key ingredient in this approach. For this environment to be flexible, the equipment must have ability to change processing environment, requiring extensive in-situ measurements and real time control. This paper describes the development of a novel single wafer rapid thermal multiprocessing (RTM) reactor for next generation flexible VLSI manufacturing. This reactor will combine lamp heating, remote microwave plasma and photo processing in a single cold-wall chamber, with applications for multilayer in-situ growth and deposition of dielectrics, semiconductors and metals

  10. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps

    Directory of Open Access Journals (Sweden)

    Fidele Tugizimana

    2016-11-01

    Full Text Available Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the “exhaustive” extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen were used. Raw data were pre-processed with MarkerLynxTM software (Waters Corporation, Manchester, UK. Here, two parameters were varied: the intensity threshold (50–100 counts and the mass tolerance (0.005–0.01 Da. After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc. and data transformation (log and power methods were explored. The results showed that the pre-processing parameters (or algorithms influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables. Thus, as informed by the results, to maximize the value of untargeted metabolomic data

  11. Single-reactor process for producing liquid-phase organic compounds from biomass

    Science.gov (United States)

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  12. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  13. Development of a Single-Step Subtraction Method for Eukaryotic 18S and 28S Ribonucleic Acids

    Directory of Open Access Journals (Sweden)

    Marie J. Archer

    2011-01-01

    Full Text Available The abundance of mammalian 18S and 28S ribosomal RNA can decrease the detection sensitivity of bacterial or viral targets in complex host-pathogen mixtures. A method to capture human RNA in a single step was developed and characterized to address this issue. For this purpose, capture probes were covalently attached to magnetic microbeads using a dendrimer linker and the solid phase was tested using rat thymus RNA (mammalian components with Escherichia coli RNA (bacterial target as a model system. Our results indicated that random capture probes demonstrated better performance than specific ones presumably by increasing the number of possible binding sites, and the use of a tetrame-thylammonium-chloride (TMA-Cl- based buffer for the hybridization showed a beneficial effect in the selectivity. The subtraction efficiency determined through real-time RT-PCR revealed capture-efficiencies comparable with commercially available enrichment kits. The performance of the solid phase can be further fine tuned by modifying the annealing time and temperature.

  14. Genomic prediction by single-step genomic BLUP using cow reference population in Holstein crossbred cattle in India

    DEFF Research Database (Denmark)

    Nayee, Nilesh Kumar; Su, Guosheng; Gajjar, Swapnil

    2018-01-01

    Advantages of genomic selection in breeds with limited numbers of progeny tested bulls have been demonstrated by adding genotypes of females to the reference population (Thomasen et al., 2014). The current study was conducted to explore the feasibility of implementing genomic selection in a Holst......Advantages of genomic selection in breeds with limited numbers of progeny tested bulls have been demonstrated by adding genotypes of females to the reference population (Thomasen et al., 2014). The current study was conducted to explore the feasibility of implementing genomic selection...... in a Holstein Friesian crossbred population with cows kept under small holder conditions using test day records and single step genomic BLUP (ssGBLUP). Milk yield records from 10,797 daughters sired by 258 bulls were used Of these 2194 daughters and 109 sires were genotyped with customized genotyping chip...

  15. Enhancement of the photo conversion efficiencies in Cu(In,Ga)(Se,S){sub 2} solar cells fabricated by two-step sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, JungYup; Nam, Junggyu; Kim, Dongseop; Lee, Dongho, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [Photovoltaic Development Team, Energy Storage Business Division, Samsung SDI, Cheonan-si 331-300 (Korea, Republic of); Kim, GeeYeong; Jo, William [Department of Physics and New and Renewable Energy Research Center, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kang, Yoonmook, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [KUKIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-11-09

    Cu(In,Ga)(Se,S){sub 2} (CIGSS) absorber layers were fabricated by using a modified two-stage sputter and a sequential selenization/sulfurization method, and the sulfurization process is changed from one-step to two-step. The two-step sulfurization was controlled with two different H{sub 2}S gas concentrations during the sulfurization treatment. This two-step process yielded remarkable improvements in the efficiency (+0.7%), open circuit voltage (+14 mV), short circuit current (+0.23 mA/cm{sup 2}), and fill factor (+0.21%) of a CIGSS device with 30 × 30 cm{sup 2} in size, owing to the good passivation at the grain boundary surface, uniform material composition among the grain boundaries, and modified depth profile of Ga and S. The deterioration of the P/N junction quality was prevented by the optimized S content in the CIGSS absorber layer. The effects of the passivation quality at the grain boundary surface, the material uniformity, the compositional depth profiles, the microstructure, and the electrical characteristics were examined by Kelvin probe force microscopy, X-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and current-voltage curves, respectively. The two-step sulfurization process is experimentally found to be useful for obtaining good surface conditions and, enhancing the efficiency, for the mass production of large CIGSS modules.

  16. Linear, Step by Step Managerial Performance, versus Exponential Performance

    Directory of Open Access Journals (Sweden)

    George MOLDOVEANU

    2011-04-01

    Full Text Available The paper proposes the transition from the potential management concept, which its authors approached by determining its dimension (Roşca, Moldoveanu, 2009b, to the linear, step by step performance concept, as an objective result of management process. In this way, we “answer” the theorists and practitioners, who support exponential management performance. The authors, as detractors of the exponential performance, are influenced by the current crisis (Roşca, Moldoveanu, 2009a, by the lack of organizational excellence in many companies, particularly in Romanian ones and also reaching “the finality” in the evolved companies, developed into an uncontrollable speed.

  17. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    Science.gov (United States)

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  18. Process tomography via sequential measurements on a single quantum system

    CSIR Research Space (South Africa)

    Bassa, H

    2015-09-01

    Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...

  19. Comparison of 10 single and stepped methods to identify frail older persons in primary care: diagnostic and prognostic accuracy.

    Science.gov (United States)

    Sutorius, Fleur L; Hoogendijk, Emiel O; Prins, Bernard A H; van Hout, Hein P J

    2016-08-03

    Many instruments have been developed to identify frail older adults in primary care. A direct comparison of the accuracy and prevalence of identification methods is rare and most studies ignore the stepped selection typically employed in routine care practice. Also it is unclear whether the various methods select persons with different characteristics. We aimed to estimate the accuracy of 10 single and stepped methods to identify frailty in older adults and to predict adverse health outcomes. In addition, the methods were compared on their prevalence of the identified frail persons and on the characteristics of persons identified. The Groningen Frailty Indicator (GFI), the PRISMA-7, polypharmacy, the clinical judgment of the general practitioner (GP), the self-rated health of the older adult, the Edmonton Frail Scale (EFS), the Identification Seniors At Risk Primary Care (ISAR PC), the Frailty Index (FI), the InterRAI screener and gait speed were compared to three measures: two reference standards (the clinical judgment of a multidisciplinary expert panel and Fried's frailty criteria) and 6-years mortality or long term care admission. Data were used from the Dutch Identification of Frail Elderly Study, consisting of 102 people aged 65 and over from a primary care practice in Amsterdam. Frail older adults were oversampled. The accuracy of each instrument and several stepped strategies was estimated by calculating the area under the ROC-curve. Prevalence rates of frailty ranged from 14.8 to 52.9 %. The accuracy for recommended cut off values ranged from poor (AUC = 0.556 ISAR-PC) to good (AUC = 0.865 gait speed). PRISMA-7 performed best over two reference standards, GP predicted adversities best. Stepped strategies resulted in lower prevalence rates and accuracy. Persons selected by the different instruments varied greatly in age, IADL dependency, receiving homecare and mood. We found huge differences between methods to identify frail persons in prevalence

  20. Zero-phonon-line emission of single molecules for applications in quantum information processing

    Science.gov (United States)

    Kiraz, Alper; Ehrl, M.; Mustecaplioglu, O. E.; Hellerer, T.; Brauchle, C.; Zumbusch, A.

    2005-07-01

    A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons. Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing. Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.

  1. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  2. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin; He, Weihua; Zhang, Fang; Hickner, Michael A.; Logan, Bruce E.

    2014-01-01

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct

  3. 1998 Annual Study Report. Standardization of manufacturing process systems; 1998 nendo seika hokokusho. Seisan process system no hyojunka (STEP kiban kikaku no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The standards for exchanging and sharing product model data are being internationalized, mainly by ISO-10303 (STEP). The current specifications are not fully developed to include all of the functions needed by the industrial circles, e.g., the functions capable of expressing dynamic product models useful for design alterations and manufacturing processes. In order to solve these problems, and, in particular, to propose the specifications which meet the functions required by the domestic industries, the necessary conditions which the STEP basic specifications should satisfy are investigate to propose the Japan-developed international specifications. One of the major results of the efforts in this year is development of the functional model (I-AAM) which allows to analyze the functions to be proposed for the specifications for the mechanical production processes in the Japanese industries. The necessary data model candidates can be selected by the aid of the model. The efforts will be further continued in and after the next year, based on the results obtained in this year, to eventually develop the specifications which can be registered by NWI. (NEDO)

  4. Step-wise stimulated martensitic transformations

    International Nuclear Information System (INIS)

    Airoldi, G.; Riva, G.

    1991-01-01

    NiTi alloys, widely known both for their shape memory properties and for unusual pseudoelastic behaviour, are now on the forefront attention for step-wise induced memory processes, thermal or stress stimulated. Literature results related to step-wise stimulated martensite (direct transformation) are examined and contrasted with step-wise thermal stimulated parent phase (reverse transformation). Hypothesis are given to explain the key characters of both transformations, a thermodynamic model from first principles being till now lacking

  5. Biomechanical influences on balance recovery by stepping.

    Science.gov (United States)

    Hsiao, E T; Robinovitch, S N

    1999-10-01

    Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.

  6. A Three-Step Atomic Layer Deposition Process for SiN x Using Si2Cl6, CH3NH2, and N2 Plasma.

    Science.gov (United States)

    Ovanesyan, Rafaiel A; Hausmann, Dennis M; Agarwal, Sumit

    2018-06-06

    We report a novel three-step SiN x atomic layer deposition (ALD) process using Si 2 Cl 6 , CH 3 NH 2 , and N 2 plasma. In a two-step process, nonhydrogenated chlorosilanes such as Si 2 Cl 6 with N 2 plasmas lead to poor-quality SiN x films that oxidize rapidly. The intermediate CH 3 NH 2 step was therefore introduced in the ALD cycle to replace the NH 3 plasma step with a N 2 plasma, while using Si 2 Cl 6 as the Si precursor. This three-step process lowers the atomic H content and improves the film conformality on high-aspect-ratio nanostructures as Si-N-Si bonds are formed during a thermal CH 3 NH 2 step in addition to the N 2 plasma step. During ALD, the reactive surface sites were monitored using in situ surface infrared spectroscopy. Our infrared spectra show that, on the post-N 2 plasma-treated SiN x surface, Si 2 Cl 6 reacts primarily with the surface -NH 2 species to form surface -SiCl x ( x = 1, 2, or 3) bonds, which are the reactive sites during the CH 3 NH 2 cycle. In the N 2 plasma step, reactive -NH 2 surface species are created because of the surface H available from the -CH 3 groups. At 400 °C, the SiN x films have a growth per cycle of ∼0.9 Å with ∼12 atomic percent H. The films grown on high-aspect-ratio nanostructures have a conformality of ∼90%.

  7. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides.

    Science.gov (United States)

    Su, Xiaoye; Liang, Ruiting; Stolee, Jessica A

    2018-06-05

    Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Thermomechanical Stresses Analysis of a Single Event Burnout Process

    Science.gov (United States)

    Tais, Carlos E.; Romero, Eduardo; Demarco, Gustavo L.

    2009-06-01

    This work analyzes the thermal and mechanical effects arising in a power Diffusion Metal Oxide Semiconductor (DMOS) during a Single Event Burnout (SEB) process. For studying these effects we propose a more detailed simulation structure than the previously used by other authors, solving the mathematical models by means of the Finite Element Method. We use a cylindrical heat generation region, with 5 W, 10 W, 50 W and 100 W for emulating the thermal phenomena occurring during SEB processes, avoiding the complexity of the mathematical treatment of the ion-semiconductor interaction.

  9. Step voltage with periodic hold-up etching: A novel porous silicon formation

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.; Soukeih, M.

    2007-01-01

    A novel etching method for preparing light-emitting porous silicon (PS) is developed. A gradient steps (staircase) voltage is applied and hold-up for different periods of time between p-type silicon wafers and a graphite electrode in HF based solutions periodically. The single applied staircase voltage (0-30 V) is ramped in equal steps of 0.5 V for 6 s, and hold at 30 V for 30 s at a current of 6 mA. The current during hold-up time (0 V) was less than 10 μA. The room temperature photoluminescence (PL) behavior of the PS samples as a function of etching parameters has been investigated. The intensity of PL peak is initially increased and blue shifted on increasing etching time, but decreased after prolonged time. These are correlated with the study of changes in surface morphology using atomic force microscope (AFM), porosity and electrical conductance measurements. The time of holding-up the applied voltage during the formation process is found to highly affect the PS properties. On increasing the holding-up time, the intensity of PL peak is increased and blue shifted. The contribution of holding-up the applied steps during the formation process of PS is seen to be more or less similar to the post chemical etching process. It is demonstrated that this method can yield a porous silicon layer with stronger photoluminescence intensity and blue shifted than the porous silicon layer prepared by DC etching

  10. Step voltage with periodic hold-up etching: A novel porous silicon formation

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M. [Department of Physics, Atomic Energy Commission of Syria (AECS), Damascus P.O. Box 6091 (Syrian Arab Republic)]. E-mail: scientific@aec.org.sy; Awad, F. [Department of Physics, Atomic Energy Commission of Syria (AECS), Damascus P.O. Box 6091 (Syrian Arab Republic); Soukeih, M. [Department of Physics, Atomic Energy Commission of Syria (AECS), Damascus P.O. Box 6091 (Syrian Arab Republic)

    2007-05-16

    A novel etching method for preparing light-emitting porous silicon (PS) is developed. A gradient steps (staircase) voltage is applied and hold-up for different periods of time between p-type silicon wafers and a graphite electrode in HF based solutions periodically. The single applied staircase voltage (0-30 V) is ramped in equal steps of 0.5 V for 6 s, and hold at 30 V for 30 s at a current of 6 mA. The current during hold-up time (0 V) was less than 10 {mu}A. The room temperature photoluminescence (PL) behavior of the PS samples as a function of etching parameters has been investigated. The intensity of PL peak is initially increased and blue shifted on increasing etching time, but decreased after prolonged time. These are correlated with the study of changes in surface morphology using atomic force microscope (AFM), porosity and electrical conductance measurements. The time of holding-up the applied voltage during the formation process is found to highly affect the PS properties. On increasing the holding-up time, the intensity of PL peak is increased and blue shifted. The contribution of holding-up the applied steps during the formation process of PS is seen to be more or less similar to the post chemical etching process. It is demonstrated that this method can yield a porous silicon layer with stronger photoluminescence intensity and blue shifted than the porous silicon layer prepared by DC etching.

  11. Single-nucleus Hi-C of mammalian oocytes and zygotes.

    Science.gov (United States)

    Gassler, Johanna; Flyamer, Ilya M; Tachibana, Kikuë

    2018-01-01

    The 3D folding of the genome is linked to essential nuclear processes including gene expression, DNA repair, and replication. Chromatin conformation capture assays such as Hi-C are providing unprecedented insights into higher-order chromatin structure. Bulk Hi-C of millions of cells enables detection of average chromatin features at high resolution but is challenging to apply to rare cell types. This chapter describes our recently developed single-nucleus Hi-C (snHi-C) approach for detection of chromatin contacts in single nuclei of murine oocytes and one-cell embryos (zygotes). The step-by-step protocol includes isolation of these cells, extraction of nuclei, fixation, restriction digestion, ligation, and whole genome amplification. Contacts obtained by snHi-C allow detection of chromatin features including loops, topologically associating domains, and compartments when averaged over the genome. The combination of snHi-C with other single-cell techniques in these and other rare cell types will likely provide a comprehensive picture of how chromatin architecture shapes cell identity. © 2018 Elsevier Inc. All rights reserved.

  12. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  13. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Matthew J., E-mail: matthew.webb@cantab.net; Lundstedt, Anna; Grennberg, Helena [Department of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala (Sweden); Polley, Craig; Niu, Yuran; Zakharov, Alexei A.; Balasubramanian, Thiagarajan [MAX IV Laboratory, Lund University, 22100 Lund (Sweden); Dirscherl, Kai [DFM—Danish Fundamental Metrology, Matematiktorvet 307, DK-2800 Lyngby (Denmark); Burwell, Gregory; Guy, Owen J. [College of Engineering, Faraday Tower, Singleton Park, Swansea University, Swansea SA2 8PP (United Kingdom); Palmgren, Pål [VG Scienta Scientific AB, Box 15120, Vallongatan 1, SE-750 15 Uppsala (Sweden); Yakimova, Rositsa [Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-08-25

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  14. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method.

    Science.gov (United States)

    Guo, X; Christensen, O F; Ostersen, T; Wang, Y; Lund, M S; Su, G

    2015-02-01

    A single-step method allows genetic evaluation using information of phenotypes, pedigree, and markers from genotyped and nongenotyped individuals simultaneously. This paper compared genomic predictions obtained from a single-step BLUP (SSBLUP) method, a genomic BLUP (GBLUP) method, a selection index blending (SELIND) method, and a traditional pedigree-based method (BLUP) for total number of piglets born (TNB), litter size at d 5 after birth (LS5), and mortality rate before d 5 (Mort; including stillbirth) in Danish Landrace and Yorkshire pigs. Data sets of 778,095 litters from 309,362 Landrace sows and 472,001 litters from 190,760 Yorkshire sows were used for the analysis. There were 332,795 Landrace and 207,255 Yorkshire animals in the pedigree data, among which 3,445 Landrace pigs (1,366 boars and 2,079 sows) and 3,372 Yorkshire pigs (1,241 boars and 2,131 sows) were genotyped with the Illumina PorcineSNP60 BeadChip. The results showed that the 3 methods with marker information (SSBLUP, GBLUP, and SELIND) produced more accurate predictions for genotyped animals than the pedigree-based method. For genotyped animals, the average of reliabilities for all traits in both breeds using traditional BLUP was 0.091, which increased to 0.171 w+hen using GBLUP and to 0.179 when using SELIND and further increased to 0.209 when using SSBLUP. Furthermore, the average reliability of EBV for nongenotyped animals was increased from 0.091 for traditional BLUP to 0.105 for the SSBLUP. The results indicate that the SSBLUP is a good approach to practical genomic prediction of litter size and piglet mortality in Danish Landrace and Yorkshire populations.

  15. Reverse pattern duplication utilizing a two-step metal lift-off process via nanoimprint lithography

    International Nuclear Information System (INIS)

    Song, Sun-Sik; Kim, Eun-Uk; Jung, Hee-Soo; Kim, Ki-Seok; Jung, Gun-Young

    2009-01-01

    A two-step metal lift-off process using a selective etching recipe was demonstrated as a new technique for the reverse pattern fabrication of the features of a master stamp via a UV-based nanoimprint lithography technique. A transparent master stamp with repeated pillars (150 nm diameter at 300 nm pitch) was fabricated by using laser interference lithography and the subsequent dry-etching process. After nanoimprint lithography and the following gold (Au) lift-off process, the corresponding gold dots (20 nm height) were generated. A thin chromium layer (Cr, 5 nm) was then deposited and subjected to the aqua regia solution, which dissolved only Au dots. By using a selective wet etching recipe between gold (Au) and chromium (Cr) materials, a Cr layer with holes was reliably generated, which was used as an etching mask to transfer holes into the silicon substrate in the subsequent dry-etching process. Hole patterns with a diameter of 146 nm were inversely replicated faithfully from the master stamp with the corresponding pillars without a notable feature size distortion

  16. Design of Sensor Data Processing Steps in an Air Pollution Monitoring System

    Directory of Open Access Journals (Sweden)

    Kwang Woo Nam

    2011-11-01

    Full Text Available Environmental monitoring is required to understand the effects of various kinds of phenomena such as a flood, a typhoon, or a forest fire. To detect the environmental conditions in remote places, monitoring applications employ the sensor networks to detect conditions, context models to understand phenomena, and computing technology to process the large volumes of data. In this paper, we present an air pollution monitoring system to provide alarm messages about potentially dangerous areas with sensor data analysis. We design the data analysis steps to understand the detected air pollution regions and levels. The analyzed data is used to track the pollution and to give an alarm. This implemented monitoring system is used to mitigate the damages caused by air pollution.

  17. Global seismic inversion as the next standard step in the processing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Kim G.; Hansen, Lars S.; Jepsen, Anne-Marie; Rasmussen, Klaus B.

    1998-12-31

    Seismic inversion of post stack seismic data has until recently been regarded as a reservoir oriented method since the standard inversion techniques rely on extensive well control and a detailed user derived input model. Most seismic inversion techniques further requires a stable wavelet. As a consequence seismic inversion is mainly utilised in mature areas focusing of specific zones only after the seismic data has been interpreted and is well understood. By using an advanced 3-D global technique, seismic inversion is presented as the next standard step in the processing sequence. The technique is robust towards noise within the seismic data, utilizes a time variant wavelet, and derives a low frequency model utilizing the stacking velocities and only limited well control. 4 figs.

  18. Characteristic analysis of laser isotope separation process by two-step photodissociation method

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Kiyose, Ryohei

    1981-01-01

    A large number of laser isotope separation experiments have been performed actively in many countries. In this paper, the selective two-step photodissociation method is chosen and simultaneous nonlinear differential equations that express the separation process are solved directly by using computer. Predicted separation factors are investigated in relation to the incident pulse energy and the concentration of desired molecules. Furthermore, the concept of separative work is used to evaluate the results of separation for this method. It is shown from an example of numerical calculation that a very large separation factor can be obtained if the concentration of desired molecules is lowered and two laser pulses to be closely synchronized are not always required in operation for the photodissociation of molecules. (author)

  19. Two-step chemical decontamination technology

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1992-01-01

    An improved two-step chemical decontamination technique was recently developed at INEL. This memorandum documents the addition of this technology to the SRTC arsenal of decontamination technology. A two-step process using NAOH, KMnO 4 followed by HNO 3 was used for cleaning doorstops (small casks) in the SRTC High Level Caves in 1967. Subsequently, more aggressive chemical techniques have been found to be much more effective for our applications. No further work on two-step technology is planned

  20. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Komonov, A.I. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Prinz, V.Ya., E-mail: prinz@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Kokh, K.A. [Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (IGM SB RAS), pr. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIIC SB RAS), pr. Lavrentieva 3, Novosibirsk 630090 (Russian Federation)

    2017-07-15

    Highlights: • Easily reproducible step-height standard for SPM calibrations was proposed. • Step-height standard is monolayer steps on the surface of layered single crystal. • Long-term change in surface morphology of Bi{sub 2}Se{sub 3} and ZnWO{sub 4} was investigated. • Conducting surface of Bi{sub 2}Se{sub 3} crystals appropriate for calibrating STM. • Ability of robust SPM calibrations under ambient conditions were demonstrated. - Abstract: Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi{sub 2}Se{sub 3} and ZnWO{sub 4} layered single crystals. It was shown that the conducting surface of Bi{sub 2}Se{sub 3} crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi{sub 2}Se{sub 3} surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO{sub 4} crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  1. Application of enhanced electronegative multimodal chromatography as the primary capture step for immunoglobulin G purification.

    Science.gov (United States)

    Wang, Yanli; Chen, Quan; Xian, Mo; Nian, Rui; Xu, Fei

    2018-06-01

    In recent studies, electronegative multimodal chromatography with Eshmuno HCX was demonstrated to be a highly promising recovery step for direct immunoglobulin G (IgG) capture from undiluted cell culture fluid. In this study, the binding properties of HCX to IgG at different pH/salt combinations were systematically studied, and its purification performance was significantly enhanced by lowering the washing pH and conductivity after high capacity binding of IgG under its optimal conditions. A single polishing step gave an end-product with non-histone host cell protein (nh-HCP) below 1 ppm, DNA less than 1 ppb, which aggregates less than 0.5% and an overall IgG recovery of 86.2%. The whole non-affinity chromatography based two-column-step process supports direct feed loading without buffer adjustment, thus extraordinarily boosting the overall productivity and cost-savings.

  2. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    Science.gov (United States)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  3. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  4. Research on the Single Grit Scratching Process of Oxygen-Free Copper (OFC

    Directory of Open Access Journals (Sweden)

    Libin Zhang

    2018-04-01

    Full Text Available Single grit scratching is a basic form of material removal for many processes, such as grinding single point diamond turning and coating bonding performance tests. It has been widely used in the study of micro-scale and nano-scale material removal mechanisms. In this study, single grit linearly loading scratching tests were carried out on a scratching tester. A Rockwell indenter made of natural diamond was selected as the tool used, and the material of the workpiece was oxygen-free copper. Scratch topography was measured using a super-depth microscope to analyze the material deformation of the scratching process. A single grit scratching simulation has been developed by AdvantEdge™ to comprehensively study the material deformation of scratching processes. A material constitutive model and friction model were acquired using a quasi-static uniaxial compression experiment and a reciprocating friction test, respectively. These two models were used as the input models in the finite simulations. The simulated scratching forces aligned well with the experimental scratching forces, which verified the precision of the simulation model. Since only the scratching force could be obtained in the scratching experiment, the plastic strain, material flow, and residual stress of the scratching were further analyzed using simulations. The results showed that the plastic strain of the workpiece increased with the increase in scratching depth, and further analysis showed that the workpiece surface was distributed with residual compressive stress and the sub-surface was distributed with residual tensile stress in single grit scratching.

  5. Generated dynamics of Markov and quantum processes

    CERN Document Server

    Janßen, Martin

    2016-01-01

    This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...

  6. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments.

    Directory of Open Access Journals (Sweden)

    Christian Carsten Sachs

    Full Text Available Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool.We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks.Presented is the software molyso, a ready-to-use open source software (BSD-licensed for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.

  7. Computer aided virtual manufacturing using Creo parametric easy to learn step by step guide

    CERN Document Server

    Kanife, Paul Obiora

    2016-01-01

    Providing a step-by-step guide for the implementation of virtual manufacturing using Creo Parametric software (formerly known as Pro-Engineer), this book creates an engaging and interactive learning experience for manufacturing engineering students. Featuring graphic illustrations of simulation processes and operations, and written in accessible English to promote user-friendliness, the book covers key topics in the field including: the engraving machining process, face milling, profile milling, surface milling, volume rough milling, expert machining, electric discharge machining (EDM), and area turning using the lathe machining process. Maximising reader insights into how to simulate material removal processes, and how to generate cutter location data and G-codes data, this valuable resource equips undergraduate, postgraduate, BTech and HND students in the fields of manufacturing engineering, computer aided design (CAD) and computer aided engineering (CAE) with transferable skills and knowledge. This book is...

  8. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  9. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  10. Metronome-Cued Stepping in Place after Hemiparetic Stroke: Comparison of a One- and Two-Tone Beat

    OpenAIRE

    Wright, Rachel L.; Masood, Afia; Maccormac, Elinor S.; Pratt, David; Sackley, Catherine M.; Wing, Alan M.

    2013-01-01

    Hemiparetic gait is characterised by temporal asymmetry and variability, and these variables are improved by auditory cueing. Stepping in place incorporates aspects of gait and may be a useful tool for locomotor training. The aim of this pilot study was to investigate the use of a single-tone and dual-tone metronome to cue stepping in place after hemiparetic stroke. Eight participants completed an uncued baseline stepping condition and two cued stepping conditions utilising a single-tone and ...

  11. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  12. Zinc hexacyanoferrate film as an effective protecting layer in two-step and one-step electropolymerization of pyrrole on zinc substrate

    Energy Technology Data Exchange (ETDEWEB)

    Pournaghi-Azar, M.H. [Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: pournaghiazar@tabrizu.ac.ir; Nahalparvari, H. [Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2005-03-15

    The two-step and one-step electrosynthesis processes of polypyrrole (PPy) films on the zinc substrate are described. The two-step process includes (i) the zinc surface pretreatment with hexacyanoferrate ion in the aqueous medium in order to form a zinc hexacyanoferrate (ZnHCF) film non-blocking passive layer on the surface and with the view to prevent its reactivity and (ii) electropolymerization of pyrrole on the ZnHCF vertical bar Zn-modified electrode in aqueous pyrrole solution. In this context, both the non-electrolytic and electrolytic procedures were adapted, and the effect of some experimental conditions such as supporting electrolyte, pH and temperature of the solution at the zinc surface pretreatment step as well as pyrrole concentration and electrochemical techniques at the polymerization step was investigated. By optimizing the experimental conditions in both steps, we have obtained a homogeneous and strongly adherent PPy films on the zinc substrate. The one-step process is based on the use of an aqueous medium containing Fe(CN){sub 6}{sup 4-} and pyrrole. The ferrocyanide ion passivates the substrate by formation of ZnHCF film during the electropolymerization process of pyrrole and therefore makes it possible to obtain strongly adherent PPy films, with controlled thickness, either by cyclic voltammetry or by electrolysis at constant current or constant potential without any previously treatment of the zinc electrode surface. The polypyrrole films deposited on the zinc electrode were characterized by cyclic voltammetry and scanning electron microscopic (SEM) measurement.

  13. Zinc hexacyanoferrate film as an effective protecting layer in two-step and one-step electropolymerization of pyrrole on zinc substrate

    International Nuclear Information System (INIS)

    Pournaghi-Azar, M.H.; Nahalparvari, H.

    2005-01-01

    The two-step and one-step electrosynthesis processes of polypyrrole (PPy) films on the zinc substrate are described. The two-step process includes (i) the zinc surface pretreatment with hexacyanoferrate ion in the aqueous medium in order to form a zinc hexacyanoferrate (ZnHCF) film non-blocking passive layer on the surface and with the view to prevent its reactivity and (ii) electropolymerization of pyrrole on the ZnHCF vertical bar Zn-modified electrode in aqueous pyrrole solution. In this context, both the non-electrolytic and electrolytic procedures were adapted, and the effect of some experimental conditions such as supporting electrolyte, pH and temperature of the solution at the zinc surface pretreatment step as well as pyrrole concentration and electrochemical techniques at the polymerization step was investigated. By optimizing the experimental conditions in both steps, we have obtained a homogeneous and strongly adherent PPy films on the zinc substrate. The one-step process is based on the use of an aqueous medium containing Fe(CN) 6 4- and pyrrole. The ferrocyanide ion passivates the substrate by formation of ZnHCF film during the electropolymerization process of pyrrole and therefore makes it possible to obtain strongly adherent PPy films, with controlled thickness, either by cyclic voltammetry or by electrolysis at constant current or constant potential without any previously treatment of the zinc electrode surface. The polypyrrole films deposited on the zinc electrode were characterized by cyclic voltammetry and scanning electron microscopic (SEM) measurement

  14. Single-Step BLUP with Varying Genotyping Effort in Open-Pollinated Picea glauca

    Directory of Open Access Journals (Sweden)

    Blaise Ratcliffe

    2017-03-01

    Full Text Available Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP. In this study, two traits with diverse heritabilities [tree height (HT and wood density (WD] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100% from a population of white spruce (Picea glauca consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm.

  15. Single-Step BLUP with Varying Genotyping Effort in Open-Pollinated Picea glauca.

    Science.gov (United States)

    Ratcliffe, Blaise; El-Dien, Omnia Gamal; Cappa, Eduardo P; Porth, Ilga; Klápště, Jaroslav; Chen, Charles; El-Kassaby, Yousry A

    2017-03-10

    Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce ( Picea glauca ) consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm. Copyright © 2017 Ratcliffe et al.

  16. Importance of sequential two-step transfer process in a ΔS = 1 and ΔT = 1 inelastic transition of 14N(p, p')14N reaction

    International Nuclear Information System (INIS)

    Aoki, Y.; Kunori, S.; Nagano, K.; Toba, Y.; Yagi, K.

    1981-01-01

    Differential cross sections and vector analyzing powers for 14 N(p, p') and 14 N(p, d) reactions have been measured at E sub(p) = 21.0 MeV to elucidate the reaction mechanism and the effective interaction for the ΔS = ΔT = 1 transition in 14 N(p, p') 14 N(2.31 MeV) reaction. The data are analyzed in terms of finite-range distorted wave Borm approximation (DWBA) which include direct, knock-on exchange and (p, d)(d, p') two-step processes. Shell model wave functions of Cohen and Kurath are used. The data for the first excited state is reasonably well explained by introducing two-step process. The two-step process explains half of the experimental intensity. Moreover vector analyzing power can hardly be explained without introducing this two-step process. Vector analyzing power of protons leading to the second excited state in 14 N is better explained by introducing macroscopic calculation. The data for 14 N(p, d) 13 N(gs) reaction are well explained by a suitable choice of deuteron optical potential. Knock-on exchange contribution is relatively small. Importance of this two-step process for ΔS = ΔT = 1 transition is discussed up to 40 MeV. (author)

  17. FEM simulation of multi step forming of thick sheet

    NARCIS (Netherlands)

    Wisselink, H.H.; Huetink, Han

    2004-01-01

    A case study has been performed on the forming of an industrial product. This product, a bracket, is made of 5mm thick sheet in multiple steps. The process exists of a bending step followed by a drawing and a flanging step. FEM simulations have been used to investigate this forming process. First,

  18. 'Steps in the learning Process'

    International Nuclear Information System (INIS)

    Cheung, Kyung Mo; Cheung, Hwan

    1984-01-01

    The process by which a student learns is extremely complicated. Whether he is simply learning facts, laws or formulae, changing his values or mastering a skill the way in which his brain functions is impossible to describe. The idea of learning domains is put forward not to explain in biological terms what happens in the brain but simply to attempt to break the system down into simpler units so that the learning process can be organized in an easier, more systematic way. In the most commonly used description of this process, the one described by BLOOM, this is BLOOM's Taxonomy. In addition to, I'd like to compare with the work of Lewis (Levels of Knowledge and Understanding). As a result, let us discuss about the most effective method in teaching in order to supply high-quality education

  19. Digital processing with single electrons for arbitrary waveform generation of current

    Science.gov (United States)

    Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa

    2018-03-01

    We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.

  20. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    Full Text Available Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N

  1. Review of segmentation process in consumer markets

    Directory of Open Access Journals (Sweden)

    Veronika Jadczaková

    2013-01-01

    Full Text Available Although there has been a considerable debate on market segmentation over five decades, attention was merely devoted to single stages of the segmentation process. In doing so, stages as segmentation base selection or segments profiling have been heavily covered in the extant literature, whereas stages as implementation of the marketing strategy or market definition were of a comparably lower interest. Capitalizing on this shortcoming, this paper strives to close the gap and provide each step of the segmentation process with equal treatment. Hence, the objective of this paper is two-fold. First, a snapshot of the segmentation process in a step-by-step fashion will be provided. Second, each step (where possible will be evaluated on chosen criteria by means of description, comparison, analysis and synthesis of 32 academic papers and 13 commercial typology systems. Ultimately, the segmentation stages will be discussed with empirical findings prevalent in the segmentation studies and last but not least suggestions calling for further investigation will be presented. This seven-step-framework may assist when segmenting in practice allowing for more confidential targeting which in turn might prepare grounds for creating of a differential advantage.

  2. Direct and seamless coupling of TiO{sub 2} nanotube photonic crystal to dye-sensitized solar cell: a single-step approach

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Cho Tung; Zhou, Limin [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Huang, Haitao; Xie, Keyu; Wang, Yu. [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Feng, Tianhua; Li, Jensen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (China); Tam, Wing Yim [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (China)

    2011-12-15

    A TiO{sub 2} nanotube layer with a periodic structure is used as a photonic crystal to greatly enhance light harvesting in TiO{sub 2} nanotube-based dye-sensitized solar cells. Such a tube-on-tube structure fabricated by a single-step approach facilitates good physical contact, easy electrolyte infiltration, and efficient charge transport. An increase of over 50% in power conversion efficiency is obtained in comparison to reference cells without a photonic crystal layer (under similar total thickness and dye loading). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. A permeation theory for single-file ion channels: one- and two-step models.

    Science.gov (United States)

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  4. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  5. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  6. The analysis of forming and strain state of the hollow step forgings during the enlarging process

    Directory of Open Access Journals (Sweden)

    Олег Євгенійович Марков

    2017-12-01

    Full Text Available Improving safety, accelerating construction and extending the life of nuclear power plants is one of the main directions of the development of the energy industry. From this point of view, much attention is being paid to the production of forgings, which combine a few details today. This requires the use of new technologies with the use of non-standard tools. The purpose of the work is analyze of the shape and the deformation state of the conical stepped forging when rolling the stepped workpiece with the simultaneous deformation of the protuberance and the ledge. The simulation was performed using finite element method, which is consistent with experimental data. Experimental studies were carried out on lead models. Rolling of stepped workpiece with simultaneous deformation of the protrusion and ledge leads to the appearance of conical forging. Taper on the side of the ledge occurs at the initial stage of rolling and during the whole process increases. The emergence of a conical shape is explained by the fact that during slipping, with the same absolute deformation (stroke, the ledge gets more accumulated deformation through a more precise wall.

  7. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    Science.gov (United States)

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  8. Self Blocking of CO Dissociation on a Stepped Ruthenium Surface

    DEFF Research Database (Denmark)

    Vendelbo, Søren Bastholm; Johansson, Martin; Mowbray, Duncan

    2010-01-01

    The influence of steps on CO reactions has been studied on a Ru(0 1 (1) over bar 5 4) single crystal with a step density of 4%. Based on temperature programmed desorption (TPD) and oxygen titration experiments as well as density functional theory (DFT) calculations, we show that the CO dissociation...

  9. Examining the rudimentary steps of the oxygen reduction reaction on single-atomic Pt using Ti-based non-oxide supports

    DEFF Research Database (Denmark)

    Tak, Young Joo; Yang, Sungeun; Lee, Hyunjoo

    2018-01-01

    C(100)-supported single Pt atoms. The O2 and OOH* dissociation processes on Pt/TiN(100) are determined to be non-activated (i.e. "barrier-less" dissociation) while an activation energy barrier of 0.19 and 0.51eV is found for these dissociation processes on Pt/TiC(100), respectively. Moreover, the series...

  10. Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Long-Gonzalez, D.; Lopez-Cuevas, J.; Gutierrez-Chavarria, C.A.; Pena, P.; Baudin, C.; Turrillas, X. [CINVESTAV, Coahuila (Mexico)

    2010-03-15

    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1-xSrxAl{sub 2}Si2O8 solid solutions, where x=0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850-1300{sup o}C. Fully monoclinic Celsian was obtained at 1200{sup o} C/5 h, for SrO contents of 0.25 {<=} x {<=} 0.75. However, an optimum SrO level of 0.25 {<=} x {<=} 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO{sub 2} present in it, which enhanced the Hexacelsian to Celsian conversion.

  11. Determination of Sintered (Th,U)O2 Pellet at the Grain Growth Step

    International Nuclear Information System (INIS)

    Indrati-Y, Tundjung; Pristi-Hartati, Murdani; Ari-Handayani; Ginting, Aslina Br

    2000-01-01

    The determination of sintered (Th,U)O 2 pellet at the grain growth stephave been done by dilatometer and Scanning Electron Microscope (SEM). Thecalculation method based on the densification curve and quantitativemetallurgy. The green pellet be produced by single action compaction. Itspellet was heated on the dilatometer with heating rate 11 o C/minute and inthe argon atmosphere, 2 liters/hour. The activation energy at thedensification step can be calculated by densification curve only, but theactivation energy at the grain growth step can be calculated by densificationcurve or quantitative metallurgy. The capability of the dilatometer can beoperated until 1200 o C, so the densification curve based on the experiencecan be used to calculate activation energy at the densification step, 4.492kcal/mole. The activation energy at the grain growth step, which is 25.277kcal/mole, can be predicted by trial and error on n value. That activationenergy is almost the same with activation energy that based on thequantitative metallurgy method 25.042 kcal/mole. All of the activation energyfor the (Th,U)O 2 pellet sintering process is 29.769 kcal/mole. (author)

  12. Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step Deposited Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-31

    Employment of thin perovskite shells and metal halides as surface-passivants for colloidal quantum dots (CQDs) have been important, recent developments in CQD optoelectronics. These have opened the route to single-step deposited high-performing CQD solar cells. These promising architectures employ a QD hole-transporting layer (HTL) whose intrinsically shallow Fermi level (EF) restricts band-bending at maximum power-point during solar cell operation limiting charge collection. Here, we demonstrate a generalized approach to effectively balance band-edge energy levels of the main CQD absorber and charge-transport layer for these high-performance solar cells. Briefly soaking the QD HTL in a solution of the metal-organic p-dopant, molybdenum tris(1-(trifluoroacetyl)-2-(trifluoromethyl)ethane-1,2-dithiolene), effectively deepens its Fermi level, resulting in enhanced band bending at the HTL:absorber junction. This blocks the back-flow of photo-generated electrons, leading to enhanced photocurrent and fill factor compared to undoped devices. We demonstrate 9.0% perovskite-shelled and 9.5% metal-halide-passivated CQD solar cells, both achieving ca. 10% relative enhancements over undoped baselines.

  13. Influence of processing steps in cold-smoked salmon production on survival and growth of persistent and presumed non-persistent Listeria monocytogenes

    DEFF Research Database (Denmark)

    Porsby, Cisse Hedegaard; Vogel, Birte Fonnesbech; Mohr, Mona

    2008-01-01

    conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C......Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine...... if the steps in the processing of cold-smoked salmon affect Survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model...

  14. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A mechanism for leader stepping

    Science.gov (United States)

    Ebert, U.; Carlson, B. E.; Koehn, C.

    2013-12-01

    The stepping of negative leaders is well observed, but not well understood. A major problem consists of the fact that the streamer corona is typically invisible within a thunderstorm, but determines the evolution of a leader. Motivated by recent observations of streamer and leader formation in the laboratory by T.M.P. Briels, S. Nijdam, P. Kochkin, A.P.J. van Deursen et al., by recent simulations of these processes by J. Teunissen, A. Sun et al., and by our theoretical understanding of the process, we suggest how laboratory phenomena can be extrapolated to lightning leaders to explain the stepping mechanism.

  16. Developing a framework to model the primary drying step of a continuous freeze-drying process based on infrared radiation

    DEFF Research Database (Denmark)

    Van Bockstal, Pieter-Jan; Corver, Jos; Mortier, Séverine Thérèse F.C.

    2018-01-01

    . These results assist in the selection of proper materials which could serve as IR window in the continuous freeze-drying prototype. The modelling framework presented in this paper fits the model-based design approach used for the development of this prototype and shows the potential benefits of this design...... requires the fundamental mechanistic modelling of each individual process step. Therefore, a framework is presented for the modelling and control of the continuous primary drying step based on non-contact IR radiation. The IR radiation emitted by the radiator filaments passes through various materials...

  17. Reversing the conventional leather processing sequence for cleaner leather production.

    Science.gov (United States)

    Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2006-02-01

    Conventional leather processing generally involves a combination of single and multistep processes that employs as well as expels various biological, inorganic, and organic materials. It involves nearly 14-15 steps and discharges a huge amount of pollutants. This is primarily due to the fact that conventional leather processing employs a "do-undo" process logic. In this study, the conventional leather processing steps have been reversed to overcome the problems associated with the conventional method. The charges of the skin matrix and of the chemicals and pH profiles of the process have been judiciously used for reversing the process steps. This reversed process eventually avoids several acidification and basification/neutralization steps used in conventional leather processing. The developed process has been validated through various analyses such as chromium content, shrinkage temperature, softness measurements, scanning electron microscopy, and physical testing of the leathers. Further, the performance of the leathers is shown to be on par with conventionally processed leathers through bulk property evaluation. The process enjoys a significant reduction in COD and TS by 53 and 79%, respectively. Water consumption and discharge is reduced by 65 and 64%, respectively. Also, the process benefits from significant reduction in chemicals, time, power, and cost compared to the conventional process.

  18. Structural analysis of Hanford's single-shell 241-C-106 tank: A first step toward waste-tank remediation

    International Nuclear Information System (INIS)

    Harris, J.P.; Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.; Jagadish, P.; Shulman, J.S.

    1993-10-01

    The buried single-shell waste tank 241-C-106, located at the US Department of Energy's Hanford Site, has been a repository for various liquid radioactive waste materials since its construction in 1943. A first step toward waste tank remediation is demonstrating that remediation activities can be performed safely. Determination of the current structural capacity of this high-heat tank is an important element in this assessment. A structural finite-element model of tank 241-C-106 has been developed to assess the tank's structural integrity with respect to in situ conditions and additional remediation surface loads. To predict structural integrity realistically, the model appropriately addresses two complex issues: (1) surrounding soil-tank interaction associated with thermal expansion cycling and surcharge load distribution and (2) concrete-property degradation and creep resulting from exposure to high temperatures generated by the waste. This paper describes the development of the 241-C-106 structural model, analysis methodology, and tank-specific structural acceptance criteria

  19. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  20. Microwave-assisted one-step synthesis of acetate-capped NaYF4

    DEFF Research Database (Denmark)

    Reddy, Kumbam Lingeshwar; Prabhakar, Neeraj; Arppe, Riikka

    2017-01-01

    Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods. The nan......Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods...

  1. Thermal homogeneity of plastication processes in single-screw extruders

    Science.gov (United States)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  2. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    International Nuclear Information System (INIS)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-01-01

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO 3 ) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  3. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  4. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  5. A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, J. [Department of Analytical Chemistry, Universitat de Barcelona, Martí i Franqués, 1-11, E-08028, Barcelona (Spain); Tarancón, A., E-mail: alex.tarancon@ub.edu [Department of Analytical Chemistry, Universitat de Barcelona, Martí i Franqués, 1-11, E-08028, Barcelona (Spain); Bagán, H. [Department of Pure and Applied Biochemistry, Lund University, Getingevägen 60, hus II, 22100 SE, Lund (Sweden); García, J.F. [Department of Analytical Chemistry, Universitat de Barcelona, Martí i Franqués, 1-11, E-08028, Barcelona (Spain)

    2016-09-14

    Technetium is a synthetic element with no stable isotopes, produced as waste in nuclear power plants and in cyclotrons used for nuclear medicine. The element has high mobility, in the form of TcO{sub 4}{sup −}; its determination is therefore important for environmental protection. Technetium is found in low concentrations and therefore common methods for its analysis include long treatments in several steps and require large amounts of reagents for its purification and preconcentration. Plastic scintillation resins (PSresin) are novel materials used to separate, preconcentrate and measure radionuclides in a single step. The objective of this study is to prepare and characterise a PSresin for the preconcentration and measurement of {sup 99}Tc. The study first evaluates the reproducibility of the production of PSresins between batches and over time; showing good reproducibility and storage stability. Next, we studied the effect of some common non-radioactive interferences, showing small influences on measurement, and radioactive interferences ({sup 36}Cl and {sup 238}U/{sup 234}U). {sup 36}Cl can be removed by a simple treatment with 0.5 M HCl and {sup 238}U/{sup 234}U can be removed from the column by cleaning with a mixture of 0.1 M HNO{sub 3} and 0.1 M HF. In the latter case, a slight change in the morphology of the PSresin caused an increase in detection efficiency. Finally, the PSresin was applied to the measurement of real spiked samples (sea water and urine) with deviations lower than 10% in all cases. - Highlights: • A plastic scintillation resin for selective analysis of {sup 99}Tc has been developed. • The method is valid for analysis of {sup 99}Tc in seawater and urine samples. • Presence of Cl{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, {sup 36}Cl, U and Th not affect retention of {sup 99}Tc.

  6. A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99

    International Nuclear Information System (INIS)

    Barrera, J.; Tarancón, A.; Bagán, H.; García, J.F.

    2016-01-01

    Technetium is a synthetic element with no stable isotopes, produced as waste in nuclear power plants and in cyclotrons used for nuclear medicine. The element has high mobility, in the form of TcO_4"−; its determination is therefore important for environmental protection. Technetium is found in low concentrations and therefore common methods for its analysis include long treatments in several steps and require large amounts of reagents for its purification and preconcentration. Plastic scintillation resins (PSresin) are novel materials used to separate, preconcentrate and measure radionuclides in a single step. The objective of this study is to prepare and characterise a PSresin for the preconcentration and measurement of "9"9Tc. The study first evaluates the reproducibility of the production of PSresins between batches and over time; showing good reproducibility and storage stability. Next, we studied the effect of some common non-radioactive interferences, showing small influences on measurement, and radioactive interferences ("3"6Cl and "2"3"8U/"2"3"4U). "3"6Cl can be removed by a simple treatment with 0.5 M HCl and "2"3"8U/"2"3"4U can be removed from the column by cleaning with a mixture of 0.1 M HNO_3 and 0.1 M HF. In the latter case, a slight change in the morphology of the PSresin caused an increase in detection efficiency. Finally, the PSresin was applied to the measurement of real spiked samples (sea water and urine) with deviations lower than 10% in all cases. - Highlights: • A plastic scintillation resin for selective analysis of "9"9Tc has been developed. • The method is valid for analysis of "9"9Tc in seawater and urine samples. • Presence of Cl"−, NO_3"−, SO_4"2"−, "3"6Cl, U and Th not affect retention of "9"9Tc.

  7. Step by step. How to install CopperCore, how to publish and run a UoL

    NARCIS (Netherlands)

    Burgos, Daniel

    2005-01-01

    Through these four documents the full installation process of CopperCore is described in detailed. Step by step, and full supported with screenshots, it's shown how to install Cc, how to publish a UoL with Cc and Clicc, how to run a UoL and to exit of Cc and Clicc

  8. Rudimentary simple, single step fabrication of nano-flakes like AgCd alloy electro-catalyst for oxygen reduction reaction in alkaline fuel cell

    International Nuclear Information System (INIS)

    Bhandary, Nimai; Basu, Suddhasatwa; Ingole, Pravin P.

    2016-01-01

    In this work, for the first time, we report rudimentary simple, single step fabrication of an electro-catalyst based on AgCd alloy nanoparticles with flakes like geometry which shows highly efficient activity towards oxygen reduction reaction (ORR). A simple potentiostatic deposition method has been employed for co-depositing AgCd alloy nanostructures with flakes like shapes along with dendrites on the surface of carbon fibre paper. The chemico-physical properties of the catalyst are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS). Electro-catalytic activity of AgCd alloy based electro-catalyst towards ORR is studied in alkaline medium by cyclic voltammetry and rotating ring disk electrode (RRDE) technique. Electrochemical in-situ FTIR measurements are also performed to identify the species generated during ORR process. Based on the results from electro-catalysis experiment, it is concluded that nano-alloyed AgCd electrodeposited on carbon paper shows excellent activity for ORR, following four electron pathways with H_2O_2 yield less than 15%. The combination of low cost of Ag and Cd, fast and facile method of its fabrication and higher activity towards ORR makes the AgCd electro-catalyst an attractive catalyst of choice for alkaline fuel cell.

  9. Continuous versus step-by-step scanning mode of a novel 3D scanner for CyberKnife measurements

    International Nuclear Information System (INIS)

    Al Kafi, M Abdullah; Mwidu, Umar; Moftah, Belal

    2015-01-01

    The purpose of the study is to investigate the continuous versus step-by-step scanning mode of a commercial circular 3D scanner for commissioning measurements of a robotic stereotactic radiosurgery system. The 3D scanner was used for profile measurements in step-by-step and continuous modes with the intent of comparing the two scanning modes for consistency. The profile measurements of in-plane, cross-plane, 15 degree, and 105 degree were performed for both fixed cones and Iris collimators at depth of maximum dose and at 10 cm depth. For CyberKnife field size, penumbra, flatness and symmetry analysis, it was observed that the measurements with continuous mode, which can be up to 6 times faster than step-by-step mode, are comparable and produce scans nearly identical to step-by-step mode. When compared with centered step-by-step mode data, a fully processed continuous mode data gives rise to maximum of 0.50% and 0.60% symmetry and flatness difference respectfully for all the fixed cones and Iris collimators studied. - Highlights: • D scanner for CyberKnife beam data measurements. • Beam data analysis for continuous and step-by-step scan modes. • Faster continuous scanning data are comparable to step-by-step mode scan data.

  10. The Accuracy and Bias of Single-Step Genomic Prediction for Populations Under Selection

    Directory of Open Access Journals (Sweden)

    Wan-Ling Hsu

    2017-08-01

    Full Text Available In single-step analyses, missing genotypes are explicitly or implicitly imputed, and this requires centering the observed genotypes using the means of the unselected founders. If genotypes are only available for selected individuals, centering on the unselected founder mean is not straightforward. Here, computer simulation is used to study an alternative analysis that does not require centering genotypes but fits the mean μg of unselected individuals as a fixed effect. Starting with observed diplotypes from 721 cattle, a five-generation population was simulated with sire selection to produce 40,000 individuals with phenotypes, of which the 1000 sires had genotypes. The next generation of 8000 genotyped individuals was used for validation. Evaluations were undertaken with (J or without (N μg when marker covariates were not centered; and with (JC or without (C μg when all observed and imputed marker covariates were centered. Centering did not influence accuracy of genomic prediction, but fitting μg did. Accuracies were improved when the panel comprised only quantitative trait loci (QTL; models JC and J had accuracies of 99.4%, whereas models C and N had accuracies of 90.2%. When only markers were in the panel, the 4 models had accuracies of 80.4%. In panels that included QTL, fitting μg in the model improved accuracy, but had little impact when the panel contained only markers. In populations undergoing selection, fitting μg in the model is recommended to avoid bias and reduction in prediction accuracy due to selection.

  11. FMEF Electrical single line diagram and panel schedule verification process

    International Nuclear Information System (INIS)

    Fong, S.K.

    1998-01-01

    Since the FMEF did not have a mission, a formal drawing verification program was not developed, however, a verification process on essential electrical single line drawings and panel schedules was established to benefit the operations lock and tag program and to enhance the electrical safety culture of the facility. The purpose of this document is to provide a basis by which future landlords and cognizant personnel can understand the degree of verification performed on the electrical single lines and panel schedules. It is the intent that this document be revised or replaced by a more formal requirements document if a mission is identified for the FMEF

  12. Simulation and theory of island growth on stepped substrates

    International Nuclear Information System (INIS)

    Pownall, C.D.

    1999-10-01

    The nucleation, growth and coalescence of islands on stepped substrates is investigated by Monte Carlo simulations and analytical theories. Substrate steps provide a preferential site for the nucleation of islands, making many of the important processes one-dimensional in nature, and are of potentially major importance in the development of low-dimensional structures as a means of growing highly ordered chains of 'quantum dots' or continuous 'quantum wires'. A model is developed in which island nucleation is entirely restricted to the step edge, islands grow in compact morphologies by monomer capture, and eventually coalesce with one another until a single continuous cluster of islands covers the entire step. A series of analytical theories is developed to describe the dynamics of the whole evolution. The initial nucleation and aggregation regimes are modeled using the traditional approach of rate equations, rooted in mean field theory, but incorporating corrections to account for correlations in the nucleation and capture processes. This approach is found to break down close to the point at which the island density saturates and a new approach is developed based upon geometric and probabilistic arguments to describe the saturation behaviour, including the characteristic dynamic scaling which is found to persist through the coalescence regime as well. A further new theory, incorporating arguments based on the geometry of Capture Zones, is presented which reproduces the dynamics of the coalescence regime. The, latter part of the. thesis considers the spatial properties of the system, in particular the spacing of the islands along the step. An expression is derived which describes the distribution of gap sizes, and this is solved using a recently-developed relaxation method. An important result is the discovery that larger critical island sizes tend to yield more evenly spaced arrays of islands. The extent of this effect is analysed by solving for critical island

  13. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO 3 /h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting

  14. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  15. Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting

    DEFF Research Database (Denmark)

    van der Aalst, W.M.P.; Rubin, V.; Verbeek, H.M.W.

    behavior. At best, one has seen a representative subset. Therefore, classical synthesis techniques are not suitable as they aim at finding a model that is able to exactly reproduce the log. Existing process mining techniques try to avoid such "overfitting" by generalizing the model to allow for more...... behavior. This generalization is often driven by the representation language and very crude assumptions about completeness. As a result, parts of the model are "overfitting" (allow only what has actually been observed) while other parts may be "underfitting" (allow for much more behavior without strong...... support for it). None of the existing techniques enables the user to control the balance between "overfitting" and "underfitting". To address this, we propose a two-step approach. First, using a configurable approach, a transition system is constructed. Then, using the "theory of regions", the model...

  16. Quantum Control of Graphene Plasmon Excitation and Propagation at Heaviside Potential Steps.

    Science.gov (United States)

    Wang, Dongli; Fan, Xiaodong; Li, Xiaoguang; Dai, Siyuan; Wei, Laiming; Qin, Wei; Wu, Fei; Zhang, Huayang; Qi, Zeming; Zeng, Changgan; Zhang, Zhenyu; Hou, Jianguo

    2018-02-14

    Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

  17. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    International Nuclear Information System (INIS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-01-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light–matter interactions and the realization of future metamaterials. (fast track communication)

  18. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    Science.gov (United States)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  19. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants.

    Science.gov (United States)

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V

    2016-05-01

    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

  20. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor.

    Science.gov (United States)

    Dasari, Suvarna; Kölling, Ralf

    2016-07-01

    We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins.