WorldWideScience

Sample records for single power-law exponent

  1. Stochastic model of Zipf's law and the universality of the power-law exponent.

    Science.gov (United States)

    Yamamoto, Ken

    2014-04-01

    We propose a stochastic model of Zipf's law, namely a power-law relation between rank and size, and clarify as to why a specific value of its power-law exponent is quite universal. We focus on the successive total of a multiplicative stochastic process. By employing properties of a well-known stochastic process, we concisely show that the successive total follows a stationary power-law distribution, which is directly related to Zipf's law. The formula of the power-law exponent is also derived. Finally, we conclude that the universality of the rank-size exponent is brought about by symmetry between an increase and a decrease in the random growth rate.

  2. Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise

    Science.gov (United States)

    Morita, Satoru

    2018-05-01

    Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.

  3. Predicting the long tail of book sales: Unearthing the power-law exponent

    Science.gov (United States)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2010-06-01

    The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.

  4. On generalized scaling laws with continuously varying exponents

    International Nuclear Information System (INIS)

    Sittler, Lionel; Hinrichsen, Haye

    2002-01-01

    Many physical systems share the property of scale invariance. Most of them show ordinary power-law scaling, where quantities can be expressed as a leading power law times a scaling function which depends on scaling-invariant ratios of the parameters. However, some systems do not obey power-law scaling, instead there is numerical evidence for a logarithmic scaling form, in which the scaling function depends on ratios of the logarithms of the parameters. Based on previous ideas by Tang we propose that this type of logarithmic scaling can be explained by a concept of local scaling invariance with continuously varying exponents. The functional dependence of the exponents is constrained by a homomorphism which can be expressed as a set of partial differential equations. Solving these equations we obtain logarithmic scaling as a special case. The other solutions lead to scaling forms where logarithmic and power-law scaling are mixed

  5. Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies

    Science.gov (United States)

    Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.

    2015-01-01

    Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.

  6. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents.

    Science.gov (United States)

    Pham, A J; Schilling, M W; Yoon, Y; Kamadia, V V; Marshall, D L

    2008-05-01

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) coupled with Stevens' Power Law. Compounds were separated using GCMS and GCO and were identified with the mass spectral database, aroma perceived at the sniffing port, retention indices, and verification of compounds by authentic standards in the GCMS and GCO. Aromas that were isolated and present in all 4 fish sauce samples at all concentrations included fishy (trimethylamine), pungent and dirty socks (combination of butanoic, pentanoic, hexanoic, and heptanoic acids), cooked rice and buttery popcorn (2,6-dimethyl pyrazine), and sweet and cotton candy (benzaldehyde). All fish sauces contained the same aromas as determined by GCO and GCMS (verified using authentic standard compounds), but the odor intensity associated with each compound or group of compounds was variable for different fish sauce samples. Stevens' Power Law exponents were also determined using this analytical technique, but exponents were not consistent for the same compounds that were found in all fish sauces. Stevens' Power Law exponents ranged from 0.14 to 0.37, 0.24 to 0.34, 0.09 to 0.21, and 0.10 to 0.35 for dirty socks, fishy, buttery popcorn, and sweet aromas, respectively. This demonstrates that there is variability in Stevens' Power Law exponents for odorants within fish sauce samples.

  7. The Evolution of the Exponent of Zipf's Law in Language Ontogeny

    Science.gov (United States)

    Baixeries, Jaume; Elvevåg, Brita; Ferrer-i-Cancho, Ramon

    2013-01-01

    It is well-known that word frequencies arrange themselves according to Zipf's law. However, little is known about the dependency of the parameters of the law and the complexity of a communication system. Many models of the evolution of language assume that the exponent of the law remains constant as the complexity of a communication systems increases. Using longitudinal studies of child language, we analysed the word rank distribution for the speech of children and adults participating in conversations. The adults typically included family members (e.g., parents) or the investigators conducting the research. Our analysis of the evolution of Zipf's law yields two main unexpected results. First, in children the exponent of the law tends to decrease over time while this tendency is weaker in adults, thus suggesting this is not a mere mirror effect of adult speech. Second, although the exponent of the law is more stable in adults, their exponents fall below 1 which is the typical value of the exponent assumed in both children and adults. Our analysis also shows a tendency of the mean length of utterances (MLU), a simple estimate of syntactic complexity, to increase as the exponent decreases. The parallel evolution of the exponent and a simple indicator of syntactic complexity (MLU) supports the hypothesis that the exponent of Zipf's law and linguistic complexity are inter-related. The assumption that Zipf's law for word ranks is a power-law with a constant exponent of one in both adults and children needs to be revised. PMID:23516390

  8. Extraction of the power law exponent for 1 GeV/nucleon Au + C projectile multifragmentation

    International Nuclear Information System (INIS)

    Gilkes, M.L.; Elliott, J.B.; Huager, A.; Hirsch, A.S.; Hjort, E.

    1993-01-01

    Using moments of the measured charge distribution in exclusive gold multifragmentation events, we present a preliminary determination of the power law exponent τ. For a system undergoing a phase transition near the critical point, τ governs the cluster size distribution and is expected on rather general grounds to lie in the range 2 < τ < 3

  9. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    Science.gov (United States)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that

  10. Universal Expression of Efficiency at Maximum Power: A Quantum-Mechanical Brayton Engine Working with a Single Particle Confined in a Power-Law Trap

    International Nuclear Information System (INIS)

    Ye Zhuo-Lin; Li Wei-Sheng; Lai Yi-Ming; He Ji-Zhou; Wang Jian-Hui

    2015-01-01

    We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function: η_+ = θ/(θ + 1), with θ being a potential-dependent exponent. (paper)

  11. Analysis of precipitation characteristics of South and North China based on the power-law tail exponents

    International Nuclear Information System (INIS)

    Feng Guolin; Zhang Daquan; Gong Zhiqiang; Zhi Rong

    2008-01-01

    Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tail (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series. (geophysics, astronomy and astrophysics)

  12. Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement

    Science.gov (United States)

    Umansky, Moti; Weihs, Daphne

    2012-08-01

    In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program

  13. On the power law of passive scalars in turbulence

    Science.gov (United States)

    Gotoh, Toshiyuki; Watanabe, Takeshi

    2015-11-01

    It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.

  14. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks ...

  15. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    International Nuclear Information System (INIS)

    Oliveira, Gilson F. de; Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-01-01

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time

  16. On the universality of power laws for tokamak plasma predictions

    Science.gov (United States)

    Garcia, J.; Cambon, D.; Contributors, JET

    2018-02-01

    Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.

  17. Power law distributions of patents as indicators of innovation.

    Directory of Open Access Journals (Sweden)

    Dion R J O'Neale

    Full Text Available The total number of patents produced by a country (or the number of patents produced per capita is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan and 2.37 (Poland. We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.

  18. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Science.gov (United States)

    El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-09-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured

  19. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  20. Blinking in quantum dots: The origin of the grey state and power law statistics

    Science.gov (United States)

    Ye, Mao; Searson, Peter C.

    2011-09-01

    Quantum dot (QD) blinking is characterized by switching between an “on” state and an “off” state, and a power-law distribution of on and off times with exponents from 1.0 to 2.0. The origin of blinking behavior in QDs, however, has remained a mystery. Here we describe an energy-band model for QDs that captures the full range of blinking behavior reported in the literature and provides new insight into features such as the gray state, the power-law distribution of on and off times, and the power-law exponents.

  1. Scaling laws for fractional Brownian motion with power-law clock

    International Nuclear Information System (INIS)

    O'Malley, Daniel; Cushman, John H; Johnson, Graham

    2011-01-01

    We study the mean first passage time (MFPT) for fractional Brownian motion (fBm) in a finite interval with absorbing boundaries at each end. Analytical arguments are used to suggest a simple scaling law for the MFPT and numerical experiments are performed to verify its accuracy. The same approach is used to derive a scaling law for fBm with a power-law clock (fBm-plc). The MFPT scaling laws are employed to develop scaling laws for the finite-size Lyapunov exponent (FSLE) of fBm and fBm-plc. We apply these results to diffusion of a large polymer in a region with absorbing boundaries. (letter)

  2. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    Science.gov (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in

  3. The distance-decay function of geographical gravity model: Power law or exponential law?

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2015-01-01

    Highlights: •The distance-decay exponent of the gravity model is a fractal dimension. •Entropy maximization accounts for the gravity model based on power law decay. •Allometric scaling relations relate gravity models with spatial interaction models. •The four-parameter gravity models have dual mathematical expressions. •The inverse power law is the most probable distance-decay function. -- Abstract: The distance-decay function of the geographical gravity model is originally an inverse power law, which suggests a scaling process in spatial interaction. However, the distance exponent of the model cannot be reasonably explained with the ideas from Euclidean geometry. This results in a dimension dilemma in geographical analysis. Consequently, a negative exponential function was used to replace the inverse power function to serve for a distance-decay function. But a new puzzle arose that the exponential-based gravity model goes against the first law of geography. This paper is devoted for solving these kinds of problems by mathematical reasoning and empirical analysis. New findings are as follows. First, the distance exponent of the gravity model is demonstrated to be a fractal dimension using the geometric measure relation. Second, the similarities and differences between the gravity models and spatial interaction models are revealed using allometric relations. Third, a four-parameter gravity model possesses a symmetrical expression, and we need dual gravity models to describe spatial flows. The observational data of China's cities and regions (29 elements indicative of 841 data points) in 2010 are employed to verify the theoretical inferences. A conclusion can be reached that the geographical gravity model based on power-law decay is more suitable for analyzing large, complex, and scale-free regional and urban systems. This study lends further support to the suggestion that the underlying rationale of fractal structure is entropy maximization. Moreover

  4. Power-law relaxation in human violent conflicts

    Science.gov (United States)

    Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.

    2017-08-01

    We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.

  5. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Directory of Open Access Journals (Sweden)

    Sami El Boustani

    2009-09-01

    Full Text Available Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population

  6. Predicted and verified deviations from Zipf's law in ecology of competing products.

    Science.gov (United States)

    Hisano, Ryohei; Sornette, Didier; Mizuno, Takayuki

    2011-08-01

    Zipf's power-law distribution is a generic empirical statistical regularity found in many complex systems. However, rather than universality with a single power-law exponent (equal to 1 for Zipf's law), there are many reported deviations that remain unexplained. A recently developed theory finds that the interplay between (i) one of the most universal ingredients, namely stochastic proportional growth, and (ii) birth and death processes, leads to a generic power-law distribution with an exponent that depends on the characteristics of each ingredient. Here, we report the first complete empirical test of the theory and its application, based on the empirical analysis of the dynamics of market shares in the product market. We estimate directly the average growth rate of market shares and its standard deviation, the birth rates and the "death" (hazard) rate of products. We find that temporal variations and product differences of the observed power-law exponents can be fully captured by the theory with no adjustable parameters. Our results can be generalized to many systems for which the statistical properties revealed by power-law exponents are directly linked to the underlying generating mechanism.

  7. “Slimming” of power-law tails by increasing market returns

    Science.gov (United States)

    Sornette, D.

    2002-06-01

    We introduce a simple generalization of rational bubble models which removes the fundamental problem discovered by Lux and Sornette (J. Money, Credit and Banking, preprint at http://xxx.lanl.gov/abs/cond-mat/9910141) that the distribution of returns is a power law with exponent discount rate rδ, the distribution of returns of the observable price, sum of the bubble component and of the fundamental price, exhibits an intermediate tail with an exponent which can be larger than 1. This regime r> rδ corresponds to a generalization of the rational bubble model in which the fundamental price is no more given by the discounted value of future dividends. We explain how this is possible. Our model predicts that, the higher is the market remuneration r above the discount rate, the larger is the power-law exponent and thus the thinner is the tail of the distribution of price returns.

  8. Power-law and runaway growth in conserved aggregation systems

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi; Ohtsuki, Toshiya; Fujihara, Akihiro; Tanimoto, Satoshi

    2006-01-01

    The z-transform technique is used to analyze the Smoluchowski coagulation equation for conserved aggregation systems. A universal power law with the exponent -5/2 appears when a total 'mass' has a certain critical value. Below the threshold, ordinary scaling relations hold and the system exhibits a behavior like usual critical phenomena. Above the threshold, in contrast, the excess amount of mass coagulates into a runaway member, and remaining members follow the power law. Here the runaway growth coexists with the power law. It is argued that these behaviors are observed universally in conserved aggregation processes

  9. Power-law distributions for a trapped ion interacting with a classical buffer gas.

    Science.gov (United States)

    DeVoe, Ralph G

    2009-02-13

    Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.

  10. Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf

    Science.gov (United States)

    Solomon, S.; Richmond, P.

    2002-05-01

    In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV) describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary variations in the total wealth of the system and to other endogenously and exogenously induced variations.

  11. The speed-curvature power law of movements: a reappraisal.

    Science.gov (United States)

    Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco

    2018-01-01

    Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.

  12. Inter-relationship between scaling exponents for describing self-similar river networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock

    2015-04-01

    Natural river networks show well-known self-similar characteristics. Such characteristics are represented by various power-law relationships, e.g., between upstream length and drainage area (exponent h) (Hack, 1957), and in the exceedance probability distribution of upstream area (exponent ɛ) (Rodriguez-Iturbe et al., 1992). It is empirically revealed that these power-law exponents are within narrow ranges. Power-law is also found in the relationship between drainage density (the total stream length divided by the total basin area) and specified source area (the minimum drainage area to form a stream head) (exponent η) (Moussa and Bocquillon, 1996). Considering that above three scaling relationships all refer to fundamental measures of 'length' and 'area' of a given drainage basin, it is natural to hypothesize plausible inter-relationship between these three scaling exponents. Indeed, Rigon et al. (1996) demonstrated the relationship between ɛ and h. In this study, we expand this to a more general ɛ-η-h relationship. We approach ɛ-η relationship in an analytical manner while η-h relationship is demonstrated for six study basins in Korea. Detailed analysis and implications will be presented. References Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294. Moussa, R., & Bocquillon, C. (1996). Fractal analyses of tree-like channel networks from digital elevation model data. Journal of Hydrology, 187(1), 157-172. Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti. A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack's Law. Water Resources Research, 32(11), 3367-3374. Rodríguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., & Tarboton, D. G. (1992). Power law distributions of discharge mass and energy in river basins. Water Resources Research, 28(4), 1089-1093.

  13. Air-chemistry "turbulence": power-law scaling and statistical regularity

    Directory of Open Access Journals (Sweden)

    H.-m. Hsu

    2011-08-01

    Full Text Available With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO2, NOx, CO, SO2, and O3 and aerosol (PM10 measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days peaks are also identified with the continuous wavelet transform (CWT. The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of −5/3 and −1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, −3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.

  14. Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 431, č. 1 (2015), s. 124-127 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Correlations * Power- law cross-correlations * Bivariate Hurst exponent * Spectrum coherence Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452314.pdf

  15. Econophysical anchoring of unimodal power-law distributions

    International Nuclear Information System (INIS)

    Eliazar, Iddo I; Cohen, Morrel H

    2013-01-01

    The sciences are abundant with size distributions whose densities have a unimodal shape and power-law tails both at zero and at infinity. The quintessential examples of such unimodal and power-law (UPL) distributions are the sizes of income and wealth in human societies. While the tails of UPL distributions are precisely quantified by their corresponding power-law exponents, their bulks are only qualitatively characterized as unimodal. Consequently, different statistical models of UPL distributions exist, the most popular considering lognormal bulks. In this paper we present a general econophysical framework for UPL distributions termed ‘the anchoring method’. This method: (i) universally approximates UPL distributions via three ‘anchors’ set at zero, at infinity, and at an intermediate point between zero and infinity (e.g. the mode); (ii) is highly versatile and broadly applicable; (iii) encompasses the existing statistical models of UPL distributions as special cases; (iv) facilitates the introduction of new statistical models of UPL distributions and (v) yields a socioeconophysical analysis of UPL distributions. (paper)

  16. Models of fragmentation with composite power laws

    Science.gov (United States)

    Tavassoli, Z.; Rodgers, G. J.

    1999-06-01

    Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.

  17. Power laws in citation distributions: evidence from Scopus.

    Science.gov (United States)

    Brzezinski, Michal

    Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.

  18. Observational constraints on phantom power-law cosmology

    International Nuclear Information System (INIS)

    Kaeonikhom, Chakkrit; Gumjudpai, Burin; Saridakis, Emmanuel N.

    2011-01-01

    We investigate phantom cosmology in which the scale factor is a power law, and we use cosmological observations from Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and observational Hubble data, in order to impose complete constraints on the model parameters. We find that the power-law exponent is β∼-6.51 -0.25 +0.24 , while the Big Rip is realized at t s ∼104.5 -2.0 +1.9 Gyr, in 1σ confidence level. Providing late-time asymptotic expressions, we find that the dark-energy equation-of-state parameter at the Big Rip remains finite and equal to w DE ∼-1.153, with the dark-energy density and pressure diverging. Finally, we reconstruct the phantom potential.

  19. The field-induced laws of thermodynamic properties in the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Pu Qiurong; Chen Yuan

    2013-01-01

    Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.

  20. Power laws and elastic nonlinearity in materials with complex microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it

    2016-01-28

    Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.

  1. Geomorphological and hydrological implications of a given hydraulic geometry relationship, beyond the power-law

    Science.gov (United States)

    Kim, JongChun; Paik, Kyungrock

    2015-04-01

    Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic

  2. Cluster tails for critical power-law inhomogeneous random graphs

    NARCIS (Netherlands)

    van der Hofstad, R.; Kliem, S.; van Leeuwaarden, J.S.H.

    2018-01-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent τ∈ (3 , 4)

  3. Power-law Decay and the Ergodic-Nonergodic Transition in Simple Fluids

    OpenAIRE

    Spyridis, Paul; Mazenko, Gene F.

    2013-01-01

    It is well known that mode coupling theory (MCT) leads to a two step power-law time decay in dense simple fluids. We show that much of the mathematical machinery used in the MCT analysis can be taken over to the analysis of the systematic theory developed in the Fundamental Theory of Statistical Particle Dynamics (arXiv:0905.4904). We show how the power-law exponents can be computed in the second-order approximation where we treat hard-sphere fluids with statics described by the Percus-Yevick...

  4. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  5. Variation of Zipf's exponent in one hundred live languages: A study of the Holy Bible translations

    Science.gov (United States)

    Mehri, Ali; Jamaati, Maryam

    2017-08-01

    Zipf's law, as a power-law regularity, confirms long-range correlations between the elements in natural and artificial systems. In this article, this law is evaluated for one hundred live languages. We calculate Zipf's exponent for translations of the holy Bible to several languages, for this purpose. The results show that, the average of Zipf's exponent in studied texts is slightly above unity. All studied languages in some families have Zipf's exponent lower/higher than unity. It seems that geographical distribution impresses the communication between speakers of different languages in a language family, and affect similarity between their Zipf's exponent. The Bible has unique concept regardless of its language, but the discrepancy in grammatical rules and syntactic regularities in applying stop words to make sentences and imply a certain concept, lead to difference in Zipf's exponent for various languages.

  6. Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures.

    Science.gov (United States)

    Lai, Ying-Cheng; Harrison, Mary Ann F; Frei, Mark G; Osorio, Ivan

    2004-09-01

    Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system's sensitive dependence on initial conditions. For more than a decade, it has been claimed that the exponents computed from electroencephalogram (EEG) or electrocorticogram (ECoG) signals can be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are employed. (1) We present qualitative arguments suggesting that the Lyapunov exponents generally are not useful for seizure prediction. (2) We construct a two-dimensional, nonstationary chaotic map with a parameter slowly varying in a range containing a crisis, and test whether this critical event can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be regarded as a "control test" for the claimed predictive power of the exponents for seizure. We find that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents due to finite time computation and noise from the time series. We show that increasing the amount of data in a moving window will not improve the exponents' detective power for characteristic system changes, and that the presence of small noise can ruin completely the predictive power of the exponents. (3) We report negative results obtained from ECoG signals recorded from patients with epilepsy. All these indicate firmly that, the use of Lyapunov exponents for seizure prediction is practically impossible as the brain dynamical system generating the ECoG signals is more complicated than low-dimensional chaotic systems, and is noisy. Copyright 2004 American Institute of Physics

  7. Comment on "Time needed to board an airplane: a power law and the structure behind it".

    Science.gov (United States)

    Bernstein, Noam

    2012-08-01

    Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)] recently showed that for a simple model for the boarding of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is less than 1. They note that this scaling leads to the prediction that the "back-to-front" strategy, where passengers are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to front once the previous group has found their seats, has a longer boarding time than would a single group. Here I extend their results to a larger number of passengers using a sampling approach and explore a scenario where the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show that the power law dependence on passenger numbers is different for large N and that there is a boarding time reduction for presorted groups, with a power law dependence on the number of presorted groups.

  8. Dense power-law networks and simplicial complexes

    Science.gov (United States)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  9. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  10. Power-law citation distributions are not scale-free.

    Science.gov (United States)

    Golosovsky, Michael

    2017-09-01

    We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.

  11. Power law load dependence of atomic friction

    OpenAIRE

    Fusco, C.; Fasolino, A.

    2004-01-01

    We present a theoretical study of the dynamics of a tip scanning a graphite surface as a function of the applied load. From the analysis of the lateral forces, we extract the friction force and the corrugation of the effective tip-surface interaction potential. We find both the friction force and potential amplitude to have a power-law dependence on applied load with exponent similar to1.6. We interpret these results as characteristic of sharp undeformable tips in contrast to the case of macr...

  12. Magnetic entropy change and critical exponents in double perovskite Y2NiMnO6

    Science.gov (United States)

    Sharma, G.; Tripathi, T. S.; Saha, J.; Patnaik, S.

    2014-11-01

    We report the magnetic entropy change (ΔSM) and the critical exponents in the double perovskite manganite Y2NiMnO6 with a ferromagnetic to paramagnetic transition TC~85 K. For a magnetic field change ΔH=80 kOe, a maximum magnetic entropy change ΔSM=-6.57 J/kg K is recorded around TC. The critical exponents β=0.363±0.05 and γ=1.331±0.09 obtained from power law fitting to spontaneous magnetization MS(T) and the inverse initial susceptibility χ0-1(T) satisfy well to values derived for a 3D-Heisenberg ferromagnet. The critical exponent δ=4.761±0.129 is determined from the isothermal magnetization at TC. The scaling exponents corresponding to second order phase transition are consistent with the exponents from Kouvel-Fisher analysis and satisfy Widom's scaling relation δ=1+(γ/β). Additionally, they also satisfy the single scaling equation M(H,ɛ)=ɛβf±(H/ɛ) according to which the magnetization-field-temperature data around TC should collapse into two curves for temperatures below and above TC.

  13. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    Science.gov (United States)

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  14. Spectrum-based estimators of the bivariate Hurst exponent

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2014-01-01

    Roč. 90, č. 6 (2014), art. 062802 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : bivariate Hurst exponent * power- law cross-correlations * estimation Subject RIV: AH - Economics Impact factor: 2.288, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0436818.pdf

  15. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    International Nuclear Information System (INIS)

    Travesset, Alex

    2014-01-01

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed

  16. Zipf's law, power laws and maximum entropy

    International Nuclear Information System (INIS)

    Visser, Matt

    2013-01-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)

  17. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both

  18. Power laws in Ising nanostripes

    International Nuclear Information System (INIS)

    Drzewinski, A.; Sznajd, J.; Szota, K.

    2005-01-01

    The results of high accuracy density-matrix renormalization-group calculations for infinite Ising stripes of finite widths 100 ≤ L ≤ 400 are presented. It is shown that in the presence of the small external magnetic field the infinite system critical power laws can be observed for L of order hundreds nm. The single power law describes the field dependence of the magnetization or the longitudinal correlation length only on the infinite system critical isotherm independently of the value of L. The approximate power law which describes how the magnetization varies with a distance from the infinite system critical point for several directions in the plane (temperature, external field) is also studied. (author)

  19. A theory of power-law distributions in financial market fluctuations.

    Science.gov (United States)

    Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, H Eugene

    2003-05-15

    Insights into the dynamics of a complex system are often gained by focusing on large fluctuations. For the financial system, huge databases now exist that facilitate the analysis of large fluctuations and the characterization of their statistical behaviour. Power laws appear to describe histograms of relevant financial fluctuations, such as fluctuations in stock price, trading volume and the number of trades. Surprisingly, the exponents that characterize these power laws are similar for different types and sizes of markets, for different market trends and even for different countries--suggesting that a generic theoretical basis may underlie these phenomena. Here we propose a model, based on a plausible set of assumptions, which provides an explanation for these empirical power laws. Our model is based on the hypothesis that large movements in stock market activity arise from the trades of large participants. Starting from an empirical characterization of the size distribution of those large market participants (mutual funds), we show that the power laws observed in financial data arise when the trading behaviour is performed in an optimal way. Our model additionally explains certain striking empirical regularities that describe the relationship between large fluctuations in prices, trading volume and the number of trades.

  20. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Cockmartin, L; Bosmans, H; Marshall, N W

    2013-08-01

    This work characterizes three candidate mammography phantoms with structured background in terms of power law analysis in the low frequency region of the power spectrum for 2D (planar) mammography and digital breast tomosynthesis (DBT). The study was performed using three phantoms (spheres in water, Voxmam, and BR3D CIRS phantoms) on two DBT systems from two different vendors (Siemens Inspiration and Hologic Selenia Dimensions). Power spectra (PS) were calculated for planar projection, DBT projection, and reconstructed images and curve fitted in the low frequency region from 0.2 to 0.7 mm(-1) with a power law function characterized by an exponent β and magnitude κ. The influence of acquisition dose and tube voltage on the power law parameters was first explored. Then power law parameters were calculated from images acquired with the same anode∕filter combination and tube voltage for the three test objects, and compared with each other. Finally, PS curves for automatic exposure controlled acquisitions (anode∕filter combination and tube voltages selected by the systems based on the breast equivalent thickness of the test objects) were compared against PS analysis performed on patient data (for Siemens 80 and for Hologic 48 mammograms and DBT series). Dosimetric aspects of the three test objects were also examined. The power law exponent (β) was found to be independent of acquisition dose for planar mammography but varied more for DBT projections of the sphere-phantom. Systematic increase of tube voltage did not affect β but decreased κ, both in planar and DBT projection phantom images. Power spectra of the BR3D phantom were closer to those of the patients than these of the Voxmam phantom; the Voxmam phantom gave high values of κ compared to the other phantoms and the patient series. The magnitude of the PS curves of the BR3D phantom was within the patient range but β was lower than the average patient value. Finally, PS magnitude for the sphere

  1. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach.

    Science.gov (United States)

    Iwamatsu, Masao

    2017-07-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.

  2. Preliminary limits on deviation from the inverse-square law of gravity in the solar system: a power-law parameterization

    International Nuclear Information System (INIS)

    Liu Meng-Yao; Zhong Ze-Hao; Han Yi-Chen; Wang Xiao-Yu; Yang Zong-Shui; Xie Yi

    2014-01-01

    New physics beyond the standard model of particles might cause a deviation from the inverse-square law of gravity. In some theories, it is parameterized by a power-law correction to the Newtonian gravitational force, which might originate from the simultaneous exchange of particles or modified and extended theories of gravity. Using the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain preliminary limits on this correction. In our estimation, we take the Lense-Thirring effect due to the Sun's angular momentum into account. The parameters of the power-law correction and the uncertainty of the Sun's quadrupole moment are simultaneously estimated with the method of minimizing χ 2 . From INPOP10a, we find N = 0.605 for the exponent of the power-law correction. However, from EPM2011, we find that, although it yields N = 3.001, the estimated uncertainty in the Sun's quadrupole moment is much larger than the value given by current observations. This might be caused by the intrinsic nonlinearity in the power-law correction, which makes the estimation very sensitive to the supplementary advances of the perihelia. (research papers)

  3. An explanation for the universal 3.5 power-law observed in currency markets

    Directory of Open Access Journals (Sweden)

    Nicholas A. Johnson

    Full Text Available We present a mathematical theory to explain a recent empirical finding in the Physics literature (Zhao et al., 2013 in which the distributions of waiting-times between discrete events were found to exhibit power-law tails with an apparent universal exponent: α∼3.5. This new theory provides the first ever qualitative and quantitative explanation of Zhao et al.’s surprising finding. It also provides a mechanistic description of the origin of the observed universality, assigning its cause to the emergence of dynamical feedback processes between evolving clusters of like-minded agents. Keywords: Complex systems, Econophysics, Collective, Power law

  4. The speed-curvature power law in Drosophila larval locomotion.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex

    2016-10-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.

  5. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    Science.gov (United States)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  6. Power-law ansatz in complex systems: Excessive loss of information

    Science.gov (United States)

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  7. Power-law ansatz in complex systems: Excessive loss of information.

    Science.gov (United States)

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  8. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d-dimensional regular lattices.

    Science.gov (United States)

    Dias, W S; Bertrand, D; Lyra, M L

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.

  9. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d -dimensional regular lattices

    Science.gov (United States)

    Dias, W. S.; Bertrand, D.; Lyra, M. L.

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .

  10. In-Degree and PageRank of web pages: why do they follow similar power laws?

    NARCIS (Netherlands)

    Litvak, Nelli; Scheinhardt, Willem R.W.; Volkovich, Y.

    2009-01-01

    PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that PageRank values obey a power law with the same exponent as In-Degree values. This paper presents a novel mathematical model that explains this phenomenon. The relation between PageRank and In-Degree is

  11. Nonlinear quenches of power-law confining traps in quantum critical systems

    International Nuclear Information System (INIS)

    Collura, Mario; Karevski, Dragi

    2011-01-01

    We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.

  12. Simple model for the power-law blinking of single semiconductor nanocrystals

    NARCIS (Netherlands)

    Verberk, Rogier; Oijen, Antoine M. van; Orrit, Michel

    2002-01-01

    We assign the blinking of nanocrystals to electron tunneling towards a uniform spatial distribution of traps. This naturally explains the power-law distribution of off times, and the power-law correlation function we measured on uncapped CdS dots. Capped dots, on the other hand, present extended on

  13. Dual plane problems for creeping flow of power-law incompressible medium

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  14. In-degree and pageRank of web pages: Why do they follow similar power laws?

    NARCIS (Netherlands)

    Litvak, Nelli; Scheinhardt, Willem R.W.; Volkovich, Y.

    The PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that the PageRank obeys a 'power law' with the same exponent as the In-Degree. This paper presents a novel mathematical model that explains this phenomenon. The relation between the PageRank and In-Degree

  15. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents

    Science.gov (United States)

    Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.

    2016-01-01

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.

  16. A new theoretical interpretation of Archie's saturation exponent

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2017-07-01

    Full Text Available This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie the generalized Archie's law for n phases to the interpretation of the saturation exponent. It is shown that the saturation exponent as defined originally by Archie arises naturally from the generalized Archie's law. In the generalized Archie's law the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e. cementation exponent, but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by Gi = GrefSini. This leads naturally to the idea of the term Sini for each phase i being a fractional connectedness, where the fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset.

  17. Extended power-law scaling of air permeabilities measured on a block of tuff

    Directory of Open Access Journals (Sweden)

    M. Siena

    2012-01-01

    Full Text Available We use three methods to identify power-law scaling of multi-scale log air permeability data collected by Tidwell and Wilson on the faces of a laboratory-scale block of Topopah Spring tuff: method of moments (M, Extended Self-Similarity (ESS and a generalized version thereof (G-ESS. All three methods focus on q-th-order sample structure functions of absolute increments. Most such functions exhibit power-law scaling at best over a limited midrange of experimental separation scales, or lags, which are sometimes difficult to identify unambiguously by means of M. ESS and G-ESS extend this range in a way that renders power-law scaling easier to characterize. Our analysis confirms the superiority of ESS and G-ESS over M in identifying the scaling exponents, ξ(q, of corresponding structure functions of orders q, suggesting further that ESS is more reliable than G-ESS. The exponents vary in a nonlinear fashion with q as is typical of real or apparent multifractals. Our estimates of the Hurst scaling coefficient increase with support scale, implying a reduction in roughness (anti-persistence of the log permeability field with measurement volume. The finding by Tidwell and Wilson that log permeabilities associated with all tip sizes can be characterized by stationary variogram models, coupled with our findings that log permeability increments associated with the smallest tip size are approximately Gaussian and those associated with all tip sizes scale show nonlinear variations in ξ(q with q, are consistent with a view of these data as a sample from a truncated version (tfBm of self-affine fractional Brownian motion (fBm. Since in theory the scaling exponents, ξ(q, of tfBm vary linearly with q we conclude that nonlinear scaling in our case is not an indication of multifractality but an artifact of sampling from tfBm. This allows us to explain theoretically how power-law scaling of our data, as well

  18. Sliding friction in the hydrodynamic lubrication regime for a power-law fluid

    International Nuclear Information System (INIS)

    Warren, P B

    2017-01-01

    A scaling analysis is undertaken for the load balance in sliding friction in the hydrodynamic lubrication regime, with a particular emphasis on power-law shear-thinning typical of a structured liquid. It is argued that the shear-thinning regime is mechanically unstable if the power-law index n   <  1/2, where n is the exponent that relates the shear stress to the shear rate. Consequently the Stribeck (friction) curve should be discontinuous, with possible hysteresis. Further analysis suggests that normal stress and flow transience (stress overshoot) do not destroy this basic picture, although they may provide stabilising mechanisms at higher shear rates. Extensional viscosity is also expected to be insignificant unless the Trouton ratio is large. A possible application to shear thickening in non-Brownian particulate suspensions is indicated. (paper)

  19. Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents

    Science.gov (United States)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-01-01

    An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.

  20. Power law analysis of the human microbiome.

    Science.gov (United States)

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  1. Free convection heat and mass transfer in a power law fluid past an inclined surface with thermophoresis

    Directory of Open Access Journals (Sweden)

    Medhat M. Helal

    2013-10-01

    Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0  0.5.

  2. Single heavy flavour baryons using Coulomb plus a power law interquark potential

    International Nuclear Information System (INIS)

    Majethiya, A.; Patel, B.; Vinodkumar, P.C.

    2008-01-01

    Properties of single heavy flavor baryons in a non-relativistic potential model with colour Coulomb plus a power law confinement potential have been studied using a simple variational method. The ground-state masses of single heavy baryons and the mass difference between the J P =3/2 + and J P =1/2 + states are computed using a spin-dependent two-body potential. Using the spin-flavour structure of the constituting quarks and by defining an effective confined mass of the constituent quarks within the baryons, the magnetic moments are computed. The masses and magnetic moments of the single heavy baryons are found to be in accordance with the existing experimental values and with other theoretical predictions. It is found that an additional attractive interaction of the order of -200 MeV is required for the antisymmetric states of Λ Q (Q element of c,b). It is also found that the spin-hyperfine interaction parameters play a decisive role in hadron spectroscopy. (orig.)

  3. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    Science.gov (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  4. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  5. Theory and evidence for using the economy-of-scale law in power plant economics

    International Nuclear Information System (INIS)

    Phung, D.L.

    1987-05-01

    This report compiles theory and evidence for the use of the economy-of-scale law in energy economics, particularly in the estimation of capital costs for coal-fired and nuclear power plants. The economy-of-scale law is widely used in its simplest form: cost is directly proportional to capacity raised to an exponent. An additive constant is an important component that is not generally taken into account. Also, the economy of scale is perforce valid only over a limited size range. The majority of engineering studies have estimated an economy of scale exponent of 0.7 to 0.9 for coal-fired plants and an exponent of 0.4 to 0.6 for nuclear plants in the capacity ranges of 400 to 1000 MWe. However, the majority of econometric analyses found little or no economy of scale for coal-fired plants and only a slight economy of scale for nuclear plants. This disparity is explained by the fact that economists have included regulatory and time-related costs in addition to the direct and indirect costs used by the engineers. Regulatory and time-related costs have become an increasingly larger portion of total costs during the last decade. In addition, these costs appeared to have either a very small economy of scale or to be increasing as the size of the power plant increased. We conclude that gains in economy of scale can only be made by reducing regulatory and time-related costs through design standardization and regulatory stability, in combination with more favorable economic conditions. 59 refs

  6. Second-order small-disturbance solutions for hypersonic flow over power-law bodies

    Science.gov (United States)

    Townsend, J. C.

    1975-01-01

    Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.

  7. Subcritical crack growth and power law exponent of Y-Si-Al-O (-N) glasses in aqueous environment

    NARCIS (Netherlands)

    Graaf, de D.; Hintzen, H.T.J.M.; With, de G.

    2006-01-01

    The subcritical crack growth resistance in water of a Y–Si–Al–O and Y–Si–Al–O–N glasses has been investigated with three point bending experiments. It has been shown that the SCG behaviour of the Y–Si–Al–O–N glass is superior to that of the Y–Si–Al–O glass. This is reflected by the power law

  8. On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence

    Science.gov (United States)

    Cleve, J.; Greiner, M.; Sreenivasan, K. R.

    2003-03-01

    The two-point correlation function of the energy dissipation, obtained from a one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling with intermittency exponent μ approx 0.20 over almost the entire inertial range of scales. However, for the related integral moment, the power law scaling is restricted to the upper part of the inertial range only. This observation is explained in terms of the operational surrogacy of the construction of energy dissipation, which influences the behaviour of the correlation function for small separation distances.

  9. Power-Law-Distributed Dark States are the Main Pathway for Photobleaching of Single Organic Molecules

    OpenAIRE

    Hoogenboom, J.P.; Hoogenboom, Jacob; van Dijk, E.M.H.P.; Hernando Campos, J.; van Hulst, N.F.; Garcia Parajo, M.F.

    2005-01-01

    We exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in time. This result is consistent with the formation of a radical unit via electron tunneling to a time-varying distribution of trapping sites in the surrounding polymer matrix. We furthermore demonstr...

  10. Power-law behavior in complex organizational communication networks during crisis

    Science.gov (United States)

    Uddin, Shahadat; Murshed, Shahriar Tanvir Hasan; Hossain, Liaquat

    2011-08-01

    Communication networks can be described as patterns of contacts which are created due to the flow of messages and information shared among participating actors. Contemporary organizations are now commonly viewed as dynamic systems of adaptation and evolution containing several parts, which interact with one another both in internal and in external environment. Although there is limited consensus among researchers on the precise definition of organizational crisis, there is evidence of shared meaning: crisis produces individual crisis, crisis can be associated with positive or negative conditions, crises can be situations having been precipitated quickly or suddenly or situations that have developed over time and are predictable etc. In this research, we study the power-law behavior of an organizational email communication network during crisis from complexity perspective. Power law simply describes that, the probability that a randomly selected node has k links (i.e. degree k) follows P(k)∼k, where γ is the degree exponent. We used social network analysis tools and techniques to analyze the email communication dataset. We tested two propositions: (1) as organization goes through crisis, a few actors, who are prominent or more active, will become central, and (2) the daily communication network as well as the actors in the communication network exhibit power-law behavior. Our preliminary results support these two propositions. The outcome of this study may provide significant advancement in exploring organizational communication network behavior during crisis.

  11. Universal power-law diet partitioning by marine fish and squid with surprising stability–diversity implications

    Science.gov (United States)

    Rossberg, Axel G.; Farnsworth, Keith D.; Satoh, Keisuke; Pinnegar, John K.

    2011-01-01

    A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents independent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density. PMID:21068048

  12. Reciprocity and the Emergence of Power Laws in Social Networks

    Science.gov (United States)

    Schnegg, Michael

    Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.

  13. Power laws from linear neuronal cable theory

    DEFF Research Database (Denmark)

    Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom

    2014-01-01

    suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...... are homogeneously distributed across the neural membranes and themselves exhibit pink ([Formula: see text]) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion...

  14. Sample and population exponents of generalized Taylor’s law

    Czech Academy of Sciences Publication Activity Database

    Giometto, A.; Formentin, Marco; Rinaldo, A.; Cohen, J.; Maritan, A.

    2015-01-01

    Roč. 112, č. 25 (2015), s. 7755-7760 ISSN 0027-8424 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : fluctuation scaling * multiplicative growth * power law * environmental stochasticity * Markovian environment Subject RIV: BA - General Mathematics Impact factor: 9.423, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/formentin-0444162.pdf

  15. Power-law creep of powder-metallurgy grade molybdenum sheet

    International Nuclear Information System (INIS)

    Ciulik, J.; Taleff, E.M.

    2007-01-01

    Creep behavior of commercial-purity, powder-metallurgy grade molybdenum (Mo) sheet has been investigated at temperatures between 1300 and 1600 deg. C (0.56-0.63 T m ) using tensile testing at controlled strain rates. Strain-rate-change tests were performed at constant-temperatures over true-strain rates from 1.0 x 10 -6 to 5.0 x 10 -4 s -1 . Results agree with previously published data indicating that Mo follows power-law creep with a stress exponent of about 5; however, the present results address a temperature range not previously documented. The activation energy for creep was determined to be 240 kJ/mol within this temperature range, which is lower than previously published values and approximately half the value reported for self-diffusion, indicating that diffusion mechanisms faster than lattice diffusion are active. It is shown that Mo creep data from a variety of investigations converge closely to a single line on a master plot of strain rate normalized using an activation energy of 240 kJ/mol when plotted against stress normalized by the temperature-dependent elastic modulus. This activation energy for creep is attributed to an effective diffusivity that fits the creep data obtained during this study as well as from previously published creep data from commercial-purity molybdenum

  16. Why Does Zipf's Law Break Down in Rank-Size Distribution of Cities?

    OpenAIRE

    Kuninaka, Hiroto; Matsushita, Mitsugu

    2008-01-01

    We study rank-size distribution of cities in Japan on the basis of data analysis. From the census data after World War II, we find that the rank-size distribution of cities is composed of two parts, each of which has independent power exponent. In addition, the power exponent of the head part of the distribution changes in time and Zipf's law holds only in a restricted period. We show that Zipf's law broke down due to both of Showa and Heisei great mergers and recovered due to population grow...

  17. What is the cementation exponent? A new differential interpretation

    Science.gov (United States)

    Glover, P. W. J.

    2009-04-01

    Between 1950 and 2002 the total volume of reserves discovered has run to over 1500 Bbbl. for oil and 7.5 Tcf. for gas. Over half of these resources has already been produced, and has driven the global economy for the last fifty years. All of the assessments of the volume of hydrocarbon reserves were made using Archie's relationships (1942). It would be difficult, therefore, to overestimate the impact of either the petrophysical techniques or Archie's relationships on the worldwide economy. Archie's laws link the electrical resistivity of a rock to its porosity, to the resistivity of the water that saturates its pores, and to the fractional saturation of the pore space with the water, and are used to calculate the hydrocarbon saturation of the reservoir rock from which the reserves are then calculated. Archie's laws contain two exponents, m and n, which Archie called the cementation exponent and the saturation exponent, respectively. The conductivity of the hydrocarbon saturated rock is highly sensitive to changes in either exponent. However, despite the importance of the cementation exponent, few petrophysicists, commercial or academic, are able to describe its real physical meaning. The purpose of this contribution is to investigate the elusive physical meaning of the cementation exponent. We review the traditional interpretation of the cementation exponent and consider the extension of Archie's first law to two conducting phases. Consequently, we develop a new differential interpretation of the cementation exponent that is based on a new definition for the connectedness of the conducting phases in a porous medium. In this interpretation the connectedness of a porous medium is defined as the availability of pathways for transport, where the connectedness is the inverse of the formation resistivity factor, G = σo σw = 1 F (and may also be called the conductivity formation factor). Porosity is defined as the fractional amount of pore space in the usual manner

  18. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature of such...... density functional theory and the delta self-consistent field method. With a simplifying assumption, the power law becomes exact and we obtain a simple physical interpretation of the exponent n, which represents the number of adsorbate vibrational states participating in the reaction....

  19. Hysteresis and Power-Law Statistics during temperature induced martensitic transformation

    International Nuclear Information System (INIS)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2011-01-01

    We study hysteresis in temperature induced martensitic transformation using a 2D model solid exhibiting a square to rhombic structural transition. We find that upon quenching, the high temperature square phase, martensites are nucleated at sites having large non-affineness and ultimately invades the whole of the high temperature square phase. On heating the martensite, the high temperature square phase is restored. The transformation proceeds through avalanches. The amplitude and the time-duration of these avalanches exhibit power-law statistics both during heating and cooling of the system. The exponents corresponding to heating and cooling are different thereby indicating that the nucleation and dissolution of the product phase follows different transformation mechanism.

  20. Magnetic entropy change and critical exponents in double perovskite Y{sub 2}NiMnO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India); Tripathi, T.S. [Inter-University Accelerator Centre, New Delhi-110067 (India); Saha, J. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India); Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India)

    2014-11-15

    We report the magnetic entropy change (ΔS{sub M}) and the critical exponents in the double perovskite manganite Y{sub 2}NiMnO{sub 6} with a ferromagnetic to paramagnetic transition T{sub C}∼85K. For a magnetic field change ΔH=80kOe, a maximum magnetic entropy change ΔS{sub M}=−6.57J/kgK is recorded around T{sub C}. The critical exponents β=0.363±0.05 and γ=1.331±0.09 obtained from power law fitting to spontaneous magnetization M{sub S}(T) and the inverse initial susceptibility χ{sub 0}{sup −1}(T) satisfy well to values derived for a 3D-Heisenberg ferromagnet. The critical exponent δ=4.761±0.129 is determined from the isothermal magnetization at T{sub C}. The scaling exponents corresponding to second order phase transition are consistent with the exponents from Kouvel–Fisher analysis and satisfy Widom's scaling relation δ=1+(γ/β). Additionally, they also satisfy the single scaling equation M(H,ϵ)=ϵ{sup β}f±(H/ϵ{sup β+γ}) according to which the magnetization-field-temperature data around T{sub C} should collapse into two curves for temperatures below and above T{sub C}. - Highlights: • The magneto-caloric (MC) effect and the critical exponent analysis in Y{sub 2}NiMnO{sub 6} are studied. • Methods such as Kouvel–Fisher, Widom's and Mean-Field scaling are used. • The magnetic ground state in Y{sub 2}NiMnO{sub 6} is based on isotropic 3D Heisenberg model. • The large MC effect can be utilized towards magnetic refrigeration around 77 K. • The nearest neighbor interaction in Y{sub 2}NiMnO{sub 6} rules out ferroelectricity.

  1. On the viscoelastic characterization of the Jeffreys-Lomnitz law of creep

    OpenAIRE

    Mainardi, Francesco; Spada, Giorgio

    2011-01-01

    In 1958 Jeffreys proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys-Lomnitz law of creep by allowing its power law exponent $\\alpha$, usually limited to the range [0,1] to all negative values. This is consistent with the linear theory of viscoelastici...

  2. Power Law Distributions in Two Community Currencies

    Science.gov (United States)

    Kichiji, N.; Nishibe, M.

    2007-07-01

    The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.

  3. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    Science.gov (United States)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  4. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  5. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  6. A scaling law beyond Zipf's law and its relation to Heaps' law

    International Nuclear Information System (INIS)

    Font-Clos, Francesc; Corral, Álvaro; Boleda, Gemma

    2013-01-01

    The dependence on text length of the statistical properties of word occurrences has long been considered a severe limitation on the usefulness of quantitative linguistics. We propose a simple scaling form for the distribution of absolute word frequencies that brings to light the robustness of this distribution as text grows. In this way, the shape of the distribution is always the same, and it is only a scale parameter that increases (linearly) with text length. By analyzing very long novels we show that this behavior holds both for raw, unlemmatized texts and for lemmatized texts. In the latter case, the distribution of frequencies is well approximated by a double power law, maintaining the Zipf's exponent value γ ≃ 2 for large frequencies but yielding a smaller exponent in the low-frequency regime. The growth of the distribution with text length allows us to estimate the size of the vocabulary at each step and to propose a generic alternative to Heaps' law, which turns out to be intimately connected to the distribution of frequencies, thanks to its scaling behavior. (paper)

  7. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  8. Scaling law systematics

    International Nuclear Information System (INIS)

    Pfirsch, D.; Duechs, D.F.

    1985-01-01

    A number of statistical implications of empirical scaling laws in form of power products obtained by linear regression are analysed. The sensitivity of the error against a change of exponents is described by a sensitivity factor and the uncertainty of predictions by a ''range of predictions factor''. Inner relations in the statistical material is discussed, as well as the consequences of discarding variables.A recipe is given for the computations to be done. The whole is exemplified by considering scaling laws for the electron energy confinement time of ohmically heated tokamak plasmas. (author)

  9. New power economy law for electricity and gas

    International Nuclear Information System (INIS)

    Heller, W.

    2004-01-01

    Since August 4, 2003, the so-called Directives on Speeding up Common Regulations for the Single Market for Electricity and Common Regulations for the Single Market for Gas have been in force (Official Journal of the European Communities L 176/37). These Directives must be translated into national law by July 1, 2004. The national legislative process in Germany for a Power Economy Act adapted accordingly is presented and evaluated. (orig.)

  10. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  11. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    Science.gov (United States)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  12. Power-law forgetting in synapses with metaplasticity

    International Nuclear Information System (INIS)

    Mehta, A; Luck, J M

    2011-01-01

    The idea of using metaplastic synapses to incorporate the separate storage of long- and short-term memories via an array of hidden states was put forward in the cascade model of Fusi et al. In this paper, we devise and investigate two models of a metaplastic synapse based on these general principles. The main difference between the two models lies in their available mechanisms of decay, when a contrarian event occurs after the build-up of a long-term memory. In one case, this leads to the conversion of the long-term memory to a short-term memory of the opposite kind, while in the other, a long-term memory of the opposite kind may be generated as a result. Appropriately enough, the response of both models to short-term events is not affected by this difference in architecture. On the contrary, the transient response of both models, after long-term memories have been created by the passage of sustained signals, is rather different. The asymptotic behaviour of both models is, however, characterised by power-law forgetting with the same universal exponent

  13. Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis

    Science.gov (United States)

    Abou-zeid, Mohamed Y.; Mohamed, Mona A. A.

    2017-09-01

    This article is an analytic discussion for the motion of power-law nanofluid with heat transfer under the effect of viscous dissipation, radiation, and internal heat generation. The governing equations are discussed under the assumptions of long wavelength and low Reynolds number. The solutions for temperature and nanoparticle profiles are obtained by using homotopy perturbation method. Results for the behaviours of the axial velocity, temperature, and nanoparticles as well as the skin friction coefficient, reduced Nusselt number, and Sherwood number with other physical parameters are obtained graphically and analytically. It is found that as the power-law exponent increases, both the axial velocity and temperature increase, whereas nanoparticles decreases. These results may have applicable importance in the research discussions of nanofluid flow in channels with small diameters under the effect of different temperature distributions.

  14. Weiqi games as a tree: Zipf's law of openings and beyond

    Science.gov (United States)

    Xu, Li-Gong; Li, Ming-Xia; Zhou, Wei-Xing

    2015-06-01

    Weiqi is one of the most complex board games played by two persons. The placement strategies adopted by Weiqi players are often used to analog the philosophy of human wars. Contrary to the western chess, Weiqi games are less studied by academics partially because Weiqi is popular only in East Asia, especially in China, Japan and Korea. Here, we propose to construct a directed tree using a database of extensive Weiqi games and perform a quantitative analysis of the Weiqi tree. We find that the popularity distribution of Weiqi openings with the same number of moves is distributed according to a power law and the tail exponent increases with the number of moves. Intriguingly, the superposition of the popularity distributions of Weiqi openings with a number of moves not higher than a given number also has a power-law tail in which the tail exponent increases with the number of moves, and the superposed distribution approaches the Zipf law. These findings are the same as for chess and support the conjecture that the popularity distribution of board game openings follows the Zipf law with a universal exponent. We also find that the distribution of out-degrees has a power-law form, the distribution of branching ratios has a very complicated pattern, and the distribution of uniqueness scores defined by the path lengths from the root vertex to the leaf vertices exhibits a unimodal shape. Our work provides a promising direction for the study of the decision-making process of Weiqi playing from the perspective of directed branching tree.

  15. Monte Carlo-based tail exponent estimator

    Science.gov (United States)

    Barunik, Jozef; Vacha, Lukas

    2010-11-01

    In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent.

  16. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  17. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  18. A New Method for Obtaining the Star Formation Law in Galaxies

    NARCIS (Netherlands)

    Heiner, Jonathan S.; Allen, Ronald J.; van der Kruit, Pieter C.

    2010-01-01

    We present a new observational method to evaluate the exponent of the star formation law as initially formulated by Schmidt, i.e., the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density present there. Total volume densities in

  19. Fractional power-law spatial dispersion in electrodynamics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.; Trujillo, Juan J.

    2013-01-01

    Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s law and Debye’s screening for the media

  20. Charge transport in transparent single-wall carbon nanotube networks

    International Nuclear Information System (INIS)

    Jaiswal, Manu; Wang, Wei; Fernando, K A Shiral; Sun Yaping; Menon, Reghu

    2007-01-01

    We report the electric-field effects and magnetotransport in transparent networks of single-wall carbon nanotubes (SWNT). The temperature dependence of conductance of the network indicates a 2D Mott variable-range hopping (VRH) transport mechanism. Electric field and temperature are shown to have similar effects on the carrier hops and identical exponents for the conductance of the network are obtained from the high electric field and temperature dependences. A power-law temperature dependence with an exponent 3/2 for the threshold field is obtained and explained as a result of the competing contributions from electric field and phonons to the carrier hop. A negative magnetoresistance (MR) is observed at low temperatures, which arises from a forward interference scattering mechanism in the weak scattering limit, consistent with the VRH transport

  1. Quantum dissipation from power-law memory

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2012-01-01

    A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered. - Highlights: ► A new quantum dissipation model based on memory mechanism is suggested. ► The generalization of Lindblad equation is considered. ► An exact solution of generalized Lindblad equation for quantum oscillator with linear friction and power-law memory is derived.

  2. Taylor's law and body size in exploited marine ecosystems.

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  3. Power Laws are Disguised Boltzmann Laws

    Science.gov (United States)

    Richmond, Peter; Solomon, Sorin

    Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, wGeneralized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.

  4. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  5. Evaluating Lyapunov exponent spectra with neural networks

    International Nuclear Information System (INIS)

    Maus, A.; Sprott, J.C.

    2013-01-01

    Highlights: • Cross-correlation is employed to remove spurious Lyapunov exponents from a spectrum. • Neural networks are shown to accurately model Lyapunov exponent spectra. • Neural networks compare favorably to local linear fits in modeling Lyapunov exponents. • Numerical experiments are performed with time series of varying length and noise. • Methods perform reasonably well on discrete time series. -- Abstract: A method using discrete cross-correlation for identifying and removing spurious Lyapunov exponents when embedding experimental data in a dimension greater than the original system is introduced. The method uses a distribution of calculated exponent values produced by modeling a single time series many times or multiple instances of a time series. For this task, global models are shown to compare favorably to local models traditionally used for time series taken from the Hénon map and delayed Hénon map, especially when the time series are short or contaminated by noise. An additional merit of global modeling is its ability to estimate the dynamical and geometrical properties of the original system such as the attractor dimension, entropy, and lag space, although consideration must be taken for the time it takes to train the global models

  6. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

    Science.gov (United States)

    van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.

    2018-04-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.

  7. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

    Science.gov (United States)

    Leibovich, N; Dechant, A; Lutz, E; Barkai, E

    2016-11-01

    The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.

  8. The Hack's law applied to young volcanic basin: the Tahiti case

    Science.gov (United States)

    Ye, F.; Sichoix, L.; Barriot, J.; Serafini, J.

    2010-12-01

    We study the channel morphology over the Tahiti island from the Hack’s law perspective. The Hack’s law is an empirical power relationship between basin drainage area and the length of its main channel. It had also been shown that drainage area becomes more elongate with increasing basin size. For typical continental basins, the exponent value lies between 0.47 for basins larger than 260,000 km2 and 0.7 for those spanning less than 20,720 km2 (Muller, 1973). In Tahiti, we extracted 27 principal basins ranging from 7 km2 to 90 km2 from a Digital Terrain Model of the island with a 5 m-resolution. We demonstrate that the Hack’s law still apply for such small basins (correlation coefficient R2=0.7) with an exponent value being approximately 0.5. It appears that the exponent value is influenced by the local geomorphic condition, and does not follow the previous study results (the exponent value decreases with increasing drainage area.) Our exponent value matches the result found w.r.t. debris-flow basins of China for drainage areas less than 100 km2 (Li et al., 2008). Otherwise, the young volcanic basins of Tahiti do not become longer and narrower with increasing basin size (R2=0.1). Besides, there is no correlation between the basin area and the basin convexity (R2=0). This means that there is no statistical change in basin shape with basin size. We present also the drainage area-slope relationship with respect to sediment or transport-limited processes. Key words: Hack’s law, channel morphology, DTM

  9. Problems of cartel law in license contracts within the power economy

    International Nuclear Information System (INIS)

    Hueffer, U.

    1992-01-01

    First the licence contract is presented as a particularly important instrument of the power economy. In a second step a link is established with cartel law; that is, the special status of the power economy under cartel law and the significance of the licence contract within this context are illuminated. On this basis then, a very controversial complex of problems is entered into: the assessment of so-called expiration clauses in licence contracts, i.e. the legal situation upon expiration of a licence contract. It turns out that qualms about the time value being the takeover price have no legal basis. The fact that they were expressed at all is due to the lack of a synopsis of the relevant subareas of commercial law. Scientific purposes require a synopsis of the commercial law concerned rather than an argument in which each party splits off single aspects of the issue. (orig./HSCH) [de

  10. Investigation of scaling laws in frequency-dependent minor hysteresis loops for ferromagnetic steels

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tsukidate, S.; Kamada, Y.; Kikuchi, H.; Ohtani, T.

    2012-01-01

    Scaling laws in dynamical magnetic minor hysteresis loops have been investigated in the magnetizing frequency range of 0.05-300 Hz for various steels including Cr-Mo-V steel subjected to creep, cold rolled steels, and plastically deformed Ni. Although scaling laws in the medium magnetization range found previously fail in the high magnetization frequency regime owing to a significant contribution of eddy currents, a scaling power law of the relation between remanence and remanence work of minor loops, associated with a constant exponent of approximately 1.9, holds true in a very low magnetization regime, irrespective of magnetization frequency and investigated materials. The coefficient of the law is proportionally related to Vickers hardness over the wide frequency range. These observations demonstrate that the scaling analysis of dynamical minor loops enables us to evaluate materials degradation in a short measurement time with low measurement field and high sensitivity to defect density. - Highlights: → We performed hysteresis scaling for dynamical minor loops in ferromagnetic steels. → An universal scaling power law with an exponent of 1.9 was observed. → Coefficient of the scaling law reflects defect density due to creep and deformation. → This method is useful for on-line non-destructive evaluation.

  11. Revision of by-laws about effluents of EdF's nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    In France, in application of the clean water law from January 3, 1992 and since the decree 95-540 from May 4, 1995, each basic nuclear facility receives a single permission which covers both its water takes and its radioactive and non-radioactive effluents. This decree, initially dedicated to new facilities has been enlarged to all existing installations for which the prefectorial by-laws have reached their date-line. Thus, up to now, five inter-ministerial by-laws have renewed the permissions of water takes and effluents evacuation of the power plants of Saint-Laurent-des-Eaux (Loir-et-Cher), Flamanville (Manche), Paluel (Seine-Maritime), Belleville (Cher) and Saint-Alban (Isere). These by-laws foresee an important abatement of the effluents and concern more particularly the tritium, 14 C, the iodine isotopes and also some other non-radioactive chemical compounds. This document is a compilation of all revised by-laws about effluents and concerning the nuclear power plants listed above. (J.S.)

  12. Quantum refrigerators and the third law of thermodynamics.

    Science.gov (United States)

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  13. Comparison of power spectra for tomosynthesis projections and reconstructed images

    International Nuclear Information System (INIS)

    Engstrom, Emma; Reiser, Ingrid; Nishikawa, Robert

    2009-01-01

    Burgess et al. [Med. Phys. 28, 419-437 (2001)] showed that the power spectrum of mammographic breast background follows a power law and that lesion detectability is affected by the power-law exponent β which measures the amount of structure in the background. Following the study of Burgess et al., the authors measured and compared the power-law exponent of mammographic backgrounds in tomosynthesis projections and reconstructed slices to investigate the effect of tomosynthesis imaging on background structure. Our data set consisted of 55 patient cases. For each case, regions of interest (ROIs) were extracted from both projection images and reconstructed slices. The periodogram of each ROI was computed by taking the squared modulus of the Fourier transform of the ROI. The power-law exponent was determined for each periodogram and averaged across all ROIs extracted from all projections or reconstructed slices for each patient data set. For the projections, the mean β averaged across the 55 cases was 3.06 (standard deviation of 0.21), while it was 2.87 (0.24) for the corresponding reconstructions. The difference in β for a given patient between the projection ROIs and the reconstructed ROIs averaged across the 55 cases was 0.194, which was statistically significant (p<0.001). The 95% CI for the difference between the mean value of β for the projections and reconstructions was [0.170, 0.218]. The results are consistent with the observation that the amount of breast structure in the tomosynthesis slice is reduced compared to projection mammography and that this may lead to improved lesion detectability.

  14. Power law scaling for rotational energy transfer

    International Nuclear Information System (INIS)

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  15. Universal correlations and power-law tails in financial covariance matrices

    Science.gov (United States)

    Akemann, G.; Fischmann, J.; Vivo, P.

    2010-07-01

    We investigate whether quantities such as the global spectral density or individual eigenvalues of financial covariance matrices can be best modelled by standard random matrix theory or rather by its generalisations displaying power-law tails. In order to generate individual eigenvalue distributions a chopping procedure is devised, which produces a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.

  16. Scaling Law between Urban Electrical Consumption and Population in China

    Science.gov (United States)

    Zhu, Xiaowu; Xiong, Aimin; Li, Liangsheng; Liu, Maoxin; Chen, X. S.

    The relation between the household electrical consumption Y and population N for Chinese cities in 2006 has been investigated with the power law scaling form Y = A_0 N^{β}. It is found that the Chinese cities should be divided into three categories characterized by different scaling exponent β. The first category, which includes the biggest and coastal cities of China, has the scaling exponent β> 1. The second category, which includes mostly the cities in central China, has the scaling exponent β ≈ 1. The third category, which consists of the cities in northwestern China, has the scaling exponent β 1, there is also a fixed point population N f . If the initial population N(0) > N f , the population increases very fast with time and diverges within a finite time. If the initial population N(0) < N f , the population decreases with time and collapse finally. The pattern of population evolution in a city is determined by its scaling exponent and initial population.

  17. Visiting Power Laws in Cyber-Physical Networking Systems

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Cyber-physical networking systems (CPNSs are made up of various physical systems that are heterogeneous in nature. Therefore, exploring universalities in CPNSs for either data or systems is desired in its fundamental theory. This paper is in the aspect of data, aiming at addressing that power laws may yet be a universality of data in CPNSs. The contributions of this paper are in triple folds. First, we provide a short tutorial about power laws. Then, we address the power laws related to some physical systems. Finally, we discuss that power-law-type data may be governed by stochastically differential equations of fractional order. As a side product, we present the point of view that the upper bound of data flow at large-time scaling and the small one also follows power laws.

  18. Helmholtz solitons in power-law optical materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  19. Lyapunov Exponents

    CERN Document Server

    Crauel, Hans; Eckmann, Jean-Pierre

    1991-01-01

    Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles:Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant me...

  20. Explaining the power-law distribution of human mobility through transportation modality decomposition

    Science.gov (United States)

    Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

    2015-03-01

    Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.

  1. Power series like relation of power law and coupled creep ...

    African Journals Online (AJOL)

    When a solid deforms at high temperature its microstructure may in some sense be altered- holes and cracks may nucleate and grow inside the solid by various mechanism controlled by diffusion and by power law creep or by a combination of these mechanisms. Considering a coupled diffusion power law creep mechanism ...

  2. Zipf's law and influential factors of the Pareto exponent of the city size distribution: Evidence from China

    OpenAIRE

    GAO Hongying; WU Kangping

    2007-01-01

    This paper estimates the Pareto exponent of the city size (population size and economy size) distribution, all provinces, and three regions in China in 1997, 2000 and 2003 by OLS, comparatively analyzes the Pareto exponent cross section and times, and empirically analyzes the factors which impacts on the Pareto exponents of provinces. Our analyses show that the size distributions of cities in China follow the Pareto distribution and are of structural features. Variations in the value of the P...

  3. Power-law-lapse time gauges

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1988-01-01

    The choice of time function for cosmological solutions of gravitational field equations is related to the action of the group of independent scale transformations of the unit of length along orthogonal spatial directions. This is accomplished by the introduction of lapse functions which depend explicitly on the spatial metric in an appropriately defined power-law fashion. The resulting power-law-lapse time gauges are the key to producing nearly all exact solutions of the class of models for which the field equations reduce to ordinary differential equations

  4. Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose–Hubbard model

    International Nuclear Information System (INIS)

    Sanders, Sören; Holthaus, Martin

    2017-01-01

    We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose–Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems. (paper)

  5. Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose-Hubbard model

    Science.gov (United States)

    Sanders, Sören; Holthaus, Martin

    2017-10-01

    We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose-Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems.

  6. Extreme robustness of scaling in sample space reducing processes explains Zipf’s law in diffusion on directed networks

    International Nuclear Information System (INIS)

    Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan

    2016-01-01

    It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such sample space reducing processes offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterised by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to −1 (Zipf’s law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf’s law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management. (paper)

  7. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    Science.gov (United States)

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  8. Partial differential equations with variable exponents variational methods and qualitative analysis

    CERN Document Server

    Radulescu, Vicentiu D

    2015-01-01

    Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive meth

  9. Scaling Laws in Chennai Bus Network

    OpenAIRE

    Chatterjee, Atanu; Ramadurai, Gitakrishnan

    2015-01-01

    In this paper, we study the structural properties of the complex bus network of Chennai. We formulate this extensive network structure by identifying each bus stop as a node, and a bus which stops at any two adjacent bus stops as an edge connecting the nodes. Rigorous statistical analysis of this data shows that the Chennai bus network displays small-world properties and a scale-free degree distribution with the power-law exponent, $\\gamma > 3$.

  10. Quasi one dimensional transport in individual electrospun composite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  11. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    invariance: Iq(f) ~ f-?(q) , ?(q) is the scaling exponent. This allows to characterize the scaling behavior of a process: fractal or multifractal with intermittent properties. For q = 2, the Hilbert spectrum is defined. In this work, The data are collected at the University site of Guadeloupe, an island in the West Indies, located at 16°15 N latitude 60°30 W longitude. Our measurements sampled at 1 Hz were performed during one year period. The analyzed data present a power spectral density E(f) displaying a power law of the form E(f) ~ f-β with 1.6 ˜ β ˜ 2.2 for frequencies f ˜ 0.1 Hz, corresponding to time scales T × 10 s. Furthermore, global solar radiation data possesses multifractal properties. For comparison, other multifractal analysis techniques such as structure functions, MDFA, wavelet leaders are also used. This preliminary work set the basis for further investigation dedicated to simulate and forecast a sequence of solar energy fluctuation under different meteorological conditions, in the multifractal framework.

  12. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  13. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    Science.gov (United States)

    Cheng, W.; Samtaney, R.

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  14. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    KAUST Repository

    Cheng, W.

    2014-01-29

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  15. Power laws in the information production process Lotkaian informetrics

    CERN Document Server

    Egghe, Leo

    2005-01-01

    Explains many informetric regularities, only based on a decreasing power law as size-frequency function, that is Lotka''s law. This book revives the historical formulation of Alfred Lotka and shows the power of this power law, both in classical aspects of informetrics as well as in applications such as social networks and others.

  16. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    Science.gov (United States)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.

    2018-01-01

    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  17. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  18. A precursor of market crashes: Empirical laws of Japan's internet bubble

    Science.gov (United States)

    Kaizoji, T.

    2006-03-01

    In this paper, we quantitatively investigate the properties of a statistical ensemble of stock prices. We focus attention on the relative price defined as X(t) = S(t)/S(0), where S(0), is the stock price for an onset time of the bubble. We selected approximately 3200 stocks traded on the Japanese Stock Exchange, and formed a statistical ensemble of daily relative prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period in which internet Bubble formed and crashed in the Japanese stock market. We found that the upper tail of the complementary cumulative distribution function of the ensemble of the relative prices in the high value of the price is well described by a power-law distribution, P(S>x) ˜x-α , with an exponent that moves over time. Furthermore we found that as the power-law exponents α approached two, the bubble burst. It is reasonable to suppose that it indicates that internet bubble is about to burst.

  19. AN ANALYSIS OF THE SHAPES OF INTERSTELLAR EXTINCTION CURVES. VI. THE NEAR-IR EXTINCTION LAW

    International Nuclear Information System (INIS)

    Fitzpatrick, E. L.; Massa, D.

    2009-01-01

    We combine new observations from the Hubble Space Telescope's Advanced Camera of Survey with existing data to investigate the wavelength dependence of near-IR (NIR) extinction. Previous studies suggest a power law form for NIR extinction, with a 'universal' value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model for the NIR extinction provides an excellent fit to most extinction curves, but that the value of the power, β, varies significantly from sight line to sight line. Therefore, it seems that a 'universal NIR extinction law' is not possible. Instead, we find that as β decreases, R(V) ≡ A(V)/E(B - V) tends to increase, suggesting that NIR extinction curves which have been considered 'peculiar' may, in fact, be typical for different R(V) values. We show that the power-law parameters can depend on the wavelength interval used to derive them, with the β increasing as longer wavelengths are included. This result implies that extrapolating power-law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only two free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power-law model, it gives R(V)s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/(E(B-V)) - 0.79 can estimate R(V) to ±0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations, and demonstrate how large samples of observational quantities can provide useful constraints on the grain properties.

  20. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1993-01-01

    The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

  1. Moreton wave, "EIT wave", and type II radio burst as manifestations of a single wave front

    Science.gov (United States)

    Kuzmenko, I. V.; Grechnev, V. V.; Uralov, A. M.

    2011-12-01

    We show that a Moreton wave, an "EIT wave," and a type II radio burst observed during a solar flare of July 13, 2004, might have been a manifestation of a single front of a decelerating shock wave, which appeared in an active region (AR) during a filament eruption. We propose describing a quasi-spheroidal wave propagating upward and along the solar surface by using relations known from a theory of a point-like explosion in a gas whose density changes along the radius according to a power law. By applying this law to fit the drop in density of the coronal plasma enveloping the solar active region, we first managed to bring the measured positions and velocities of surface Moreton wave and "EIT wave" into correspondence with the observed frequency drift rate of the meter type II radio burst. The exponent of the vertical coronal density falloff is selected by fitting the power law to the Newkirk and Saito empirical distributions in the height range of interest. Formal use of such a dependence in the horizontal direction with a different exponent appears to be reasonable up to distances of less than 200 Mm around the eruption center. It is possible to assume that the near-surface shock wave weakens when leaving this radius and finally the active region, entering the region of the quiet Sun where the coronal plasma density and the fast-mode speed are almost constant along the horizontal.

  2. Controversy in the allometric application of fixed- versus varying-exponent models: a statistical and mathematical perspective.

    Science.gov (United States)

    Tang, Huadong; Hussain, Azher; Leal, Mauricio; Fluhler, Eric; Mayersohn, Michael

    2011-02-01

    This commentary is a reply to a recent article by Mahmood commenting on the authors' article on the use of fixed-exponent allometry in predicting human clearance. The commentary discusses eight issues that are related to criticisms made in Mahmood's article and examines the controversies (fixed-exponent vs. varying-exponent allometry) from the perspective of statistics and mathematics. The key conclusion is that any allometric method, which is to establish a power function based on a limited number of animal species and to extrapolate the resulting power function to human values (varying-exponent allometry), is infused with fundamental statistical errors. Copyright © 2010 Wiley-Liss, Inc.

  3. Nonlinearity exponent of ac conductivity in disordered systems

    International Nuclear Information System (INIS)

    Nandi, U N; Sircar, S; Karmakar, A; Giri, S

    2012-01-01

    We measured the real part of ac conductance Σ(x,f) or Σ(T,f) of iron-doped mixed-valent polycrystalline manganite oxides LaMn 1-x Fe x O 3 as a function of frequency f by varying initial conductance Σ 0 by quenched disorder x at a fixed temperature T (room) and by temperature T at a fixed quenched disorder x. At a fixed temperature T, Σ(x,f) of a sample with fixed x remains almost constant at its zero-frequency dc value Σ 0 at lower frequency. With increase in f, Σ(x,f) increases slowly from Σ 0 and finally increases rapidly following a power law with an exponent s at high frequency. Scaled appropriately, the data for Σ(T,f) and Σ(x,f) fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductivity in disordered systems. The characteristic frequency f c at which Σ(x,f) or Σ(T,f) increases for the first time from Σ 0 scales with initial conductance Σ 0 as f c ∼ Σ 0 x f , where x f is the onset exponent. The value of x f is nearly equal to one and is found to be independent of x and T. Further, an inverse relationship between x f and s provides a self-consistency check of the systematic description of Σ(x,f) or Σ(T,f). This apparent universal value of x f is discussed within the framework of existing theoretical models and scaling theories. The relevance to other similar disordered systems is also highlighted. (paper)

  4. The quick convolution of galaxy profiles, with application to power-law intensity distributions

    International Nuclear Information System (INIS)

    Bailey, M.E.; Sparks, W.B.

    1983-01-01

    The two-dimensional convolution of a circularly symmetric galaxy model with a Gaussian point-spread function of dispersion σ reduces to a single integral. This is solved analytically for models with power-law intensity distributions and results are given which relate the apparent core radius to σ and the power-law index k. The convolution integral is also simplified for the case of a point-spread function corresponding to a circular aperture. Models of galactic nuclei with stellar density cusps can only be distinguished from alternatives with small core radii if both the brightness and seeing profiles are measured accurately. The results are applied to data on the light distribution at the Galactic Centre. (author)

  5. Deviations in the Zipf and Heaps laws in natural languages

    Science.gov (United States)

    Bochkarev, Vladimir V.; Lerner, Eduard Yu; Shevlyakova, Anna V.

    2014-03-01

    This paper is devoted to verifying of the empirical Zipf and Hips laws in natural languages using Google Books Ngram corpus data. The connection between the Zipf and Heaps law which predicts the power dependence of the vocabulary size on the text size is discussed. In fact, the Heaps exponent in this dependence varies with the increasing of the text corpus. To explain it, the obtained results are compared with the probability model of text generation. Quasi-periodic variations with characteristic time periods of 60-100 years were also found.

  6. Deviations in the Zipf and Heaps laws in natural languages

    International Nuclear Information System (INIS)

    Bochkarev, Vladimir V; Lerner, Eduard Yu; Shevlyakova, Anna V

    2014-01-01

    This paper is devoted to verifying of the empirical Zipf and Hips laws in natural languages using Google Books Ngram corpus data. The connection between the Zipf and Heaps law which predicts the power dependence of the vocabulary size on the text size is discussed. In fact, the Heaps exponent in this dependence varies with the increasing of the text corpus. To explain it, the obtained results are compared with the probability model of text generation. Quasi-periodic variations with characteristic time periods of 60-100 years were also found

  7. Investigating textural controls on Archie's porosity exponent using process-based, pore-scale modelling

    Science.gov (United States)

    Niu, Q.; Zhang, C.

    2017-12-01

    Archie's law is an important empirical relationship linking the electrical resistivity of geological materials to their porosity. It has been found experimentally that the porosity exponent m in Archie's law in sedimentary rocks might be related to the degree of cementation, and therefore m is termed as "cementation factor" in most literatures. Despite it has been known for many years, there is lack of well-accepted physical interpretations of the porosity exponent. Some theoretical and experimental evidences have also shown that m may be controlled by the particle and/or pore shape. In this study, we conduct a pore-scale modeling of the porosity exponent that incorporates different geological processes. The evolution of m of eight synthetic samples with different particle sizes and shapes are calculated during two geological processes, i.e., compaction and cementation. The numerical results show that in dilute conditions, m is controlled by the particle shape. As the samples deviate from dilute conditions, m increases gradually due to the strong interaction between particles. When the samples are at static equilibrium, m is noticeably larger than its values at dilution condition. The numerical simulation results also show that both geological compaction and cementation induce a significant increase in m. In addition, the geometric characteristics of these samples (e.g., pore space/throat size, and their distributions) during compaction and cementation are also calculated. Preliminary analysis shows a unique correlation between the pore size broadness and porosity exponent for all eight samples. However, such a correlation is not found between m and other geometric characteristics.

  8. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  9. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  10. Non-thermal Power-Law Distributions in Solar and Space Plasmas

    Science.gov (United States)

    Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.

    2017-12-01

    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.

  11. Power-law creep behavior of a semiflexible chain.

    Science.gov (United States)

    Majumdar, Arnab; Suki, Béla; Rosenblatt, Noah; Alencar, Adriano M; Stamenović, Dimitrije

    2008-10-01

    Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

  12. Resurrecting power law inflation in the light of Planck results

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sahni, Varun

    2013-01-01

    It is well known that a canonical scalar field with an exponential potential can drive power law inflation (PLI). However, the tensor-to-scalar ratio in such models turns out to be larger than the stringent limit set by recent Planck results. We propose a new model of power law inflation for which the scalar spectra index, the tensor-to-scalar ratio and the non-gaussianity parameter f NL equil are in excellent agreement with Planck results. Inflation, in this model, is driven by a non-canonical scalar field with an inverse power law potential. The Lagrangian for our model is structurally similar to that of a canonical scalar field and has a power law form for the kinetic term. A simple extension of our model resolves the graceful exit problem which usually afflicts models of power law inflation

  13. Engagement in the electoral processes: scaling laws and the role of political positions.

    Science.gov (United States)

    Mantovani, M C; Ribeiro, H V; Lenzi, E K; Picoli, S; Mendes, R S

    2013-08-01

    We report on a statistical analysis of the engagement in the electoral processes of all Brazilian cities by considering the number of party memberships and the number of candidates for mayor and councillor. By investigating the relationships between the number of party members and the population of voters, we have found that the functional forms of these relationships are well described by sublinear power laws (allometric scaling) surrounded by a multiplicative log-normal noise. We have observed that this pattern is quite similar to those we previously reported for the relationships between the number of candidates (mayor and councillor) and population of voters [Europhys. Lett. 96, 48001 (2011)], suggesting that similar universal laws may be ruling the engagement in the electoral processes. We also note that the power-law exponents display a clear hierarchy, where the more influential is the political position the smaller is the value of the exponent. We have also investigated the probability distributions of the number of candidates (mayor and councillor), party memberships, and voters. The results indicate that the most influential positions are characterized by distributions with very short tails, while less influential positions display an intermediate power-law decay before showing an exponential-like cutoff. We discuss the possibility that, in addition to the political power of the position, limitations in the number of available seats can also be connected with this changing of behavior. We further believe that our empirical findings point out to an under-representation effect, where the larger the city is, the larger are the obstacles for more individuals to become directly engaged in the electoral process.

  14. Power laws for gravity and topography of Solar System bodies

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  15. On the structure and phase transitions of power-law Poissonian ensembles

    Science.gov (United States)

    Eliazar, Iddo; Oshanin, Gleb

    2012-10-01

    Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.

  16. The new law on radiation and nuclear power

    International Nuclear Information System (INIS)

    Niittylae, A.

    1990-01-01

    The Law on Nuclear Energy, which entered into force in 1988, controls the use of nuclear power. The new Law on Radiation is under consideration in the Parliament. The internationally approved main principles on radiation protection are the basis of the law. In the article, these principles and the contents of the law are described

  17. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Science.gov (United States)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  18. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    Science.gov (United States)

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  19. Kant on causal laws and powers.

    Science.gov (United States)

    Henschen, Tobias

    2014-12-01

    The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.

  20. The origin of power-law distributions in self-organized criticality

    International Nuclear Information System (INIS)

    Yang, C B

    2004-01-01

    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random-walk process in a one-dimensional lattice. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions. At the mean time, the mean spatial size for avalanches with the same lifetime is found to increase in a power law with the lifetime. (letter to the editor)

  1. On identifying relationships between the flood scaling exponent and basin attributes.

    Science.gov (United States)

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  2. Power-law and intermediate inflationary models in f(T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, K. [Department of Physics, University of Kurdistan,Pasdaran St., Sanandaj (Iran, Islamic Republic of); Abdolmaleki, A. [Research Institute for Astronomy Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Karami, K. [Department of Physics, University of Kurdistan,Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2016-01-21

    We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ)∝ϕ{sup m} but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ)∝ϕ{sup 4} which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.

  3. Power-law and intermediate inflationary models in f(T)-gravity

    International Nuclear Information System (INIS)

    Rezazadeh, K.; Abdolmaleki, A.; Karami, K.

    2016-01-01

    We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ)∝ϕ m but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ)∝ϕ 4 which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.

  4. Financial power laws: Empirical evidence, models, and mechanisms

    International Nuclear Information System (INIS)

    Lux, Thomas; Alfarano, Simone

    2016-01-01

    Financial markets (share markets, foreign exchange markets and others) are all characterized by a number of universal power laws. The most prominent example is the ubiquitous finding of a robust, approximately cubic power law characterizing the distribution of large returns. A similarly robust feature is long-range dependence in volatility (i.e., hyperbolic decline of its autocorrelation function). The recent literature adds temporal scaling of trading volume and multi-scaling of higher moments of returns. Increasing awareness of these properties has recently spurred attempts at theoretical explanations of the emergence of these key characteristics form the market process. In principle, different types of dynamic processes could be responsible for these power-laws. Examples to be found in the economics literature include multiplicative stochastic processes as well as dynamic processes with multiple equilibria. Though both types of dynamics are characterized by intermittent behavior which occasionally generates large bursts of activity, they can be based on fundamentally different perceptions of the trading process. The present paper reviews both the analytical background of the power laws emerging from the above data generating mechanisms as well as pertinent models proposed in the economics literature.

  5. Testing power-law cross-correlations: Rescaled covariance test

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 86, č. 10 (2013), 418-1-418-15 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * testing * long-term memory Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-testing power-law cross-correlations rescaled covariance test.pdf

  6. New relation for critical exponents in the Ising model

    International Nuclear Information System (INIS)

    Pishtshev, A.

    2007-01-01

    The Ising model in a transverse field is considered at T=0. From the analysis of the power low behaviors of the energy gap and the order parameter as functions of the field a new relation between the respective critical exponents, β>=1/(8s 2 ), is derived. By using the Suzuki equivalence from this inequality a new relation for critical exponents in the Ising model, β>=1/(8ν 2 ), is obtained. A number of numerical examples for different cases illustrates the generality and validity of the relation. By applying this relation the estimation ν=(1/4) 1/3 ∼0.62996 for the 3D-Ising model is proposed

  7. The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system

    International Nuclear Information System (INIS)

    Waldner, Franz; Hoover, William G.; Hoover, Carol G.

    2014-01-01

    Highlights: •We consider the local Lyapunov spectrum for a four-dimensional Hamilton system. •Its stable periodic motion can be reversed for long times. •In the chaotic motion, time reversal occurs only for a short time. •Perturbations will change this short unstable case into a different stable case. •These observations might relate chaos to the Second Law of Thermodynamics. - Abstract: We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed

  8. Diffusive growth of a single droplet with three different boundary conditions

    Science.gov (United States)

    Tavassoli, Z.; Rodgers, G. J.

    2000-02-01

    We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.

  9. Evapotranspiration Power Law in Self-Organized and Human-Managed Ecosystems

    Science.gov (United States)

    Zeng, R.; Cai, X.

    2017-12-01

    Natural systems display a profound degree of self-organization, often apparent even to the untrained eye. However, in this age of increased coupling among human and natural systems, it is unclear to what degree natural organization principles continue to govern human-managed landscapes. Here we present an emerging characteristic of terrestrial evapotranspiration (ET), one of the key components of the water cycle and energy budget, adhered to by both naturally organized and intensively managed landscapes. We find that ET variance and ET mean for ecosystems throughout the world with diverse climate conditions, vegetation structures, and land covers and land uses organize themselves according to a specific power law curve. From multi-source observations, the ET power law curve stands true through varying spatial scales, from field to region. Moreover, a phenomenon of similar ecosystems gravitating toward particular segments of the power law curve, suggests that the feature of self-optimization of ecosystems establishes the ET power law together with climatic conditions. Perhaps surprisingly, we find that landscapes persistently follow the power law curve even upon human-induced transition from rain-fed to irrigated agriculture in the American High Plains and from wetland to agricultural land in American Midwest. As such, the ET power law can be an informative tool for predicting consequences of anthropogenic disturbances to the hydrologic cycle and understanding constraints to sustainable land use.

  10. Power-law and exponential rank distributions: A panoramic Gibbsian perspective

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2015-01-01

    Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars

  11. Power-law and exponential rank distributions: A panoramic Gibbsian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2015-04-15

    Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.

  12. Constraints on cosmological parameters in power-law cosmology

    International Nuclear Information System (INIS)

    Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.

    2015-01-01

    In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on and i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details

  13. Do wealth distributions follow power laws? Evidence from ‘rich lists’

    Science.gov (United States)

    Brzezinski, Michal

    2014-07-01

    We use data on the wealth of the richest persons taken from the 'rich lists' provided by business magazines like Forbes to verify if the upper tails of wealth distributions follow, as often claimed, a power-law behaviour. The data sets used cover the world's richest persons over 1996-2012, the richest Americans over 1988-2012, the richest Chinese over 2006-2012, and the richest Russians over 2004-2011. Using a recently introduced comprehensive empirical methodology for detecting power laws, which allows for testing the goodness of fit as well as for comparing the power-law model with rival distributions, we find that a power-law model is consistent with data only in 35% of the analysed data sets. Moreover, even if wealth data are consistent with the power-law model, they are usually also consistent with some rivals like the log-normal or stretched exponential distributions.

  14. Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?

    Directory of Open Access Journals (Sweden)

    Shuyan Lin

    2018-05-01

    Full Text Available The principle of similarity (Thompson, 1917 states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A, density (ρ, length (L, thickness (T, and weight (W. Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.

  15. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  16. The p-sphere and the geometric substratum of power-law probability distributions

    International Nuclear Information System (INIS)

    Vignat, C.; Plastino, A.

    2005-01-01

    Links between power law probability distributions and marginal distributions of uniform laws on p-spheres in R n show that a mathematical derivation of the Boltzmann-Gibbs distribution necessarily passes through power law ones. Results are also given that link parameters p and n to the value of the non-extensivity parameter q that characterizes these power laws in the context of non-extensive statistics

  17. Unobserved heterogeneity in the power law nonhomogeneous Poisson process

    International Nuclear Information System (INIS)

    Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry

    2015-01-01

    A study of possible consequences of heterogeneity in the failure intensity of repairable systems is presented. The basic model studied is the nonhomogeneous Poisson process with power law intensity function. When several similar systems are under observation, the assumption that the corresponding processes are independent and identically distributed is often questionable. In practice there may be an unobserved heterogeneity among the systems. The heterogeneity is modeled by introduction of unobserved gamma distributed frailties. The relevant likelihood function is derived, and maximum likelihood estimation is illustrated. In a simulation study we then compare results when using a power law model without taking into account heterogeneity, with the corresponding results obtained when the heterogeneity is accounted for. A motivating data example is also given. - Highlights: • Consequences of overlooking heterogeneity in similar repairable systems are studied. • Likelihood functions are established for power law NHPP w/ and w/o heterogeneity. • ML estimators for parameters of power law NHPP with heterogeneity are derived. • A simulation study shows the effects of heterogeneity and its ignorance in models

  18. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  19. Archie's law - a reappraisal

    Science.gov (United States)

    Glover, Paul W. J.

    2016-07-01

    When scientists apply Archie's first law they often include an extra parameter a, which was introduced about 10 years after the equation's first publication by Winsauer et al. (1952), and which is sometimes called the "tortuosity" or "lithology" parameter. This parameter is not, however, theoretically justified. Paradoxically, the Winsauer et al. (1952) form of Archie's law often performs better than the original, more theoretically correct version. The difference in the cementation exponent calculated from these two forms of Archie's law is important, and can lead to a misestimation of reserves by at least 20 % for typical reservoir parameter values. We have examined the apparent paradox, and conclude that while the theoretical form of the law is correct, the data that we have been analysing with Archie's law have been in error. There are at least three types of systematic error that are present in most measurements: (i) a porosity error, (ii) a pore fluid salinity error, and (iii) a temperature error. Each of these systematic errors is sufficient to ensure that a non-unity value of the parameter a is required in order to fit the electrical data well. Fortunately, the inclusion of this parameter in the fit has compensated for the presence of the systematic errors in the electrical and porosity data, leading to a value of cementation exponent that is correct. The exceptions are those cementation exponents that have been calculated for individual core plugs. We make a number of recommendations for reducing the systematic errors that contribute to the problem and suggest that the value of the parameter a may now be used as an indication of data quality.

  20. Towards a seascape typology. I. Zipf versus Pareto laws

    Science.gov (United States)

    Seuront, Laurent; Mitchell, James G.

    Two data analysis methods, referred to as the Zipf and Pareto methods, initially introduced in economics and linguistics two centuries ago and subsequently used in a wide range of fields (word frequency in languages and literature, human demographics, finance, city formation, genomics and physics), are described and proposed here as a potential tool to classify space-time patterns in marine ecology. The aim of this paper is, first, to present the theoretical bases of Zipf and Pareto laws, and to demonstrate that they are strictly equivalent. In that way, we provide a one-to-one correspondence between their characteristic exponents and argue that the choice of technique is a matter of convenience. Second, we argue that the appeal of this technique is that it is assumption-free for the distribution of the data and regularity of sampling interval, as well as being extremely easy to implement. Finally, in order to allow marine ecologists to identify and classify any structure in their data sets, we provide a step by step overview of the characteristic shapes expected for Zipf's law for the cases of randomness, power law behavior, power law behavior contaminated by internal and external noise, and competing power laws illustrated on the basis of typical ecological situations such as mixing processes involving non-interacting and interacting species, phytoplankton growth processes and differential grazing by zooplankton.

  1. Exponential and power laws in public procurement markets

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Skuhrovec, J.

    2012-01-01

    Roč. 99, č. 2 (2012), 28005-1-28005-6 ISSN 0295-5075 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; SVV(CZ) 265 504; GA TA ČR(CZ) TD010133 Institutional support: RVO:67985556 Keywords : Public procurement * Scaling * Power law Subject RIV: AH - Economics Impact factor: 2.260, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kristoufek-exponential and power laws in public procurement markets.pdf

  2. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    KAUST Repository

    Cheng, W.; Samtaney, Ravi

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can

  3. Stretched exponentials and power laws in granular avalanching

    Science.gov (United States)

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  4. Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement

    Science.gov (United States)

    Sikora, Grzegorz; Teuerle, Marek; Wyłomańska, Agnieszka; Grebenkov, Denis

    2017-08-01

    The most common way of estimating the anomalous scaling exponent from single-particle trajectories consists of a linear fit of the dependence of the time-averaged mean-square displacement on the lag time at the log-log scale. We investigate the statistical properties of this estimator in the case of fractional Brownian motion (FBM). We determine the mean value, the variance, and the distribution of the estimator. Our theoretical results are confirmed by Monte Carlo simulations. In the limit of long trajectories, the estimator is shown to be asymptotically unbiased, consistent, and with vanishing variance. These properties ensure an accurate estimation of the scaling exponent even from a single (long enough) trajectory. As a consequence, we prove that the usual way to estimate the diffusion exponent of FBM is correct from the statistical point of view. Moreover, the knowledge of the estimator distribution is the first step toward new statistical tests of FBM and toward a more reliable interpretation of the experimental histograms of scaling exponents in microbiology.

  5. The end of nuclear power? The conflict of politics, ecology and law

    International Nuclear Information System (INIS)

    Strassburg, W.

    1999-01-01

    The German federal government's demand to opt out of the peaceful use of nuclear power is examined under aspects of constitutional law. Constitutional barriers allow the peaceful use of nuclear power to be discontinued without any compensation only in the distant future. A general restriction of the useful life of plants does not constitute a modification of ownership rights but deprivation, i.e., expropriation. In this politically desired opt-out, the government also must bear in mind that the constitution protects not only the property but also the freedom to exercise their profession (Article 12, para. 1, German Basic Law) of all those who have been committed to this industry for decades. Also a national ban on reprocessing with transborder effects violates existing law, counteracting the requirement of a free exchange of goods and services within the single European market. Moreover, the existing reprocessing contracts with foreign companies may be terminated unilaterally only subject to indemnification, as they constitute obligations under international law, unless German customers were to exercise their contractual right to cancel. In addition, it is to be feared that discontinuation of the peaceful uses of nuclear power manifests itself in the absence of provisions for the back end of the fuel cycle. Prolonging the exploration of repositories and, consequently, relying more and more heavily on interim stores, is bound to raise the question of the evidence of spent fuel and waste management in these latter facilities. In the absence of sufficient proof of waste management provisions in interim stores, the accusation could be leveled that it was not certain whether these interim stores were not turning into final stores. (orig.) [de

  6. Power-law thermal model for blackbody sources

    International Nuclear Information System (INIS)

    Del Grande, N.K.

    1979-01-01

    The spectral radiant emittance W/sub E/ from a blackbody at a temperature kT for photons at energies E above the spectral peak (2.82144 kT) varies as (kT)/sup E/kT/. This power-law temperature dependence, an approximation of Planck's radiation law, may have applications for measuring the emissivity of sources emitting in the soft x-ray region

  7. Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence

    OpenAIRE

    Schmitt , François G

    2005-01-01

    Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...

  8. Mixed-correlated ARFIMA processes for power-law cross-correlations

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 392, č. 24 (2013), s. 6484-6493 ISSN 0378-4371 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-mixed-correlated arfima processes for power-law cross-correlations.pdf

  9. Mobile user forecast and power-law acceleration invariance of scale-free networks

    International Nuclear Information System (INIS)

    Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao

    2011-01-01

    This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)

  10. Relation between the Hurst Exponent and the Efficiency of Self-organization of a Deformable System

    Science.gov (United States)

    Alfyorova, E. A.; Lychagin, D. V.

    2018-04-01

    We have established the degree of self-organization of a system under plastic deformation at different scale levels. Using fractal analysis, we have determined the Hurst exponent and correlation lengths in the region of formation of a corrugated (wrinkled) structure in [111] nickel single crystals under compression. This has made it possible to single out two (micro-and meso-) levels of self-organization in the deformable system. A qualitative relation between the values of the Hurst exponent and the stages of the stress-strain curve has been established.

  11. The Normalising Power of Marriage Law: An Irish Genealogy, 1945 – 2010

    OpenAIRE

    McGowan, Deirdre

    2015-01-01

    Marriage law is often conceptualised as an instrument of power that illegitimately imposes the will of the State on its citizens. Paradoxically, marriage law is also offered as a route to liberation. In this thesis, I question the efficacy of this type of analysis by investigating the actual power effects of marriage law. Using Michel Foucault’s concepts of bio-power and government, and his genealogical approach to history, I identify the role played by marriage law in governing the social do...

  12. Power laws and self-organized criticality in theory and nature

    International Nuclear Information System (INIS)

    Marković, Dimitrije; Gros, Claudius

    2014-01-01

    Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real

  13. Power laws and self-organized criticality in theory and nature

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Dimitrije, E-mail: markovic@cbs.mpg.de [Institute for Theoretical Physics, Goethe University Frankfurt (Germany); Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Biomagnetic Center, Hans Berger Clinic for Neurology, University Hospital Jena, Jena (Germany); Gros, Claudius, E-mail: gros@itp.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University Frankfurt (Germany)

    2014-03-01

    Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real

  14. Real-time monitoring of Lévy flights in a single quantum system

    Science.gov (United States)

    Issler, M.; Höller, J.; Imamoǧlu, A.

    2016-02-01

    Lévy flights are random walks where the dynamics is dominated by rare events. Even though they have been studied in vastly different physical systems, their observation in a single quantum system has remained elusive. Here we analyze a periodically driven open central spin system and demonstrate theoretically that the dynamics of the spin environment exhibits Lévy flights. For the particular realization in a single-electron charged quantum dot driven by periodic resonant laser pulses, we use Monte Carlo simulations to confirm that the long waiting times between successive nuclear spin-flip events are governed by a power-law distribution; the corresponding exponent η =-3 /2 can be directly measured in real time by observing the waiting time distribution of successive photon emission events. Remarkably, the dominant intrinsic limitation of the scheme arising from nuclear quadrupole coupling can be minimized by adjusting the magnetic field or by implementing spin echo.

  15. Origin of Noncubic Scaling Law in Disordered Granular Packing

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chengjie; Li, Jindong; Kou, Binquan; Cao, Yixin; Li, Zhifeng; Xiao, Xianghui; Fu, Yanan; Xiao, Tiqiao; Hong, Liang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-06-01

    Recent diffraction experiments on metallic glasses have unveiled an unexpected non-cubic scaling law between density and average interatomic distance, which lead to the speculations on the presence of fractal glass order. Using X-ray tomography we identify here a similar non-cubic scaling law in disordered granular packing of spherical particles. We find that the scaling law is directly related to the contact neighbors within first nearest neighbor shell, and therefore is closely connected to the phenomenon of jamming. The seemingly universal scaling exponent around 2.5 arises due to the isostatic condition with contact number around 6, and we argue that the exponent should not be universal.

  16. PHYSIOLOGICAL RESPONSES DURING MATCHES AND PROFILE OF ELITE PENCAK SILAT EXPONENTS

    Directory of Open Access Journals (Sweden)

    Benedict Tan

    2002-12-01

    Full Text Available This is a descriptive, cross-sectional study describing the physiological responses during competitive matches and profile of elite exponents of an emerging martial art sport, pencak silat. Thirty exponents (21 males and 9 females were involved in the study. Match responses (i.e. heart rate (HR throughout match and capillary blood lactate concentration, [La], at pre-match and at the end of every round were obtained during actual competitive duels. Elite silat exponents' physiological attributes were assessed via anthropometry, vertical jump, isometric grip strength, maximal oxygen uptake, and the Wingate 30 s anaerobic test of the upper and lower body, in the laboratory. The match response data showed that silat competitors' mean HR was > 84% of estimated HR maximum and levels of [La] ranged from 6.7 - 18.7 mMol-1 during matches. This suggests that competitive silat matches are characterised by high aerobic and anaerobic responses. In comparison to elite taekwondo and judo athletes' physiological characteristics, elite silat exponents have lower aerobic fitness and grip strength, but greater explosive leg power (vertical jump. Generally, they also possessed a similar anaerobic capability in the lower but markedly inferior anaerobic capability in the upper body

  17. 29 CFR 102.35 - Duties and powers of administrative law judges; stipulations of cases to administrative law...

    Science.gov (United States)

    2010-07-01

    ..., the judge (or the Board) will decide the case or make other disposition of it. (10) To make and file... 29 Labor 2 2010-07-01 2010-07-01 false Duties and powers of administrative law judges; stipulations of cases to administrative law judges or to the Board; assignment and powers of settlement judges...

  18. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  19. Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  20. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models

    International Nuclear Information System (INIS)

    Helmstetter, A.; Sornette, D.

    2002-01-01

    The epidemic-type aftershock sequence (ETAS) model is a simple stochastic process modeling seismicity, based on the two best-established empirical laws, the Omori law (power-law decay ∼1/t 1+θ of seismicity after an earthquake) and Gutenberg-Richter law (power-law distribution of earthquake energies). In order to describe also the space distribution of seismicity, we use in addition a power-law distribution ∼1/r 1+μ of distances between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping between the ETAS model and a class of CTRW (continuous time random walk) models, based on the identification of their corresponding master equations. This mapping allows us to use the wealth of results previously obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a function of the time from the mainshock and of the joint probability distribution of the times and locations of the aftershocks. The different regimes are fully characterized by the two exponents θ and μ. Our predictions are checked by careful numerical simulations. We stress the distinction between the 'bare' Omori law describing the seismic rate activated directly by a mainshock and the 'renormalized' Omori law taking into account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare Omori law, also at the origin of seismic diffusion in

  1. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  2. Power-Law Template for Infrared Point-Source Clustering

    Science.gov (United States)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; hide

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  3. Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media

    Directory of Open Access Journals (Sweden)

    Meijuan Yun

    2014-01-01

    Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.

  4. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    Science.gov (United States)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  5. Uniformity measure for power-law mass spectrum in nuclear fragmentation

    International Nuclear Information System (INIS)

    Wislicki, W.

    1992-11-01

    Description is given in terms of the Renyi entropy and the uniformity for the canonical ensemble, the grand canonical ensemble and the power-law probability measures. The study is presented of the power-law spectra of cluster masses observed in nuclear interactions in the vicinity of the liquid-gas transition point. 6 figs., 1 tab., 15 refs. (author)

  6. Dynamic intersectoral models with power-law memory

    Science.gov (United States)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2018-01-01

    Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.

  7. Variational principle for the Pareto power law.

    Science.gov (United States)

    Chakraborti, Anirban; Patriarca, Marco

    2009-11-27

    A mechanism is proposed for the appearance of power-law distributions in various complex systems. It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation only uses a variational principle based on the Boltzmann entropy, without assumptions outside the framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general case through an exactly solvable mechanical model of a dimensionally heterogeneous system.

  8. Data adaptive control parameter estimation for scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Dinklage, Andreas [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Dose, Volker [Max-Planck- Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-07-01

    Bayesian experimental design quantifies the utility of data expressed by the information gain. Data adaptive exploration determines the expected utility of a single new measurement using existing data and a data descriptive model. In other words, the method can be used for experimental planning. As an example for a multivariate linear case, we apply this method for constituting scaling laws of fusion devices. In detail, the scaling of the stellarator W7-AS is examined for a subset of {iota}=1/3 data. The impact of the existing data on the scaling exponents is presented. Furthermore, in control parameter space regions of high utility are identified which improve the accuracy of the scaling law. This approach is not restricted to the presented example only, but can also be extended to non-linear models.

  9. Large N critical exponents for the chiral Heisenberg Gross-Neveu universality class

    OpenAIRE

    Gracey, J. A.

    2018-01-01

    We compute the large N critical exponents η, ηϕ and 1/ν in d dimensions in the chiral Heisenberg Gross-Neveu model to several orders in powers of 1/N. For instance, the large N conformal bootstrap method is used to determine η at O(1/N3) while the other exponents are computed to O(1/N2). Estimates of the exponents for a phase transition in graphene are given which are shown to be commensurate with other approaches. In particular the behavior of the exponents in 2

  10. Glass-crystal transformation under non-isothermal conditions: Kinetic analysis of the Ag{sub 0.16}As{sub 0.38}Se{sub 0.46} glassy alloy by using a new theoretical method based on nucleation and growth processes, which depend on time as a power law

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, J., E-mail: jose.vazquez@uca.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Cadiz, Apartado 40, 11510, Puerto Real (Cadiz) (Spain); Cardenas-Leal, J.L.; Garcia-G Barreda, D.; Gonzalez-Palma, R.; Lopez-Alemany, P.L.; Villares, P. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Cadiz, Apartado 40, 11510, Puerto Real (Cadiz) (Spain)

    2010-11-01

    A theoretical method, which we have published in two previous works, has been applied to the study of the glass-crystal transformation of the Ag{sub 0.16}As{sub 0.38}Se{sub 0.46} semiconductor glass under non-isothermal conditions. This method allows one to obtain an evolution equation with temperature for the actual volume fraction, to calculate the kinetic parameters of the quoted transformation, to establish the thermal process type, to determine the dimensionality of the crystal growth and to evaluate the exponents of the power laws of the time-dependence both for the nucleation frequency and for the crystal growth rate in non-isothermal transformations. The quoted method assumes the concept of extended volume of the transformed material, the condition of randomly located nuclei and the supposition of mutual interference of regions growing from separated nuclei, considering moreover the case presented in the practice of a kinetic exponent with a value larger than 4. To study the quoted case it is proposed that both the nucleation frequency and the crystal growth rate depend on time as a power law. The above-mentioned Ag{sub 0.16}As{sub 0.38}Se{sub 0.46} glassy alloy presents two exothermic peaks. The second peak gives for the kinetic exponent a value large enough than 4 and it is necessary to resort to the hypotheses of the considered method to justify the unexpectedly high value of the kinetic exponent. Following the quoted method it has been found that the thermal process type is continuous nucleation with three-dimensional growth for the two peaks of crystallization of the studied alloy. Moreover, the experimental curve of the transformed fraction shows a satisfactory agreement with the theoretical curve corresponding to the considered method, confirming the reliability of the quoted method in order to analyze the transformation kinetics of the above-mentioned alloy.

  11. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-11-21

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  12. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    International Nuclear Information System (INIS)

    Durand, O.; Soulard, L.

    2013-01-01

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10 8 atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle

  13. Exploring the effect of power law social popularity on language evolution.

    Science.gov (United States)

    Gong, Tao; Shuai, Lan

    2014-01-01

    We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.

  14. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    International Nuclear Information System (INIS)

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  15. Steinmetz law in iron–phenolformaldehyde resin soft magnetic composites

    International Nuclear Information System (INIS)

    Kollár, Peter; Vojtek, Vladimír; Birčáková, Zuzana; Füzer, Ján; Fáberová, Mária; Bureš, Radovan

    2014-01-01

    The validity of Steinmetz law describing the dc energy losses as a function of maximum induction has been investigated for iron based soft magnetic composites (SMCs) up to 1.4 T with the effort to find a physical meaning of the coefficients in Steinmetz law. In the Rayleigh region the coefficients were expressed mathematically using the Rayleigh law. Further the “range of validity of Steinmetz law” was found to be from 0.3 T to 1.2 T. The typical “straight” shape of hysteresis loops of SMCs at lower maximum induction was approximated by linear functions in order to express the dc losses in form of Steinmetz law. - Highlights: • The exponent x in Steinmetz law in Rayleigh region for Fe-based SMC is equal to 3. • The validity of Steinmetz law is from 0.3 T to 1.2 T with exponent x=1.5. • The straight shape of hysteresis loop is approximated by linear functions. • This approximation provides the relation for dc losses in form of Steinmetz law

  16. Regulatory Powers in Public Procurement Law of Peruvian Administrative Agencies

    Directory of Open Access Journals (Sweden)

    Juan Carlos Morón Urbina

    2017-12-01

    Full Text Available Peruvian law has explicitly recognized regulatory powers to administrative agencies, which allows them to have a preponderant role in the production of rules in public procurement. Although these delegations of legislative authority are positively defined, distortions in the system of legal sources arise when agencies exceed delegated powers or when measures issued by administrative entities are mistaken for regulations. This paper aims to identify regulatory powers of Peruvian administrative agencies, as well as the regulatory measures they issue, and their relation with other sources of law.

  17. Phase Transitions, Geometrothermodynamics, and Critical Exponents of Black Holes with Conformal Anomaly

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2014-01-01

    Full Text Available We investigate the phase transitions of black holes with conformal anomaly in canonical ensemble. Some interesting and novel phase transition phenomena have been discovered. It is shown that there are striking differences in both Hawking temperature and phase structure between black holes with conformal anomaly and those without it. Moreover, we probe in detail the dependence of phase transitions on the choice of parameters. The results show that black holes with conformal anomaly have much richer phase structure than those without it. There would be two, only one, or no phase transition points depending on the parameters. The corresponding parameter regions are derived both numerically and graphically. Geometrothermodynamics are built up to examine the phase structure we have discovered. It is shown that Legendre invariant thermodynamic scalar curvature diverges exactly where the specific heat diverges. Furthermore, critical behaviors are investigated by calculating the relevant critical exponents. And we prove that these critical exponents satisfy the thermodynamic scaling laws.

  18. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    Science.gov (United States)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  19. The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-01-01

    Full Text Available The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric of the human body’s standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers. Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent was calculated. Finally, the results of the proposed approach were analysed and compared with the traditional method, for which the largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions can be obtained. The multivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-closed conditions. The MLLE value reflects the overall coordination between multisegment movements. Individuals of different ages can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age.

  20. Transport coefficients in Lorentz plasmas with the power-law kappa-distribution

    International Nuclear Information System (INIS)

    Jiulin, Du

    2013-01-01

    Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution

  1. Power law scaling in synchronization of brain signals depends on cognitive load

    Directory of Open Access Journals (Sweden)

    Jose Luis ePerez Velazquez

    2014-05-01

    Full Text Available As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task. There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa, which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviours.

  2. A NEW METHOD FOR OBTAINING THE STAR FORMATION LAW IN GALAXIES

    International Nuclear Information System (INIS)

    Heiner, Jonathan S.; Allen, Ronald J.; Van der Kruit, Pieter C.

    2010-01-01

    We present a new observational method to evaluate the exponent of the star formation law as initially formulated by Schmidt, i.e., the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density present there. Total volume densities in the gas clouds surrounding an OB association are determined with a simple model which considers the atomic hydrogen as a photodissociation product on the cloud surfaces. The photodissociating photon flux incident on the cloud is computed from the far-UV luminosity of the OB association and the geometry. As an example, we have applied this 'PDR Method' to a sample of star-forming regions in M33 using Very Large Array (VLA) 21 cm data for the H I and Galaxy Evolution Explorer (GALEX) imagery in the far-UV. With these two observables, our approach provides an estimate of the total volume density of hydrogen (atomic + molecular) in the gas clouds surrounding the young star cluster. A graph in logarithmic coordinates of the cluster UV luminosity versus the total density in the surrounding gas provides a direct measure of the exponent of the star formation law. However, we show that this plot is severely affected by observational selection, which renders large areas of the diagram inaccessible to the data. An ordinary least-squares regression fit to a straight line, therefore, gives a strongly biased result. In the present case, the slope of such a fit primarily reflects the boundary defined when the 21 cm line becomes optically thick and is no longer a reliable measure of the H I column density. We use a maximum likelihood statistical approach which can deal with truncated and skewed data, and also takes account of the large uncertainties in the total gas densities which we derive. The exponent we obtain for the Schmidt law in M33 is 1.4 ± 0.2.

  3. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  4. Power-law to Power-law Mapping of Blazar Spectra from Intergalactic Absorption

    International Nuclear Information System (INIS)

    Stecker, F W; Scully, S T

    2007-01-01

    We have derived a useful analytic approximation for determining the effect of intergalactic absorption on the γ-ray spectra of TeV blazars the energy range 0.2 TeV γ γ ) is approximately logarithmic. The effect of this energy dependence is to steepen intrinsic source spectra such that a source with an approximate power-law spectral index Γ s is converted to one with an observed spectral index Γ o ≅ Γ s + ΔΓ(z) where ΔΓ(z) is a linear function of z in the redshift range 0.05-0.4. We apply this approximation to the spectra of 7 TeV blazars

  5. Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better

    Science.gov (United States)

    Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal

    2018-06-01

    Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.

  6. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  7. Nuclear multifragmentation critical exponents

    International Nuclear Information System (INIS)

    Bauer, W.; Friedman, W.A.; Univ. of Wisconsin, Madison, WI

    1995-01-01

    In a recent Letter, cited in a reference, the EoS collaboration presented data of fragmentation of 1 A GeV gold nuclei incident on carbon. By analyzing moments of the fragment charge distribution, the authors claim to determine the values of the critical exponents γ, β, and τ for finite nuclei. These data represent a crucial step forward in the understanding of the physics of nuclear fragmentation. However, as shown in this paper, the analysis presented in the cited reference is not sufficient to support the claim that the critical exponents for nuclear fragmentation have been unambiguously determined

  8. Zipf exponent of trajectory distribution in the hidden Markov model

    Science.gov (United States)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  9. Zipf exponent of trajectory distribution in the hidden Markov model

    International Nuclear Information System (INIS)

    Bochkarev, V V; Lerner, E Yu

    2014-01-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different

  10. Pascal (Yang Hui) triangles and power laws in the logistic map

    International Nuclear Information System (INIS)

    Velarde, Carlos; Robledo, Alberto

    2015-01-01

    We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic-band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties. (paper)

  11. determination of the power law exponent for southern highlands

    African Journals Online (AJOL)

    Mgina

    site located in the southern highland zone of Tanzania, was established using wind speeds measured at heights ... distribution, turbulence and wind gusts at the ... mathematical models, which normally .... other locations that have similar wind.

  12. Diophantine exponents for mildly restricted approximation

    DEFF Research Database (Denmark)

    Bugeaud, Yann; Kristensen, Simon

    We are studying the Diophantine exponent defined for integers and a vector by letting , where is the scalar product and denotes the distance to the nearest integer and is the generalised cone consisting of all vectors with the height attained among the first coordinates. We show that the exponent...

  13. Quantum quench of Kondo correlations in optical absorption.

    Science.gov (United States)

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  14. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    1996-07-07

    We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

  15. Ulam method and fractal Weyl law for Perron-Frobenius operators

    Science.gov (United States)

    Ermann, L.; Shepelyansky, D. L.

    2010-06-01

    We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.

  16. Energy consumption reduction in existing HVAC-R systems via a power law controlling kit

    International Nuclear Information System (INIS)

    Pinnola, C.F.; Vargas, J.V.C.; Buiar, C.L.; Ordonez, J.C.

    2015-01-01

    This paper presents an alternative solution for reducing energy consumption in heating, ventilation, air conditioning and refrigeration (HVAC-R) systems. For that, an existing typical commercial refrigeration system was equipped with a novel control system based on a power law, using a frequency inverter and a programmable logic controller (PLC). Hence, it was possible to compare the operation and energy consumption of the system with the power law control and with the on-off system, quantifying the obtained gains. The experimental unit consisted of a cooling chamber, an enclosing chamber (antechamber), and a vapor compression refrigeration system, i.e., an example of a practical commercial cooling system. A set of graphs shows the experimental measurements performed with the two systems. In this way, the measured temperatures in some selected points of the two systems, as well as the consumption in kWh for a period of 6 h and 10 min were compared in the tests. The main conclusions of this work are: i) The system operating with the power law control with respect to the conventional on-off control, showed energy consumption savings of up to 31% in a test period of 6 h and 10 min, and ii) The system compressor cycling frequency in the system operating with the power law control is smaller than with the traditional on-off system. Therefore, the study shows that the developed power law control kit has potential to be installed in any existing system with immediate significant energy savings with no need for HVAC-R hardware changes. - Highlights: • An energy consumption reduction strategy for HVAC-R systems is presented. • Power law and on-off control actions are experimentally compared. • Energy savings of 31% were obtained with power law control. • Compressor cycling frequency is smaller with power law control. • Power law control kit has potential to be installed in any existing system

  17. Merit exponents and control area diagrams in materials selection

    International Nuclear Information System (INIS)

    Zander, Johan; Sandstroem, Rolf

    2011-01-01

    Highlights: → Merit exponents are introduced to generalise the merit indices commonly used in materials selection. → The merit exponents can rank materials in general design situations. → To allow identification of the active merit exponent(s), control area diagrams are used. → Principles for generating the control area diagrams are presented. -- Abstract: Merit indices play a fundamental role in materials selection, since they enable ranking of materials. However, the conventional formulation of merit indices is associated with severe limitations. They are dependent on the explicit solution of the variables in the equations for the constraints from the design criteria. Furthermore, it is not always easy to determine which the controlling merit index is. To enable the ranking of materials in more general design cases, merit exponents are introduced as generalisations of the merit indices. Procedures are presented for how to compute the merit exponents numerically without having to solve equations algebraically. Merit exponents (and indices) are only valid in a certain range of property values. To simplify the identification of the controlling merit exponent, it is suggested that so called control area diagrams are used. These diagrams consist of a number of domains, each showing the active constraints and the controlling merit exponent. It is shown that the merit exponents play a crucial role when the control area diagram (CAD) is set up. The principles in the paper are developed for mechanically loaded components and are illustrated for engineering beams with two or three geometric variables.

  18. Proposed law concerning the phase-out of nuclear power

    International Nuclear Information System (INIS)

    1997-01-01

    This Government bill that will be presented to the Swedish Parliament, gives the Government the right to revoke the licence of operating a nuclear power plant at a certain time. The operator is given the right to a financial compensation when the licence is revoked, in line with the rules in the expropriation laws. Safety aspects of operation of nuclear installations are not regulated in this law, i.e. the law can not be used when the operating licence is revoked due to safety reasons

  19. Poissonian renormalizations, exponentials, and power laws.

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  20. Degree distribution in discrete case

    International Nuclear Information System (INIS)

    Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

    2011-01-01

    Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

  1. Evaluation of 'period-generated' control laws for the time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1988-01-01

    Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors

  2. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    International Nuclear Information System (INIS)

    Mota, David F.; Winther, Hans A.

    2011-01-01

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.

  3. Constraints on the tensor-to-scalar ratio for non-power-law models

    International Nuclear Information System (INIS)

    Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M.P.

    2013-01-01

    Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby and Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: r LD = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys

  4. Degree distribution of shortest path trees and bias of network sampling algorithms

    NARCIS (Netherlands)

    Bhamidi, S.; Goodman, J.A.; Hofstad, van der R.W.; Komjáthy, J.

    2013-01-01

    In this article, we explicitly derive the limiting distribution of the degree distribution of the shortest path tree from a single source on various random network models with edge weights. We determine the power-law exponent of the degree distribution of this tree and compare it to the degree

  5. Finite-time braiding exponents

    Science.gov (United States)

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  6. Empirical Scaling Laws of Neutral Beam Injection Power in HL-2A Tokamak

    International Nuclear Information System (INIS)

    Cao Jian-Yong; Wei Hui-Ling; Liu He; Yang Xian-Fu; Zou Gui-Qing; Yu Li-Ming; Li Qing; Luo Cui-Wen; Pan Yu-Dong; Jiang Shao-Feng; Lei Guang-Jiu; Li Bo; Rao Jun; Duan Xu-Ru

    2015-01-01

    We present an experimental method to obtain neutral beam injection (NBI) power scaling laws with operating parameters of the NBI system on HL-2A, including the beam divergence angle, the beam power transmission efficiency, the neutralization efficiency and so on. With the empirical scaling laws, the estimating power can be obtained in every shot of experiment on time, therefore the important parameters such as the energy confinement time can be obtained precisely. The simulation results by the tokamak simulation code (TSC) show that the evolution of the plasma parameters is in good agreement with the experimental results by using the NBI power from the empirical scaling law. (paper)

  7. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    Science.gov (United States)

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  8. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  9. Fluctuation scaling, Taylor's law, and crime.

    Directory of Open Access Journals (Sweden)

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  10. Fluctuation scaling, Taylor's law, and crime.

    Science.gov (United States)

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  11. A common mode of origin of power laws in models of market and earthquake

    Science.gov (United States)

    Bhattacharyya, Pratip; Chatterjee, Arnab; Chakrabarti, Bikas K.

    2007-07-01

    We show that there is a common mode of origin for the power laws observed in two different models: (i) the Pareto law for the distribution of money among the agents with random-saving propensities in an ideal gas-like market model and (ii) the Gutenberg-Richter law for the distribution of overlaps in a fractal-overlap model for earthquakes. We find that the power laws appear as the asymptotic forms of ever-widening log-normal distributions for the agents’ money and the overlap magnitude, respectively. The identification of the generic origin of the power laws helps in better understanding and in developing generalized views of phenomena in such diverse areas as economics and geophysics.

  12. Classical orbits in power-law potentials

    International Nuclear Information System (INIS)

    Grant, A.K.; Rosner, J.L.

    1994-01-01

    The motion of bodies in power-law potentials of the form V(r)=λr α has been of interest ever since the time of Newton and Hooke. Aspects of the relation between powers α and bar α, where (α+2)(bar α+2)=4, are derived for classical motion and the relation to the quantum-mechanical problem is given. An improvement on a previous expression for the WKB quantization condition for nonzero orbital angular momenta is obtained. Relations with previous treatments, such as those of Newton, Bertrand, Bohlin, Faure, and Arnold, are noted, and a brief survey of the literature on the problem over more than three centuries is given

  13. Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model

    Directory of Open Access Journals (Sweden)

    Stryczek Stanislaw

    2004-09-01

    Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.

  14. Electrohydrodynamic stability of two stratified power law liquid in couette flow

    International Nuclear Information System (INIS)

    Eldabe, N.T.

    1988-01-01

    Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated

  15. Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)

    2016-02-15

    The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.

  16. Poissonian renormalizations, exponentials, and power laws

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  17. POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING

    Energy Technology Data Exchange (ETDEWEB)

    Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Viero, Marco [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Devlin, Mark J.; Reese, Erik D. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Halpern, Mark; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hlozek, Renee; Marriage, Tobias A.; Spergel, David N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); Wollack, Edward [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2012-06-20

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  18. Social architecture and the emergence of power laws in online social games

    OpenAIRE

    Kirman, Ben; Collovà, Francesco; Davide, Fabrizio; Ferrari, Eva; Freeman, Jonathan; Lawson, Shaun; Linehan, Conor; Ravaja, Niklas

    2011-01-01

    This paper explores the concept of the “social architecture” of games, and tests the theory that it is possible to analyse game mechanics based on the effect they have on the social behaviour of the players. Using tools from Social Network Analysis, these studies confirm that social activity in games reliably follows a power distribution: a few players are responsible for a disproportionate amount of social interactions. Based on this, the scaling exponent is highlighted as a simple measur...

  19. Relation of the second law of thermodynamics to the power conversion of energy fluctuations

    International Nuclear Information System (INIS)

    Yater, J.C.

    1979-01-01

    The relation of the second law of thermodynamics to the power conversion of fluctuation energy is analyzed using the master equation of the model for the conversion circuit. The performance equation for independent particles shows that the power-conversion performance is given by the second law both for classical and quantum-effect diodes. The relation of the second law to power-conversion models based on the theoretical and experimental results for diode performance for interacting particles exhibiting many-body, multiparticle, or other anomalous and excess-current effects is examined. The performance equations are derived from the master equation for models for interacting particles to determine the conditions required by the second law for power conversion. These conditions are given in terms of the distribution throughout the power-conversion circuit for all the parameters that determine the particle and multiparticle barrier-crossing probability such as the effective mass and spectral density functions. Circuits for spectroscopic measurements for power-conversion circuits with interacting particles are noted. Using selected experimental values for the diode nonlinearity factors in these circuits, open circuit voltages are computed that are not predicted by the second law of thermodynamics

  20. Dynamics of a map with a power-law tail

    International Nuclear Information System (INIS)

    Botella-Soler, V; Ros, J; Oteo, J A

    2009-01-01

    We analyze a one-dimensional piecewise continuous discrete model proposed originally in studies on population ecology. The map is composed of a linear part and a power-law decreasing piece, and has three parameters. The system presents both regular and chaotic behavior. We study numerically and, in part, analytically different bifurcation structures. Particularly interesting is the description of the abrupt order-to-chaos transition mediated by an attractor made of an infinite number of limit cycles with only a finite number of different periods. It is shown that the power-law piece in the map is at the origin of this type of bifurcation. The system exhibits interior crises and crisis-induced intermittency.

  1. Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent

    International Nuclear Information System (INIS)

    Zhikov, Vasilii V; Pastukhova, Svetlana E

    2008-01-01

    Elliptic equations of p(x)-Laplacian type are investigated. There is a well-known logarithmic condition on the modulus of continuity of the nonlinearity exponent p(x), which ensures that a Laplacian with variable order of nonlinearity inherits many properties of the usual p-Laplacian of constant order. One of these is the so-called improved integrability of the gradient of the solution. It is proved in this paper that this property holds also under a slightly more general condition on the exponent p(x), although then the improvement of integrability is logarithmic rather than power-like. The method put forward is based on a new generalization of Gehring's lemma, which relies upon the reverse Hoelder inequality 'with increased support and exponent on the right-hand side'. A counterexample is constructed that reveals the extent to which the condition on the modulus of continuity obtained is sharp. Bibliography: 28 titles.

  2. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material

    Directory of Open Access Journals (Sweden)

    Shengwang Hao

    2017-05-01

    Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  3. Characterizing and predicting the robustness of power-law networks

    International Nuclear Information System (INIS)

    LaRocca, Sarah; Guikema, Seth D.

    2015-01-01

    Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-generated power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells. - Highlights: • Examine relationship between network topology and robustness to failures. • Relationship is statistically significant for scale-free networks. • Use statistical models to estimate robustness to failures for real-world networks

  4. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  5. The power of law : Spinoza’s contribution to legal theory

    NARCIS (Netherlands)

    Gribnau, J.L.M.

    1995-01-01

    Spinoza’s legal theoretical ideas are based on psychological and sociological regularities in human behaviour of knowledge. His naturalistic and descriptive approach of the relationship between law and power shows that the exercise of state power on that basis - within the constitutional constraints

  6. The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics: An Approach Through Lyapunov Exponents

    Science.gov (United States)

    Benettin, G.; Pasquali, S.; Ponno, A.

    2018-05-01

    FPU models, in dimension one, are perturbations either of the linear model or of the Toda model; perturbations of the linear model include the usual β -model, perturbations of Toda include the usual α +β model. In this paper we explore and compare two families, or hierarchies, of FPU models, closer and closer to either the linear or the Toda model, by computing numerically, for each model, the maximal Lyapunov exponent χ . More precisely, we consider statistically typical trajectories and study the asymptotics of χ for large N (the number of particles) and small ɛ (the specific energy E / N), and find, for all models, asymptotic power laws χ ˜eq Cɛ ^a, C and a depending on the model. The asymptotics turns out to be, in general, rather slow, and producing accurate results requires a great computational effort. We also revisit and extend the analytic computation of χ introduced by Casetti, Livi and Pettini, originally formulated for the β -model. With great evidence the theory extends successfully to all models of the linear hierarchy, but not to models close to Toda.

  7. Power Laws, Scale-Free Networks and Genome Biology

    CERN Document Server

    Koonin, Eugene V; Karev, Georgy P

    2006-01-01

    Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...

  8. Judicial law-making: Unlocking the creative powers of judges in ...

    African Journals Online (AJOL)

    ... the creative powers of judges in terms of Section 39(2) of the constitution. ... that judges do indeed have a law-making function in the process of interpretation. ... The article examines the extent to which the judiciary can use this power in a ...

  9. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  10. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    International Nuclear Information System (INIS)

    Sibatov, R T

    2011-01-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  11. Indian English Evolution and Focusing Visible Through Power Laws

    Directory of Open Access Journals (Sweden)

    Vineeta Chand

    2017-11-01

    Full Text Available New dialect emergence and focusing in language contact settings is difficult to capture and date in terms of global structural dialect stabilization. This paper explores whether diachronic power law frequency distributions can provide evidence of dialect evolution and new dialect focusing, by considering the quantitative frequency characteristics of three diachronic Indian English (IE corpora (1970s–2008. The results demonstrate that IE consistently follows power law frequency distributions and the corpora are each best fit by Mandelbrot’s Law. Diachronic changes in the constants are interpreted as evidence of lexical and syntactic collocational focusing within the process of new dialect formation. Evidence of new dialect focusing is also visible through apparent time comparison of spoken and written data. Age and gender-separated sub-corpora of the most recent corpus show minimal deviation, providing apparent time evidence for emerging IE dialect stability. From these findings, we extend the interpretation of diachronic changes in the β coefficient—as indicative of changes in the degree of synthetic/analytic structure—so that β is also sensitive to grammaticalization and changes in collocational patterns.

  12. On the dynamics of the power law inflation due to an exponential potential

    International Nuclear Information System (INIS)

    Yokohama, Jun'ichi; Maeda, Kei-ichi; Tokyo Univ.

    1988-01-01

    The power law inflationary universe model induced by a scalar field with an exponential potential is studied. A dissipation term due to particle creation is introduced in the inflation's classical equation of motion. It is shown that the power index of the inflation increases prominently with an adequate viscosity. Consequently, even in theories with a rather steep exponential such as some supergravity or superstring models, it turns out that a 'realistic' power law inflation (with a power index p> or approx.10) is possible. (orig.)

  13. Barkhausen effect in a garnet film studied by ballistic hall micromagnetometry

    International Nuclear Information System (INIS)

    Christian, D A; Novoselov, K S; Geim, A K

    2005-01-01

    The movement of a micrometer-size section of a single domain wall in a uniaxial garnet film was studied using a ballistic Hall micromagnetometer at 77 K and 4.2 K. The wall propagated in characteristic Barkhausen jumps, with the jump size distribution following the power-law relation, P(S) ∝ S -τ . The scaling exponent, τ, was measured as 1.14 ± 0.05 at both temperatures. This is the first measurement of this exponent using such a device, and the first for a single wall in a two-dimensional sample with a low concentration of pinning centres, in which the magnetization of the sample is perpendicular to the surface

  14. The frequency-domain relaxation response of gallium doped Cd{sub 1-x}Mn{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    Trzmiel, Justyna; Weron, Karina [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jurlewicz, Agnieszka [Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2010-03-10

    In this paper the complex dielectric permittivity of gallium doped Cd{sub 0.99}Mn{sub 0.01}Te mixed crystals is studied at different temperatures. We observe a two-power-law relaxation pattern with m and n, the low- and high-frequency power-law exponents respectively, satisfying the relation m < 1 - n. To interpret the empirical result we propose a correlated-cluster relaxation mechanism. This approach allows us to find origins of both power-law exponents, m and n.

  15. Single-particle density matrix and superfluidity in the two-dimensional Bose Coulomb fluid

    International Nuclear Information System (INIS)

    Minguzzi, A.; Tosi, M.P.; Davoudi, B.

    2002-01-01

    A study by Magro and Ceperley [Phys. Rev. Lett. 73, 826 (1994)] has shown that the ground state of the two-dimensional fluid of charged bosons with logarithmic interactions is not Bose condensed, but exhibits algebraic off-diagonal order in the single-particle density matrix ρ(r). We use a hydrodynamic Hamiltonian expressed in terms of density and phase operators, in combination with an f-sum rule on the superfluid fraction, to reproduce these results and to extend the evaluation of the density matrix to finite temperature T. This approach allows us to treat the liquid as a superfluid in the absence of a condensate. The algebraic decay of the one-body density matrix is due to correlations between phase fluctuations, and we find that the exponent in the power law is determined by the superfluid density n s (T). We also find that the plasmon gap in the single-particle energy spectrum at long wavelengths decreases with increasing T and closes at the critical temperature for the onset of superfluidity

  16. Non-universal spreading exponents in a catalytic reaction model

    International Nuclear Information System (INIS)

    De Andrade, Marcelo F; Figueiredo, W

    2011-01-01

    We investigated the dependence of the spreading critical exponents and the ultimate survival probability exponent on the initial configuration of a nonequilibrium catalytic reaction model. The model considers the competitive reactions between two different monomers, A and B, where we take into account the energy couplings between nearest neighbor monomers, and the adsorption energies, as well as the temperature T of the catalyst. For each value of T the model shows distinct absorbing states, with different concentrations of the two monomers. Employing an epidemic analysis, we established the behavior of the spreading exponents as we started the Monte Carlo simulations with different concentrations of the monomers. The exponents were determined as a function of the initial concentration ρ A, ini of A monomers. We have also considered initial configurations with correlations for a fixed concentration of A monomers. From the determination of three spreading exponents, and the ultimate survival probability exponent, we checked the validity of the generalized hyperscaling relation for a continuous set of initial states, random and correlated, which are dependent on the temperature of the catalyst

  17. Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2016-11-01

    Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.

  18. Multiscale Lyapunov exponent for 2-microlocal functions

    International Nuclear Information System (INIS)

    Dhifaoui, Zouhaier; Kortas, Hedi; Ammou, Samir Ben

    2009-01-01

    The Lyapunov exponent is an important indicator of chaotic dynamics. Using wavelet analysis, we define a multiscale representation of this exponent which we demonstrate the scale-wise dependence for functions belonging to C x 0 s,s ' spaces. An empirical study involving simulated processes and financial time series corroborates the theoretical findings.

  19. Preinflationary dynamics in loop quantum cosmology: Power-law potentials

    Science.gov (United States)

    Shahalam, M.; Sharma, Manabendra; Wu, Qiang; Wang, Anzhong

    2017-12-01

    In this paper, we study the preinflationary dynamics for the power-law potential [V (ϕ )∝ϕn] with n consideration and compare our results with the ones obtained previously for different potentials.

  20. The Critical Exponent is Computable for Automatic Sequences

    Directory of Open Access Journals (Sweden)

    Jeffrey Shallit

    2011-08-01

    Full Text Available The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. This generalizes or recovers previous results of Krieger and others. Our technique is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.

  1. An application of statistical adjustment of data to the energetic solar cosmic ray increase of August 7, 1972

    International Nuclear Information System (INIS)

    Komori, H.

    1975-01-01

    Data of five minute intervals of the neutron intensity from twelve cosmic ray stations were utilized for this application. Five source parameters; amplitude a, latitude lambdasub(s), longitude PHIsub(s), power law exponent γ in spectral representation and power law exponent n of angular spread have been determined by the least-square method of Deming. (orig./WBU) [de

  2. Energy law. The legal boundary conditions of power supply. 2. rev. ed.

    International Nuclear Information System (INIS)

    Stuhlmacher, Gerd; Stappert, Holger; Jansen, Guido

    2015-01-01

    Now appearing in its second edition, this book presents a comprehensive overview of the legal framework governing the energy sector. It provides readily understandable coverage, across the relevant subfields of law, of the legal regulations applicable to any manner of activity in the energy sector along with a wealth of practical advice on the interpretation and application of legal provisions. The content has been thoroughly revised, updated to reflect the current status of legislation and supplemented with numerous chapters. The 2014 amendment of the Renewable Energy Law (EEG) and its practical impact have also been taken into account. The following topics are covered amongst others: unbundling of network operation; connection and access to networks and metering; network charges and incentive regulation; easement contracts; energy supply and basic services; energy and electricity taxes; cartel law, law on operating aids, procurement law; energy trade OTC and at exchanges; energy trade surveillance law; fuel production and fracking; conventional and nuclear power production; renewable energy production (including offshore production); energy storage and power-to-gas; transmission line construction; climate protection (including the 2014 EEG, emission trade and the Law on the Promotion of Renewable Energy in the Heat Sector); cogeneration law, district heating and contracting; and investment protection.

  3. A Dual Power Law Distribution for the Stellar Initial Mass Function

    Science.gov (United States)

    Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett

    2018-05-01

    We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.

  4. Lyapunov exponents and smooth ergodic theory

    CERN Document Server

    Barreira, Luis

    2001-01-01

    This book is a systematic introduction to smooth ergodic theory. The topics discussed include the general (abstract) theory of Lyapunov exponents and its applications to the stability theory of differential equations, stable manifold theory, absolute continuity, and the ergodic theory of dynamical systems with nonzero Lyapunov exponents (including geodesic flows). The authors consider several non-trivial examples of dynamical systems with nonzero Lyapunov exponents to illustrate some basic methods and ideas of the theory. This book is self-contained. The reader needs a basic knowledge of real analysis, measure theory, differential equations, and topology. The authors present basic concepts of smooth ergodic theory and provide complete proofs of the main results. They also state some more advanced results to give readers a broader view of smooth ergodic theory. This volume may be used by those nonexperts who wish to become familiar with the field.

  5. Using Power-Law Degree Distribution to Accelerate PageRank

    Directory of Open Access Journals (Sweden)

    Zhaoyan Jin

    2012-12-01

    Full Text Available The PageRank vector of a network is very important, for it can reflect the importance of a Web page in the World Wide Web, or of a people in a social network. However, with the growth of the World Wide Web and social networks, it needs more and more time to compute the PageRank vector of a network. In many real-world applications, the degree and PageRank distributions of these complex networks conform to the Power-Law distribution. This paper utilizes the degree distribution of a network to initialize its PageRank vector, and presents a Power-Law degree distribution accelerating algorithm of PageRank computation. Experiments on four real-world datasets show that the proposed algorithm converges more quickly than the original PageRank algorithm.

  6. Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth.

    Science.gov (United States)

    Clercx, H J H; van Heijst, G J F; Zoeteweij, M L

    2003-06-01

    The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated enstrophy Omega(0)(t)=Omega(t)e(2lambda t), with Omega(t) the total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratio Omega(t)/E(t), which is considered as a measure of the characteristic length scale in the flow, for different values of lambda. The numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction independent power-law exponents for E0(t), Omega(0)(t), and Omega(t)/E(t). By applying a discrete wavelet packet transform technique to the numerical data, we have been able to compute the power-law exponents of the average number density of vortices rho(t), the average vortex radius a(t), the mean vortex separation r(t), and the averaged normalized vorticity extremum omega(ext)(t)/square root E(t). These decay exponents proved to be independent of the bottom friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay exponents of E0(t), Omega(0)(t), Omega(t)/E(t), and omega(ext)(t)/square root E(t) are virtually independent of the fluid layer depth. The experimental data for rho(t) and a(t) are less conclusive; power-law exponents obtained for small fluid layer depths agree with those from previously reported experiments, but significantly larger power-law exponents are found for experiments with larger fluid layer depths.

  7. Modelling bursty time series

    International Nuclear Information System (INIS)

    Vajna, Szabolcs; Kertész, János; Tóth, Bálint

    2013-01-01

    Many human-related activities show power-law decaying interevent time distribution with exponents usually varying between 1 and 2. We study a simple task-queuing model, which produces bursty time series due to the non-trivial dynamics of the task list. The model is characterized by a priority distribution as an input parameter, which describes the choice procedure from the list. We give exact results on the asymptotic behaviour of the model and we show that the interevent time distribution is power-law decaying for any kind of input distributions that remain normalizable in the infinite list limit, with exponents tunable between 1 and 2. The model satisfies a scaling law between the exponents of interevent time distribution (β) and autocorrelation function (α): α + β = 2. This law is general for renewal processes with power-law decaying interevent time distribution. We conclude that slowly decaying autocorrelation function indicates long-range dependence only if the scaling law is violated. (paper)

  8. Cryptanalysis of 'less short' RSA secret exponents

    NARCIS (Netherlands)

    Verheul, E.R.; Tilborg, van H.C.A.

    1997-01-01

    In some applications of RSA, it is desirable to have a short secret exponent d. Wiener [6], describes a technique to use continued fractions (CF) in a cryptanalytic attack on an RSA cryptosystem having a ‘short’ secret exponent. Let n=p¿·¿q be the modulus of the system. In the typical case that

  9. Lyapunov exponent for aging process in induction motor

    Science.gov (United States)

    Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat

    2012-09-01

    Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly

  10. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Science.gov (United States)

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  11. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Directory of Open Access Journals (Sweden)

    Anthony Papadopoulos

    Full Text Available The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  12. Contract law and the Digital Single Market: towards a new EU online consumer sales law?

    NARCIS (Netherlands)

    Mańko, R.

    2015-01-01

    In its Digital Single Market Strategy, unveiled in May 2015, the Commission has promised to come up with a revised proposal for a Common European Sales Law by the end of the year. More indications have been given the Commission in an Inception Impact Assessment, published in July 2015. The debate on

  13. Fractal approach towards power-law coherency to measure cross-correlations between time series

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2017-01-01

    Roč. 50, č. 1 (2017), s. 193-200 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : power- law coherency * power- law cross-correlations * correlations Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kristoufek-0473066.pdf

  14. Revision of by-laws about effluents of EdF's nuclear power plants; Revision des arretes de rejets des centrales nucleaires d'EDF

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In France, in application of the clean water law from January 3, 1992 and since the decree 95-540 from May 4, 1995, each basic nuclear facility receives a single permission which covers both its water takes and its radioactive and non-radioactive effluents. This decree, initially dedicated to new facilities has been enlarged to all existing installations for which the prefectorial by-laws have reached their date-line. Thus, up to now, five inter-ministerial by-laws have renewed the permissions of water takes and effluents evacuation of the power plants of Saint-Laurent-des-Eaux (Loir-et-Cher), Flamanville (Manche), Paluel (Seine-Maritime), Belleville (Cher) and Saint-Alban (Isere). These by-laws foresee an important abatement of the effluents and concern more particularly the tritium, {sup 14}C, the iodine isotopes and also some other non-radioactive chemical compounds. This document is a compilation of all revised by-laws about effluents and concerning the nuclear power plants listed above. (J.S.)

  15. Anisotropic power-law inflation for a conformal-violating Maxwell model

    Science.gov (United States)

    Do, Tuan Q.; Kao, W. F.

    2018-05-01

    A set of power-law solutions of a conformal-violating Maxwell model with a non-standard scalar-vector coupling will be shown in this paper. In particular, we are interested in a coupling term of the form X^{2n} F^{μ ν }F_{μ ν } with X denoting the kinetic term of the scalar field. Stability analysis indicates that the new set of anisotropic power-law solutions is unstable during the inflationary phase. The result is consistent with the cosmic no-hair conjecture. We show, however, that a set of stable slowly expanding solutions does exist for a small range of parameters λ and n. Hence a small anisotropy can survive during the slowly expanding phase.

  16. Power-law connections: From Zipf to Heaps and beyond

    International Nuclear Information System (INIS)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2013-01-01

    In this paper we explore the asymptotic statistics of a general model of rank distributions in the large-ensemble limit; the construction of the general model is motivated by recent empirical studies of rank distributions. Applying Lorenzian, oligarchic, and Heapsian asymptotic analyses we establish a comprehensive set of closed-form results linking together rank distributions, probability distributions, oligarchy sizes, and innovation rates. In particular, the general results reveal the fundamental underlying connections between Zipf’s law, Pareto’s law, and Heaps’ law—three elemental empirical power-laws that are ubiquitously observed in the sciences. -- Highlights: ► The large-ensemble asymptotic statistics of rank distributions are explored. ► Lorenzian, oligarchic, and Heapsian asymptotic analyses are applied. ► Associated oligarchy sizes and induced innovation rates are analyzed. ► General elemental statistical connections are established. ► The underlying connections between Zipf’s, Pareto’s and Heaps’ laws are unveiled

  17. Tachyon with an inverse power-law potential in a braneworld cosmology

    Science.gov (United States)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  18. Power law for the duration of recession and prosperity in Latin American countries

    Science.gov (United States)

    Redelico, Francisco O.; Proto, Araceli N.; Ausloos, Marcel

    2008-11-01

    Ormerod and Mounfield [P. Ormerod, C. Mounfield, Power law distribution of duration and magnitude of recessions in capitalist economies: Breakdown of scaling, Physica A 293 (2001) 573] and Ausloos et al. [M. Ausloos, J. Mikiewicz, M. Sanglier, The durations of recession and prosperity: Does their distribution follow a power or an exponential law? Physica A 339 (2004) 548] have independently analyzed the duration of recessions for developed countries through the evolution of the GDP in different time windows. It was found that there is a power law governing the duration distribution. We have analyzed data collected from 19 Latin American countries in order to observe whether such results are valid or not for developing countries. The case of prosperity years is also discussed. We observe that the power law of recession time intervals, see Ref. [1], is valid for Latin American countries as well. Thus an interesting point is discovered: the same scaling time is found in the case of recessions for the three data sets (ca. 1 year), and this could represent a universal feature. Other time scale parameters differ significantly from each other.

  19. Isomorphs in the phase diagram of a model liquid without inverse power law repulsion

    DEFF Research Database (Denmark)

    Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.

    2012-01-01

    scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....

  20. Fractional Diffusion, Low Exponent Lévy Stable Laws, and 'Slow Motion' Denoising of Helium Ion Microscope Nanoscale Imagery.

    Science.gov (United States)

    Carasso, Alfred S; Vladár, András E

    2012-01-01

    Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.

  1. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    Science.gov (United States)

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  2. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    Science.gov (United States)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  3. The enforcement order for the law for arrangement of surrounding areas of power generating facilities

    International Nuclear Information System (INIS)

    1980-01-01

    This rule is established under the provisions of the law for the redevelopment of the surrounding areas of power generating facilities. Persons who install power generating facilities under the law include general electric power enterprises and wholesale electric power enterprises defined under the electric enterprises act and the Power Reactor and Nuclear Fuel Development Corporation. The scale of these facilities defined under the law is 350,000 kilo-watts output for atomic and thermal power generating facilities, 10,000 kilo-watts output for the facilities utilizing geothermal energy, 100,000 kilo-watts output for facilities whose main fuel is coal, and 1,000 kilo-watts output for hydraulic power generating facilities, etc. The facilities closely related to atomic power generation include the reprocessing and examination facilities of fuel materials spent in atomic power reactors, the reactors installed by the Japan Atomic Energy Research Institute for studying on the safety of atomic power reactors, the experimental fast reactors and the uranium enrichment facilities established by the Power Reactor and Nuclear Fuel Development Corporation. The public facilities in this rule are those for communication, sport and recreation, environment hygiene, education and culture, medicine, social welfare, fire fighting, etc. Governors of prefectures who intend to get approval under the law shall file redevelopment plans to the competent minister through the Minister of the International Trade and Industry. (Okada, K.)

  4. First-passage exponents of multiple random walks

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2010-01-01

    We investigate first-passage statistics of an ensemble of N noninteracting random walks on a line. Starting from a configuration in which all particles are located in the positive half-line, we study S n (t), the probability that the nth rightmost particle remains in the positive half-line up to time t. This quantity decays algebraically, S n (t)∼t -β n , in the long-time limit. Interestingly, there is a family of nontrivial first-passage exponents, β 1 2 N-1 ; the only exception is the two-particle case where β 1 = 1/3. In the N → ∞ limit, however, the exponents attain a scaling form, β n (N) → β(z) with z=(n-N/2)/√N. We also demonstrate that the smallest exponent decays exponentially with N. We deduce these results from first-passage kinetics of a random walk in an N-dimensional cone and confirm them using numerical simulations. Additionally, we investigate the family of exponents that characterizes leadership statistics of multiple random walks and find that in this case, the cone provides an excellent approximation.

  5. Investigation of power law wind exponent within the lower boundary ...

    African Journals Online (AJOL)

    -storey building at the Department of Physics, Obafemi Awolowo University Ile-Ife, Nigeria (7.520 N and 4.520 E), 294 m height above mean sea level and about 20 m above the ground level has been used to study on continuous basis the ...

  6. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Science.gov (United States)

    Li, Shan; Lin, Ruokuang; Bian, Chunhua; Ma, Qianli D Y; Ivanov, Plamen Ch

    2016-01-01

    Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  7. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  8. Macro impact of the law on prevention and control of atmospheric pollution on power industry development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [State Power Corporation (China). Dept. of Science, Technology and Environment

    2001-07-01

    The newly revised and enlarged main contents of China's Law of Prevention and Control of Atmospheric Pollution, which came into force on 1 September 2000, are described. The macro impacts of the law on the power industry development are analyzed mainly in respect to power demand and readjustment of power structure and layout, clean production and pollution control level, scientific management of environmental protection, in accordance with law as well as changes of construction and operation costs. Several questions worthy to be noted in course of implementation of the new law are enumerated. 1 tab.

  9. A new exponent in self-avoiding walks

    International Nuclear Information System (INIS)

    Srivastava, V.

    1983-06-01

    Existence of a new exponent is reported in the problem of nonintersecting self-avoiding random walks. It is connected with the asymptotic behaviour of the growth of number of such walks of larger and larger length. The value of the exponent is found to be nearly 0.90 for all two-dimensional and nearly 0.96 for all three-dimensional lattices studied here. (author)

  10. A study on the sensitivity depletion laws for rhodium self-powered neutron detectors

    International Nuclear Information System (INIS)

    Kim, Gil Gon

    1999-02-01

    The rhodium self-powered neutron detectors (SPND) in a reactor core provide the operator with the on-line 3-dimensional nuclear power distribution. The signal produced by rhodium SPND is interpreted into the local neutron flux by using a sensitivity depletion law and the local neutron flux is interpreted into the local power by using a power conversion factor. This work on the sensitivity depletion laws for rhodium self-powered neutron detectors (SPND) is performed to improve the uncertainty of the sensitivity depletion law used in ABB-CE reactors employing a rhodium SPND and to develop a calculational tool for providing the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools for a time dependent neutron flux distribution in the rhodium emitter during depletion and for a time dependent beta escape probability that a beta generated in the emitter is escaped into the collector were developed. Due to the cost, the exposure to the radiation, and the longer fuel cycle, there is a strong incentive that the loading density of an in-core instrumentation is reduced and the lifetime of the detector is lengthened. These objectives can be achieved by reducing the uncertainty which is amplified as it depletes. The calculational tools above provide the sensitivity depletion law and show the reduction of the uncertainty to about 1 % in interpreting the signal into the local neutron flux compared to the method employed by ABB-CE. The reduction in the uncertainty of 1 % in interpreting the signal into the local neutron flux is equivalent to the reduction in the uncertainty of 1 % or more in interpreting the signal into the local power and to the extension of the lifetime of rhodium SPND to about 10 % as reported by ABB-CE

  11. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.

    2016-03-16

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong

  12. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  13. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  14. How Power-Laws Re-Write The Rules Of Cyber Warfare

    Directory of Open Access Journals (Sweden)

    David L. Bibighaus

    2015-12-01

    Full Text Available All warfare contains and element of randomness. This article will argue that, the kind uncertainty encountered in cyber warfare (Power-Law randomness is fundamentally different from the uncertainty the military has evolved to deal with in the physical world (Gaussian-Randomness. The article will explain the difference between these two kinds of randomness, and how cyber weapons appear to operate under Power-Law randomness. It then will show how in cyberspace, key aspects of strategic thought are based on a flaws assumption of randomness. Finally, this article shall argue that if the American military is going to be effective in cyberspace, it must re-examine the way the military assumes risk, recruits is forces, plans for war and maintains the peace.

  15. Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.

    Science.gov (United States)

    Khvorostyanov, Vitaly I.; Curry, Judith A.

    2005-12-01

    This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.

  16. Financial Law (By: Lecturer PhD Cosmin Flavius Costas)

    OpenAIRE

    Bostan, Ionel

    2018-01-01

    Through these lines we will stop on a specialty written by a young university student, an exponent of the Superior Law School in Cluj-Napoca. This is the book entitled Drept Financiar [Financial Law], published by Lecturer PhD Cosmin Flavius Costas. On the volume entitled Financial Law, which was published at the end of the year 2016 (ISBN:978-606-673-816-3, Pages: 396) we mention here a radiography "made from four perspectives - national finances, local finance, social security finances and ...

  17. Power law deformation of Wishart–Laguerre ensembles of random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Vivo, Pierpaolo

    2008-01-01

    We introduce a one-parameter deformation of the Wishart–Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1,2 and 4. Our generalized model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N × M for all three values of β, in terms of the orthogonal polynomials of the standard Wishart–Laguerre ensembles. For large N in a certain double-scaling limit we obtain a generalized Marčenko–Pastur distribution on the macroscopic scale, and a generalized Bessel law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power law tails, where the microscopic limit depends on β and the difference M−N. In the limit where our parameter governing the power law goes to infinity we recover the correlations of the Wishart–Laguerre ensembles. To illustrate these findings, the generalized Marčenko–Pastur distribution is shown to be in very good agreement with empirical data from financial covariance matrices

  18. A Note on the Invariance Properties and Conservation Laws of the Kadomstev—Petviashvili Equation with Power Law Nonlinearity

    International Nuclear Information System (INIS)

    Bokhari A H; Zaman F D; Fakhar K; Kara A H

    2011-01-01

    First, we studied the invariance properties of the Kadomstev—Petviashvili equation with power law nonlinearity. Then, we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation. The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved flows. (general)

  19. Problems and legislative remedies of the parallel law systems in Japan for nuclear power reactors

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    There are two established laws governing nuclear power reactors in Japan. One is the Electricity Utilities Industry Law, which regulates the nuclear power reactors, and the other is the so-called 'Reactor Regulation Law', which dually regulates the reactors in some phases. When a graded approach on the regulation of nuclear reactors was adopted, it extended over these two laws and was legislatively imperfect. Such imperfection created problems from the beginning. Also, the original regulatory structures presented by these laws had become obscure during the operation process of the graded regulation. The situation becomes further complicated by the revision of these laws in recent years. It appears that the trait of the regulatory procedural structure of the Electricity Utilities Industry Law has been weakened. As there is a pressing need to review the entire regulatory structure and to propose a unified regulatory system by combining these laws, this paper examines the merits and demerits of combining these laws under a unified regulation. (author)

  20. Critical exponents in nucleus breakup

    International Nuclear Information System (INIS)

    Campi, X.

    1987-01-01

    In recent years the study of cluster formation has become a new field in statistical physics. Nuclear reactions with particle number change can be viewed as a cluster formation processes. Multifragmentation decay produces a power law distribution of medium size clusters. These two cluster size distributions resemble that of many others statistical cluster formation processes. We discuss now these analogies in some details

  1. Power-law cross-correlations estimation under heavy tails

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2016-01-01

    Roč. 40, č. 1 (2016), s. 163-172 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Power-law cross-correlations * Heavy tails * Monte Carlo study Subject RIV: AH - Economics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0472030.pdf

  2. Power laws and inverse motion modelling: application to turbulence measurements from satellite images

    Directory of Open Access Journals (Sweden)

    Pablo D. Mininni

    2012-01-01

    Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.

  3. The rate coefficients of unimolecular reactions in the systems with power-law distributions

    Science.gov (United States)

    Yin, Cangtao; Guo, Ran; Du, Jiulin

    2014-08-01

    The rate coefficient formulae of unimolecular reactions are generalized to the systems with the power-law distributions based on nonextensive statistics, and the power-law rate coefficients are derived in the high and low pressure limits, respectively. The numerical analyses are made of the rate coefficients as functions of the ν-parameter, the threshold energy, the temperature and the number of degrees of freedom. We show that the new rate coefficients depend strongly on the ν-parameter different from one (thus from a Boltzmann-Gibbs distribution). Two unimolecular reactions, CH3CO→CH3+CO and CH3NC→CH3CN, are taken as application examples to calculate their power-law rate coefficients, which obtained with the ν-parameters slightly different from one can be exactly in agreement with all the experimental studies on these two reactions in the given temperature ranges.

  4. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  5. Markov switching of the electricity supply curve and power prices dynamics

    Science.gov (United States)

    Mari, Carlo; Cananà, Lucianna

    2012-02-01

    Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.

  6. Extremal dependencies and rank correlations in power law networks

    NARCIS (Netherlands)

    Volkovich, Y.; Litvak, Nelli; Zwart, B.; Jie, Z.

    2009-01-01

    We analyze dependencies in complex networks characterized by power laws (Web sample, Wikipedia sample and a preferential attachment graph) using statistical techniques from the extreme value theory and the theory of multivariate regular variation. To the best of our knowledge, this is the first

  7. Sharing Powers Within Exclusive Competences: Rethinking EU Antitrust Law Enforcement

    OpenAIRE

    Van Cleynenbreugel, Pieter

    2016-01-01

    Although the establishment of competition rules forms part of the EU’s exclusive competences, the application and enforcement of those rules has always been shared consistently between the EU and its Member States.The sharing of enforcement powers is conceptualised traditionally as a delegation of the exercise of exclusively conferred competences. The Court of Justice of the European Union’s case law in the context of EU antitrust law enforcement nevertheless raises profound questions as to t...

  8. The mean first passage time in an energy-diffusion controlled regime with power-law distributions

    International Nuclear Information System (INIS)

    Zhou, Yanjun; Du, Jiulin

    2013-01-01

    Based on the mean first passage time (MFPT) theory, we derive an expression of the MFPT in an energy-diffusion controlled regime with a power-law distribution. We discuss the finite barrier effect (i.e. the thermal energy k B T is not small with respect to the potential barrier E b ) and compare it with Kramers’ infinite barrier result both in a power-law distribution and in a Maxwell–Boltzmann distribution. It is shown that the MFPT with a power-law distribution extends Kramers’ low-damping result to a relatively low barrier. We pay attention to the energy-diffusion controlled regime, which is of great interest in the context of Josephson junctions, and study how the power-law parameter κ affects the current distribution function in experiments with Josephson junctions. (paper)

  9. The Legal Regime of Nuclear Power Satellites-A Problem at the Cross-Roads of Nuclear Law and Space Law

    International Nuclear Information System (INIS)

    Courteix, S.

    1992-01-01

    The number of nuclear-powered satellites rises constantly and, recalling the fear generated by the crash of the Cosmos 954 satellite, the author points out that radioactive debris falling on earth could represent as great a hazard as accidental releases of radioactive material from land-based nuclear installations. Such satellites, therefore, can be governed by both space law and nuclear law. On the basis of international conventions applicable in the two fields and also with reference to the Law of the Sea and environmental law, the article analyses preventive and radiation protection measures as well as emergency plans and also raises the problem of liability and compensation for damage. (NEA)

  10. How We Tend To Overestimate Powerlaw Tail Exponents

    OpenAIRE

    Nassim N. Taleb

    2012-01-01

    In the presence of a layer of metaprobabilities (from uncertainty concerning the parameters), the asymptotic tail exponent corresponds to the lowest possible tail exponent regardless of its probability. The problem explains "Black Swan" effects, i.e., why measurements tend to chronically underestimate tail contributions, rather than merely deliver imprecise but unbiased estimates.

  11. The Tail Exponent for Stock Returns in Bursa Malaysia for 2003-2008

    Science.gov (United States)

    Rusli, N. H.; Gopir, G.; Usang, M. D.

    2010-07-01

    A developed discipline of econophysics that has been introduced is exhibiting the application of mathematical tools that are usually applied to the physical models for the study of financial models. In this study, an analysis of the time series behavior of several blue chip and penny stock companies in Main Market of Bursa Malaysia has been performed. Generally, the basic quantity being used is the relative price changes or is called the stock price returns, contains daily-sampled data from the beginning of 2003 until the end of 2008, containing 1555 trading days recorded. The aim of this paper is to investigate the tail exponent in tails of the distribution for blue chip stocks and penny stocks financial returns in six years period. By using a standard regression method, it is found that the distribution performed double scaling on the log-log plot of the cumulative probability of the normalized returns. Thus we calculate α for a small scale return as well as large scale return. Based on the result obtained, it is found that the power-law behavior for the probability density functions of the stock price absolute returns P(z)˜z-α with values lying inside and outside the Lévy stable regime with values α>2. All the results were discussed in detail.

  12. Legal basis of energy economy. Collection of important laws and regulations of the amended power economy law. 7. ed.; Rechtsgrundlagen der Energiewirtschaft. Sammlung wichtiger Gesetze und Vorschriften zum novellierten Energiewirtschaftsrecht

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, B.J.; Schweers, E.

    2007-07-01

    The book under consideration is an actual collection of important laws and regulations according to the amended power economy law. It is the 7th edition and contains components of the European and national cartel law. Furthermore, the power economy law, the regulations of mains access, and the regulations of mains fee are revised editorial. The book consist of four main chapters: (a) General energy law; (b) Bylaws to energy economical laws; (c) Law of privileged energy supports; (d) cartel law.

  13. Power-law cosmic expansion in f(R) gravity models

    International Nuclear Information System (INIS)

    Goheer, Naureen; Larena, Julien; Dunsby, Peter K. S.

    2009-01-01

    We show that within the class of f(R) gravity theories, Friedmann-Lemaitre-Robertson-Walker power-law perfect fluid solutions only exist for R n gravity. This significantly restricts the set of exact cosmological solutions which have similar properties to what is found in standard general relativity.

  14. On heat transfer of weakly compressible power-law flows

    Directory of Open Access Journals (Sweden)

    Li Botong

    2017-01-01

    Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.

  15. Wilson's theory of critical phenomena. Higher order corrections to critical exponents

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1973-01-01

    The Wilson's theory of critical phenomena is presented, in the context of renormalized field theory in d dimension and of the Callan-Symanzik equations. This theory allows in particular to compute critical exponents that govern the behavior of some correlation functions near the critical temperature, as power series in epsilon=4-d, using the standard perturbation theory. Owing to the large value of the expansion parameter epsilon, whose physical value is one, it is very important to perform higher order calculations [fr

  16. The Power Laws of Violence against Women: Rescaling Research and Policies

    Science.gov (United States)

    Kappler, Karolin E.; Kaltenbrunner, Andreas

    2012-01-01

    Background Violence against Women –despite its perpetuation over centuries and its omnipresence at all social levels– entered into social consciousness and the general agenda of Social Sciences only recently, mainly thanks to feminist research, campaigns, and general social awareness. The present article analyzes in a secondary analysis of German prevalence data on Violence against Women, whether the frequency and severity of Violence against Women can be described with power laws. Principal Findings Although the investigated distributions all resemble power-law distributions, a rigorous statistical analysis accepts this hypothesis at a significance level of 0.1 only for 1 of 5 cases of the tested frequency distributions and with some restrictions for the severity of physical violence. Lowering the significance level to 0.01 leads to the acceptance of the power-law hypothesis in 2 of the 5 tested frequency distributions and as well for the severity of domestic violence. The rejections might be mainly due to the noise in the data, with biases caused by self-reporting, errors through rounding, desirability response bias, and selection bias. Conclusion Future victimological surveys should be designed explicitly to avoid these deficiencies in the data to be able to clearly answer the question whether Violence against Women follows a power-law pattern. This finding would not only have statistical implications for the processing and presentation of the data, but also groundbreaking consequences on the general understanding of Violence against Women and policy modeling, as the skewed nature of the underlying distributions makes evident that Violence against Women is a highly disparate and unequal social problem. This opens new questions for interdisciplinary research, regarding the interplay between environmental, experimental, and social factors on victimization. PMID:22768348

  17. Maximal planar networks with large clustering coefficient and power-law degree distribution

    International Nuclear Information System (INIS)

    Zhou Tao; Yan Gang; Wang Binghong

    2005-01-01

    In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called random Apollonian networks (RANs) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent γ=3 and clustering coefficient C=(46/3)-36 ln (3/2)≅0.74, which agree with the simulation results very well. We prove that the increasing tendency of average distance of RANs is a little slower than the logarithm of the number of nodes in RANs. Since most real-life networks are both scale-free and small-world networks, RANs may perform well in mimicking the reality. The RANs possess hierarchical structure as C(k)∼k -1 that are in accord with the observations of many real-life networks. In addition, we prove that RANs are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studied and the comparisons between RANs and Barabasi-Albert (BA) as well as Newman-Watts (NW) networks are shown. We find that, when the network order N (the total number of nodes) is relatively small (as N∼10 4 ), the performance of RANs under intentional attack is not sensitive to N, while that of BA networks is much affected by N. And the diseases spread slower in RANs than BA networks in the early stage of the suseptible-infected process, indicating that the large clustering coefficient may slow the spreading velocity, especially in the outbreaks

  18. Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC

    Directory of Open Access Journals (Sweden)

    A. Tzanis

    2003-01-01

    Full Text Available A region of definite accelerating seismic release rates has been identified at the SW Hellenic Arc and Trench system, of Peloponnesus, and to the south-west of the island of Kythera (Greece. The identification was made after detailed, parametric time-to-failure modelling on a 0.1° square grid over the area 20° E – 27° E and 34° N–38° N. The observations are strongly suggestive of terminal-stage critical point behaviour (critical exponent of the order of 0.25, leading to a large earthquake with magnitude 7.1 ± 0.4, to occur at time 2003.6 ± 0.6. In addition to the region of accelerating seismic release rates, an adjacent region of decelerating seismicity was also observed. The acceleration/deceleration pattern appears in such a well structured and organised manner, which is strongly suggestive of a causal relationship. An explanation may be that the observed characteristics of distributed power-law seismicity changes may be produced by stress transfer from a fault, to a region already subjected to stress inhomogeneities, i.e. a region defined by the stress field required to rupture a fault with a specified size, orientation and rake. Around a fault that is going to rupture, there are bright spots (regions of increasing stress and stress shadows (regions relaxing stress; whereas acceleration may be observed in bright spots, deceleration may be expected in the shadows. We concluded that the observed seismic release patterns can possibly be explained with a family of NE-SW oriented, left-lateral, strike-slip to oblique-slip faults, located to the SW of Kythera and Antikythera and capable of producing earthquakes with magnitudes MS ~ 7. Time-to-failure modelling and empirical analysis of earthquakes in the stress bright spots yield a critical exponent of the order 0.25 as expected from theory, and a predicted magnitude and critical time perfectly consistent with the figures given above. Although we have determined an approximate location

  19. Around power law for PageRank components in Buckley-Osthus model of web graph

    OpenAIRE

    Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil

    2017-01-01

    In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.

  20. Emergence of power-law in a market with mixed models

    Science.gov (United States)

    Ali Saif, M.; Gade, Prashant M.

    2007-10-01

    We investigate the problem of wealth distribution from the viewpoint of asset exchange. Robust nature of Pareto's law across economies, ideologies and nations suggests that this could be an outcome of trading strategies. However, the simple asset exchange models fail to reproduce this feature. A Yardsale (YS) model in which amount put on the bet is a fraction of minimum of the two players leads to condensation of wealth in hands of some agent while theft and fraud (TF) model in which the amount to be exchanged is a fraction of loser's wealth leads to an exponential distribution of wealth. We show that if we allow few agents to follow a different model than others, i.e., there are some agents following TF model while rest follow YS model, it leads to distribution with power-law tails. Similar effect is observed when one carries out transactions for a fraction of one's wealth using TF model and for the rest YS model is used. We also observe a power-law tail in wealth distribution if we allow the agents to follow either of the models with some probability.

  1. Critical behavior of the Lyapunov exponent in type-III intermittency

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Llamoza, O. [Departamento de Fisica, FACYT, Universidad de Carabobo, Valencia (Venezuela); Centro de Fisica Fundamental, Grupo de Caos y Sistemas Complejos, Universidad de Los Andes, Merida 5251, Merida (Venezuela)], E-mail: llamoza@ula.ve; Cosenza, M.G. [Centro de Fisica Fundamental, Grupo de Caos y Sistemas Complejos, Universidad de Los Andes, Merida 5251, Merida (Venezuela); Ponce, G.A. [Departamento de Fisica, Universidad Nacional Autonoma de Honduras (Honduras); Departamento de Ciencias Naturales, Universidad Pedagogica Nacional Francisco Morazan, Tegucigalpa (Honduras)

    2008-04-15

    The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent {beta} expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that {beta} varies on the interval 0 {<=} {beta} < 1/2 as a function of the order of the singularity of the map. This contrasts with earlier predictions for the scaling behavior of the Lyapunov exponent in type-III intermittency. The variation of the critical exponent {beta} implies a continuous change in the nature of the transition to chaos via type-III intermittency, from a second-order, continuous transition to a first-order, discontinuous transition.

  2. Critical behavior of the Lyapunov exponent in type-III intermittency

    International Nuclear Information System (INIS)

    Alvarez-Llamoza, O.; Cosenza, M.G.; Ponce, G.A.

    2008-01-01

    The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent β expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that β varies on the interval 0 ≤ β < 1/2 as a function of the order of the singularity of the map. This contrasts with earlier predictions for the scaling behavior of the Lyapunov exponent in type-III intermittency. The variation of the critical exponent β implies a continuous change in the nature of the transition to chaos via type-III intermittency, from a second-order, continuous transition to a first-order, discontinuous transition

  3. Two Universality Properties Associated with the Monkey Model of Zipf's Law

    Science.gov (United States)

    Perline, Richard; Perline, Ron

    2016-03-01

    The distribution of word probabilities in the monkey model of Zipf's law is associated with two universality properties: (1) the power law exponent converges strongly to $-1$ as the alphabet size increases and the letter probabilities are specified as the spacings from a random division of the unit interval for any distribution with a bounded density function on $[0,1]$; and (2), on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter probabilities is approximately normally distributed in the part of the distribution away from the tails. The first property is proved using a remarkably general limit theorem for the logarithm of sample spacings from Shao and Hahn, and the second property follows from Anscombe's central limit theorem for a random number of i.i.d. random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture distribution closely related to work in other areas.

  4. Lyapunov, attractors and exponents

    International Nuclear Information System (INIS)

    Oliveira, C.R. de.

    1987-01-01

    Based on the fundamental principles of statistical mechanics and ergodic theory a definition is given to atractor, as an invariant measure. Many results which reinforce this definition are demonstrated. Chaos is related to the presence of an atractor with entropy above zero. The role of Lyapunov exponents is analyzed. (A.C.A.S.) [pt

  5. Learning curves in highly skilled chess players: a test of the generality of the power law of practice.

    Science.gov (United States)

    Howard, Robert W

    2014-09-01

    The power law of practice holds that a power function best interrelates skill performance and amount of practice. However, the law's validity and generality are moot. Some researchers argue that it is an artifact of averaging individual exponential curves while others question whether the law generalizes to complex skills and to performance measures other than response time. The present study tested the power law's generality to development over many years of a very complex cognitive skill, chess playing, with 387 skilled participants, most of whom were grandmasters. A power or logarithmic function best fit grouped data but individuals showed much variability. An exponential function usually was the worst fit to individual data. Groups differing in chess talent were compared and a power function best fit the group curve for the more talented players while a quadratic function best fit that for the less talented. After extreme amounts of practice, a logarithmic function best fit grouped data but a quadratic function best fit most individual curves. Individual variability is great and the power law or an exponential law are not the best descriptions of individual chess skill development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  7. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  8. Power Scaling of Petroleum Field Sizes and Movie Box Office Earnings.

    Science.gov (United States)

    Haley, J. A.; Barton, C. C.

    2017-12-01

    The size-cumulative frequency distribution of petroleum fields has long been shown to be power scaling, Mandelbrot, 1963, and Barton and Scholz, 1995. The scaling exponents for petroleum field volumes range from 0.8 to 1.08 worldwide and are used to assess the size and number of undiscovered fields. The size-cumulative frequency distribution of movie box office earnings also exhibits a power scaling distribution for domestic, overseas, and worldwide gross box office earnings for the top 668 earning movies released between 1939 and 2016 (http://www.boxofficemojo.com/alltime/). Box office earnings were reported in the dollars-of-the-day and were converted to 2015 U.S. dollars using the U.S. consumer price index (CPI) for domestic and overseas earnings. Because overseas earnings are not reported by country and there is no single inflation index appropriate for all overseas countries. Adjusting the box office earnings using the CPI index has two effects on the power functions fit. The first is that the scaling exponent has a narrow range (2.3 - 2.5) between the three data sets; and second, the scatter of the data points fit by the power function is reduced. The scaling exponents for the adjusted value are; 2.3 for domestic box office earnings, 2.5 for overseas box office earnings, and 2.5 worldwide box office earnings. The smaller the scaling exponent the greater the proportion of all earnings is contributed by a smaller proportion of all the movies: where E = P (a-2)/(a-1) where E is the percentage of earnings, P is the percentage of all movies in the data set. The scaling exponents for box office earnings (2.3 - 2.5) means that approximately 20% of the top earning movies contribute 70-55% of all the earnings for domestic, worldwide earnings respectively.

  9. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.

    Science.gov (United States)

    Jiang, H; Liu, F; Meerschaert, M M; McGough, R J

    2013-01-01

    Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.

  10. Lyapunov exponents

    CERN Document Server

    Barreira, Luís

    2017-01-01

    This book offers a self-contained introduction to the theory of Lyapunov exponents and its applications, mainly in connection with hyperbolicity, ergodic theory and multifractal analysis. It discusses the foundations and some of the main results and main techniques in the area, while also highlighting selected topics of current research interest. With the exception of a few basic results from ergodic theory and the thermodynamic formalism, all the results presented include detailed proofs. The book is intended for all researchers and graduate students specializing in dynamical systems who are looking for a comprehensive overview of the foundations of the theory and a sample of its applications.

  11. Critical exponents of the transition from incoherence to partial oscillation death in the Winfree model

    International Nuclear Information System (INIS)

    Basnarkov, Lasko; Urumov, Viktor

    2009-01-01

    We consider an analytically solvable version of the Winfree model of synchronization of phase oscillators (proposed by Ariaratnam and Strogatz 2001 Phys. Rev. Lett. 86 4278). It is obtained that the transition from incoherence to a partial death state is characterized by third-order or higher phase transitions according to the Ehrenfest classification. The order of the transition depends on the shape of the distribution function for natural frequencies of oscillators in the vicinity of their lowest frequency. The corresponding critical exponents are found analytically and verified with numerical simulations of equations of motion. We also consider the generalized Winfree model with the interaction strength proportional to a power of the Kuramoto order parameter and find the domain where the critical exponent remains unchanged by this modification

  12. On the Lojasiewicz exponent at infinity of real polynomials

    International Nuclear Information System (INIS)

    Ha Huy Vui; Pham Tien Son

    2007-07-01

    Let f : R n → R be a nonconstant polynomial function. In this paper, using the information from 'the curve of tangency' of f, we provide a method to determine the Lojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Lojasiewicz exponent at infinity is finite or not. Then, we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Lojasiewicz exponent at infinity of f with the problem of computing the global optimum of f is also established. (author)

  13. Calculation of the mean force constants of the rare gases and the rectilinear law of mean force

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1977-01-01

    The mean energies, (U), and the mean force constants, (nabla 2 U), have been calculated for liquid argon and liquid krypton using the WCA perturbation theory, and for gaseous argon and krypton along the coexistence line by solution of the PY equation for the radial distribution function. Calculations have been made for the Lennard-Jones, Barker-Henderson, and Maitland-Smith potentials. There is little difference in the values of (U) and (nabla 2 U) calculated for the three potentials. The calculated values are in good agreement with experimental data. Correlation of the calculated values of (nabla 2 U) for the liquid and gas leads to an empirical relationship between (nabla 2 U) and the density of the phase along the coexistence line. When the latter is combined with the law of rectilinear diameters of the density, the rectilinear law of mean force is obtained, which is in good agreement with experimental data on argon. It is shown that the scaling exponent for the mean force constant, (nabla 2 U)/sub l/-(nabla 2 U)/sub g/, is larger than the scaling exponent of the density below the critical temperature and becomes equal to it at the critical temperature. The rationale for the rectilinear law of mean force is provided by an expansion of the radial distribution function of the liquid in powers of the density and the use of the WCA approximation to the radial distribution function

  14. The Effects of Flare Definitions on the Statistics of Derived Flare Distrubtions

    Science.gov (United States)

    Ryan, Daniel; Dominique, Marie; Seaton, Daniel B.; Stegen, Koen; White, Arthur

    2016-05-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. However, statistical flare studies are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds which may affect the derived flare distributions. We explore the effect of the arbitrary thresholds used in the GOES event list and LYRA Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the algorithms’ flare start thresholds. We also find that the power law exponents of these distributions are not stable but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are clearly non-power law. We show that this is consistent with an insufficient degradation correction which causes LYRA absolute irradiance values to be unreliable. This means that they should not be used for flare statistics or energetics unless degradation is adequately accounted for. However they can be used to study time variations over shorter timescales and for space weather monitoring.

  15. Finite sample properties of power-law cross-correlations estimators

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 419, č. 1 (2015), s. 513-525 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433530.pdf

  16. Order and chaos in the one-dimensional ϕ4 model: N-dependence and the Second Law of Thermodynamics

    Science.gov (United States)

    Hoover, William Graham; Aoki, Kenichiro

    2017-08-01

    We revisit the equilibrium one-dimensional ϕ4 model from the dynamical systems point of view. We find an infinite number of periodic orbits which are computationally stable. At the same time some of the orbits are found to exhibit positive Lyapunov exponents! The periodic orbits confine every particle in a periodic chain to trace out either the same or a mirror-image trajectory in its two-dimensional phase space. These ;computationally stable; sets of pairs of single-particle orbits are either symmetric or antisymmetric to the very last computational bit. In such a periodic chain the odd-numbered and even-numbered particles' coordinates and momenta are either identical or differ only in sign. ;Positive Lyapunov exponents; can and do result if an infinitesimal perturbation breaking a perfect two-dimensional antisymmetry is introduced so that the motion expands into a four-dimensional phase space. In that extended space a positive exponent results. We formulate a standard initial condition for the investigation of the microcanonical chaotic number dependence of the model. We speculate on the uniqueness of the model's chaotic sea and on the connection of such collections of deterministic and time-reversible states to the Second Law of Thermodynamics.

  17. Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain

    Science.gov (United States)

    Dutta, Anirban; Dutta, Amit

    2017-09-01

    We study the role of long-range interactions (more precisely, the long-range superconducting gap term) on the nonequilibrium dynamics considering a long-range p -wave superconducting chain in which the superconducting term decays with distance between two sites in a power-law fashion characterized by an exponent α . We show that the Kibble-Zurek scaling exponent, dictating the power-law decay of the defect density in the final state reached following a slow (in comparison to the time scale associated with the minimum gap in the spectrum of the Hamiltonian) quenching of the chemical potential μ across a quantum critical point, depends nontrivially on the exponent α as long as α 2 , we find that the exponent saturates to the corresponding well-known value of 1 /2 expected for the short-range model. Furthermore, studying the dynamical quantum phase transitions manifested in the nonanalyticities in the rate function of the return possibility I (t ) in subsequent temporal evolution following a sudden change in μ , we show the existence of a new region; in this region, we find three instants of cusp singularities in I (t ) associated with a single sector of Fisher zeros. Notably, the width of this region shrinks as α increases and vanishes in the limit α →2 , indicating that this special region is an artifact of the long-range nature of the Hamiltonian.

  18. Power laws and fragility in flow networks.

    Science.gov (United States)

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  19. Mass Remaining During Evaporation of Sessile Drop

    National Research Council Canada - National Science Library

    Danberg, James E

    2008-01-01

    ... (height to base diameter) or contact angle. A combined variation of diameter and contact angle as a power law function is advanced with the effects of varying the power law exponent investigated...

  20. Understanding size effects on the strength of single crystals through high-temperature micropillar compression

    International Nuclear Information System (INIS)

    Soler, Rafael; Wheeler, Jeffrey M.; Chang, Hyung-Jun; Segurado, Javier; Michler, Johann; Llorca, Javier; Molina-Aldareguia, Jon M.

    2014-01-01

    Compression tests of 〈1 1 1〉-oriented LiF single-crystal micropillars 1–5 μm in diameter were carried out from 25 °C to 250 °C. While the flow stress at ambient temperature was independent of the micropillar diameter, a strong size effect developed with elevated temperature. This behavior was explained by rigorously accounting for the different contributions to the flow stress of the micropillars as a function of temperature and pillar diameter: the lattice resistance, the forest hardening; and the size-dependent contribution as a result of the operation of single-arm dislocation sources. This was possible because the micropillars were obtained by chemically etching away the surrounding matrix in directionally solidified LiF–NaCl and LiF–KCl eutectics, avoiding any use of focused ion beam methods, yielding micropillars with a controlled dislocation density, independent of the sample preparation technique. In particular, the role of the lattice resistance on the size effect of micrometer-size single crystals was demonstrated unambiguously for the first time. This result rationalizes the different values of power-law exponent for the size effect found in the literature for face-centered cubic and body-centered cubic metals as well as for covalent and ionic solids

  1. Full spectrum of Lyapunov exponents in gauge field theories

    International Nuclear Information System (INIS)

    Biro, T.S.; Markum, H.; Pullirsch, R.

    2003-01-01

    Full text: Results are presented for the full spectrum of Lyapunov exponents of the compact U(1) gauge system in classical field theory. Instead of the determination of the largest Lyapunov exponent by the rescaling method we now use the monodromy matrix approach. The Lyapunov spectrum L i is expressed in terms of the eigenvalues Λ i of the monodromy matrix M. In the confinement phase the eigenvalues lie on either the real or on the imaginary axes. This is a nice illustration of a strange attractor of a chaotic system. Positive Lyapunov exponents eject the trajectories from oscillating orbits provided by the imaginary eigenvalues. Negative Lyapunov exponents attract the trajectories keeping them confined in the basin. Latest studies concern the time (in)dependence of the monodromy matrix. Further, we show that monopoles are created and annihilated in pairs as a function of real time in access to a fixed average monopole number. (author)

  2. On Origin of Power-Law Distributions in Self-Organized Criticality from Random Walk Treatment

    International Nuclear Information System (INIS)

    Cao Xiaofeng; Deng Zongwei; Yang Chunbin

    2008-01-01

    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f 1 , to decrease by 1 with probability f 2 , or remain unchanged with probability 1-f 1 -f 2 . This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.

  3. Power Politics and the Rule of Law in Post-Dayton Bosnia

    Directory of Open Access Journals (Sweden)

    Timothy Donais

    2013-06-01

    Full Text Available Over the past two decades, therule of law has emerged as a key priority within contemporary peacebuildingefforts. Drawing on examples from post-Dayton Bosnia, this article examines theimpact of rule of law reform efforts on broader patterns of power and politicalauthority in peacebuilding contexts. It suggests that in the case of Bosnia,the use of rule of law strategies to restructure political life has largelyfailed. Thus, despite some notable achievements on the rule of law front, thecore dynamics of Bosnia’s political conflict remain intact, and country’s peaceprocess is as fragile as ever. The article concludes by noting that charting acourse between accepting the political status quo and fundamentallytransforming it requires more nuanced approaches that advance the rule of laweven while accepting its limits as an instrument of deep politicaltransformation.

  4. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Science.gov (United States)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  5. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.L., E-mail: w.hualiang@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Billings, S.A., E-mail: s.billings@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2009-09-07

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  6. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    International Nuclear Information System (INIS)

    Wei, H.L.; Billings, S.A.

    2009-01-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  7. The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees

    Science.gov (United States)

    Garavaglia, Alessandro; van der Hofstad, Remco; Woeginger, Gerhard

    2017-09-01

    Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. The multiplicative fitness moderates the rate at which children are born, while the aging is integrable, so that individuals receives a finite number of children in their lifetime. We show the existence of a limiting degree distribution for such processes. In the preferential attachment case, where fitness and aging are absent, this limiting degree distribution is known to have power-law tails. We show that the limiting degree distribution has exponential tails for bounded fitnesses in the presence of integrable aging, while the power-law tail is restored when integrable aging is combined with fitness with unbounded support with at most exponential tails. In the absence of integrable aging, such processes are explosive.

  8. A novel nonlinear nano-scale wear law for metallic brake pads.

    Science.gov (United States)

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  9. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    Science.gov (United States)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  10. Mapping the Power of Law Professors: The Role of Scientific and Social Capital

    Science.gov (United States)

    Bühlmann, Felix; Benz, Pierre; Mach, André; Rossier, Thierry

    2017-01-01

    As a scientific discipline and profession, law has been for centuries at the heart of social and political power of many Western societies. Professors of law, as influential representatives of the profession, are important powerbrokers between academia, politics and the corporate world. Their influence is based on scientific reputation,…

  11. IMPLEMENTATION OF ENERGY LAW OF HYBRID POWER STATION FOR SOCIAL WELFARE

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Widowati

    2014-11-01

    Full Text Available This study was aimed to investigate the Implementation of Energy Law of Hybrid Power Station for Social Welfare in Pantai Baru. The problem formulations are the management and utilization of hybrid power station in Pantai Baru and implementation of energy law of hybrid power station for social welfare in the fields of economy and information in Pantai Baru. Based on data analysis it is concluded that the management of hybrid power station in Pantai Baru is performed collaboratively between government and the society. The existence of hybrid power station in pantai baru has positive impacts in economy and information. Penelitian ini meneliti Pelaksanaan Hukum Energi Pembangkit Listrik Tenaga Hibrid untuk Kesejahteraan Rakyat di Bidang Ekonomi dan Informasi di Pantai Baru. Masalah yang diteliti adalah bentuk pengelolaan dan pemanfaatan pembangkit listrik tenaga hibrid di Pantai Baru dan pelaksanaan hukum energi pembangkit listrik tenaga hibrid untuk kesejahteraan rakyat di bidang ekonomi dan informasi di Pantai Baru. Berdasarkan analisis data dapat disimpulkan bahwa pengelolaan pembangkit listrik tenaga hibrid yang ada di pantai baru dilakukan secara kolaboratif, antara pemerintah dengan masyarakat. Kehadiran pembangkit listrik tenaga hibrid yang ada di pantai baru telah memberikan dampak positif di bidang ekonomi dan informasi.

  12. A recommended procedure for estimating the cosmic-ray spectral parameter of a simple power law

    CERN Document Server

    Howell, L W

    2002-01-01

    A simple power law model with single spectral index alpha sub 1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10 sup 1 sup 3 eV. Two procedures for estimating alpha sub 1 --the method of moments and maximum likelihood (ML)--are developed and their statistical performance are compared. The ML procedure is shown to be the superior approach and is then generalized for application to real cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution and inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives.

  13. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  14. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  15. Law concerning water and nuclear power station licensing

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The competent water authority, within the purview of the legal provisions concerning water is entitled to define a maximum of radioactive contamination of cooling water taken from and re-fed into the Rhine river, and is entitled to make such limit form part of the permit granted to a nuclear power station (here: Biblis B reactor). This right is not overruled by sections 45, 46 of the Rad. Protection Ordinance which determine dose limits (among others also for radioactivity released through waste water), and which state the competent licensing authority under atomic energy law to be entitled to set higher or lower limits by discretion. The provisions of sections 45 ff Rad. Prot. Ordinance are to be interpreted to mean that since the competent authority in accordance with section 46, sub-sections (2) and (5) Rad. Prot. Ordinance is given the right to define maximum acceptable radioactivity release through water discharge, it many also define the lowest limit of contamination and is hence entitled to declare discharged cooling water not to fall under atomic energy law, but rather under the law relating to water management. (orig.) [de

  16. Scaling laws between population and facility densities.

    Science.gov (United States)

    Um, Jaegon; Son, Seung-Woo; Lee, Sung-Ik; Jeong, Hawoong; Kim, Beom Jun

    2009-08-25

    When a new facility like a grocery store, a school, or a fire station is planned, its location should ideally be determined by the necessities of people who live nearby. Empirically, it has been found that there exists a positive correlation between facility and population densities. In the present work, we investigate the ideal relation between the population and the facility densities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, it was shown that the density of facility D and that of population rho should follow a simple power law D approximately rho(2/3). In our empirical analysis, on the other hand, the power-law exponent alpha in D approximately rho(alpha) is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy in alpha, we propose a model based on economic mechanisms that mimic the competitive balance between the profit of the facilities and the social opportunity cost for populations. Through our simple, microscopically driven model, we show that commercial facilities driven by the profit of the facilities have alpha = 1, whereas public facilities driven by the social opportunity cost have alpha = 2/3. We simulate this model to find the optimal positions of facilities on a real U.S. map and show that the results are consistent with the empirical data.

  17. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    International Nuclear Information System (INIS)

    Gavilian-Moreno, Carlos; Espinosa-Paredes, Gilberto

    2016-01-01

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution

  18. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  19. Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Carlos J. Gavilán-Moreno

    2016-04-01

    Full Text Available The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs. Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  20. Mapping Power Law Distributions in Digital Health Social Networks: Methods, Interpretations, and Practical Implications.

    Science.gov (United States)

    van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T

    2015-06-25

    Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, Ppower distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that

  1. Lyapunov exponents for infinite dimensional dynamical systems

    Science.gov (United States)

    Mhuiris, Nessan Mac Giolla

    1987-01-01

    Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.

  2. The hurst exponent and long-time correlation

    International Nuclear Information System (INIS)

    Wang, G.; Antar, G.; Devynck, P.

    1999-10-01

    The rescaled range statistics (R/S) method is applied to the ion saturation current fluctuations measured by Langmuir probe at edge on Tore Supra to evaluate the Hurst exponent. Data block randomization is carried out to the data sets in order to investigate the relationship between the Hurst exponent and long time correlation. It is observed that h is well above 0.5 in the long time self-similar range. However, it is found that the information which leads to H > 0.5 is totally contained in the short-time correlation and no link to long times is found. (authors)

  3. Power Law Distributions in the Experiment for Adjustment of the Ion Source of the NBI System

    International Nuclear Information System (INIS)

    Han Xiaopu; Hu Chundong

    2005-01-01

    The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking

  4. Subdiffusive master equation with space-dependent anomalous exponent and structural instability

    Science.gov (United States)

    Fedotov, Sergei; Falconer, Steven

    2012-03-01

    We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of parameter μ. In particular, the Gibbs-Boltzmann distribution is no longer the stationary solution of the fractional Fokker-Planck equation whatever the space variation of the exponent might be. We analyze the random distribution of μ in space and find that in the long-time limit, the probability distribution is highly intermediate in space and the behavior is completely dominated by very unlikely events. We show that subdiffusive fractional equations with the nonuniform random distribution of anomalous exponent is an illustration of a “Black Swan,” the low probability event of the small value of the anomalous exponent that completely dominates the long-time behavior of subdiffusive systems.

  5. Prevention of damage and 'residual risk' in nuclear power laws

    International Nuclear Information System (INIS)

    Greipl, C.

    1992-01-01

    The concept of prevention of damage within the framework of nuclear power laws includes averting danger for the protection of third parties and preventing risks for the partial protection of third parties with the proviso that still a desire to use the concept 'residual risk' in addition, it should be limited, on the grounds of what can be reasonably expected, to those risks which cannot be reduced any further by the government, i.e. to risks which the public in general and third parties ('actually') must accept. In the future, questions regarding safety systems should be taken into account exclusively withing the context of 'what is necessary for protection against damage in keeping with the latest developments in science and technology' and not at the discretion of the law in denying permission according to Article 7 Paragraph 2 Atomic Energy Law. (orig.) [de

  6. Non-coulombic effective power-law potential for the heavy quarkoniums

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1980-12-01

    An effective power-law potential of the form V(r) = 6.08 r/sup 0/sup(.)/sup 106/ - 6.41 is found to describe satisfactorily the gross features of the mass spectra and the leptonic width ratios of the cc and bb systems in a flavour-independent manner.

  7. Networks of power in digital copyright law and policy political salience, expertise and the legislative process

    CERN Document Server

    Farrand, Benjamin

    2014-01-01

    In this book, Benjamin Farrand employs an interdisciplinary approach that combines legal analysis with political theory to explore the development of copyright law in the EU. Farrand utilises Foucault's concept of Networks of Power and Culpepper's Quiet Politics to assess the adoption and enforcement of copyright law in the EU, including the role of industry representative, cross-border licensing, and judicial approaches to territorial restrictions. Focusing in particular on legislative initiatives concerning copyright, digital music and the internet, Networks of Power in Digital Copyright Law and Policy: Political Salience, Expertise and the Legislative Process demonstrates the connection between copyright law and complex network relationships. This book presents an original socio-political theoretical framework for assessing developments in copyright law that will interest researchers and post-graduate students of law and politics, as well as those more particularly concerned with political theory, EU and c...

  8. The United Kingdom Law on the authorisation of nuclear power stations

    International Nuclear Information System (INIS)

    Savinson, R.

    1977-01-01

    This paper explains the requirements of the law of the United Kingdom as to the authorisations needed to construct and operate nuclear power plants in Great Britain. For simplicity, the texts referred to apply to England and Wales, Scottish law differing in detail but not in principle. Implementation of this legal system is studied in particular from the viewpoint of the Central Electricity Generating Board (CEGB) which is at present the body exclusively responsible for generating and supplying electricity in England and Wales. (NEA) [fr

  9. /sup 87/Rb NMR study at the cubic to tetragonal phase transition in RbCaF/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Bulou, A [Angers Univ., 72 - Le Mans (France). Centre Universitaire; Theveneau, H; Trokiner, A; Papon, P [Ecole Superieure de Physique et Chimie Industrielles, 75 - Paris (France)

    1979-07-01

    The /sup 87/Rb nuclear magnetic resonance spectrum, in perovskite single crystal of RbCaF/sub 3/, is studied above and below the cubic-to-tetragonal phase transition occurring at 198 K. In the high-temperature cubic phase, the temperature dependence of the resonance line amplitude deviates from the Curie law and this can be attributed to the existence of tetragonal domains. In the low temperature tetragonal phase, a second-order quadrupole shift of the central line is observed, from which the CaF/sub 6/ tilt angle (order parameter) is derived. The order parameter temperature dependence is described by a power law with a cross over from exponent 0.5 to exponent 0.32 at 150 K. The tilt angle PHI is compared to the values obtained from X-ray and neutron powder diffraction data.

  10. Influence of power-law index on an unsteady exothermic reaction ...

    African Journals Online (AJOL)

    This study presents the solution of an unsteady Arrhenius exothermic reaction where we reduced the exponential term to a power-law approximation. A numerical solution of the problem is obtained using shooting technique with second order Runge-Kuta scheme. It is shown that the temperature of the reactant depends on ...

  11. Phase transition which exhibits 1/ω-spectrum: a rigorous result

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1984-01-01

    A mathematical mechanism in dynamical systems to exhibit the inverse power law in the shape of the power spectrum is presented. The exponent in the power law is proved to be less than or equal to one. The mechanism serves as the basis to interpret various observations in dynamical systems, such as Lorenz and Rossler systems. All the possible exponents are realized by simple 1-dim maps. These examples are ''isomorphic'' to 1-dim lattice gas models in classical statistical mechanics with phase transition. The inverse power law appears at the crisis of the shrinking of gas phases into degenerated solid phases, or equivalently to say, of the divergence of the total mass of absolutely continuous mixing invariant measures for the maps. (author)

  12. Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models

    Science.gov (United States)

    Sachs, M. K.; Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Malamud, B. D.

    2012-05-01

    Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.

  13. Analysis of Human Standing Balance by Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-01-01

    Full Text Available The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals’ standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.

  14. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    Science.gov (United States)

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  15. Relation Between Hertz Stress-Life Exponent, Ball-Race Conformity, and Ball Bearing Life

    Science.gov (United States)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.

    2008-01-01

    ANSI/ABMA and ISO standards based on Lundberg-Palmgren bearing life theory are normalized for ball bearings having inner- and outerrace conformities of 52 percent (0.52) and made from pre-1940 bearing steel. The Lundberg-Palmgren theory incorporates an inverse 9th power relation between Hertz stress and fatigue life for ball bearings. The effect of race conformity on ball set life independent of race life is not incorporated into the Lundberg-Palmgren theory. In addition, post-1960 vacuum-processed bearing steel exhibits a 12th power relation between Hertz stress and life. The work reported extends the previous work of Zaretsky, Poplawski, and Root to calculate changes in bearing life--that includes the life of the ball set--caused by race conformity, Hertz stress-life exponent, ball bearing type and bearing series. The bearing fatigue life in actual application will usually be equal to or greater than that calculated using the ANSI/ABMA and ISO standards that incorporate the Lundberg-Palmgren theory. The relative fatigue life of an individual race is more sensitive to changes in race conformity for Hertz stress-life exponent n of 12 than where n = 9. However, when the effects are combined to predict actual bearing life for a specified set of conditions and bearing geometry, the predicted life of the bearing will be greater for a value of n = 12 than n = 9.

  16. Quantum dots with indirect band gap: power-law photoluminescence decay

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2014-01-01

    Roč. 11, č. 5 (2014), s. 507-512 ISSN 1708-5284 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : photoluminescence * quantum dots * electron-phonon interaction * inter-valley deformation potential interaction * power-law decay Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Baudrillard vs. Foucault: revolving conceptions of power in foucaultian writings

    Directory of Open Access Journals (Sweden)

    Daniel de Oliveira Gomes

    2016-08-01

    Full Text Available This article aims at investigating, specifically, the critical fixation of author Jean Baudrillard against the idea of power as defended by Michel Foucault. The later – an exponent author from post-structuralism, often studied both by Literature and Law specialists – explored the concept of “micro-physical power”, which sees that all the legal or political discourses could not handle any longer all the possible practices of power acted upon the social subjects, broadening the concept of power in several publications and putting it in the dimension of a new approach. Baudrillard, on the other hand, considers power as a doomed value that is to disappear due to the volatility of politics. We tried to analyze the ideas in the discourse of Baudrillard in the book in which he debated with the ideas of Foucault, Oublier Foucault, in which there was an attempt of dismantling the literature by Foucault about power, explaining this literature as, itself, a spiral generator of power.

  18. Probing the conductance superposition law in single-molecule circuits with parallel paths.

    Science.gov (United States)

    Vazquez, H; Skouta, R; Schneebeli, S; Kamenetska, M; Breslow, R; Venkataraman, L; Hybertsen, M S

    2012-10-01

    According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.

  19. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  20. The Inverse System Method Applied to the Derivation of Power System Non—linear Control Laws

    Institute of Scientific and Technical Information of China (English)

    DonghaiLI; XuezhiJIANG; 等

    1997-01-01

    The differential geometric method has been applied to a series of power system non-linear control problems effectively.However a set of differential equations must be solved for obtaining the required diffeomorphic transformation.Therefore the derivation of control laws is very complicated.In fact because of the specificity of power system models the required diffeomorphic transformation may be obtained directly,so it is unnecessary to solve a set of differential equations.In addition inverse system method is equivalent to differential geometric method in reality and not limited to affine nonlinear systems,Its physical meaning is able to be viewed directly and its deduction needs only algebraic operation and derivation,so control laws can be obtained easily and the application to engineering is very convenient.Authors of this paper take steam valving control of power system as a typical case to be studied.It is demonstrated that the control law deduced by inverse system method is just the same as one by differential geometric method.The conclusion will simplify the control law derivations of steam valving,excitation,converter and static var compensator by differential geometric method and may be suited to similar control problems in other areas.

  1. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  2. Local Lyapunov exponents for dissipative continuous systems

    International Nuclear Information System (INIS)

    Grond, Florian; Diebner, Hans H.

    2005-01-01

    We analyze a recently proposed algorithm for computing Lyapunov exponents focusing on its capability to calculate reliable local values for chaotic attractors. The averaging process of local contributions to the global measure becomes interpretable, i.e. they are related to the local topological structure in phase space. We compare the algorithm with the commonly used Wolf algorithm by means of analyzing correlations between coordinates of the chaotic attractor and local values of the Lyapunov exponents. The correlations for the new algorithm turn out to be significantly stronger than those for the Wolf algorithm. Since the usage of scalar measures to capture complex structures can be questioned we discuss these entities along with a more phenomenological description of scatter plots

  3. Theories of Power, Poverty, and Law: In Commemoration of the Contributions of Peter Bachrach--Power, Law, and Final Thoughts: The Contributions of Peter Bachrach

    Science.gov (United States)

    Schneider, Elizabeth M.

    2010-01-01

    I am pleased to be part of this symposium to celebrate the life and work of Peter Bachrach. Although my focus is the relevance of Peter's ideas of power to law, I want to begin with some personal comments as well as raise some final thoughts, drawing on others' contributions. Like so many of Peter's other students, I adored him. Peter's joy in…

  4. Adaptive control of nonlinear in parameters chaotic system via Lyapunov exponents placement

    Energy Technology Data Exchange (ETDEWEB)

    Ayati, Moosa [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran (Iran, Islamic Republic of)], E-mail: Ayati@dena.kntu.ac.ir; Khaki-Sedigh, Ali [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran (Iran, Islamic Republic of)], E-mail: sedigh@kntu.ac.ir

    2009-08-30

    This paper proposes a new method for the adaptive control of nonlinear in parameters (NLP) chaotic systems. A method based on Lagrangian of a cost function is used to identify the parameters of the system. Estimation results are used to calculate the Lyapunov exponents adaptively. Finally, the Lyapunov exponents placement method is used to assign the desired Lyapunov exponents of the closed loop system.

  5. Adaptive control of nonlinear in parameters chaotic system via Lyapunov exponents placement

    International Nuclear Information System (INIS)

    Ayati, Moosa; Khaki-Sedigh, Ali

    2009-01-01

    This paper proposes a new method for the adaptive control of nonlinear in parameters (NLP) chaotic systems. A method based on Lagrangian of a cost function is used to identify the parameters of the system. Estimation results are used to calculate the Lyapunov exponents adaptively. Finally, the Lyapunov exponents placement method is used to assign the desired Lyapunov exponents of the closed loop system.

  6. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  7. Power law of distribution of emergency situations on main gas pipeline

    Science.gov (United States)

    Voronin, K. S.; Akulov, K. A.

    2018-05-01

    The article presents the results of the analysis of emergency situations on a main gas pipeline. A power law of distribution of emergency situations is revealed. The possibility of conducting further scientific research to ensure the predictability of emergency situations on pipelines is justified.

  8. Second Law Of Thermodynamics Analysis Of Triple Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    Matheus M. Dwinanto

    2012-11-01

    Full Text Available Triple cycle power plant with methane as a fuel has been analyzed on the basis of second law of thermodynamics.In this model, ideal Brayton cycle is selected as a topping cycle as it gives higher efficiency at lower pressure ratio comparedintercooler and reheat cycle. In trilple cycle the bottoming cycles are steam Rankine and organic Rankine cycle. Ammoniahas suitable working properties like critical temperature, boiling temperature, etc. Steam cycle consists of a deaerator andreheater. The bottoming ammonia cycle is a ideal Rankine cycle. Single pressure heat recovery steam and ammoniagenerators are selected for simplification of the analysis. The effects of pressure ratio and maximum temperature which aretaken as important parameters regarding the triple cycle are discussed on performance and exergetic losses. On the otherhand, the efficiency of the triple cycle can be raised, especially in the application of recovering low enthalpy content wasteheat. Therefore, by properly combining with a steam Rankine cycle, the ammonia Rankine cycle is expected to efficientlyutilize residual yet available energy to an optimal extent. The arrangement of multiple cycles is compared with combinedcycle having the same sink conditions. The parallel type of arrangement of bottoming cycle is selected due to increasedperformance.

  9. Spacetime dependence of the anomalous exponent of electric transport in the disorder model

    International Nuclear Information System (INIS)

    Egami, Takeshi; Suzuki, Koshiro; Watanabe, Katsuhiro

    2012-01-01

    Spacetime dependence of the anomalous exponent of electric transport in the disorder model is investigated. We show that the anomalous exponent evolves with time, according to the time evolution of the number of the effective neighbouring sites. Transition from subdiffusive to normal transport is recovered at macroscopic timescales. Plateaus appear in the history of the anomalous exponent due to the discreteness of the hopping sites, which is compatible with the conventional treatment to regard the anomalous exponent as a constant. We also show that, among various microscopic spatial structures, the number of the effective neighbouring sites is the only element which determines the anomalous exponent. This is compatible with the mesoscopic model of Scher–Montroll. These findings are verified by means of Monte Carlo simulation. The well-known expression of the anomalous exponent in the conventional multiple trapping model is derived by deducing it as a special case of the disorder model. (paper)

  10. Modeling fractal structure of city-size distributions using correlation functions.

    Science.gov (United States)

    Chen, Yanguang

    2011-01-01

    Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.

  11. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Science.gov (United States)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  12. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  13. Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    Science.gov (United States)

    Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio

    2018-02-01

    The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.

  14. Anisotropies in magnetic field evolution and local Lyapunov exponents

    International Nuclear Information System (INIS)

    Tang, X.Z.; Boozer, A.H.

    2000-01-01

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates

  15. A comment on measuring the Hurst exponent of financial time series

    Science.gov (United States)

    Couillard, Michel; Davison, Matt

    2005-03-01

    A fundamental hypothesis of quantitative finance is that stock price variations are independent and can be modeled using Brownian motion. In recent years, it was proposed to use rescaled range analysis and its characteristic value, the Hurst exponent, to test for independence in financial time series. Theoretically, independent time series should be characterized by a Hurst exponent of 1/2. However, finite Brownian motion data sets will always give a value of the Hurst exponent larger than 1/2 and without an appropriate statistical test such a value can mistakenly be interpreted as evidence of long term memory. We obtain a more precise statistical significance test for the Hurst exponent and apply it to real financial data sets. Our empirical analysis shows no long-term memory in some financial returns, suggesting that Brownian motion cannot be rejected as a model for price dynamics.

  16. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity.

    Science.gov (United States)

    Tippett, Michael K; Cohen, Joel E

    2016-02-29

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.

  17. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity

    Science.gov (United States)

    Tippett, Michael K.; Cohen, Joel E.

    2016-01-01

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210

  18. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    Science.gov (United States)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  19. Effect of Coulomb stress on the Gutenberg-Richter law

    Science.gov (United States)

    Navas-Portella, V.; Corral, A.; Jimenez, A.

    2017-12-01

    Coulomb stress theory has been used for years in seismology to understand how earthquakes trigger each other. Whenever an earthquake occurs, the stress field changes in its neighbourhood, with places with positive values brought closer to failure, whereas negative values distance away that location from failure. Earthquake models that relate rate changes and Coulomb stress after a main event, such as the rate-and-state model, assume negative and positive stress values affect rate changes according to the same functional form. As a first order approximation, under uniform background seismicity before the main event, different values of the b-exponent in the Gutenberg-Richter law would indicate different behaviour for positive and negative stress. In this work, we study the Gutenberg-Richter law in the aftershock sequence of the Landers earthquake (California, 1992, MW=7.3). By using a statistically based fitting method, we discuss whether the sign of Coulomb stresses and the distance to the fault have a significant effect on the value of the b-exponent.

  20. A non-coulombic effective power-law potential for the heavy quarkoniums

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    An effective power-law potential of the form V(r) = 6.08 r 0 sup(.) 106 - 6.41 is found to describe satisfactorily the gross features of the mass spectra and the leptonic width ratios of the cc and bb systems in a flavour-independent manner. (orig.)

  1. Breaking the power law: Multiscale simulations of self-ion irradiated tungsten

    Science.gov (United States)

    Jin, Miaomiao; Permann, Cody; Short, Michael P.

    2018-06-01

    The initial stage of radiation defect creation has often been shown to follow a power law distribution at short time scales, recently so with tungsten, following many self-organizing patterns found in nature. The evolution of this damage, however, is dominated by interactions between defect clusters, as the coalescence of smaller defects into clusters depends on the balance between transport, absorption, and emission to/from existing clusters. The long-time evolution of radiation-induced defects in tungsten is studied with cluster dynamics parameterized with lower length scale simulations, and is shown to deviate from a power law size distribution. The effects of parameters such as dose rate and total dose, as parameters affecting the strength of the driving force for defect evolution, are also analyzed. Excellent agreement is achieved with regards to an experimentally measured defect size distribution at 30 K. This study provides another satisfactory explanation for experimental observations in addition to that of primary radiation damage, which should be reconciled with additional validation data.

  2. Power-law photoluminescence decay in indirect gap quantum dots

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2013-01-01

    Roč. 111, November (2013), s. 170-174 ISSN 0167-9317 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA MŠk LH12236; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : quantum dots * indirect gap transition * power-law photoluminescence decay Subject RIV: BM - Solid Matter Physics ; Magnetism; BE - Theoretical Physics (FZU-D) Impact factor: 1.338, year: 2013

  3. Dynamics of warm power-law plateau inflation with a generalized inflaton decay rate: predictions and constraints after Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [FCFM, Universidad de Chile, Departamento de Fisica, Santiago (Chile); Gulshan, Faiza [Lahore Leads University, Department of Mathematics, Lahore (Pakistan)

    2017-05-15

    In the present work, we study the consequences of considering a new family of single-field inflation models, called power-law plateau inflation, in the warm inflation framework. We consider the inflationary expansion is driven by a standard scalar field with a decay ratio Γ having a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T given by Γ(φ,T) = C{sub φ}(T{sup a})/(φ{sup a-1}). Assuming that our model evolves according to the strong dissipative regime, we study the background and perturbative dynamics, obtaining the most relevant inflationary observable as the scalar power spectrum, the scalar spectral index and its running and the tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to the strong dissipative regime and the 2015 Planck results through the n{sub s}-r plane. For completeness, we study the predictions in the n{sub s}-dn{sub s}/d ln k plane. The model is consistent with a strong dissipative dynamics and predicts values for the tensor-to-scalar ratio and for the running of the scalar spectral index consistent with current bounds imposed by Planck and we conclude that the model is viable. (orig.)

  4. Dynamics of warm power-law plateau inflation with a generalized inflaton decay rate: predictions and constraints after Planck 2015

    International Nuclear Information System (INIS)

    Jawad, Abdul; Videla, Nelson; Gulshan, Faiza

    2017-01-01

    In the present work, we study the consequences of considering a new family of single-field inflation models, called power-law plateau inflation, in the warm inflation framework. We consider the inflationary expansion is driven by a standard scalar field with a decay ratio Γ having a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T given by Γ(φ,T) = C_φ(T"a)/(φ"a"-"1). Assuming that our model evolves according to the strong dissipative regime, we study the background and perturbative dynamics, obtaining the most relevant inflationary observable as the scalar power spectrum, the scalar spectral index and its running and the tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to the strong dissipative regime and the 2015 Planck results through the n_s-r plane. For completeness, we study the predictions in the n_s-dn_s/d ln k plane. The model is consistent with a strong dissipative dynamics and predicts values for the tensor-to-scalar ratio and for the running of the scalar spectral index consistent with current bounds imposed by Planck and we conclude that the model is viable. (orig.)

  5. The critical thermal expansion of gadolinium

    International Nuclear Information System (INIS)

    Robinson, K.; Lanchester, P.C.

    1978-01-01

    Measurements have been made of the critical thermal expansion of single crystals of gadolinium, prepared by solid state electrotransport processing. Although the expansion data can be fitted to a simple power law with exponents lambda + =-0.25, lambda - =-0.33, these values are not predicted by theory and a discontinuity remains at Tsub(c)=293.620 K. It is suggested that the results relate to a region of crossover to uniaxial dipolar behaviour. (Auth.)

  6. Experimental evaluation of the MIT-SNL period-generated minimum time control laws for the rapid adjustment of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Kwok, K.S.; Menadier, P.T.; Thome, F.V.; Wyant, F.J.

    1987-01-01

    The rapid adjustment of reactor neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. Designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws,' these relations are closed-form expressions of general applicability. In particular, if there is no limitation on the available rate of change of reactivity, these laws can be used to achieve virtually any desired power profile including time optimal ones. The innovative aspect of these laws is that the rate of change of reactivity rather than the reactivity itself is used as the control signal. For example, relative to a time-optimal response, these laws function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The response is time-optimal because the power adjustment is continuously made at the maximum allowed rate

  7. Critical exponents from the effective average action

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-07-01

    We compute the critical behaviour of three-dimensional scalar theories using a new exact non-perturbative evolution equation. Our values for the critical exponents agree well with previous precision estimates. (orig.)

  8. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  9. The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices

    Science.gov (United States)

    Rezvanian, O.; Brown, C.; Zikry, M. A.; Kingon, A. I.; Krim, J.; Irving, D. L.; Brenner, D. W.

    2008-07-01

    It is shown that measured and calculated time-dependent electrical resistances of closed gold Ohmic switches in radio frequency microelectromechanical system (rf-MEMS) devices are well described by a power law that can be derived from a single asperity creep model. The analysis reveals that the exponent and prefactor in the power law arise, respectively, from the coefficient relating creep rate to applied stress and the initial surface roughness. The analysis also shows that resistance plateaus are not, in fact, limiting resistances but rather result from the small coefficient in the power law. The model predicts that it will take a longer time for the contact resistance to attain a power law relation with each successive closing of the switch due to asperity blunting. Analysis of the first few seconds of the measured resistance for three successive openings and closings of one of the MEMS devices supports this prediction. This work thus provides guidance toward the rational design of Ohmic contacts with enhanced reliabilities by better defining variables that can be controlled through material selection, interface processing, and switch operation.

  10. Statistical mechanics of Roskilde liquids: configurational adiabats, specific heat contours, and density dependence of the scaling exponent.

    Science.gov (United States)

    Bailey, Nicholas P; Bøhling, Lasse; Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C

    2013-11-14

    We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, CV, along configurational adiabats (curves of constant excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the CV-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ∕dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and CV-contours, finding it more invariant along adiabats.

  11. Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions

    Science.gov (United States)

    Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.

    2018-01-01

    We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.

  12. Numerical simulation of heat transfer in power law fluid flow through a stenosed artery

    Science.gov (United States)

    Talib, Amira Husni; Abdullah, Ilyani

    2017-11-01

    A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.

  13. Estimating the density-scaling exponent of a monatomic liquid from its pair potential

    DEFF Research Database (Denmark)

    Bøhling, Lasse; Bailey, Nicholas; Schrøder, Thomas

    2014-01-01

    This paper investigates two conjectures for calculating the density dependence of the density-scaling exponent γ of a single-component, pair-potential liquid with strong virial potential-energy correlations. The first conjecture gives an analytical expression for γ directly in terms of the pair...... potential. The second conjecture is a refined version of this involving the most likely nearest-neighbor distance determined from the pair-correlation function. The conjectures are tested by simulations of three systems, one of which is the standard Lennard-Jones liquid. While both expressions give...

  14. On the Topological Changes of Local Hurst Exponent in Polar Regions

    Science.gov (United States)

    Consolini, G.; De Michelis, P.

    2014-12-01

    Geomagnetic activity during magnetic substorms and storms is related to the dinamical and topological changes of the current systems flowing in the Earth's magnetosphere-ionosphere. This is particularly true in the case of polar regions where the enhancement of auroral electrojet current system is responsible for the observed geomagnetic perturbations. Here, using the DMA-technique we evaluate the local Hurst exponent (H"older exponent) for a set of 46 geomagnetic observatories, widely distributed in the northern hemisphere, during one of the most famous and strong geomagnetic storm, the Bastille event, and reconstruct a sequence of polar maps showing the dinamical changes of the topology of the local Hurst exponent with the geomagnetic activity level. The topological evolution of local Hurst exponent maps is discussed in relation to the dinamical changes of the current systems flowing in the polar ionosphere. G. Consolini has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 313038/STORM for this research.

  15. Variation of CRE with exponents of time and number of fractions

    International Nuclear Information System (INIS)

    Supe, S.J.; Rao, S.M.; Sawant, S.G.; Bisht, J.S.

    1976-01-01

    The concept of NSD has been modified into TDF's by Orton and Ellis and CRE's by Kirk et al. It was aimed to study the variability of these new concepts on the exponents of time and number of fractions. It was found that TDF has larger variation with the exponents compared to that of CRE. The use of CRE and NSD for solving the treatment scheduling problems or for intercomparison of various regimes has been simplified by providing readymade estimation of CRE for various doses/fraction with increasing number of fractions. As there is increasing evidence for the change of exponents J and H, nomograms are presented to determine the CRE for various values of J and H. The variation of decay correction factors with the exponent H is also evaluated and is presented. This will help various radiotherapists to use CRE and the decay correction factors consistent with their clinical findings. (orig.) [de

  16. The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media

    Institute of Scientific and Technical Information of China (English)

    宋付权; 刘慈群

    2002-01-01

    The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.

  17. Powerful subjects of tax law enforcement

    Directory of Open Access Journals (Sweden)

    Igor Dementyev

    2017-01-01

    Full Text Available УДК 342.6The subject. Competence of government bodies and their officials in the sphere of application of the tax law is considered in the article.The purpose of research is to determine the ratio of tax enforcement and application of the tax law, as well as the relationship between the concepts “party of tax enforcement” and “participant of tax legal relations”.Main results and scope of their application. The circle of participants of tax legal relations is broader than the circle of parties of tax law enforcement. The participants of tax legal relations are simultaneously the subjects of tax law, because they realize their tax status when enter into the tax relationships. The tax and customs authorities are the undoubted parties of the tax law enforcement.Although the financial authorities at all levels of government are not mentioned by article 9 of the Tax Code of the Russian Federation as participants of tax relations, they are parties of tax enforcement, because they make the agreement for deferment or installment payment of regional and local taxes.Scope of application. Clarification of participants of tax legal relations and determination of their mutual responsibility is essential to effective law enforcement.Conclusion. It was concluded that the scope tax law enforcement is tax proceedings, not administrative proceedings, civil (arbitration proceedings or enforcement proceedings.The application of the tax law is carried out not only in the form of tax relations, but also in relations of other branches of law.

  18. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.

    Science.gov (United States)

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  19. A power law global error model for the identification of differentially expressed genes in microarray data

    Directory of Open Access Journals (Sweden)

    Granucci Francesca

    2004-12-01

    Full Text Available Abstract Background High-density oligonucleotide microarray technology enables the discovery of genes that are transcriptionally modulated in different biological samples due to physiology, disease or intervention. Methods for the identification of these so-called "differentially expressed genes" (DEG would largely benefit from a deeper knowledge of the intrinsic measurement variability. Though it is clear that variance of repeated measures is highly dependent on the average expression level of a given gene, there is still a lack of consensus on how signal reproducibility is linked to signal intensity. The aim of this study was to empirically model the variance versus mean dependence in microarray data to improve the performance of existing methods for identifying DEG. Results In the present work we used data generated by our lab as well as publicly available data sets to show that dispersion of repeated measures depends on location of the measures themselves following a power law. This enables us to construct a power law global error model (PLGEM that is applicable to various Affymetrix GeneChip data sets. A new DEG identification method is therefore proposed, consisting of a statistic designed to make explicit use of model-derived measurement spread estimates and a resampling-based hypothesis testing algorithm. Conclusions The new method provides a control of the false positive rate, a good sensitivity vs. specificity trade-off and consistent results with varying number of replicates and even using single samples.

  20. Graph Structure in Three National Academic Webs: Power Laws with Anomalies.

    Science.gov (United States)

    Thelwall, Mike; Wilkinson, David

    2003-01-01

    Explains how the Web can be modeled as a mathematical graph and analyzes the graph structures of three national university publicly indexable Web sites from Australia, New Zealand, and the United Kingdom. Topics include commercial search engines and academic Web link research; method-analysis environment and data sets; and power laws. (LRW)

  1. Mathematical analysis of the global dynamics of a power law model ...

    African Journals Online (AJOL)

    We analyze a mathematical power law model that describes HIV infection of CD4+ T cells. We report that the number of critical points depends on , where is a positive integer. We show that for any positive integer the infection – free equilibrium is asymptotically stable if the reproduction number R0 1.

  2. Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...

    African Journals Online (AJOL)

    We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...

  3. The law governing power generation and the atomic energy law in Japan, with special regard to the current situation in the energy sector

    International Nuclear Information System (INIS)

    Fujiwara, J.

    1984-01-01

    This contribution characterises Japanese legislation on power generation and supply, goes into detail with regard to the current Atomic Energy Law within the framework of the overall legal concept governing power supply, and presents an outlook on future developments. A table summarizes the main problems in this field. (orig./HSCH) [de

  4. Determination of the Real Loss of Power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis

    Directory of Open Access Journals (Sweden)

    Henrik Holmberg

    2009-10-01

    Full Text Available All real processes generate entropy and the power/exergy loss is usually determined by means of the Gouy-Stodola law. If the system only exchanges heat at the environmental temperature, the Gouy-Stodola law gives the correct loss of power. However, most industrial processes exchange heat at higher or lower temperatures than the actual environmental temperature. When calculating the real loss of power in these cases, the Gouy-Stodola law does not give the correct loss if the actual environmental temperature is used. The first aim of this paper is to show through simple steam turbine examples that the previous statement is true. The second aim of the paper is to define the effective temperature to calculate the real power loss of the system with the Gouy-Stodola law, and to apply it to turbine examples. Example calculations also show that the correct power loss can be defined if the effective temperature is used instead of the real environmental temperature.

  5. Accuracy analysis of measurements on a stable power-law distributed series of events

    International Nuclear Information System (INIS)

    Matthews, J O; Hopcraft, K I; Jakeman, E; Siviour, G B

    2006-01-01

    We investigate how finite measurement time limits the accuracy with which the parameters of a stably distributed random series of events can be determined. The model process is generated by timing the emigration of individuals from a population that is subject to deaths and a particular choice of multiple immigration events. This leads to a scale-free discrete random process where customary measures, such as mean value and variance, do not exist. However, converting the number of events occurring in fixed time intervals to a 1-bit 'clipped' process allows the construction of well-behaved statistics that still retain vestiges of the original power-law and fluctuation properties. These statistics include the clipped mean and correlation function, from measurements of which both the power-law index of the distribution of events and the time constant of its fluctuations can be deduced. We report here a theoretical analysis of the accuracy of measurements of the mean of the clipped process. This indicates that, for a fixed experiment time, the error on measurements of the sample mean is minimized by an optimum choice of the number of samples. It is shown furthermore that this choice is sensitive to the power-law index and that the approach to Poisson statistics is dominated by rare events or 'outliers'. Our results are supported by numerical simulation

  6. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    ... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law

  7. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    International Nuclear Information System (INIS)

    Zerf, Nikolai; Mihaila, Luminita N.; Herbut, Igor F.; Scherer, Michael M.

    2017-09-01

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε 4 ). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  8. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    Energy Technology Data Exchange (ETDEWEB)

    Zerf, Nikolai; Mihaila, Luminita N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Herbut, Igor F. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Physics; Scherer, Michael M. [Koeln Univ. (Germany). Inst. for Theoretical Physics

    2017-09-15

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε{sup 4}). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  9. Statistical-mechanical formulation of Lyapunov exponents

    International Nuclear Information System (INIS)

    Tanase-Nicola, Sorin; Kurchan, Jorge

    2003-01-01

    We show how the Lyapunov exponents of a dynamic system can, in general, be expressed in terms of the free energy of a (non-Hermitian) quantum many-body problem. This puts their study as a problem of statistical mechanics, whose intuitive concepts and techniques of approximation can hence be borrowed

  10. Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2014-01-01

    Full Text Available This paper is devoted to understand the blow-up properties of reaction-diffusion equations which combine a localized reaction term with nonlinear diffusion. In particular, we study the critical exponent of a p-Laplacian equation with a localized reaction. We obtain the Fujita exponent qc of the equation.

  11. Power-law tails and non-Markovian dynamics in open quantum systems: An exact solution from Keldysh field theory

    Science.gov (United States)

    Chakraborty, Ahana; Sensarma, Rajdeep

    2018-03-01

    The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.

  12. SUBSTANTIAL EXCEPTIONS AND (DELIMITATIONS OF THE POWERS OF THE JUDGES ON CIVIL PROCEDURAL LAW

    Directory of Open Access Journals (Sweden)

    Igor Raatz

    2017-08-01

    Full Text Available This essay aims to unveil the role of the substantial exceptions on delimiting the powers of the judges on civil procedural law, especially regarding the ex officio judicial activity. This way, under a phenomenological method and based on a vision of guarantee of rights on procedural law, the article offers a brief explanation of the question concerning the content of the object under litigation and its role of (delimiting the powers of the judges. The work hypothesis is the addition of the substantial exceptions among the content of the object under litigation, along with the claim itself and the cause of action. The results lie on the premise that, by the substantial exceptions, the defendant extends the object under litigation – which is formed dynamically on civil procedure. The conclusion points towards the idea that the substantial exceptions act in a way of limiting the ex officio judicial activity on civil procedural law

  13. Theoretical Insight Into the Empirical Tortuosity-Connectivity Factor in the Burdine-Brooks-Corey Water Relative Permeability Model

    Science.gov (United States)

    Ghanbarian, Behzad; Ioannidis, Marios A.; Hunt, Allen G.

    2017-12-01

    A model commonly applied to the estimation of water relative permeability krw in porous media is the Burdine-Brooks-Corey model, which relies on a simplified picture of pores as a bundle of noninterconnected capillary tubes. In this model, the empirical tortuosity-connectivity factor is assumed to be a power law function of effective saturation with an exponent (μ) commonly set equal to 2 in the literature. Invoking critical path analysis and using percolation theory, we relate the tortuosity-connectivity exponent μ to the critical scaling exponent t of percolation that characterizes the power law behavior of the saturation-dependent electrical conductivity of porous media. We also discuss the cause of the nonuniversality of μ in terms of the nonuniversality of t and compare model estimations with water relative permeability from experiments. The comparison supports determining μ from the electrical conductivity scaling exponent t, but also highlights limitations of the model.

  14. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    Science.gov (United States)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  15. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  16. Detection of collective motions in dielectric spectra and the meaning of the generalized Vogel-Fulcher-Tamman equation

    International Nuclear Information System (INIS)

    Nigmatullin, Raoul R.

    2009-01-01

    Based on the reduction property of dielectric spectra associated with the power-law function [∼(jωτ) ±ν ] that appears in the frequency domain, one can develop an effective procedure for detection of different reduced motions (described by the corresponding power-law exponents) in temperature domain. If the power-law exponent ν is related to characteristic relaxation time τ by the relationship ν=ν 0 ln(τ/τ s )/ln(τ/τ 0 ) (here τ s , τ 0 are the characteristic times characterizing a movement over fractal cluster that is defined in Ref. [Ya.E. Ryabov, Yu. Feldman, J. Chem. Phys. 116 (2002) 8610]) and the simple temperature dependence of τ(T)=τ A exp(E/T) obeys the traditional Arrhenius relationship, then one can prove that any extreme point figuring in the complex permittivity ε(jω) spectra (characterized by the values [ω m , y(ω m )]) obeys the generalized Vogel-Fulcher-Tamman (VFT) equation. This important statement confirms the existence of the 'universal' response (UR) (discovered and classified by Jonscher in frequency domain) and opens new possibilities in the detection of the 'hidden' collective motions in temperature region for self-similar (heterogeneous) systems. It gives also the extended interpretation of the VFT equation and allows one to differentiate collective motions passing through an extreme point. This differentiation, in turn, allows one to select the proper fitting function containing one or two (at least) relaxation times for the fitting of the complex permittivity function ε(jω) in the limited frequency domain. This conclusion can allow for the classification of dielectric spectroscopy as the spectroscopy of the reduced (collective) motions, which are described by different power-law exponents on the mesoscale region. The verification of this approach on available DS data (poly(ethylene glycol)-based-single-ion conductors) completely confirms the basic statements of this theory and opens new possibilities in general

  17. Quantum critical scaling for field-induced quantum phase transition in a periodic Anderson-like model polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.J., E-mail: dinglinjie82@126.com; Zhong, Y.

    2017-07-15

    Highlights: • The quantum critical scaling is investigated by Green’s function theory. • The obtained power-law critical exponents (β, δ and α) obey the critical scaling relation α + β(1 + δ) = 2. • The scaling hypothesis equations are proposed to verify the scaling analysis. - Abstract: The quantum phase transition and thermodynamics of a periodic Anderson-like polymer chain in a magnetic field are investigated by Green’s function theory. The T-h phase diagram is explored, wherein a crossover temperature T{sup ∗} denoting the gapless phase crossover into quantum critical regimes, smoothly connects near the critical fields to the universal linear line T{sup ∗} ∼ (h − h{sub c,s}), and ends at h{sub c,s}, providing a new route to capture quantum critical point (QCP). The quantum critical scaling around QCPs is demonstrated by analyzing magnetization, specific heat and Grüneisen parameter Γ{sub h}, which provide direct access to distill the power-law critical exponents (β, δ and α) obeying the critical scaling relation α + β(1 + δ) = 2, analogous to the quantum spin system. Furthermore, scaling hypothesis equations are proposed to check the scaling analysis, for which all the data collapse onto a single curve or two independent branches for the plot against an appropriate scaling variable, indicating the self-consistency and reliability of the obtained critical exponents.

  18. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  19. Power laws reveal phase transitions in landscape controls of fire regimes

    Science.gov (United States)

    Donald McKenzie; Maureen C. Kennedy

    2012-01-01

    Understanding the environmental controls on historical wildfires, and how they changed across spatial scales, is difficult because there are no surviving explicit records of either weather or vegetation (fuels). Here we show how power laws associated with fire-event time series arise in limited domains of parameters that represent critical transitions in the controls...

  20. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

    African Journals Online (AJOL)

    We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

  1. Focus-based filtering + clustering technique for power-law networks with small world phenomenon

    Science.gov (United States)

    Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz

    2006-01-01

    Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.

  2. Analysis of chaos in high-dimensional wind power system.

    Science.gov (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  3. Numerical analysis of the transient conjugated heat transfer in a circular duct with a power-law fluid

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)

    2005-05-01

    We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)

  4. The relationship between randomness and power-law distributed move lengths in random walk algorithms

    Science.gov (United States)

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2014-05-01

    Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.

  5. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  6. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; El-Ameen, M. A.; Jaha, Y. A.; Gorla, Rama Subba Reddy

    2010-01-01

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  7. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the 'MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs

  8. Zpif's law in the liquid gas phase transition of nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.

    1999-01-01

    Zpif's law in the field of linguistics is tested in the nuclear disassembly within the framework of isospin dependent lattice gas model. It is found that the average cluster charge (or mass) of rank n in the charge (or mass) list shows exactly inversely to its rank, i.e., there exists Zpif's law, at the phase transition temperature. This novel criterion shall be helpful to search the nuclear liquid gas phase transition experimentally and theoretically. In addition, the finite size scaling of the effective phase transition temperature at which the Zpif's law appears is studied for several systems with different mass and the critical exponents of ν and β are tentatively extracted. (orig.)

  9. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    Science.gov (United States)

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  10. Generalized randomly amplified linear system driven by Gaussian noises: Extreme heavy tail and algebraic correlation decay in plasma turbulence

    International Nuclear Information System (INIS)

    Steinbrecher, Gyoergy; Weyssow, B.

    2004-01-01

    The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent β is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained

  11. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    Science.gov (United States)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  12. Measurement and Statistics of Application Business in Complex Internet

    Science.gov (United States)

    Wang, Lei; Li, Yang; Li, Yipeng; Wu, Shuhang; Song, Shiji; Ren, Yong

    Owing to independent topologies and autonomic routing mechanism, the logical networks formed by Internet application business behavior cause the significant influence on the physical networks. In this paper, the backbone traffic of TUNET (Tsinghua University Networks) is measured, further more, the two most important application business: HTTP and P2P are analyzed at IP-packet level. It is shown that uplink HTTP and P2P packets behavior presents spatio-temporal power-law characteristics with exponents 1.25 and 1.53 respectively. Downlink HTTP packets behavior also presents power-law characteristics, but has more little exponents γ = 0.82 which differs from traditional complex networks research result. Moreover, downlink P2P packets distribution presents an approximate power-law which means that flow equilibrium profits little from distributed peer-to peer mechanism actually.

  13. Taylor Law in Wind Energy Data

    Directory of Open Access Journals (Sweden)

    Rudy Calif

    2015-10-01

    Full Text Available The Taylor power law (or temporal fluctuation scaling, is a scaling relationship of the form σ ~  (Pλ where !! is the standard deviation and hPi the mean value of a sample of a time series has been observed for power output data sampled at 5 min and 1 s and from five wind farms and a single wind turbine, located at different places. Furthermore, an analogy with the turbulence field is performed, consequently allowing the establishment of a scaling relationship between the turbulent production IP and the mean value (P.

  14. Behaviour of Lyapunov exponents near crisis points in the dissipative standard map

    Science.gov (United States)

    Pompe, B.; Leven, R. W.

    1988-11-01

    We numerically study the behaviour of the largest Lyapunov characteristic exponent λ1 in dependence on a control parameter in the 2D standard map with dissipation. In order to investigate the system's motion in parameter intervals slightly above crisis points we introduce "partial" Lyapunov exponents which characterize the average exponential divergence of nearby orbits on a semi-attractor at a boundary crisis and on distinct parts of a "large" chaotic attractor near an interior crisis. In the former case we find no significant difference between λ1 in the pre-crisis regime and the partial Lyapunov exponent describing transient chaotic motions slightly above the crisis. For the latter case we give a quantitative description of the drastic increase of λ1. Moreover, a formula which connects the critical exponent of a chaotic transient above a boundary crisis with a pointwise dimension is derived.

  15. Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence

    Science.gov (United States)

    Linkmann, Moritz; McComb, W. David; Yoffe, Samuel; Berera, Arjun

    2014-11-01

    The pseudospectral method, in conjunction with a new technique for obtaining scaling exponents ζn from the structure functions Sn (r) , is presented as an alternative to the extended self-similarity (ESS) method and the use of generalized structure functions. We propose plotting the ratio | Sn (r) /S3 (r) | against the separation r in accordance with a standard technique for analysing experimental data. This method differs from the ESS technique, which plots the generalized structure functions Gn (r) against G3 (r) , where G3 (r) ~ r . Using our method for the particular case of S2 (r) we obtain the new result that the exponent ζ2 decreases as the Taylor-Reynolds number increases, with ζ2 --> 0 . 679 +/- 0 . 013 as Rλ --> ∞ . This supports the idea of finite-viscosity corrections to the K41 prediction for S2, and is the opposite of the result obtained by ESS. The pseudospectral method permits the forcing to be taken into account exactly through the calculation of the energy input in real space from the work spectrum of the stirring forces. The combination of the viscous and the forcing corrections as calculated by the pseudospectral method is shown to account for the deviation of S3 from Kolmogorov's ``four-fifths''-law at all scales. This work has made use of the resources provided by the UK supercomputing service HECToR, made available through the Edinburgh Compute and Data Facility (ECDF). A. B. is supported by STFC, S. R. Y. and M. F. L. are funded by EPSRC.

  16. Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field

    International Nuclear Information System (INIS)

    Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.

    1984-01-01

    An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)

  17. Power-law neuronal fluctuations in a recurrent network model of parametric working memory.

    Science.gov (United States)

    Miller, Paul; Wang, Xiao-Jing

    2006-02-01

    In a working memory system, persistent activity maintains information in the absence of external stimulation, therefore the time scale and structure of correlated neural fluctuations reflect the intrinsic microcircuit dynamics rather than direct responses to sensory inputs. Here we show that a parametric working memory model capable of graded persistent activity is characterized by arbitrarily long correlation times, with Fano factors and power spectra of neural activity described by the power laws of a random walk. Collective drifts of the mnemonic firing pattern induce long-term noise correlations between pairs of cells, with the sign (positive or negative) and amplitude proportional to the product of the gradients of their tuning curves. None of the power-law behavior was observed in a variant of the model endowed with discrete bistable neural groups, where noise fluctuations were unable to cause long-term changes in rate. Therefore such behavior can serve as a probe for a quasi-continuous attractor. We propose that the unusual correlated fluctuations have important implications for neural coding in parametric working memory circuits.

  18. Multifractal signal reconstruction based on singularity power spectrum

    International Nuclear Information System (INIS)

    Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning

    2016-01-01

    Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.

  19. Paradigms for EU Law and the Limits of Delegation. The Case of EU Agencies

    OpenAIRE

    Simoncini Marta

    2017-01-01

    This article questions the idea that the EU is a pure regulatory power based on supranational delegation of competence from the Member States. It claims the insufficiency of this single paradigm to explain the developments of EU law and the need to integrate it with recognition of the constitutional foundations of EU law.

  20. Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets

    Science.gov (United States)

    Eom, Cheoljun; Choi, Sunghoon; Oh, Gabjin; Jung, Woo-Sung

    2008-07-01

    We empirically investigated the relationships between the degree of efficiency and the predictability in financial time-series data. The Hurst exponent was used as the measurement of the degree of efficiency, and the hit rate calculated from the nearest-neighbor prediction method was used for the prediction of the directions of future price changes. We used 60 market indexes of various countries. We empirically discovered that the relationship between the degree of efficiency (the Hurst exponent) and the predictability (the hit rate) is strongly positive. That is, a market index with a higher Hurst exponent tends to have a higher hit rate. These results suggested that the Hurst exponent is useful for predicting future price changes. Furthermore, we also discovered that the Hurst exponent and the hit rate are useful as standards that can distinguish emerging capital markets from mature capital markets.