WorldWideScience

Sample records for single polypyrrole ppy

  1. Photocurrent and photothermal current of polypyrrole (PPy) film

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chongjun; Wang Haihong; Jiang Zhiyu

    2003-02-28

    The photoelectrochemical properties of polypyrrole (PPy) film in aqueous solutions in the potential region of -0.7 to 0.5 V (versus Ag/AgCl) were investigated by using photocurrent, photothermal and photothermal current methods under the irradiation of laser beams with wavelength of 532 and 632.8 nm, respectively. It was found that the photocurrent at more negative potential was caused by the p-type semiconductor properties, while the photocurrent at more positive potential was caused by the local temperature rather than the semiconductor properties of the films. The effect of the film thickness on the photocurrent of PPy films was studied in detail.

  2. Photocurrent and photothermal current of polypyrrole (PPy) film

    International Nuclear Information System (INIS)

    Zhao Chongjun; Wang Haihong; Jiang Zhiyu

    2003-01-01

    The photoelectrochemical properties of polypyrrole (PPy) film in aqueous solutions in the potential region of -0.7 to 0.5 V (versus Ag/AgCl) were investigated by using photocurrent, photothermal and photothermal current methods under the irradiation of laser beams with wavelength of 532 and 632.8 nm, respectively. It was found that the photocurrent at more negative potential was caused by the p-type semiconductor properties, while the photocurrent at more positive potential was caused by the local temperature rather than the semiconductor properties of the films. The effect of the film thickness on the photocurrent of PPy films was studied in detail

  3. Modification of Screen Printed Carbon Electrode (SPCE with Polypyrrole (Ppy-SiO2 for Phenol Determination

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2018-01-01

    Full Text Available Electrode modification on screen printed carbon electrode (SPCE with polypyrrole (Ppy-SiO2 was done by electropolymerization. Polypyrrole (Ppy-SiO2 was used for phenol determination. The analysis of this material was done by using Scanning Electron Microscopy (SEM, cyclic voltammetry method and differential pulse voltammetry. In a cyclic voltammetry analysis, we used potential range of -1 to 1 V with Ag/AgCl comparator electrode at scan rate of 100 mV/sec, while in differential pulse voltammetry method the potential range was 0 to 1 V toward Ag/AgCl, the scan rate of 50 mV/sec, the pulse rate is 0,2 V and the pulse width is 50 ms. From the analysis result with SEM, cyclic voltammetry and differential pulse voltammetry method, Polypyrrole (Ppy -SiO2 is the best material and can be used as phenol measurement.

  4. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite.

    Science.gov (United States)

    Kate, Kunal H; Damkale, Shubhangi R; Khanna, P K; Jain, G H

    2011-09-01

    Thermal polymerization of pyrrole was performed using silver nitrate as source of silver ions followed by its conversion to Polypyrrole (PPy)/Ag nano-comoposites without using any external oxidizing agent or solvent. The formation of PPy was monitored by UV-Visible absorption spectroscopy showing a band at approximately 464 nm. XRD measurement confirmed characteristic peaks for face centered cubic (fcc) silver and presence of PPy at 2 theta of approximately 23 degrees suggesting the formation of PPy/Ag nanocomposite. Transmission electron microscopy (TEM) images showed non-aggregated spherical Ag nano-particles of about 5-10 nm. PPy/Ag thick film acts as a NH3 sensor at 100 degrees C, a H2S sensor at 250 degrees C and CO2 sensor at 350 degrees C. The thick films showed capability to recognize various gases at different operating temperature.

  5. Synergistic Effects in the Gas Sensitivity of Polypyrrole/Single Wall Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Thien

    2012-06-01

    Full Text Available Polypyrrole/single wall carbon nanotube composites were synthesized by in-situ chemical polymerization using pyrrole (PPy as precursor and single wall carbon nanotubes (SWNTs as additive component. Electron microscope images reveal that SWNTs component acts as nucleation sites for PPy growth in the form of spherical and cylindrical core-shell structures. The SWNTs/PPy core-shell results in thin n-p junctions which modify the PPy bandgap and reduce the work function of electrons. As a result of the strong coupling, Raman and IR spectra show that the PPy undergoes a transition from polaron to bipolaron state, i.e., indicating an increase in the conductivity. In the UV-Vis spectra, the 340 nm adsorption band (π*-π transition exhibits a red shift, while the 460 nm adsorption band (bipolaron transition experiences a blue shift indicating a change in electronic structure and a relocation of polaron levels in the band gap of PPy. The modification in PPy electronic structure brings in a synergistic effect in sensing feature. Upon exposure to oxygen (an oxidizing agent and NH3 gas (a reducing agent, the PPy/SWNTs nanocomposite shows an enhancement in sensitivity exceeding ten folds in comparison with those of PPy or SWNTs.

  6. The electronic conductance of polypyrrole (PPy molecular wires and emergence of Fano resonance phenomena

    Directory of Open Access Journals (Sweden)

    M Mardaani

    2012-06-01

    Full Text Available In this paper, we studied the electronic conductance of a polypyrrole polymer, which is embedded between two semi-infinite simple chains by using Green’s function technique in tight-binding approach. We first reduced the center polymer to a one dimensional chain with renormalized onsite and hopping energies by renormalization method. Then, we calculated the system conductivity as a function of incoming electron energy, polymer length and contact hopping terms. The results showed that by increasing polymer length and decreasing contact hopping energies, the conductance decreases in the gap regions. This means that for larger gaps, the electron tunneling happens with more difficulty. Moreover, at the resonance area, due to the existence of nitrogen atom in the polymer cyclic structure, the Fano resonance will emerge. Furthermore, the polymer can behave like a metallic chain by variation of the value of nitrogen on-site term.

  7. Polypyrrole-Functionalized Single-Walled Carbon Nanotube Gas Sensor Arrays

    Science.gov (United States)

    Kakoullis, James, Jr.

    The overall objective of this work is to fabricate and evaluate polypyrrole-single-walled carbon nanotubes hybrid structures based chemiresistive sensor arrays for sensitive, selective and discriminative sensing at room temperature of emissions from automobiles and industrial manufacturing. To conceive the sensor arrays single-walled carbon nanotubes (SWNTs) networks were aligned to bridge a 3 mum gap between a pair of prefabricated microelectrodes followed by coating with polypyrrole (PPY) with different dopants by electrochemical polymerization. Initially, the sensor¡¦s synthesis conditions in terms of PPY thickness on SWNTs networks by varying the electropolymerization charge of the monomer pyrrole in presence of LiClO4 dopant for the sensing of NH3 was optimized. Using the optimized polymerization charge of 1 muC determined previously, arrays of SWNTs-PPY hybrid sensors were fabricated by replacing dopant LiClO4 by L-camphor sulfonic acid, D-camphor sulfonic acid, p-toluene sulfonic acid and sodium dodecyl sulfonate. Room temperature gas sensing performance of the PPY coated SWNTs network arrays to gases of environmental significance such as NH3, NO 2, H2S, SO2, CO and CO2 and volatile organic compounds such as benzene, toluene, ethyl benzene, p-xylene, methanol, n-hexane and acetone and humidity, was evaluated. Several folds enhancement in sensing performance was observed towards all the tested analytesfor hybrid devices when compared to bare SWNTs network devices. Differences in sensing performance were noticed for PPY coating with different dopants demonstrating the potential of using the array for discrimination of the tested analytes in a mixture by using chemometric techniques. The underlying sensing mechanism was also investigated by using the devices in chemFET mode configuration.

  8. Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing.

    Science.gov (United States)

    Radhakrishnan, S; Sumathi, C; Umar, Ahmad; Jae Kim, Sang; Wilson, J; Dharuman, V

    2013-09-15

    The electrochemical DNA hybridization sensing of bipolymer polypyrrole and poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes functionalized with Ag nanoparticles has been investigated. The bipolymer nanotubes are prepared by simple chemical route and silver nanoparticles (Ag) further deposited over the PPy-PEDOT nanotubes to form PPy-PEDOT-Ag nanocomposite films. DNA labeled at 5'end using 6-mercapto-1-hexhane (HS-ssDNA) is immobilized on the PPy-PEDOT-Ag surface to form PPy-PEDOT-Ag-S-ssDNA and hybridization sensing is done in phosphate buffer. The presence of Ag nanoparticles (~28±5nm) well dispersed in the polymer composite with high surface area, high electrical conductivity and catalytic activity provides desirable microenvironment for the immobilization of probe DNA with controlled orientation leading to increased hybridization efficiency with target DNA. The morphological and structural characterizations by a scanning electron microscope (SEM) and X-ray diffraction (XRD) confirm the nanotube structure of composite polymer while Raman measurements indicate the efficient interactions between the PPy, PEDOT, Ag and HS-ssDNA. The sensor effectively discriminates different target DNA sequences with PPy-PEDOT-Ag-S-ssDNA substrate. The observed dynamic detection range is found between 1×10(-11)M and 1×10(-14)M with the lowest detection limit (3 σ/b) of 5.4×10(-15)M. This observed value is of higher sensitivity than that for MWCNT-Ag, PANi-Au, MWCNT-PPy-Au and PPy-PANi-Au composites reported previously. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination

    Science.gov (United States)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-01

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  10. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination.

    Science.gov (United States)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-04

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  11. Desalting of phosphopeptides by tandem polypyrrole-c18 reverse phase micropipette tip (TMTip{sub PPY-C18}) based on hybrid electrostatic, {Pi}-{Pi} stacking and hydrophobic interactions for mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Shi; Wang Xiaoli; Fu Jieying; Hu Xuejiao; Xiao Xiao; Huang Lulu; Zhou Youe [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China); Zhong Hongying, E-mail: hyzhong@mail.ccnu.edu.cn [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China)

    2012-04-29

    Highlights: Black-Right-Pointing-Pointer A new micropipette tip TMTip{sub PPY-C18} was developed for desalting of phosphopeptides. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} is based on polypyrrole in tandem with C18 chromatographic material. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} combines electrostatic, {Pi}-{Pi} stacking and hydrophobic interactions. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} can be used in both acidic and basic experimental conditions. - Abstract: Desalting and concentration of peptides using reverse phase (RP) C18 chromatographic material based on hydrophobic interaction is a routine approach used in mass spectrometry (MS)-based proteomics. However, MS detection of small hydrophilic peptides, in particular, phosphopeptides that bear multiple negative charges, is challenging due to the insufficient binding to C18 stationary phase. We described here the development of a new desalting method that takes the unique properties of polypyrrole (PPY). The presence of positively charged nitrogen atoms under acidic conditions and polyunsaturated bonds in polypyrrole provide a prospect for enhanced adsorption of phosphopeptides or hydrophilic peptides through extra electrostatic and {Pi}-{Pi} stacking interactions in addition to hydrophobic interactions. In tandem with reversed phase C18 chromatographic material, the new type of desalting method termed as TMTip{sub PPY-C18} can significantly improve the MS detection of phosphopeptides with multiple phosphate groups and other small hydrophilic peptides. It has been applied to not only tryptic digest of model proteins but also the analysis of complex lysates of zebrafish eggs. The number of detected phosphate groups on a peptide ranged from 1 to 6. Particularly, polypyrrole based method can also be used in basic condition. Thus it provides a useful means to handle peptides that may not be detectable in acidic condition. It can be envisioned that the TMTip{sub PPY-C18} should be able to

  12. Development of a novel biosensor based on a polypyrrole-dodecylbenzene sulphonate (PPy-DBS) film for the determination of amperometric cholesterol.

    Science.gov (United States)

    Özer, Bayram Oğuz; Çete, Servet

    2017-06-01

    Herein a novel amperometric biosensor based on a conducting polymer with anionic dopant modified electrode was successfully developed for detection of cholesterol. Polypyrrole is deposited on a platinum surface and the sodium dodecylbenzene sulphonate (DBS) ion-doped polypyrrole film was electrochemically prepared by scanning the electrode potential between -0.8 and +0.8 V at a scan rate of 20 mV/s. The present electrochemical biosensor was optimized in terms of working potential, number of cycles, concentrations of monomer, and anionic dopant. Cholesterol oxidase (ChOx) was physically entrapped in PPy-DBS to construct an amperometric cholesterol biosensor. Amperometric determination is based on the electrochemical detection of H 2 O 2 generated in the enzymatic reaction of cholesterol. Kinetic parameters, operational and storage stabilities, pH, and temperature dependencies were determined. Km and Imax were calculated as 0.11 μM and 0.967 nM/min, respectively. The operational stability results showed that 90.0% of the response current was retained after 30 activity assays. Morphology of electrodes was characterized by SEM and AFM. Additionally, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. As a result, the cholesterol biosensor suggested in this study is easy to prepare and is highly cost-effective. This composite (PPy-DBS) can supply a biocompatible and electrochemical microenvironment for immobilization of the enzyme, making this material a good candidate for the fabrication of highly sensitive and selective cholesterol biosensors.

  13. Desalting of phosphopeptides by tandem polypyrrole-c18 reverse phase micropipette tip (TMTip(PPY-C18)) based on hybrid electrostatic, Π-Π stacking and hydrophobic interactions for mass spectrometric analysis.

    Science.gov (United States)

    Zheng, Shi; Wang, Xiaoli; Fu, Jieying; Hu, Xuejiao; Xiao, Xiao; Huang, Lulu; Zhou, Youe; Zhong, Hongying

    2012-04-29

    Desalting and concentration of peptides using reverse phase (RP) C18 chromatographic material based on hydrophobic interaction is a routine approach used in mass spectrometry (MS)-based proteomics. However, MS detection of small hydrophilic peptides, in particular, phosphopeptides that bear multiple negative charges, is challenging due to the insufficient binding to C18 stationary phase. We described here the development of a new desalting method that takes the unique properties of polypyrrole (PPY). The presence of positively charged nitrogen atoms under acidic conditions and polyunsaturated bonds in polypyrrole provide a prospect for enhanced adsorption of phosphopeptides or hydrophilic peptides through extra electrostatic and Π-Π stacking interactions in addition to hydrophobic interactions. In tandem with reversed phase C18 chromatographic material, the new type of desalting method termed as TMTip(PPY-C18) can significantly improve the MS detection of phosphopeptides with multiple phosphate groups and other small hydrophilic peptides. It has been applied to not only tryptic digest of model proteins but also the analysis of complex lysates of zebrafish eggs. The number of detected phosphate groups on a peptide ranged from 1 to 6. Particularly, polypyrrole based method can also be used in basic condition. Thus it provides a useful means to handle peptides that may not be detectable in acidic condition. It can be envisioned that the TMTip(PPY-C18) should be able to facilitate the exploration of large scale phosphoproteome. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Novel Electrochemical Synthesis of Polypyrrole/Ag Nanocomposite and Its Electrocatalytic Performance towards Hydrogen Peroxide Reduction

    OpenAIRE

    Ruma Gupta; Kavitha Jayachandran; J. S. Gamare; B. Rajeshwari; Santosh K. Gupta; J. V. Kamat

    2015-01-01

    A simple electrochemical method of synthesis of polypyrrole/silver (PPy/Ag) nanocomposite is presented. The method is based on potentiodynamic polymerization of pyrrole followed by electrodeposition of silver employing a single potentiostatic pulse. The synthesized PPy film has embedded Ag nanocubes. The morphology and structure of the resulting nanocomposite were characterized by field emission scanning electron microscopy and X-ray diffraction. Electron paramagnetic resonance studies showed...

  15. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  16. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  17. Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaomiao; Sun Zhengzong; Hou Wenhua; Zhu Junjie [Key Laboratory of Mesoscopic Chemistry, Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2007-05-16

    Polypyrrole (PPy)/PB and PPy/Ag composite microtubes were synthesized in one pot by using methyl orange (MO) as a reactive self-degraded template. In contrast to reported conventional template approaches, the MO template did not need to be removed after polymerization. The formation mechanism, structural characteristics, conductivity, and electrochemical properties of the obtained PPy/PB and PPy/Ag microtubes are reported.

  18. Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template

    International Nuclear Information System (INIS)

    Feng Xiaomiao; Sun Zhengzong; Hou Wenhua; Zhu Junjie

    2007-01-01

    Polypyrrole (PPy)/PB and PPy/Ag composite microtubes were synthesized in one pot by using methyl orange (MO) as a reactive self-degraded template. In contrast to reported conventional template approaches, the MO template did not need to be removed after polymerization. The formation mechanism, structural characteristics, conductivity, and electrochemical properties of the obtained PPy/PB and PPy/Ag microtubes are reported

  19. Binding and release of glutamate from overoxidized polypyrrole via an applied potential for application as a molecular switch

    NARCIS (Netherlands)

    von Hauff, Elizabeth; Meteleva-Fischer, Yulia; Parisi, Jueirgen; Weiler, Reto

    2008-01-01

    The controlled binding and release of glutamate from overoxidized polypyrrole (PPy) films via a variable potential was investigated. Glutamate-doped PPy films were electrochemically deposited from aqueous sodium glutamate electrolytes containing the pyrrole monomer. The resulting polymer films were

  20. Dielectric and AC Conductivity Studies in PPy-Ag Nanocomposites

    OpenAIRE

    Praveenkumar, K.; Sankarappa, T.; Ashwajeet, J. S.; Ramanna, R.

    2015-01-01

    Polypyrrole and silver nanoparticles have been synthesized at 277 K by chemical route. Nanoparticles of polypyrrole-silver (PPy-Ag) composites were prepared by mixing polypyrrole and silver nanoparticles in different weight percentages. Dielectric properties as a function of temperature in the range from 300 K to 550 K and frequency in the range from 50 Hz to 1 MHz have been measured. Dielectric constant decreased with increase in frequency and temperature. Dielectric loss decreased with incr...

  1. Synthesis and microwave absorption properties of PPy/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Gao, Duoduo [School of Material Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2014-11-15

    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was −20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth. - Highlights: • The influence of PPy on the structure of Co is discussed. • The influence of PPy on the magnetic properties of Co is discussed. • The influence of PPy on the absorption property of Co is discussed. • PPy/Co possessed the excellent absorption property.

  2. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  3. Controlling Physical and Chemical Bonding of Polypyrrole to Boron Doped Diamond by Surface Termination

    OpenAIRE

    Ukraintsev, Egor; Kromka, Alexander; Janssen, Wiebke; Haenen, Ken; Rezek, Bohuslav

    2013-01-01

    To elucidate and to control polypyrrole (PPy) attachment to diamond we electrochemically grow PPy layers on hydrogen- and oxygen-terminated boron doped diamonds (BDD). Atomic force microscopy (AFM) shows that the PPy layers have similar morphology (15 nm features) and thickness (> 5 nm) on H- and O-BDD. To resolve type of PPy-diamond bonding, scanning electron microscopy (SEM) is used to compare intensity of secondary electron emission from original BDD regions and regions where PPy was grown...

  4. Fabrication of Conductive Polypyrrole Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Yiqun Cong

    2013-01-01

    Full Text Available Electrospinning is employed to prepare conductive polypyrrole nanofibers with uniform morphology and good mechanical strength. Soluble PPy was synthesized with NaDEHS as dopant and then applied to electrospinning with or without PEO as carrier. The PEO contents had great influence on the morphology and conductivity of the electrospun material. The results of these experiments will allow us to have a better understanding of PPy electrospun nanofibers and will permit the design of effective electrodes in the BMIs fields.

  5. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  6. Actuation of polypyrrole nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou Chongwu [Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: requicha@usc.edu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 {mu}m, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  7. High efficient removal of chromium (VI) using glycine doped polypyrrole adsorbent from aqueous solution

    CSIR Research Space (South Africa)

    Ballav, N

    2012-08-01

    Full Text Available Glycine doped polypyrrole (PPy-gly) adsorbent was prepared via in situ polymerization of pyrrole (Py) monomer in the presence of glycine (gly) for the removal of Cr(VI). Formation of PPy homopolymer and inclusion of gly in the PPy matrix were...

  8. Synthesis and characterization of novel polypyrrole hybrid nanotubules incorporated with polyaniline spots

    Science.gov (United States)

    Kang, Kyung Seok; Jee, Chan Hyuk; Bae, Ji-Hong; Jung, Hyo Jin; Huh, PilHo

    2017-11-01

    Novel hybrid nanostructures composed of the polypyrrole (PPy) as the void nanotubules and the polyaniline (PANi) as the spots were fabricated using a successive synthetic process. Unique phase-separated morphological properties of PPy-PANi hybrid nano-tubules might be caused by the PANi spots distributed randomly in the PPy matrix.

  9. Synthesis and microwave absorption properties of PPy/Co nanocomposites

    Science.gov (United States)

    Luo, Juhua; Gao, Duoduo

    2014-11-01

    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was -20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth.

  10. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...

  11. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  12. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkuviene, Aida [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Kaseta, Vytautas [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Voronovic, Jaroslav [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Ramanauskaite, Giedre; Biziuleviciene, Gene [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Ramanaviciene, Almira [NanoTechnas–Center of Nanotechnology and Material Science at Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius (Lithuania); Ramanavicius, Arunas, E-mail: Arunas.Ramanavicius@chf.vu.lt [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Laboratory of BioNanoTechnology, Department of Materials Science and Electronics, Institute of Semiconductor Physics, State Scientific Research Institute Centre for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2013-04-15

    Highlights: ► Polypyrrole nanoparticles synthesized by environmentally friendly polymerization at high concentrations are cytotoxic. ► Primary mouse embryonic fibroblast, mouse hepatoma and human T lymphocyte Jurkat cell lines were treated by Ppy nanoparticles. ► Polypyrrole nanoparticles at high concentrations inhibit cell proliferation. -- Abstract: Polypyrrole (Ppy) is known as biocompatible material, which is used in some diverse biomedical applications and seeming to be a very promising for advanced biotechnological applications. In order to increase our understanding about biocompatibility of Ppy, in this study pure Ppy nanoparticles (Ppy-NPs) of fixed size and morphology were prepared by one-step oxidative polymerization and their cyto-compatibility was evaluated. The impact of different concentration of Ppy nanoparticles on primary mouse embryonic fibroblasts (MEF), mouse hepatoma cell line (MH-22A), and human T lymphocyte Jurkat cell line was investigated. Cell morphology, viability/proliferation after the treatment by Ppy nanoparticles was evaluated. Obtained results showed that Ppy nanoparticles at low concentrations are biocompatible, while at high concentrations they became cytotoxic for Jurkat, MEF and MH-22A cells, and it was found that cytotoxic effect is dose-dependent.

  13. Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr (VI) removal

    CSIR Research Space (South Africa)

    Setshedi, KZ

    2013-01-01

    Full Text Available Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite (PPy OMMT NC), was prepared as a potential adsorbent, via in situ polymerization of pyrrole monomer for adsorption of toxic Cr(VI) from aqueous solution. The WAXD...

  14. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration

    DEFF Research Database (Denmark)

    Zanjanizadeh Ezazi, Nazanin; Shahbazi, Mohammad-Ali; Shatalin, Yuri V.

    2018-01-01

    engineering due to favorable biocompatibility, osteoconductivity and drug delivery potential, respectively. These materials were coupled with conductive polypyrrole (PPy) polymer to create a novel bone scaffold for regenerative medicine. Conductive and non-conductive scaffolds were made by slurry casting...

  15. The Regulation of Osteogenesis Using Electroactive Polypyrrole Films

    Directory of Open Access Journals (Sweden)

    Chuan Li

    2016-07-01

    Full Text Available To evaluate the effect of electrical conductivity of biomaterials on osteogenesis, polypyrrole (PPy was fabricated by oxidative chemical polymerization as substrates for cell culture. Through adjusting the concentrations of monomer and initiator, polypyrrole films with different electrical conductivities were fabricated. These fabricated polypyrrole films are transparent enough for easy optical microscopy. Fourier transform infrared spectroscopy, X-ray spectroscopy and four-point probe were used to assess the microstructures, surface chemical compositions and electrical sheet resistance of films, respectively. Results indicate that higher monomer and initiator concentration leads to highly-branched PPy chains and thus promotes the electron mobility and electrical conductivity. Selected polypyrrole films then were applied for culturing rat bone marrow stromal cells. Cell viability and mineralization assays reveal that not only these films are biocompatible, but also capable of enhancing the calcium deposition into the extra cellular matrix by the differentiated cells.

  16. Polypyrrole Actuators Working at 2 to 30 Hz

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; West, Keld

    2007-01-01

    “Soft actuators” based on the conducting polymer polypyrrole (PPy) may be especially suitable for use in combination with human limbs. A research project under the European Union Quality of Life program (DRIFTS, Dynamically Responsive Intervention for Tremor Suppression, http://www.gerontech.org.......“Soft actuators” based on the conducting polymer polypyrrole (PPy) may be especially suitable for use in combination with human limbs. A research project under the European Union Quality of Life program (DRIFTS, Dynamically Responsive Intervention for Tremor Suppression, http...... and in the electrolyte, a polypyrrole actuator able to yield significant force at up to 30 Hz has been made. The stiffness change turns out to be approximately 20 times faster than the change in length. Simple scaling up of the present data leads to a required total thickness of PPy (30 mm wide film) of 0.13 mm at 2 Hz...

  17. Investigation of some affection on conductivity of nanocomposite polypyrrole

    International Nuclear Information System (INIS)

    Nguyen Cuu Khoa; Nguyen Thi My Thao; Nguyen Thi Bich Tram

    2012-01-01

    Polypyrrole (PPy) nanoparticles were synthesized using controlled dispersed condensation polymerization method over PVA-base surface, ammonium peroxydisulfate (APS) used as oxidant, Sodium dodecyl sulfate (SDS) used as surfactant dopants. Metal chloride salt dopants were KCL, CaCl 2 , ZnCl 2 , FeCl 2 , CuCl 2 , FeCl 3 . The nano PPy were characterized by FT-IR spectrum, TGA, SEM images and conductivity measurement. The obtained results showed that PPy nanoparticles are distributed ranging from 30 to 70 nm and the conductivity of PPy nanocomposite film could be increased up to 47.6 S/cm. (author)

  18. Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, A.C. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Inamdar, A.I. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Dalavi, D.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Deshmukh, H.P. [Department of Physics, Y.M. College, Bharati Vidyapeeth, Erandwane, Pune (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.i [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2010-02-28

    Nickel oxide/polypyrrole (NiO/PPy) thin films were deposited by a two step process in which the NiO layer was electrodeposited potentiostatically from an aqueous solution of NiCl{sub 2}.6H{sub 2}O at pH 7.5 on fluorine doped tin oxide (FTO) coated conducting glass substrates, followed by the deposition of polypyrrole (PPy) thin films by chemical bath deposition (CBD) from pyrrole mixed with ammonium persulfate (APS). The NiO/PPy films were further characterized for their structural, optical, morphological and electrochromic properties. X-ray diffraction study indicates that the films composed of polycrystalline NiO and amorphous PPy. Infrared transmission spectrum reveals chemical bonding between NiO and PPy. Rectangular faceted grains were observed from scanning electron microscopy results. The electrochromic (EC) property of the film was studied using cyclic voltammogram (CV), chronoamperometry (CA) and optical modulation. The NiO/PPy presents superior EC properties than their individual counterparts. The coloration/bleaching kinetics (response time of few ms) and coloration efficiency (358 cm{sup 2}/C) were found to be improved appreciably. The dramatic improvement in electrochemical stability (from about 500 c/b cycles for PPy to 10,000 c/b cycles for NiO/PPy) was observed. This work therefore demonstrates a cost-effective and simple way of depositing highly efficient, faster and stable NiO/PPy electrodes for EC devices.

  19. Development of polypyrrole coated copper nanowires for gas sensor application

    Directory of Open Access Journals (Sweden)

    H. Shokry Hassan

    2015-09-01

    Full Text Available Both polypyrrole (PPy and polypyrrole coated copper thin films were synthesized successfully via two-step methods. PPy nanorods films were first grown chemically, and then PPy thin films were fabricated on glass substrates using dip-coating technique. The resulting films were examined via various characterization methods such as X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR and Thermal Gravimetric Analysis (TGA. Gas sensor devices were fabricated and the gas sensitivity for (PPy coated copper was measured as a function of temperature for both O2 and CO2 gases. The maximum sensitivity for O2 gas was around 160% and the maximum sensitivity for CO2 was 300%.

  20. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  1. Synthesis of Silica/Polypyrrole Nanocomposites and Application in Corrosion Protection of Carbon Steel.

    Science.gov (United States)

    Van, Vu Thi Hai; Hang, To Thi Xuan; Nam, Pham Thi; Phuong, Nguyen Thu; Thom, Nguyen Thi; Devilliers, Didier; Thanh, Dinh Thi Mai

    2018-06-01

    Silica/polypyrrole nanocomposites without dopant (SiO2/PPy) and with oxalate dopant (SiO2/PPyOx) were synthesized using polymerization of pyrrole in the presence of nano SiO2. Synthesized SiO2/PPy and SiO2/PPyOx were characterized by FTIR, SEM, TEM and EDX and their electrical conductivities were determined by CV method through the two-point-electrode without electrolyte. The corrosion protection performance of polyvinylbutyral (PVB) coatings containing SiO2/PPyOx was evaluated and compared with that of pure PVB coatings and of PVB coatings containing SiO2/PPy by electrochemical impedance spectroscopy and adhesion measurement. The results show that electrical conductivities of SiO2/PPy and SiO2/PPyOx were 0.181 and 0.109 S/cm, respectively. The ratio of PPy on SiO2 in SiO2/PPy and SiO2/PPyOx composites was 0.77/1 and the ratio of oxalate on PPy in SiO2/PPyOx composite was 1.24/1. SiO2/PPy and SiO2/PPyOx improved corrosion resistance and adhesion of PVB coatings. The presence of oxalate in SiO2/PPyOx significantly enhanced the effect of SiO2/PPy on the protection performance of PVB coatings.

  2. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  3. Surfactant Effect in Polypyrrole and Polypyrrole with Multi Wall Carbon Nanotube Counter Electrodes: Improved Power Conversion Efficiency of Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Thuy, Chau Thi Thanh; Park, Ji Young; Lee, Seung Woo; Suresh, Thogiti; Kim, Jae Hong

    2016-05-01

    In our present study, polypyrrole-1 (PPy1), polypyrrole-2 (PPy2), and polypyrrole-2/multi wall carbon nanotube composite film (PPy2/MWCNT) were proposed as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) to replace the precious Pt CE. These films were fabricated on fluorine-doped tin oxide substrates by using a facile electrochemical polymerization route, and served as CEs in DSSCs. It is shown that the introduction of anionic surfactant, sodium dodecyl sulfate (SDS), enhanced the catalytic activity, thus leading to an improvement in the performance of PPy2. Further, introduction of MWCNT resulted in increase in conversion efficiency of DSSCs with PPy2/MWCNT composite film. The Tafel and electrochemical impedance analysis revealed that the PPy2 and PPy2/MWCNT CEs prepared with anionic surfactant possessed more catalytic activity and lower charge transfer resistance in comparison with PPy1 -based CE. This resulted in a better conversion efficiency of 5.88% for PPy2/MWCNT-based DSSC under 1 sun condition, reaching 86% of the DSSC based on reference Pt counter electrode (6.86%). These results indicate that the composite film with high catalytic properties for I3- reduction can potentially be used as the CE in a high-performance DSSC.

  4. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers

    CSIR Research Space (South Africa)

    Bhaumik, M

    2012-02-01

    Full Text Available Polypyrrole-polyaniline (PPy-PANI) nanofibers as adsorbent of Cr(VI) were prepared without template via coupling of propagating PPy+ and PANI+ free radicals by simultaneous polymerization of Py and ANI monomers in presence of FeCl3 oxidant...

  5. Controlled Fabrication of Polypyrrole Surfaces with Overhang Structures by Colloidal Templating

    NARCIS (Netherlands)

    Akerboom, S.; Pujari, S.P.; Turak, E.; Kamperman, M.M.G.

    2015-01-01

    Here we present the fabrication of polypyrrole (PPy) surfaces with a controlled overhang structure. Regularly structured PPy films were produced using interfacial polymerization around a sacrificial crystalline colloidal monolayer at the air/water interface. The morphology of the final inverse

  6. Surprising volume change in PPy(DBS): An atomic force microscopy study

    DEFF Research Database (Denmark)

    Smela, E.; Gadegaard, N.

    1999-01-01

    Communication: Conjugated polymers such as polypyrrole (PPy) have potential use as artificial muscles or in microsystems such as valves for micro-fluid handling. One of the most important parameters in such uses is the magnitude of volume change during associated redox processes; however, until now...... estimates have varied greatly. Atomic force microscopy is reported here as allowing direct measurement of the in situ thickness change during oxidation and reduction of thin films of PPy doped with dodecylbenzenesulfonate....

  7. Morphological, dielectric and electric conductivity characteristics of clay-containing nanohybrids of Poly(N-Vinyl Carbazole) and Polypyrrole

    CSIR Research Space (South Africa)

    Haldar, I

    2012-10-01

    Full Text Available Poly(N-vinyl carbazole) (PNVC) and polypyrrole (PPY)-montmorillonite (MMT) clay hybrids were prepared by mechanical grinding of the respective monomers with MMT followed by subsequent standard processing methods. Fourier transform infrared...

  8. Capacitive properties of polypyrrole/activated carbon composite

    Directory of Open Access Journals (Sweden)

    Porjazoska-Kujundziski Aleksandra

    2014-01-01

    Full Text Available Electrochemical synthesis of polypyrrole (PPy and polypyrrole / activated carbon (PPy / AC - composite films, with a thickness between 0.5 and 15 μm were performed in a three electrode cell containing 0.1 mol dm-3 Py, 0.5 mol dm-3 NaClO4 dissolved in ACN, and dispersed particles of AC (30 g dm-3. Electrochemical characterization of PPy and PPy / AC composites was performed using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS techniques. The linear dependences of the capacitance (qC, redox capacitance (qred, and limiting capacitance (CL of PPy and PPy / AC - composite films on their thickness (L, obtained by electrochemical and impedance analysis, indicate a nearly homogeneous distribution of the incorporated AC particles in the composite films (correlation coefficient between 0.991 and 0.998. The significant enhancement of qC, qred, and CL, was observed for composite films (for ∼40 ± 5% in respect to that of the “pure” PPy. The decreased values of a volume resistivity in the reduced state of the composite film, ρ = 1.3 ⋅ 106 Ω cm (for L = 7.5 μm, for two orders of magnitude, compared to that of PPy - film with the same thickness, ρ ∼ 108 Ω cm, was also noticed.

  9. Chondroitin sulphate-guided construction of polypyrrole nanoarchitectures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengnan [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Liao, Jingwen [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang, Shishu [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Department of Orthopaedics and Traumatology, The University of Hong Kong (China); Chen, Junqi; He, Tianrui [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Faculty of Light and Chemical, Guangdong University of Technology, Guangzhou 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2015-03-01

    Nanospheres, nanocones, and nanowires are three typical polypyrrole (PPy) nanoarchitectures and electrochemically polymerized with the dope of chondroitin sulphate (CS) in this study. CS, a functional biomacromolecule, guides the formation of PPy nanoarchitectures as the dopant and morphology-directing agent. Combined with our previous reported other PPy nanoarchitectures (such as nanotube arrays and nanowires), this work further proposed the novel mechanism of the construction of PPy/CS nanoarchitectures with the synergistic effect of CS molecular chains structure and the steric hindrance. Compared to the undoped PPy, MC3T3-E1 cells with PPy/CS nanoarchitectures possessed stronger proliferation and osteogenic differentiation capability. This suggests that PPy/CS nanoarchitectures have appropriate biocompatibility. Altogether, the nanoarchitectured PPy/CS may find application in the regeneration of bone defect. - Highlights: • The formation mechanism of PPy nanoarchitectures was proposed. • CS acted as biofunctional dopant and morphology-directing agent in PPy forming. • PPy-CS nanoarchitectures were dependent on the Py/CS ratio.

  10. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  11. Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy).

    Science.gov (United States)

    Boutry, C M; Müller, M; Hierold, C

    2012-08-01

    The junctions between newly developed biodegradable conducting polymers (polylactide-polypyrrole PLLA-PPy and polycaprolactone-polypyrrole PCL-PPy) and metal electrodes (Au, Au/Cu, Ag, Ag/Cu, Cu, Cr/Au/Cu, Pd/Au/Cu, Pt/Au/Cu) were studied. The objective was to determine the composite/metal combination having the lowest possible contact resistance and ohmic characteristics. In a first step, different surface treatments, adhesion and metal layers were tested in order to evaluate the contact resistance. Then the current-voltage (IV) characteristics were measured and both ohmic and rectifying behaviour were observed depending on the polymer/metal junctions investigated. The surface treatments studied included an argon sputtering step and a grinding of the polymer surface with the objective of improving the contact between the metal electrode and the polymer. It was found that the most favourable conditions resulted from a process flow without argon sputtering, without grinding for PLLA-PPy and with a slight grinding for PCL-PPy. Moreover the most favourable metal electrodes for PLLA-PPy were Pd/Au/Cu, while the best compromise for PCL-PPy was to use Au/Cu. For the rectifying polymer/metal junctions, the standard thermionic emission model modified with a series resistance was successfully applied to the measured current-voltage IV characteristics. The saturation current density J0, series resistance R, ideality diode factor n and barrier height φB were investigated. The Chot functions were computed for each rectifying junction and the corresponding threshold voltages were calculated. Finally the conductivity of both composites was evaluated as a function of temperature in the range of 30 °C to 80 °C. For PLLA-PPy a decrease of the resistivity was observed when the temperature was increasing, while no clearly recognisable pattern was identified for PCL-PPy in this temperature range. The electrical conductivity of the PLLA-PPy samples was found to follow the empirical

  12. Electrochemomechanical Behaviour of Bilayer and Trilayer Films with PEDOT and PPY Conducting Polymers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2008-01-01

    A detailed study on bilayer and trilayer films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers is reported. Both polymers are doped with dodecyl benzenesulfonate (DBS) anions. These multi layer films were prepared electrochemically so that the PEDOT...

  13. Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences.

    Science.gov (United States)

    Ayenimo, Joseph G; Adeloju, Samuel B

    2017-08-15

    A novel polypyrrole (PPy)-based bilayer amperometric glucose biosensor integrated with a permselective layer has been developed for detection of glucose in the presence of interferences. It comprises of a PPy-GOx film grown, in the absence of electrolyte, as an inner layer, and a permselective PPy-Cl film as an outer layer. The PPy-GOx/PPy-Cl bilayer biosensor was effective in rejecting 98% of ascorbic acid and 100% of glycine, glutamic acid and uric acid. With an outer layer thickness of 6.6nm, the bilayer biosensor gave nearly identical glucose response to that of a single layer PPy-GOx biosensor. The biosensor also exhibited good reproducibility (1.9% rsd, n=10), high stability (more than 2months), wide linear range (0.5-24mM), low K m (8.4mM), high I max (77.2μAcm -2 ), low detection limit (26.9μM) and good sensitivity (3.5μAcm -2 mM -1 ). The bilayer biosensor was successfully employed for glucose determination in various fruit juices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electrochemical Behaviour of a PPy(DBS)/Polyacrylonitrile (PAN):LITF:EC:PC/ Li Cell

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    The electrochemical behaviour of Li rechargeable cells with Polypyrrole (PPy) as the cathode material was investigated using cyclic voltammetry. The PPy used was doped with the large surfactant anion dodecyl benzenesulphonate (DBS-). The cells were constructed with PAN:LiTF:EC:PC gel electrolyte...... with Li as anode. The results indicate that during the first reduction, cations are inserted into the PPy film forming LiDBS neutral salt. During the next oxidation/reduction cycles, the mechanism then switches to anion movement. Cyclic voltammetry studies also verified that complete electrochemical...

  15. Chemical polymerization and characterization of surfactant directed of polypyrrole-tannin-CTAB nanocomposites

    Science.gov (United States)

    Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Lim, Hong Ngee; Tahir, Paridah Md; Razalli, Rawaida Liyana; Hoong, Yeoh Beng

    2017-12-01

    In this research, Tannin (TA) from Acacia mangium tree was used to modify polypyrrole (PPy) composite with enhanced physical and structural properties. Composite nanostructure preparation was done in the presence of cationic surfactant, cetyltrimethylammonium bromide (CTAB) to improve surface area and electron transferring of resulting polymer. The Fourier Transform InfraRed (FT-IR) spectrum showed the characteristics peaks of functional group of PPy, TA, and CTAB in the resulting composite indicating the incorporation of TA and CTAB into PPy structure. The spherical structure was observed for PPy/TA prepared in the presence of CTAB with higher porosity compared with the PPy/TA. Cyclic voltammograms of modified SPE electrode using Ppy/TA/CTAB showed enhanced current response compared with the electrode modified by only PPy or PPy/TA.

  16. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    International Nuclear Information System (INIS)

    Gu Shuna; Li Bing; Zhao Chongjun; Xu Yunlong; Qian Xiuzhen; Chen, Guorong

    2011-01-01

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: → AgCl/(PPy) nanocomposites as visible light driven photocatalyst. → Composites exhibited high visible light-driven photocatalytic activity and stability. → Photocatalytic process on MO followed photoreduction mechanisms. → Used photocatalyst can be regenerated in aqueous FeCl 3 solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag + and Cl - ions in the presence of PPy . The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl 3 solution.

  17. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  18. Silver incorporated polypyrrole/polyacrylic acid electrode for electrochemical supercapacitor

    Science.gov (United States)

    Patil, Dipali S.; Pawar, Sachin A.; Kamble, Archana S.; Patil, Pramod S.

    2013-06-01

    In the present work, we study Ag doping effect on the specific capacitance of Polypyrrole/Polyacrylic Acid (PPy/PAA). Ag incorporated films were prepared by simple chemical route. Fourier transform-infrared and Fourier transform-Raman techniques were used for the phase identification. Surface morphology of the films was examined by Field Emission scanning electron microscopy and revealed granular structure for PPY, attached granules for PPy/PAA and granules with bright spots of Ag particles for the PPy/PAA/Ag films. The supercapacitive behavior of the electrodes was tested in three electrode system with 0.1 M H2SO4 electrolyte by using cyclic voltammetry. The highest specific capacitance value 226 Fg-1 was observed for the PPy/PAA/Ag film.

  19. SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    S.A. WAGHULEY

    2007-05-01

    Full Text Available Tin dioxide (SnO2 plays a dominant role in solid state gas sensors and exhibit sensitivity towards oxidizing and reducing gases by a variation of its electrical properties. The electrical conducting polymer-polypyrrole (PPy has high anisotropy of electrical conduction and used as a gas sensor. SnO2/PPy multilayer, pure SnO2, pure PPy sensors were prepared by screen-printing method on Al2O3 layer followed by glass substrate. The sensors were used for different concentration (ppm of CO2 gas investigation at room temperature (303 K. The sensitivity of SnO2/PPy multilayer sensor was found to be higher, compared with pure SnO2 and pure PPy sensors. The multilayer sensor exhibited improved stability. The response and recovery time of multilayer sensor were found to be ~2 min and ~10 min respectively.

  20. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  1. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    International Nuclear Information System (INIS)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin; Wu, Wen-jun; Zhao, Ping; Wang, Cheng; Bai, Xu-duo; Wang, Wen

    2013-01-01

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R ct of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I 3 − reduction can potentially be used as the CE in a high-performance DSSC

  2. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wu, Wen-jun; Zhao, Ping [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Wang, Cheng; Bai, Xu-duo [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wang, Wen, E-mail: haijunniu@hotmail.com [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150080 (China)

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.

  3. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    OpenAIRE

    Ritwik Panigrahi; Suneel K. Srivastava

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have bee...

  4. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    International Nuclear Information System (INIS)

    Wang, Jianqiang; Luo, Chao; Qi, Genggeng; Pan, Kai; Cao, Bing

    2014-01-01

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr 2 O 7 2− and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl − and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl − , NO 3 − , and SO 4 2− ) except for PO 4 3− for the pH change

  5. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  6. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    International Nuclear Information System (INIS)

    Nia, Pooria Moozarm; Meng, Woi Pei; Alias, Y.

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH 3 ) 2 OH) precursor showed better electrochemical performance than (AgNO 3 ). • The sensor showed superior performance toward H 2 O 2 . - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H 2 O 2 was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l −1 and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l −1 (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H 2 O 2 sensor.

  7. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J, E-mail: Thomas_Webster@Brown.edu [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2011-02-25

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s{sup -1}. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  8. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  9. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  10. Dependence of Force Produced by Polypyrrole Based Artificial Muscles on Ionic Species Involved

    DEFF Research Database (Denmark)

    Careem, M.A.; Vidanapathirana, K.P.; Skaarup, Steen

    2004-01-01

    Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization electrol......Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization...

  11. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  12. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  13. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fake; Li, Hang [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Jiang, Hongmin [26th Research Institute, Chinese Electronics Scientific and Technical Group Company, Chongqing 400060 (China); Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Deng, Shaoli, E-mail: dengsl072@yahoo.com.cn [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Chen, Ming, E-mail: chenming1971@yahoo.com [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China)

    2013-09-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  14. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    International Nuclear Information System (INIS)

    Li, Fake; Li, Hang; Jiang, Hongmin; Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping; Deng, Shaoli; Chen, Ming

    2013-01-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  15. Biocompatible xanthan/polypyrrole scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Blasques Bueno, Vania; Harumi Takahashi, Suelen; Catalani, Luiz Henrique; Cordoba de Torresi, Susana Ines; Siqueira Petri, Denise Freitas, E-mail: dfsp@iq.usp.br

    2015-07-01

    Polypyrrole (PPy) was electropolymerized in xanthan hydrogels (XCA), resulting in electroactive XCAPPy scaffolds with (15 ± 3) wt.% PPy and (40 ± 10) μm thick. The physicochemical characterization of hybrid XCAPPy scaffolds was performed by means of cyclic voltammetry, swelling tests, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM) and tensile tests. XCAPPy swelled ~ 80% less than XCA. FTIR spectra and thermal analyses did not evidence strong interaction between PPy and XCA matrix. XCAPPy presented a porous stratified structure resulting from the arrangement of PPy chains parallel to XCA surface. Under stress XCAPPy presented larger strain than neat XCA probably due to the sliding of planar PPy chains. The adhesion and proliferation of fibroblasts onto XCA and XCAPPy were evaluated in the absence and in the presence of external magnetic field (EMF) of 0.4 T, after one day, 7 days, 14 days and 21 days. Fibroblast proliferation was more pronounced onto XCAPPy than onto XCA, due to its higher hydrophobicity and surface roughness. EMF stimulated cell proliferation onto both scaffolds. - Highlights: • Hybrid networks of xanthan and polypyrrole were used as scaffolds for fibroblasts. • Hybrid networks were more hydrophobic and more elastic than neat xanthan. • Cell proliferation onto hybrid networks and neat xanthan increased with the time. • Cell proliferation was more pronounced onto hybrid networks than on neat xanthan. • External magnetic field stimulated cell growth onto hybrid networks and neat xanthan.

  16. Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor

    International Nuclear Information System (INIS)

    Jiang Hairong; Zhang Aifeng; Sun Yanan; Ru Xiaoning; Ge Dongtao; Shi Wei

    2012-01-01

    A novel glucose biosensor based on poly(1-(2-carboxyethyl)pyrrole) (PPyCOOH)/polypyrrole (PPy) composite nanowires was developed by immobilizing glucose oxidase (GOD) on the nanowires via covalent linkages. The PPyCOOH/PPy composite nanowires were fabricated by a facile two-step electrochemical synthesis route. First, PPy nanowires were synthesized in phosphate buffer solution using organic sulfonic acid, p-toluenesulfonate acid, as soft-template. Then, PPyCOOH/PPy composite nanowires were obtained by polymerizing 1-(2-carboxyethyl)pyrrole onto PPy nanowires via electrochemical method. Scanning electron microscopic, FT-IR spectra, X-ray photoelectron spectroscopy and cyclic voltammograms were used to characterize the structural and electrical behaviors of the composite nanowires. The PPyCOOH/PPy composite nanowires exhibited uniform diameter, high reactive site (-COOH), large specific surface, excellent electroactivity and good adhesion to electrode. The glucose biosensor was constructed by covalently coupling GOD to the composite nanowires. The biosensor response was rapid (5 s), highly sensitive (33.6 μA mM −1 cm −2 ) with a wide linear range (up to 10.0 mM) and low detection limit (0.63 μM); it also exhibited high stability and specificity to glucose. The attractive electrochemical and structural properties of PPyCOOH/PPy composite nanowires suggested potential application for electrocatalysis and biosensor.

  17. Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan.

    Science.gov (United States)

    Feng, Xiaomiao; Huang, Haiping; Xu, Lin; Zhu, Jun-Jie; Hou, Wenhua

    2008-01-01

    Polypyrrole (PPy)-coated Ag nanoparticles and nanowires were fabricated through the redox reaction between pyrrole monomer and silver nitrate in the presence of chitosan. The morphologies, compositions, and electrochemical activities of PPy/Ag composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Cyclic voltammetry. The synthetic route employed here is simple and inexpensive and can be extended to prepare other conducting polymer/inorganic nanocomposites.

  18. High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites

    CSIR Research Space (South Africa)

    Chauke, VP

    2015-07-01

    Full Text Available Graphene oxide (GO) was functionalized with alpha cyclodextrin (aCD) through a covalent bond to form GO-aCD nanocomposites (NC). GO-aCD NC was further modified with polypyrrole (PPY) to afford an advanced GO-aCD-PPY NC for the removal of highly...

  19. Catalytic electroxidation pathway for electropolymerization of polypyrrole in solutions containing gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.-C.; Yang, K.-H.

    2006-01-01

    We report here the first electrochemical polymerization of polypyrrole (PPy) on Au substrates in aqueous solutions containing additives of prepared Au nanoparticles with a diameter of ca. 2 nm. Encouragingly, the synthesized PPy films demonstrate novel characteristics due to the effects of Au nanoparticles, which provide a catalytic electroxidation pathway. The prepared PPy shows a stereomorphology, which is distinguishable from the typically granular raspberry morphology of pure PPy, and a rougher surface. The conductivity of PPy is significantly increased (∼10 times), which also reflects on the extremely high oxidation level of 0.36 revealed from the analysis of X-ray photoelectron spectroscopy (XPS). The mechanism of the nucleation and growth, and the X-ray diffraction (XRD) pattern were investigated to explain the specific characteristics of PPy films

  20. Preparation and Surface Analysis of PPY/SDBS Films on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Lisete C. Scienza

    2001-09-01

    Full Text Available Polypyrrole films were generated on high purity aluminum substrates under anodic polarization from aqueous electrolytes comprised of pyrrole and sodium dodecylbenzene sulfonate. The methods employed to characterize the polymer films included scanning electron microscopy, Fourier-transform infrared and X-photoelectron spectroscopy and X-ray diffraction. PPY/SDBS films revealed nodular morphology with occasional appearing of "dendrites", high level of protonation, excess of counter-anions ([S]/[N] > [N+]/[N] and high degrees of disorder.

  1. Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor.

    Science.gov (United States)

    Wang, Yihan; Yang, Jie; Wang, Lingyu; Du, Kai; Yin, Qiang; Yin, Qinjian

    2017-06-14

    Polypyrrole/Graphene/Polyaniline (PPy/GNs/PANi) ternary nanocomposite with high thermoelectric power factor has been successfully prepared through the combination of in situ polymerization and solution process. FTIR, Raman spectra, XRD, and SEM analyses show the strong π-π interactions existed among PPy, GNs, and PANi, leading to the formation of more ordered regions in the composite. Both the in situ polymerization and solution process can enhance the dispersion homogeneity of graphene in the polymer matrix, bringing about increased nanointerfaces in the PPy/GNs/PANi composite. The thermoelectric properties of Polypyrrole/Graphene (PPy/GNs), Polyaniline/Graphene (PANi/GNs), and PPy/GNs/PANi composites are measured at different temperatures after being cold pressed. Consequently, the PPy/GNs/PANi composite with 32 wt % graphene demonstrates optimal electrical conductivity, Seebeck coefficient and extremely high power factor of up to 52.5 μ W m -1 K -2 , which is almost 1.6 × 10 3 times, 1.4 × 10 3 times, 2.7 times, and 3.6 times higher than those of the pure PANi, pure PPy, PPy/GNs composite, and PANi/GNs composite, respectively.

  2. Electrically responsive microstructured polypyrrole-polyurethane composites for stimulated osteogenesis

    Science.gov (United States)

    Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra

    2018-03-01

    In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.

  3. A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose

    Directory of Open Access Journals (Sweden)

    Dawei Zhang

    2013-01-01

    Full Text Available The water-dispersed conductive polypyrrole (PPy was prepared via the in situ oxidative chemical polymerization by using ammonium persulfate (APS as oxidant and tunicate cellulose nanocrystals (T-CNs as a dopant and template for tuning the morphologies of PPy nanoparticles. Highly flexible paper-like materials of PPy/T-CNs nanocomposites with high electrical conductivity values and good mechanical properties were prepared. The structure of nanocomposites of PPy/T-CNs was investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy analyses of the composites revealed that PPy consisted of nanoparticles about 2.5 nm in mean size to form a continuous coating covered on the T-CNs. The diameters of the PPy nanoparticles increased from 10 to 100 nm with the increasing pyrrole amount. Moreover, electrical properties of the obtained PPy/T-CNs films were studied using standard four-probe technique and the electrical conductivity could be as high as 10−3 S/cm.

  4. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.

    Science.gov (United States)

    Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng

    2017-11-30

    Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.

  5. Influence of disordered morphology on electrochromic stability of WO{sub 3}/PPy

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Digambar K. [D. Y. Patil College of Engineering & Technology, Kasaba Bawada, Kolhapur, 416006, Maharashtra (India); Mali, Sawanta S.; Hong, Chang K. [Polymer Energy Materials Laboratory, Department of Advanced Chemical Engineering, Chonnam National University, Gwangju, 500-757 (Korea, Republic of); Kadam, Anamika V., E-mail: anamikasonavane@rediff.com [D. Y. Patil College of Engineering & Technology, Kasaba Bawada, Kolhapur, 416006, Maharashtra (India); D.Y. Patil Medical University, Kasaba Bawada, Kolhapur, 416006, Maharashtra (India)

    2016-06-05

    Tungsten oxide (WO{sub 3}) films are critical for smart windows because of their capacity of varying the throughput of visible light and solar energy. This study highlights the evolution of structural and morphological changes of electrodeposited WO{sub 3} thin films coated with polypyrrole (PPy) by using chemical bath deposition. The structural and surface properties of WO{sub 3} thin films were studied using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electrochemical stability was inspected using repetitive cyclic voltammetry (CV) cycles for each sample in LiClO{sub 4}-PC electrolyte for prolonged periods. The results showed an improvement in the electrochemical stability after the CV study. - Graphical abstract: Mechanism: A schematic of the mechanism is proposed in above fig. The mechanism is based on three step process: (i) WO{sub 3} coated on ITO by electrodeposition followed by thermal treatment. It produces ordered nanoarrayed morphology. (ii) A second step involving deposition of PPy by chemical bath deposition on ITO. It possesses globular morphology. (iii) When PPy coated on WO{sub 3}, PPy applies shearing force on WO{sub 3} and produces disordered nanoarrayed morphology. - Highlights: • Nanoarrayed WO{sub 3}/PPy composite was synthesized. • Interplanar spacing enhances due to PPy coating. • PPy applies shearing force on WO{sub 3} produces disordered morphology. • Nanocomposite showed high stability in LiClO{sub 4}-PC.

  6. Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity.

    Science.gov (United States)

    Kumar, Rajeev; Oves, Mohammad; Almeelbi, Talal; Al-Makishah, Naief H; Barakat, M A

    2017-03-15

    In this work, chitosan (CS) functionalized polyaniline-polypyrrole (Pani-Ppy) copolymer (CS/Pani-Ppy) was synthesized applying a facile one pot method for the enhanced adsorption of Zn(II) and antimicrobial activity for E. coli and E. agglomerans. The synthesized materials were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform inferred spectroscopy and X-ray photoelectron spectroscopy. The adsorption of the Zn(II) on the synthesized materials was highly dependent on the pH of the solution, the initial metal ion concentration, and temperature. The adsorption of Zn(II) on the studied materials was as follows: CS/Pani-Ppy>Pani-Ppy>Ppy>Pani>CS. The results reveal that adsorption of Zn(II) follows the Langmuir adsorption isotherm, and that chemisorption occurs through pendant and bridging interactions, with active adsorbent sites. Thermodynamic results show the adsorption is spontaneous and exothermic in nature. The synthesized materials show excellent antimicrobial activity against E. coli and E. agglomerans bacterial organisms, and an approximately 100% decline in the viability of both strains was observed with CS/Pani-Ppy and Pani-Ppy. The order of antimicrobial activity for the synthesized materials was as follows: CS/Ppy-Pani>Ppy-Pani>Ppy>Pani>CS. The results show that the greater activity of CS/Ppy-Pani resulted from the electrostatic interaction between positively charged amine groups and negatively charged bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles

    NARCIS (Netherlands)

    Huijs, F; Lang, J

    Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were

  8. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Björninen, M.; Gilmore, K.; Pelto, J.; Seppänen-Kaijansinkko, R.; Kellomäki, M.; Miettinen, S.; Wallace, G.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  9. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Bjorninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppanen-Kaijansinkko, Riitta; Kellomaki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  10. Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Chen, Jun; Wagner, Pawel; Wallace, Gordon G. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW 2522 (Australia); Swiegers, Gerhard F. [CSIRO Molecular and Health Technologies, Bag 10, Clayton VIC 3169 (Australia)

    2008-04-15

    A thin-layer of polypyrrole (PPy) film, immobilized with neutral 5,10,15,20-tetraphenylporphyrinato cobalt (II) (Co-TPP), was successfully and uniformly deposited onto mesoporous carbon fibre paper (CFP) via vapor-phase polymerization. The resulting PPy/Co-TPP-modified carbon fibre paper (PPy/Co-TPP-CFP) electrode was characterized by cyclic voltammetry, SEM and EDX-ray mapping. Its electrochemical stability and long-term electrocatalytic performance were investigated in a half-fuel cell testing system. The electrode displayed significant electrocatalytic performance for oxygen reduction at 0.0 V (vs. Ag/AgCl), with notable long-term stability. (author)

  11. Electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polypyrrole

    Science.gov (United States)

    Bitarafhaghighi, Vahidreza

    In this study, spherical polypyrrole (PPy) nanostructure has successfully served as nanofiller for obtaining epoxy resin polymer nanocomposites (PNCs). The effects of nanofiller loading level on mechanical properties, thermal stability, electrical conductivity, and dielectric properties were systematically studied. The dynamic storage and loss modulii were studied, together with the glass-transition temperature (Tg) being obtained from the peak of tan delta. The PPy nanofillers could increase the electrical conductivity. Finally, the real permittivity was observed to increase with increasing the PPy loading, and the enhanced permittivity was analyzed by the interfacial polarization.

  12. Environmental Effects on the Polypyrrole Tri-layer Actuator

    Directory of Open Access Journals (Sweden)

    Nirul Masurkar

    2017-04-01

    Full Text Available Electroactive polymer actuators such as polypyrrole (PPy are exciting candidates to drive autonomous devices that require low weight and low power. A simple PPy tri-layer bending type cantilever which operates in the air has been demonstrated previously, but the environmental effect on this actuator is still unknown. The major obstacle in the development of the PPy tri-layer actuator is to create proper packaging that reduces oxidation of the electrolyte and maintains constant displacement. Here, we report the variation in the displacement as well as the charge transfer at the different environmental condition. PPy trilayer actuators were fabricated by depositing polypyrrole on gold-coated porous poly(vinylidene fluoride (PVDF using the electro-synthesis method. It has been demonstrated that the charge transfer of tri-layer actuators is more in an inert environment than in open air. In addition, tri-layer actuators show constant deflection and enhancement of life due to the negligible oxidation rate of the electrolyte in an inert environment.

  13. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mindroiu, Mihaela [University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061, Bucharest (Romania); Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest (Romania); Pirvu, Cristian [University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest (Romania)

    2013-08-01

    In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance. Further, Triton X-100 enhanced the adhesive strength of PPy films to the substrate. The surfactant type also showed a great influence on the surface wettability, the highest hydrophilic character being observed in the case of PPy/PSS film. Few studies have been devoted to the elucidation of inflammatory cell response to PPy-based materials. Therefore, RAW 264.7 macrophages were cultured on PPy-surfactant films to determine whether they elicit a differential cell behavior in terms of cell adhesion, proliferation, cellular morphology and cytokine secretion. Our results highlight the dependence of macrophage response on the surfactants used in the pyrrole polymerization process and suggest that the immune response to biomaterials coated with PPy films might be controlled by the choice of surfactant molecules. Highlights: • We electrodeposited polypyrrole films on Ti6Al7Nb alloy using three surfactants. • Differences in electrostability and wettability of polypyrrole films were found. • Triton X increased and NaPSS decreased the adhesion of polypyrrole films to Ti6Al7Nb. • Cytoskeletal architecture and macrophage activation were affected by surfactants. • The hydrophilic PPy/PSS coating elicited the lowest inflammatory response.

  14. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy

    International Nuclear Information System (INIS)

    Mindroiu, Mihaela; Ion, Raluca; Pirvu, Cristian; Cimpean, Anisoara

    2013-01-01

    In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance. Further, Triton X-100 enhanced the adhesive strength of PPy films to the substrate. The surfactant type also showed a great influence on the surface wettability, the highest hydrophilic character being observed in the case of PPy/PSS film. Few studies have been devoted to the elucidation of inflammatory cell response to PPy-based materials. Therefore, RAW 264.7 macrophages were cultured on PPy-surfactant films to determine whether they elicit a differential cell behavior in terms of cell adhesion, proliferation, cellular morphology and cytokine secretion. Our results highlight the dependence of macrophage response on the surfactants used in the pyrrole polymerization process and suggest that the immune response to biomaterials coated with PPy films might be controlled by the choice of surfactant molecules. Highlights: • We electrodeposited polypyrrole films on Ti6Al7Nb alloy using three surfactants. • Differences in electrostability and wettability of polypyrrole films were found. • Triton X increased and NaPSS decreased the adhesion of polypyrrole films to Ti6Al7Nb. • Cytoskeletal architecture and macrophage activation were affected by surfactants. • The hydrophilic PPy/PSS coating elicited the lowest inflammatory response

  15. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode

    Science.gov (United States)

    Kalambate, Pramod K.; Dar, Riyaz A.; Karna, Shashi P.; Srivastava, Ashwini K.

    2015-02-01

    In the current study, we present a new hybrid material of double layer capacitive material graphene (GNS), pseudo capacitive polypyrrole (PPY) and highly conducting silver nanoparticles (AgNPs). Graphene/Silver nanoparticles/polypyrrole (GNS/AgNPs/PPY) composite has been synthesized by in situ oxidative polymerization of pyrrole in the presence of GNS and AgNPs. The different mass concentrations of AgNPs were utilized to improve the capacitive performance of supercapacitor. Characterization of the electrode material has been carried out by X-ray diffraction, Raman spectroscopy, Thermal methods, Scanning electron microscopy (SEM) and Transmission electron microscopy. SEM images showed that PPY nanoparticles uniformly coated on graphene sheets along with AgNPs. Electrochemical characterization of the electrode surface has been carried out by means of cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Remarkably, GNS/AgNPs/PPY exhibits specific capacitance of 450 F g-1 at current density of 0.9 mA g-1, which is far better than GNS/PPY (288 F g-1), AgNPs/PPY (216 F g-1) and PPY (153 F g-1). Furthermore, GNS/AgNPs/PPY shows high charge-discharge reversibility and retaining over 92.0% of its initial value after 1000 cycles. The cyclic stability of the composite is improved due to the synergistic effect of GNS, AgNPs and PPY.

  16. Paper Electrodes Coated with Partially-Exfoliated Graphite and Polypyrrole for High-Performance Flexible Supercapacitors

    Directory of Open Access Journals (Sweden)

    Leping Huang

    2018-01-01

    Full Text Available Flexible paper electrodes for supercapacitors were prepared with partially-exfoliated graphite and polypyrrole as the active materials. Graphite was coated on paper with pencil drawing and then electrochemically exfoliated using the cyclic voltammetry (CV technique to obtain the exfoliated graphite (EG-coated paper (EG-paper. Polypyrrole (PPy doped with β-naphthalene sulfonate anions was deposited on EG-paper through in-situ polymerization, leading to the formation of PPy-EG-paper. The as-prepared PPy-EG-paper showed a high electrical conductivity of 10.0 S·cm−1 and could be directly used as supercapacitor electrodes. The PPy-EG-paper electrodes gave a remarkably larger specific capacitance of 2148 F∙g−1 at a current density of 0.8 mA∙cm−2, compared to PPy-graphite-paper (848 F∙g−1. The capacitance value of PPy-EG-paper could be preserved by 80.4% after 1000 charge/discharge cycles. In addition, the PPy-EG-paper electrodes demonstrated a good rate capability and a high energy density of 110.3 Wh∙kg−1 at a power density of 121.9 W∙kg−1. This work will pave the way for the discovery of efficient paper-based electrode materials.

  17. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, Barbara; Kawakita, Jin, E-mail: KAWAKITA.Jin@nims.go.jp; Chikyow, Toyohiro

    2016-10-30

    Highlights: • Interfacial structure between Ag/polypyrrole (PPy) nanocomposite and PTFE was revealed. • PPy enters into PTFE substrate as a dispersion with up to 12 nm size Ag nanoparticles. • The nanocomposite is absorbed by PTFE substrate up to 1–2 μm deep. • Ag/PPy interlocks mechanically with PTFE causing strong adhesion. - Abstract: This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  18. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    International Nuclear Information System (INIS)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2016-01-01

    Highlights: • Interfacial structure between Ag/polypyrrole (PPy) nanocomposite and PTFE was revealed. • PPy enters into PTFE substrate as a dispersion with up to 12 nm size Ag nanoparticles. • The nanocomposite is absorbed by PTFE substrate up to 1–2 μm deep. • Ag/PPy interlocks mechanically with PTFE causing strong adhesion. - Abstract: This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  19. Enhanced Capacity of Polypyrrole/Anthraquinone Sulfonate/Graphene Composite as Cathode in Lithium Batteries

    International Nuclear Information System (INIS)

    Yang, Yang; He, Kuangchi; Yan, Peng; Wang, Dan; Wu, Xiaoyan; Zhao, Xin; Huang, Zilong; Zhang, Chunming; He, Dannong

    2014-01-01

    Highlights: • A polypyrrole (PPy)/anthraquinone sulfonate (AQS)/reduced graphene oxide (r-GO) composite was obtained via a facile electrochemical route. • A great enhancement in electrochemical performance was obtained for PPy/AQS/r-GO due to a remarkable combination of the redox property of AQS and the conductivity of r-GO. • The composite electrode delivered a specific discharge capacity of 127.2 mAh g −1 with a ca. 100% coulombic efficiency at 0.1 A g −1 . - Abstract: A facile electrochemical route was applied to prepare polypyrrole (PPy)/anthraquinone sulfonate (AQS)/reduced graphene oxide (r-GO) composite. The as-synthesized composite showed an interconnected porous structure, which is related to the competitive relationship between two dopants. The cyclic voltammograms and electrochemical impedance spectra confirmed that the presence of highly conductive r-GO in PPy matrix ensured an efficient redox reaction obtained for redox-active AQS. As a result, the PPy/AQS/r-GO composite exhibited an enhanced specific capacity of 127.2 mAh g −1 with ca. 100% coulombic efficiency at 0.1 A g −1 . Furthermore, the superior rate capability and cycling stability were also observed for PPy/AQS/r-GO, compared to AQS doped PPy. It is possible to adopt this co-dopants system for creating electro-active polymer materials with high capacities that are comparable to that of conventional inorganic intercalation electrode materials

  20. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  1. Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films.

    Science.gov (United States)

    Li, Jun; Du, Yong; Jia, Runping; Xu, Jiayue; Shen, Shirley Z

    2017-07-11

    Flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polypyrrole/paper (PEDOT:PSS/PPy/paper) thermoelectric (TE) nanocomposite films were prepared by a two-step method: first, PPy/paper nanocomposite films were prepared by an in situ chemical polymerization process, and second, PEDOT:PSS/PPy/paper TE composite films were fabricated by coating the as-prepared PPy/paper nanocomposite films using a dimethyl sulfoxide-doped PEDOT:PSS solution. Both the electrical conductivity and the Seebeck coefficient of the PEDOT:PSS/PPy/paper TE nanocomposite films were greatly enhanced from 0.06 S/cm to ~0.365 S/cm, and from 5.44 μV/K to ~16.0 μV/K at ~300 K, respectively, when compared to the PPy/paper TE nanocomposite films. The thermal conductivity of the PEDOT:PSS/PPy/paper composite film (0.1522 Wm -1 K -1 at ~300 K) was, however, only slightly higher than that of the PPy/paper composite film (0.1142 Wm -1 K -1 at ~300 K). As a result, the ZT value of the PEDOT:PSS/PPy/paper composite film (~1.85 × 10 -5 at ~300 K) was significantly enhanced when compared to that of the PPy/paper composite film (~4.73 × 10 -7 at ~300 K). The as-prepared nanocomposite films have great potential for application in flexible TE devices.

  2. Synthesis and characterization of silver-polypyrrole film composite

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamad M., E-mail: mayad12000@yahoo.com [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt); Zaki, Eman [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt)

    2009-11-15

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO{sub 3}. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO{sub 3} solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  3. Synthesis and characterization of silver-polypyrrole film composite

    International Nuclear Information System (INIS)

    Ayad, Mohamad M.; Zaki, Eman

    2009-01-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3 . Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  4. Synthesis and characterization of silver-polypyrrole film composite

    Science.gov (United States)

    Ayad, Mohamad. M.; Zaki, Eman

    2009-11-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  5. The Roll of NaPSS Surfactant on the Ceria Nanoparticles Embedding in Polypyrrole Films

    Directory of Open Access Journals (Sweden)

    Simona Popescu

    2016-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs in crystalline form have been synthesized by a coprecipitation method. CeO2 nanoparticles were then embedded in polypyrrole (PPy films during the electropolymerization of pyrrole (Py on titanium substrate. The influence of poly(sodium 4-styrenesulfonate (NaPSS surfactant used during polymerization on the embedding of CeO2 NPs in polypyrrole films was investigated. The new films were characterized in terms of surface analysis, wettability, electrochemical behaviour, and antibacterial effect. The surface and electrochemical characterization revealed the role of surfactant on PPy doping process cerium oxide incorporation. In the presence of surfactant, CeO2 NPs are preferentially embedded in the polymeric film while, without surfactant, the ceria nanoparticles are quasiuniformly spread as agglomerates onto polymeric films. The antibacterial effect of studied PPy films was substantially improved in the presence of cerium oxide and depends by the polymerization conditions.

  6. Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite

    Science.gov (United States)

    Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Arumugam, Sangili; Mahalingam, Sundrarajan

    2018-03-01

    Multifunctional biologically active materials have approached for antibiofilm, anticancer and osteoblast adhesion activities with significant biomedical applications, owing to this MWCNT modified with polypyrrole (PPy) matrix with the incorporation of palladium nanoparticles (NPs). The synthesized composite displays a tube-shaped morphology with highly dispersed crystalline Pd NPs, which are established through XRD, SEM, TEM and SAED studies. The pyridinic-N(∼402.7), pyrrolic sbnd N (∼400.8) peak in XPS spectra evidenced the interaction of PPy with Pd and MWCNT. Polymer stretching frequencies in FTIR and Raman spectroscopy proves successful formation of PPy and the Pd-N (1609 cm-1) interaction. In the stability aspect, it is up to 58.73% mass withstood at 800 °C in TGA analysis. The composite exhibits an efficient Anti-biofilm against a set of bacterial stain with planktonic cell growth. In vitro cytotoxicity of Vero and HeLa cell line assess the composites toxicity and anticancer activity up to 100 μg. The outcome of cell adhesions showed that human osteosarcoma cells (HOS) can adhere and to develop on the MWCNT/PPy/Pd composites. Furthermore, the proliferation of cells on MWCNT/PPy/Pd composites was also proved the biocompatibility of the composites against HOS cells. These results suggest that Pd-doped MWCNT/PPy composites are promising materials for biomedical applications.

  7. Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes

    Directory of Open Access Journals (Sweden)

    N. Su

    2012-09-01

    Full Text Available The procedures for the synthesis of polypyrrole (PPy doped with anionic spherical polyelectrolyte brushes (ASPB (PPy/ASPB nanocomposite by means of in situ chemical oxidative polymerization were presented. Fourier transform infrared spectroscopy (FTIR and Raman spectroscopic analysis suggested the bonding structure of PPy/ASPB nanocomposite. Scanning electron microscopy (SEM was used to confirm the morphologies of samples. The crystallographic structure, chemical nature and thermal stability of conducting polymers were analyzed by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and Thermo-gravimetric analysis (TGA respectively. Investigation of the electrical conductivity at room temperature showed that the electrical conductivity of PPy/ASPB nanocomposite was 20 S/cm, which was higher than that of PPy (3.6 S/cm.

  8. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Duc Nghia; Ngo Trinh Tung [Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: ducnghia264@fpt.vn

    2009-09-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  9. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties.

    Science.gov (United States)

    Bober, Patrycja; Liu, Jun; Mikkonen, Kirsi S; Ihalainen, Petri; Pesonen, Markus; Plumed-Ferrer, Carme; von Wright, Atte; Lindfors, Tom; Xu, Chunlin; Latonen, Rose-Marie

    2014-10-13

    In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy significantly improved its film formation ability resulting in composite materials with good mechanical and electrical properties. It is shown that the NFC/PPy-Ag composite films have strong inhibition effect against the growth of Gram-positive bacteria, e.g., Staphylococcus aureus. The electrical conductivity and strong antimicrobial activity makes it possible to use the silver composites in various applications aimed at biomedical treatments and diagnostics. Additionally, we report here the structural and morphological characterization of the composite materials with Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning and transmission electron microscopy techniques.

  10. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    International Nuclear Information System (INIS)

    Nguyen Duc Nghia; Ngo Trinh Tung

    2009-01-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  11. Electrochromism and Swelling of Polypyrrole Membranes: An Electrochemical and Ellipsometric Study

    Directory of Open Access Journals (Sweden)

    J. O. Zerbino

    2011-01-01

    Full Text Available The growth of polypyrrole (Ppy layers on gold electrodes in nearly neutral pH solutions is analysed using “in situ” voltametric and ellipsometric techniques. Different film structures are obtained depending on the potentiodynamic programme and the composition of the electrolyte. More compact dodecylsulphate-(DS doped Ppy layers were grown at 1.2 V versus RHE than those obtained by applying a higher potential. The more compact layers correspond to the growth of an oxidised Ppy/DS layer that shows low pseudo capacity behaviour. After dipping, the doped Ppy/DS film in KCl solution-significant variations in optical indices and thickness are detected as a function of the applied potential. Higher electrochromism as well as decrease in film thickness after cathodisation is achieved. The optical indices and the thickness of the Ppy layer formed under different applied potential/time programmes are estimated.

  12. Fabrication and characterisation of high performance polypyrrole modified microarray sensor for ascorbic acid determination

    Energy Technology Data Exchange (ETDEWEB)

    Samseya, J. [Alagappa University, Karaikudi, Tamil Nadu (India); Srinivasan, R., E-mail: sivarunjan@gmail.com [Central Electro Chemical Research Insititute, Karaikudi, Tamil Nadu (India); Chang, Yu-Tsern; Tsao, Cheng-Wen [Department of Cosmetic Applications, Taoyuan Innovation Institute of Technology, Taiwan (China); Vasantha, V.S. [Madurai Kamaraj University, Madurai, Tamil Nadu (India)

    2013-09-02

    Graphical abstract: -- Highlights: •Gold microelectrode array (Au/MEA) with electrode of 12 μm diameter was fabricated by photolithography technique. •Subsequently, polypyrrole (Ppy) modified gold microarrays sensor (Ppy/Au/MEA) was prepared. •Ppy/Au/MEA used for ascorbic acid determination in the presence of different neurotransmitters. •The micro array exhibited wide linear range, very high sensitivity and very low LOD than the earlier reports. •It was used successfully to test ascorbic acid in different types real samples. -- Abstract: In this study, gold microelectrode array (Au/MEA) with electrode of 12 μm diameter was fabricated by photolithography technique. Subsequently, polypyrrole (Ppy) modified gold microarrays sensor (Ppy/Au/MEA) was prepared by cyclic voltammetry technique. The deposition potential range and number of cycles were optimised in order to get optimum thickness of Ppy film. Scanning Electron Microscope and Atomic Force Microscope investigations reveal that Ppy coating formed at 3 cycles is porous with thickness of 1.5 μm which exhibiting high catalytic current for ascorbic acid (AA) in square wave technique (SWV). In contrast to earlier sensors designs, these Ppy/Au/MEA sensors exhibits lower detection limit (LOD) of 10 nm towards AA at physiological conditions. It also exhibits enhanced sensitivity (2.5 mA cm{sup −2} mM{sup −1}) and long range of linear detection limit from 10 nm to 2.8 mM. In the same way, polypyrrole modified macro Au (Ppy/Au/MA) biosensor was also fabricated and its electro catalytic property towards AA was compared with that of Ppy/Au/MEA. The Ppy/Au/MA exhibits sensitivity of only 0.27 mA cm{sup −2} mM{sup −1}, LOD of 5 μM and linear range of 10 μM to 2.2 mM. Hence, our investigations indicate that the Ppy/Au/MEA could serve as highly sensitive sensor for AA than any of the earlier designs. So, the Ppy/Au/MEA electrode was utilised for determination AA in a wide variety of real samples.

  13. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei

    2013-11-27

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Magnetic and microwave absorption properties of rare earth ions (Sm{sup 3+}, Er{sup 3+}) doped strontium ferrite and its nanocomposites with polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Xu, Yang; Mao, Hongkai [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm{sup 3+}, Er{sup 3+}) were prepared via a sol–gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2–38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50–100 nm after coating with PPy. In the magnetization for the PPy/SrSm{sub 0.3}Fe{sub 11.7}O{sub 19} (SrEr{sub 0.3}Fe{sub 11.7}O{sub 19}) composites, the coercivity (H{sub c}) of the composites both increased compared with the undoped composite while the saturation magnetization (M{sub s}) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of −24.01 dB in 13.8 GHz at 3.0 mm. And its width (<−10 dB) has reached 7.2 GHz which has covered the whole Ku band. - Highlights: • The influence of RE ions on the structure of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on the magnetic properties of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on electromagnetic losses of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • PPy/SrEr{sub 0.3}Fe{sub 11.7}O{sub 19} possessed the excellent absorption property.

  15. Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite

    International Nuclear Information System (INIS)

    Patil, Dipali S.; Pawar, Sachin A.; Devan, Rupesh S.; Gang, Myeng Gil; Ma, Yuon-Ron; Kim, Jin Hyeok; Patil, Pramod S.

    2013-01-01

    Highlights: • Polyacrylic acid/polypyrrole/silver composite prepared by chemical polymerization method. • The presence of Ag nanoparticles on PPY spherical granules provides the least resistance path to electron. • The specific capacitance about 145 F g −1 and 226 F g −1 observed for PPY/PAA and PPY/PAA/Ag samples, respectively. • The higher specific energy 7.18 Wh kg −1 and 17.45 Wh kg −1 observed for PPY/PAA and PPY/PAA/Ag respectively at current density of 0.5 mA cm −2 . -- Abstract: In the present work, we have synthesized polypyrrole (PPY)/polyacrylic acid (PAA)/silver (Ag) composite electrodes by chemical polymerization via a simple and cost effective dip coating technique for supercapacitor application. Fourier transform-infrared, Fourier transform-Raman, X-ray photoelectron and energy dispersive X-ray spectroscopy techniques are used for the phase identification. Surface morphology of the films is examined by field emission scanning electron microscopy, which revealed granular structure for PPY, spherical interlaced granules for PPY/PAA and granules with bright spots of Ag nanoparticles for the PPY/PAA/Ag composites. The supercapacitive behavior of the electrodes is tested in three electrode system with 0.1 M H 2 SO 4 electrolyte by using cyclic voltammetery and charge discharge test. The highest specific capacitance 226 F g −1 at 10 mV s −1 and energy density of 17.45 Wh kg −1 at 0.5 mA cm −2 is obtained for the PPY/PAA/Ag composite electrodes. Present work demonstrates an easy way of improving specific capacitance of the polymer electrodes. Thus the work will open a new avenue for designing low cost high performance devices for better supercapacitors

  16. Synthesis and In Vitro Performance of Polypyrrole-Coated Iron-Platinum Nanoparticles for Photothermal Therapy and Photoacoustic Imaging

    Science.gov (United States)

    Phan, Thi Tuong Vy; Bui, Nhat Quang; Moorthy, Madhappan Santha; Lee, Kang Dae; Oh, Junghwan

    2017-10-01

    Multifunctional nano-platform for the combination of photo-based therapy and photoacoustic imaging (PAI) for cancer treatment has recently attracted much attention to nanotechnology development. In this study, we developed iron-platinum nanoparticles (FePt NPs) with the polypyrrole (PPy) coating as novel agents for combined photothermal therapy (PTT) and PAI. The obtained PPy-coated FePt NPs (FePt@PPy NPs) showed excellent biocompatibility, photothermal stability, and high near-infrared (NIR) absorbance for the combination of PTT and PAI. In vitro investigation experimentally demonstrated the effectiveness of FePt@PPy NPs in killing cancer cells with NIR laser irradiation. Moreover, the phantom test of PAI used in conjunction with FePt@PPy NPs showed a strong photoacoustic signal. Thus, the novel FePt@PPy NPs could be considered as promising multifunctional nanoparticles for further applications of photo-based diagnosis and treatment.

  17. Nanostructured polypyrrole: enhancement in thermoelectric figure of merit through suppression of thermal conductivity

    Science.gov (United States)

    Misra, Shantanu; Bharti, Meetu; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Hayakawa, Y.

    2017-08-01

    Semi-crystalline polypyrrole (PPy) nanotubes were synthesized through a chemical polymerization route using methyl orange-ferric chloride (MO-FeCl3) as a template for growth. The thermoelectric properties of these PPy nanotubes have been studied in the temperature range 300-380 K after treatment with various dopants such as hydrochloric acid (HCl), p-toluene-sulphonic acid monohydrate (ToS), and tetrabutyl ammonium hexaflurophosphate (PF6). It has been observed that these dopants affect the electrical and thermal transport properties of PPy nanotubes in different ways. The temperature dependence of electrical resistivity suggests that pure PPy and ToS-doped PPy nanotubes exhibit a critical regime of metal-to-insulator transition, and doping with HCl drives them into the metallic regime. In contrast, PF6 doping of PPy nanotubes carries them into the insulating regime and these samples exhibited the highest figure of merit of ~3.4  ×  10‒3 at 380 K, which was 240% higher than the value obtained in the case of pristine PPy nanotubes. Strongly repressed thermal conductivity along with moderately high Seebeck coefficient and electrical conductivity have been found to be responsible for the high figure of merit observed in PF6-doped PPy nanotubes. The suppression of thermal conductivity in PF6-doped PPy nanotubes is attributed to the scattering of the spectrum of phonons via hierarchical length-scale defect structures present in the sample.

  18. Electrochemical behavior of polypyrrole/chitosan composite coating on Ti metal for biomedical applications.

    Science.gov (United States)

    Rikhari, Bhavana; Pugal Mani, S; Rajendran, N

    2018-06-01

    In the present work, the corrosion resistance performance and biocompatibility of polypyrrole/chitosan (PPy/CHI) composite coated Ti was studied. The deposition of composite coating was carried out by electropolymerization method. The deposited PPy/CHI composite coatings were different in morphology, structural, surface roughness and wettability compared PPy coated Ti. The presence of composite coating was confirmed by solid 13 C NMR. The PPy/CHI composite coating showed enhanced microhardness and adhesion strength compared to the PPy coating. The corrosion protection ability of PPy/CHI composite coatings at various applied potentials was analyzed by dynamic electrochemical impedance spectroscopy (DEIS), exhibited higher impedance in all the potentials compared to uncoated and PPy coated Ti. The lower corrosion current density obtained for PPy/CHI-2 composite coating from polarization studies revealed increased corrosion protection ability in SBF solution. The stability of composite coating was confirmed by immersion studies. PPy/CHI-2 composite coating immersed in SBF solution enhances hydroxyapatite (HAp) formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Characterization and electrocatalytic application of silver modified polypyrrole electrodes

    Directory of Open Access Journals (Sweden)

    A. DEKANSKI

    2005-02-01

    Full Text Available Silver modified polypyrrole electrodeswere preparedwith the aim of testing them for the electrooxidation of formaldehyde in alkaline solution. The modification of polypyrrole by immersion in aqueous AgNO3 solution was studied by cyclic voltammetry and vacuum techniques (AES and XPS. The influence of time of immersion and the thickness of the polypyrrole film, prepared by electrochemical polymerization, on the modification of the polymer were examined. The results acquired from both electrochemical and spectroscopic examinations show that immersion of a polypyrrole electrode in a AgNO3 solution results in its modificationwith silver, which is deposited in the elemental state on the surface. The quantity of silver deposited depends not only on the immersion time but also on the thickness of the polymer film. A modified PPy/Ag electrode exhibits catalytic activity for the electrooxidation of CH2O in NaOH. In spite of the low quantity of silver, the activity of the electrode for this reaction is comparable to that of a polycrystalline silver electrode.

  20. Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric

    Science.gov (United States)

    Yaghoubidoust, Fatemeh; Wicaksono, Dedy H. B.; Chandren, Sheela; Nur, Hadi

    2014-10-01

    Improving the electrical response of polypyrrole-cotton composite is the key issue in making flexible electrode with favorable mechanical strength and large capacitance. Flexible graphene oxide/cotton (GO/Cotton) composite has been prepared by dipping pristine cotton in GO ink. The composite‘s surface was further modified with polypyrrole (Ppy) via chemical polymerization to obtain Ppy/GO/Cotton composite. The composite was characterized using SEM, FTIR and XRD measurements, while the influence of GO in modifying the physicochemical properties of the composite was also examined using TG and cyclic voltammetry. The achieved mean particle size for Ppy/Cotton, Ppy/GO/Cotton and GO estimated using Scherrer formula are 58, 67 and 554 nm, respectively. FTIR spectra revealed prominent fundamental absorption bands in the range of 1400-1800 cm-1. The increased electrical conductivity as much as 2.2 × 10-1 S cm-1 for Ppy/GO/Cotton composite measured by complex impedance, is attributed to the formation of continuous conducting network. The partial reduction of GO on the surface of cotton (GO/Cotton) during chemical polymerization can also affect the conductivity. This simple, economic and environmental-friendly preparation method may contribute towards the controlled growth of quality and stable Ppy/GO/Cotton composites for potential applications in microwave attenuation, energy storage system, static electric charge dissipation and electrotherapy.

  1. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-12-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH{sub 3}){sub 2}OH) precursor showed better electrochemical performance than (AgNO{sub 3}). • The sensor showed superior performance toward H{sub 2}O{sub 2}. - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H{sub 2}O{sub 2}) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H{sub 2}O{sub 2} was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l{sup −1} and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l{sup −1} (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H{sub 2}O{sub 2} sensor.

  2. High performance polypyrrole coating for corrosion protection and biocidal applications

    Science.gov (United States)

    Nautiyal, Amit; Qiao, Mingyu; Cook, Jonathan Edwin; Zhang, Xinyu; Huang, Tung-Shi

    2018-01-01

    Polypyrrole (PPy) coating was electrochemically synthesized on carbon steel using sulfonic acids as dopants: p-toluene sulfonic acid (p-TSA), sulfuric acid (SA), (±) camphor sulfonic acid (CSA), sodium dodecyl sulfate (SDS), and sodium dodecylbenzene sulfonate (SDBS). The effect of acidic dopants (p-TSA, SA, CSA) on passivation of carbon steel was investigated by linear potentiodynamic and compared with morphology and corrosion protection performance of the coating produced. The types of the dopants used were significantly affecting the protection efficiency of the coating against chloride ion attack on the metal surface. The corrosion performance depends on size and alignment of dopant in the polymer backbone. Both p-TSA and SDBS have extra benzene ring that stack together to form a lamellar sheet like barrier to chloride ions thus making them appropriate dopants for PPy coating in suppressing the corrosion at significant level. Further, adhesion performance was enhanced by adding long chain carboxylic acid (decanoic acid) directly in the monomer solution. In addition, PPy coating doped with SDBS displayed excellent biocidal abilities against Staphylococcus aureus. The polypyrrole coatings on carbon steels with dual function of anti-corrosion and excellent biocidal properties shows great potential application in the industry for anti-corrosion/antimicrobial purposes.

  3. Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Wei-Yan; Ting, Pan-Ning; Luo, Shu-Hui; Lin, Jeng-Yu

    2014-01-01

    Highlights: • MWCNT/PPy composite was incorporated in Pt-free DSCs. • Evenly coating of PPy on MWCNT was achieved by using pulse-reversal technique. • The DSC with theMWCNT/PPy composite reached an efficiency of 6.21%. - Abstract: In this current work, we proposed a modified two-step method to prepare multiwalled carbon nanotube/polypyrrol (MWCNT/PPy) composite counter electrodes (CEs) toward triiodide reduction in dye-sensitized solar cells (DSCs). MWCNTs were deposited onto the surface of fluorinated tin oxide (FTO) glass substrates by electrophoretic deposition, and then subjected to the PPy electropolymerization by using a pulse-reversal technique. With regard to the electropolymerization of PPy on the MWCNTs-coated FTO substrate by conventional cyclic voltammetry (CV) method (designated as MWCNT/PPy-CV CE), the MWCNT/PPy-PR CE still retrained the mesoporous morphology originating from the MWCNT conductive framework and the PPy thin film was found to be evenly coated on the MWCNT surface. According to the extensive electrochemical analyses, the mesoporous nanostructure of the MWCNT/PPy-PR CE provided increased active surface area for I 3 - reduction and facilitated the electron transport at the interface of CE/electrolyte and the redox electrolyte penetration within the CE. As a result, the DSC assembled with the MWCNT/PPy-PR CE reaches a comparable photovoltaic efficiency of 6.21% to that of the DSC based on the Pt CE (6.66%)

  4. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  5. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Science.gov (United States)

    Nia, Pooria Moozarm; Meng, Woi Pei; Alias, Y.

    2015-12-01

    Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H2O2) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H2O2 was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1-5 mM with a limit of detection of 0.115 μmol l-1 and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l-1 (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H2O2 sensor.

  6. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite

    CSIR Research Space (South Africa)

    Kera, Nazia H

    2016-08-01

    Full Text Available A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure...

  7. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    Science.gov (United States)

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  8. Modification of Aspergillus niger by conducting polymer, Polypyrrole, and the evaluation of electrochemical properties of modified cells.

    Science.gov (United States)

    Apetrei, Roxana-Mihaela; Carac, Geta; Bahrim, Gabriela; Ramanaviciene, Almira; Ramanavicius, Arunas

    2018-06-01

    The enhancement of bioelectrochemical properties of microorganism by in situ formation of conducting polymer within the cell structures (e.g. cell wall) was performed. The synthesis of polypyrrole (Ppy) within fungi (Aspergillus niger) cells was achieved. Two different Aspergillus niger strains were selected due to their ability to produce glucose oxidase, which initiated the Ppy formation through products of enzymatic reaction. The evolution of Ppy structural features was investigated by absorption spectroscopy, cyclic voltammetry and Fourier transform infrared spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. MAPLE deposition of polypyrrole-based composite layers for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Acasandrei, Adriana Maria [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Luculescu, Catalin Romeo, E-mail: catalin.luculescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Mustaciosu, Cosmin Catalin [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Ion, Valentin [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Mihailescu, Mona; Vasile, Eugenia [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania)

    2015-12-01

    Highlights: • PPy-based composite layers for bone regeneration were produced by MAPLE. • Conductive PPy nanograins were embedded in insulating PLGA and PU matrices. • PLGA was chosen for providing biodegradability and PU for toughness and elasticity. • The layers conductivities reached 10{sup −2} S/cm for PPy loadings of 1:10 weight ratios. • The layers promoted osteoblast viability, proliferation and mineralization. - Abstract: We report on biocompatible, electrically conductive layers of polypyrrole (PPy)-based composites obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) for envisioned bone regeneration. In order to preserve the conductivity of the PPy while overcoming its lack of biodegradability and low mechanical resilience, conductive PPy nanograins were embedded in two biocompatible, insulating polymeric matrices, i.e. poly(lactic-co-glycolic)acid (PLGA) and polyurethane (PU). PLGA offers the advantage of full biodegradability into non-toxic products, while PU provides toughness and elasticity. The PPy nanograins formed micro-domains and networks within the PLGA and PU matrices, in a compact spatial arrangement favorable for electrical percolation. The proposed approach allowed us to obtain PPy-based composite layers with biologically meaningful conductivities up to 10{sup −2} S/cm for PPy loadings as low as 1:10 weight ratios. Fluorescent staining and viability assays showed that the MG63 osteoblast-like cells cultured on the PPy-based layers deposited by MAPLE were viable and retained their capacity to proliferate. The performance of the proposed method was demonstrated by quantitative evaluation of the calcium phosphate deposits from the cultured cells, as indicative for cell mineralization. Electrical stimulation using 200 μA currents passing through the PPy-based layers, during a time interval of 4 h, enhanced the osteogenesis in the cultured cells. Despite their lowest conductivity, the PPy/PU layers showed the best

  10. Assembly of polypyrrole nanotube@MnO{sub 2} composites with an improved electrochemical capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiayou; Zhang, Xiaoya; Liu, Jingya; Peng, Linfeng; Chen, Changlang; Huang, Zhiliang [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Liang, E-mail: msell08@163.com [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Xianghua [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Shang, Songmin, E-mail: shang.songmin@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-08-15

    Graphical abstract: - Highlights: • PPy nanotube@MnO{sub 2} composites have been prepared. • The thickness of MnO{sub 2} coating can be tuned by the concentration of KMnO{sub 4}. • Synergistic effect between PPy and MnO{sub 2} generates better capacitance performance. • The composites exhibit high specific capacitance and good cycle stability. - Abstract: A facile strategy is presented to fabricate polypyrrole nanotube@manganese dioxide (PPy@MnO{sub 2}) composites. The effect of KMnO{sub 4} concentration on the morphology and property of PPy@MnO{sub 2} composites is investigated. The microstrucutres and properties of the resulting PPy@MnO{sub 2} composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray diffraction (EDX), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA) and electrochemical measurements. The results indicate that the PPy@MnO{sub 2} composites possess high specific capacitance and good cyclic stability due to the coating of MnO{sub 2} onto PPy nanotubes. The specific capacitance of 403 F/g for the PPy@MnO{sub 2} composite is obtained from galvanostatic charge–discharge experiment at a current density of 1 A/g, exhibiting the potential application for supercapacitors.

  11. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Grijalva-Bustamante, G.A. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Evans-Villegas, A.G. [Departamento de Ciencias Químico Biológicas, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Castro, T. del, E-mail: terecat@polimeros.uson.mx [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Ortega, M.M. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Cruz-Silva, R. [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano (Japan); Huerta, F. [Departamento Ingeniería Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801 Alcoy (Spain); Morallón, E. [Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2016-06-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  12. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    International Nuclear Information System (INIS)

    Grijalva-Bustamante, G.A.; Evans-Villegas, A.G.; Castillo-Castro, T. del; Castillo-Ortega, M.M.; Cruz-Silva, R.; Huerta, F.; Morallón, E.

    2016-01-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  13. Synthesis and characterization of conductive core-shell polyacrylonitrile-polypyrrole nanofibers.

    Science.gov (United States)

    Jun, Tae-Sun; Nguyen, Tuan-Anh; Jung, Yongju; Kim, Yong Shin

    2012-07-01

    Nonwoven polyacrylonitrile-polypyrrole (PAN-PPy) core-shell nanofiber mats were prepared through the growth of PPy layers on electrospun PAN nanofibers via a two-step vapor-phase polymerization, i.e., the wet-coating of ferric tosylate (FeTos) oxidants on PAN nanofibers followed by exposure to pyrrole monomers in the gas phase. Under the conditions ([FeTos] = 10 wt%, reaction time = 15 min, temperature = 15 degrees C), the PPy polymerization procedure led to both a uniform coating over the PAN surface with an average thickness of 18 nm and cross-linkages among the nanofibers without a noticeable change in the highly porous nanofibrous structures. The oxidant concentration and polymerization time were found to be key parameters for achieving a good nanostructured core-shell fiber mat. FT-IR, XPS, XRD and conductivity measurements confirmed the synthesis of Tos-doped PPy with some degree of crystallinity and a high conductivity.

  14. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2016-10-01

    This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  15. Preparation and Characterization of Conductive Polymer Blends of Polypyrrole and Poly(ethylene oxide).

    Science.gov (United States)

    Marega, Carla; Saini, Roberta

    2018-02-01

    Conductive polymer blends of polypyrrole (PPy) and poly(ethylene oxide) (PEO) were obtained in the form of films and fibers, respectively by solvent casting and electrospinning. Different amounts of PPy were introduced in the blends in order to study the effect of the conductive polymer on the properties of the final material and in particular to elucidate the influence of the different morphology on conductivity. The structure and morphology of PPy/PEO blends were characterized by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to understand the influence of different PPy content on thermal behavior and stability, electrospun fibrous mats were examined by scanning electron microscopy (SEM). The conductivity of the films and fibrous mats was measured and correlation with morphology was highlighted.

  16. Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application.

    Science.gov (United States)

    Kim, Jung Sun; Kim, Won Jin; Cho, Namchul; Shukla, Shobha; Yoon, Hyeonseok; Jang, Jyongsik; Prasad, Paras N; Kim, Tae-Dong; Lee, Kwang-Sup

    2009-12-01

    A novel method for the fabrication of polypyrrole nanotubes (PPyNTs) possessing quantum dots (QDs) was developed for optoelectronic devices. PbSe QDs were effectively attached to the thiolated PPyNT-SH without affecting the dispersion stability of QDs and hence ensuring their homogeneous distribution in the polymer. Transmission electron microscopic images showed a large number of PbSe QDs absorbed in PPyNT-SH. The polymer nanotube composites were also investigated for the application of photovoltaic cells. An open circuit voltage (V(oc)) of 0.45 V and short-circuit photocurrent density (I(sc)) of 2.4 microA cm(-2) were found in P3HT/PPyNT-PbSe polymeric solar cells. Further optimization will be provided by changing various parameters and conditions.

  17. Ammonium vanadate@polypyrrole@manganese dioxide nanowire arrays with enhanced reversible lithium storage

    Science.gov (United States)

    Wang, Chang; Liu, Hui; Jiang, Ming; Wang, Yingde; Liu, Ruina; Luo, Zhiping; Liu, Xiaoqing; Xu, Weilin; Xiong, Chuanxi; Fang, Dong

    2017-09-01

    Design and fabrication of novel optimized electrode materials are important for the development of new batteries for energy storage applications. Herein, we report on a hierarchical bulk electrode material with a tailored nanostructure that which consists of three components: a NH4V4O10 nanowire as an active skeleton, an intermediate polymer layer (polypyrrole, PPy), and a metal oxide layer (MnO2) as the outside shell. The NH4V4O10-PPy-MnO2 nanowires exhibit present higher capacitance than that of the simple NH4V4O10-PPy core@shell or NH4V4O10 nanowires. The structure of double shells of combined PPy and MnO2 is a key factor in enhancing their electrochemical performance including high specific capacitance and excellent cycling stability. Our V-based core@shell@shell structure can serve as freestanding, compressible electrodes for various energy devices.

  18. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Y. C. Eeu

    2013-01-01

    Full Text Available Polypyrrole (PPy was reinforced with reduced graphene oxide (RGO and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO and individual (PPy counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge.

  19. Fabrication of polypyrrole-grafted nitrogen-doped graphene and its application for electrochemical detection of paraquat

    International Nuclear Information System (INIS)

    Li, Ji; Lei, Wu; Xu, Yujuan; Zhang, Yuehua; Xia, Mingzhu; Wang, Fengyun

    2015-01-01

    Graphical abstract: Polypyrrole-grafted nitrogen-doped graphene (PPY-g-NGE) was successfully synthesized by simultaneous modification of graphene through nitrogen doping and polymeric grafting for an efficient detection of paraquat (PQ). - Abstract: Polypyrrole-grafted nitrogen-doped graphene (PPY-g-NGE) was successfully synthesized by simultaneous modification of graphene through nitrogen doping and polymeric grafting, and used for the detection of paraquat (PQ). The chemical structure, morphology and interaction of the obtained PPY-g-NGE were verified by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The PPY-g-NGE modified glassy carbon electrode (GCE) was fabricated to investigate its electrochemical behavior and sensitive detection of PQ by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the novel PPY-g-NGE modified GCE exhibited excellent electrochemical performance and electrocatalytic activity to the redox reaction of PQ, with comparison to NGE and non-grafted composite of PPY-NGE. The two reduction DPV peaks of PQ at −0.60 V and −1.00 V were significantly enhanced at the PPY-g-NGE modified electrode. Under the optimized condition, the reduction peak currents of PQ at the PPY-g-NGE modified electrode were linear over the concentration range from 5.00 × 10 −8 to 2.00 × 10 −6 M with detection limits of 41 nM and 58 nM for Peak 1 and Peak 2, respectively. Besides the good sensitivity, the sensor also exhibited fine stability and strong anti-interference ability due to the well-combination and synergistic effect of polypyrrole and nitrogen doped graphene

  20. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors

    Science.gov (United States)

    Mi, Hongyu; Zhang, Xiaogang; Ye, Xiangguo; Yang, Sudong

    Polypyrrole (PPy) nanotubes were synthesized by using the complex of methyl orange (MO)/FeCl 3 as a template. Then the core-shell polypyrrole/polyaniline (PPy/PANI) composite was prepared by in situ chemical oxidation polymerization of aniline on the surface of PPy nanotubes. The morphology and molecular structure were characterized by transmission electron microscopy (TEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). TEM images confirmed that the composite was core-shell nanotubes. The electrochemical properties of the PPy/PANI composite electrode were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The electrochemical experiments showed that the specific capacitance of the PPy/PANI composite was 416 F g -1 in 1 M H 2SO 4 electrolyte and 291 F g -1 in 1 M KCl electrolyte. Furthermore, the composite electrode exhibited a good rate capability and maintained 91% of initial capacity at a current density of 15 mA cm -2 in 1 M H 2SO 4 electrolyte.

  1. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices.

    Science.gov (United States)

    Lay, Makara; Pèlach, M Àngels; Pellicer, Neus; Tarrés, Joaquim A; Bun, Kim Ngun; Vilaseca, Fabiola

    2017-06-01

    In the current work, flexible, lightweight, and strong conductive nanopapers based on cellulose nanofibers (CNFs) with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and/or polypyrrole (PPy) were prepared by following a mixing and in situ chemical polymerization method. A successful homogeneous coating of PEDOT:PSS on cellulose nanofibers occurred by means hydrogen-bonding interactions between the hydroxyl functionalized CNF and the electronically charged PEDOT:PSS, as shown by FTIR spectra. The electrical conductivity and the specific capacitance of CNF-PEDOT:PSS nanopapers were 2.58Scm -1 and 6.21Fg -1 , respectively. Further coating of PPy produced a substantial improvement on the electrical conductivity (10.55Scm -1 ) and the specific capacitance (315.5Fg -1 ) of the resulting CNF-PEDOT:PSS-PPy nanopaper. A synergistic phenomenon between both conductive polymers supported the high electrical conductivity and specific capacitance of the ternary formulation. Moreover, CNF-PEDOT:PSS-PPy nanopaper showed higher mechanical properties and it was more flexible than the nanopaper containing only polypyrrole conducting polymer (CNF-PPy). It is concluded that the good mechanical, electrical and electrochemical properties of the ternary formulation can apply for smart nanopaper in flexible electronics and energy storage devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Cao, Yi; Lu, Yun, E-mail: yunlu@nju.edu.cn [Nanjing University, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering (China)

    2015-05-15

    The size-controllable polypyrrole (PPy) nanospheres are successfully synthesized by oxidative polymerization of pyrrole using N-methylene phosphonic chitosan (NMPC) as a structure-directing agent. By simply changing the amount of NMPC, the size of the PPy nanospheres can be adjusted from 190 to 50 nm in diameter. The spectrometric results suggest that the electrostatic interactions of phosphate groups in NMPC molecule with pyrrole ring might be a driving force for formation of the uniform and size-controllable PPy nanospheres. The PPy nanospheres with the diameter of 100 nm exhibit the largest capacity and a good cycling stability as electrode materials of supercapacitors. The as-prepared PPy nanospheres also can be combined with carbon dots to form composite nanospheres presenting enhanced fluorescence intensity, which show potential application in fluorescence detection.

  3. Corrosion control of aluminum surfaces by polypyrrole films: influence of electrolyte

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2007-06-01

    Full Text Available Polypyrrole (PPy films were galvanostatically deposited on 99.9 wt. (% aluminum electrodes from aqueous solutions containing each carboxylic acid: tartaric, oxalic or citric. Scanning Electron Microscopy (SEM was used to analyze the morphology of the aluminum surfaces coated with the polymeric films. It was observed that the films deposited from tartaric acid medium presented higher homogeneity than those deposited from oxalic and citric acid. Furthermore, the corrosion protection of aluminum surfaces by PPy films was also investigated by potentiodynamic polarization experiments.

  4. Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation

    Directory of Open Access Journals (Sweden)

    Zhengao Wang

    2018-03-01

    Full Text Available To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.

  5. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Neelakandan, S.; Kanagaraj, P. [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India); Sabarathinam, R.M. [Functional Material Division, Central Electrochemical Research Institute, Karaikudi 630006 (India); Nagendran, A., E-mail: nagimmm@yahoo.com [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India)

    2015-12-30

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm{sup 3} s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10{sup −7} cm{sup 2} s{sup −1}, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10{sup 4} S cm{sup −3} s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  6. Silver-polypyrrole-silver structure fabrication and characterization over wide temperature

    Science.gov (United States)

    Taunk, Manish; Chand, Subhash

    2012-10-01

    Semiconducting polymers have applications in many electronic devices such as organic light emitting diodes, organic solar cells, field effect transistors, memory devices, and many flexible electronic devices. In the organic electronic devices, metal-organic semiconductor interface plays a major role in determining the electrical transport. Earlier most of the studies were performed on electrochemically polymerized polypyrrole. In this study polypyrrole-poly(vinylidene) fluoride composite films synthesized by chemical oxidation method were used for contact fabrication in sandwiched geometry. Electrical transport measurements have been carried out in silver-polypyrrole-silver sandwich structure to understand conduction mechanism in the temperature range of 10-300K. It has been observed that Ag forms Ohmic contact with PPy and bulk controlled space charge limited conduction was the dominant current transport process in these sandwiched structures.

  7. Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties

    OpenAIRE

    Jitka Kopecká; Miroslav Mrlík; Robert Olejník; Dušan Kopecký; Martin Vrňata; Jan Prokeš; Patrycja Bober; Zuzana Morávková; Miroslava Trchová; Jaroslav Stejskal

    2016-01-01

    Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials...

  8. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization

    Directory of Open Access Journals (Sweden)

    Edgar A. Sanches

    2015-01-01

    Full Text Available Polypyrrole (PPY powder was chemically synthesized using ferric chloride (FeCl3 and characterized by X-ray diffraction (XRD, Le Bail Method, Fourier Transform Infrared Spectrometry (FTIR, and Scanning Electron Microscopy (SEM. XRD pattern showed a broad scattering of a semicrystalline structure composed of main broad peaks centered at 2θ = 11.4°, 22.1°, and 43.3°. Crystallinity percentage was estimated by the ratio between the sums of the peak areas to the area of amorphous broad halo due to the amorphous phase and showed that PPY has around 20 (1%. FTIR analysis allowed assigning characteristic absorption bands in the structure of PPY. SEM showed micrometric particles of varying sizes with morphologies similar to cauliflower. Crystal data (monoclinic, space group P 21/c, a=7.1499 (2 Å, b=13.9470 (2 Å, c=17.3316 (2 Å, α=90 Å, β=61.5640 (2 Å and γ=90 Å were obtained using the FullProf package program under the conditions of the method proposed by Le Bail. Molecular relaxation was performed using the density functional theory (DFT and suggests that tetramer polymer chains are arranged along the “c” direction. Average crystallite size was found in the range of 20 (1 Å. A value of 9.33 × 10−9 S/cm was found for PPY conductivity.

  9. Surface Plasmon Resonance (SPR Phenomenon of the Oxidizing and Reducing Polypyrrole

    Directory of Open Access Journals (Sweden)

    Nurlaila Rajabiah

    2016-12-01

    Full Text Available Surface Plasmon Resonance (SPR phenomenon of the oxidizing and reducing polypyrrole (PPy have been observed using a modified Au/PPy Kretschmann configuration. The observation was carried out through simulation Winspall 3.02 software and compared with some experimental data refractive index (n, absorbance index (, and thickness (τ reported in other literatures with spectroscopy ellipsometry. This simulation assumed that the SPR system use BK-7 halfcylinder prism (n= 1,515 and the laser beam was generated by HeNe (λ= 632,8 nm. The result showed that the optimum layer thickness of polypyrrole with neutral electrolyte solution in the reduction state is of about 20 nm. The polypyrrole with an acid solution in the oxidation state showed that the reflectivity curve is sharper and the width of the curve is smaller than the neutral electrolyte solution in the reduction state with the SPR angle of about 46,810 and the reflectivity value of about 0,217. Polypyrrole in a state of oxidation and reduction, related to the absorption, film thickness, and dielectric constant of materials, affected to the SPR angle shift and dip curve

  10. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    Directory of Open Access Journals (Sweden)

    Zhao Baobao

    2011-01-01

    Full Text Available Abstract Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy nanoparticles (NPs were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

  11. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Zhang, Peng; Huo, Jinxing; Ericson, Fredric; Strømme, Maria; Nyholm, Leif

    2014-10-01

    It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g-1, corresponding to specific electrode capacitances of up to ~185 F g-1 based on the weight of the electrode, and 5.5 F cm-2 at a current density of 2 mA cm-2. After 3000 charge/discharge cycles at 30 mA cm-2, the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g-1, corresponding to specific electrode capacitances of up to ~185 F g-1 based on the weight of the electrode, and 5.5 F cm-2 at a current density of 2 mA cm-2. After 3000 charge/discharge cycles at 30 mA cm-2, the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  12. Low frequency dielectric dispersion study of PVC-PPy blends in dilute solution of different solvents

    Science.gov (United States)

    Sharma, Deepika; Tripathi, Deepti

    2017-05-01

    In present study,the effect of adding Polypyrrole (PPy), a conductive polymer, on the dielectric and electrical behavior of Polyvinyl chloride (PVC) in dilute solution of moderate polar solvent Tetrahydrofuran (THF) and polar solvent M-Cresol at low frequency is investigated. The blend of PVC with PPy forms a colloidal solution in both the solvents. The dielectric dispersion study of PVC-PPy blends in THF and M-Cresol has been carried out in the frequency range of 20Hz to 2MHz at temperature of 303 K. The influence of solvent on dielectric and electrical parameters such as dielectric constant [ɛ*(ω)], loss tangent (tan δ) and ac conductivity (σac) of PVC - PPy solutions is studied. At low frequencies, electrode polarization seems to have dominant effect on the complex dielectric constant. The values of relaxation time corresponding to this phenomena is also reported. Dielectric dispersion studies show that the solvent environment plays significant role in governing segmental motion of polymer chain in solution.

  13. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    Science.gov (United States)

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Zhang, Qiuxiang; Zhao, Junfeng; Lu, Hongbin; Meng, Xiangkang

    2017-12-01

    Conductive polymer coating doped with large molecular organic acid is an alternative method used to protect stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). However, it is difficult to select the proper doping acid, which improves the corrosion resistance of the coating without affecting its conductivity. In this study, large spatial molecular group camphorsulfonic acid (CSA) doped polypyrrole (PPY) conductive coating was prepared by galvanostatic electropolymerization on 304SS. The electrochemical properties of the coating were evaluated in 0.1 M H2SO4 solution in order to simulate the PEMFC service environment. The results indicate that the coating increased the corrosion potential and shifted Ecorr towards more positive value, particularly the jcorr value of PPY-CSA coated 304SS was dropped from 97.3 to 0.00187 μA cm-2. The long-term immersion tests (660 h) show that the PPY-CSA coating exhibits better corrosion resistance in comparison with the small acid (SO42-) doped PPY-SO42- or PPY/PPY-SO42- coatings. Moreover, the PPY-CSA coating presents low contact resistance and maintains strong corrosion resistance during the prolonged exposure time due to barrier effect and anodic protection.

  15. Synthesis, characterization and electrochemical study of Mn-doped TiO2 decorated polypyrrole nanotubes

    Science.gov (United States)

    Saidur, M. R.; Aziz, A. R. Abdul; Basirun, W. J.

    2017-06-01

    Nanostructured conductive polymers are the growing interest in the field of electrochemistry due to their superior conductivity and environmental friendliness. The existence of transition metal oxides could improve their nanostructure as well as conductive properties. In this study, polypyrrole nanotubes are synthesized in the presence of TiO2 and manganese (Mn)-doped TiO2 nanoparticles (NPs) to investigate their electrochemical properties. Details characterization of the synthesized composites were done by X-Ray diffraction (XRD) and TEM. The TEM analysis shows that doping of TiO2 with Mn decrease the grain size of the TiO2 nanoparticles and successively its effects on the synthesis of the PPy nanotubes (PPyNTs). TEM confirmed that PPyNTs synthesized in the presence of Mn-doped TiO2 are thinner in size compare to the PPyNTs synthesized in presence of pure TiO2. The electrochemical effectiveness of the synthesized PPy nanocomposite was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV and EIS both on a modified glassy carbon electrode reveal the better electron transportability for the Mn-doped TiO2 PPyNTs due to the synergistic effect of doping and decreased the size of PPyNTs as well as increased surface area.

  16. Preparation and characterization of polypyrrole coating on fly ash cenospheres: role of the organosilane treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing; Li Qin; Kang Jinfang; Pang Jianfeng; Wang Wei; Zhai Jianping, E-mail: jpzhai@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, and School of the Environment, Nanjing University, Nanjing 210046 (China)

    2011-10-19

    The preparation of hybrid polypyrrole-fly ash cenospheres (PPY-FACs) is well documented. In order to create a suitable surface environment in favour of the formation of PPY, organofunctional modification of FACs' surface by different silane coupling agents is introduced prior to the PPY coating. The organosilanes used to treat the substrates are aminopropyltriethoxysilane (APS) and mercaptopropyltrimethoxysilane (MPTS). These hybrid PPY-FACs are characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and contact angle measurement. These characterization results indicate that organosilane pretreatment contributes to the formation of PPY at the surface of FACs. Compared with MPTS, APS yields stronger bonding force between PPY and substrate surface, and thus is better for the loading of PPY due to the superior hydrophobic property. In addition, the introduction of FACs avoids the removal process of the template core to form a hollow structure because of the special structure of the substrates, which makes the process convenient and environmentally benign.

  17. Preparation and characterization of polypyrrole coating on fly ash cenospheres: role of the organosilane treatment

    Science.gov (United States)

    Wang, Bing; Li, Qin; Kang, Jinfang; Pang, Jianfeng; Wang, Wei; Zhai, Jianping

    2011-10-01

    The preparation of hybrid polypyrrole-fly ash cenospheres (PPY-FACs) is well documented. In order to create a suitable surface environment in favour of the formation of PPY, organofunctional modification of FACs' surface by different silane coupling agents is introduced prior to the PPY coating. The organosilanes used to treat the substrates are aminopropyltriethoxysilane (APS) and mercaptopropyltrimethoxysilane (MPTS). These hybrid PPY-FACs are characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and contact angle measurement. These characterization results indicate that organosilane pretreatment contributes to the formation of PPY at the surface of FACs. Compared with MPTS, APS yields stronger bonding force between PPY and substrate surface, and thus is better for the loading of PPY due to the superior hydrophobic property. In addition, the introduction of FACs avoids the removal process of the template core to form a hollow structure because of the special structure of the substrates, which makes the process convenient and environmentally benign.

  18. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    Science.gov (United States)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-11-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R2 = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility.

  19. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-01-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core–shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H 2 O 2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R 2  = 0.990). This sensor has been applied to detect the trace H 2 O 2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility. (paper)

  20. Safety of long-term PPI therapy

    DEFF Research Database (Denmark)

    Reimer, Christina

    2013-01-01

    in the past decade and are critically reviewed in this article and the existing evidence is evaluated and translated into possible clinical consequences. Based on the existing evidence the benefits of PPI treatment seem to outweigh potential risks in the large majority of patients especially if PPI use...

  1. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    International Nuclear Information System (INIS)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-01-01

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  2. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  3. Improvement of the overall performances of LiMn{sub 2}O{sub 4} via surface-modification by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Wang, Wan [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Zhu, Ding [Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065 (China); Huang, Liwu, E-mail: liwuhuang@scu.edu.cn [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Chen, Yungui, E-mail: ygchen60@aliyun.com [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)

    2015-11-15

    Graphical abstract: Polypyrrole(PPy) film has improved the rate performance of LiMn{sub 2}O{sub 4} efficiently due to its excellent conductivity. PPy@LiMn{sub 2}O{sub 4} could provide more energy under the higher power than pristine LMO. - Highlights: • The PPy layer on the surface of LMO particles hasn’t been studied in LiMn{sub 2}O{sub 4} so far. • The solvent in the synthesis process of PPy@LMO is absolute ethyl alcohol. • The differences of surface-modification between the PPy and PI for LMO. • The analyses of rate performances are through specific power. - Abstract: Polypyrrole (PPy) is an excellent conductive polymer and the study on its utilization in the surface modification of the LiMn{sub 2}O{sub 4} (LMO) is few. In this work, the structure, morphology and electrochemical performance of surface-modified LiMn{sub 2}O{sub 4} composites with PPy and polyimides (PI) were discussed. The crystal structure, chemical bonds and morphology were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Moreover, the specific power and cycling performance were tested at room and high (55 °C) temperature. The PPy@LMO (surface-modified LMO composites with PPy) shows better performances than the pristine LMO. The addition of PPy not only weakens the corrosion caused by electrolyte, but also improves the discharge capacity at higher rates. The charge transfer resistance of the PPy@LMO is much lower than that of the pristine LMO after cycling.

  4. Facile Synthesis of SrCO3-Sr(OH)2/PPy Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Science.gov (United States)

    Márquez-Herrera, Alfredo; Ovando-Medina, Victor Manuel; Castillo-Reyes, Blanca Estela; Zapata-Torres, Martin; Meléndez-Lira, Miguel; González-Castañeda, Jaquelina

    2016-01-01

    Pyrrole monomer was chemically polymerized onto SrCO3-Sr(OH)2 powders to obtain SrCO3-Sr(OH)2/polypyrrole nanocomposite to be used as a candidate for photocatalytic degradation of methylene blue dye (MB). The material was characterized by Fourier transform infrared (FTIR) spectroscopy, UV/Vis spectroscopy, and X-ray diffraction (XRD). It was observed from transmission electronic microscopy (TEM) analysis that the reported synthesis route allows the production of SrCO3-Sr(OH)2 nanoparticles with particle size below 100 nm which were embedded within a semiconducting polypyrrole matrix (PPy). The SrCO3-Sr(OH)2 and SrCO3-Sr(OH)2/PPy nanocomposites were tested in the photodegradation of MB dye under visible light irradiation. Also, the effects of MB dye initial concentration and the catalyst load on photodegradation efficiency were studied and discussed. Under the same conditions, the efficiency of photodegradation of MB employing the SrCO3-Sr(OH)2/PPy nanocomposite increases as compared with that obtained employing the SrCO3-Sr(OH)2 nanocomposite. PMID:28787830

  5. Facile Synthesis of SrCO3-Sr(OH2/PPy Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Alfredo Márquez-Herrera

    2016-01-01

    Full Text Available Pyrrole monomer was chemically polymerized onto SrCO3-Sr(OH2 powders to obtain SrCO3-Sr(OH2/polypyrrole nanocomposite to be used as a candidate for photocatalytic degradation of methylene blue dye (MB. The material was characterized by Fourier transform infrared (FTIR spectroscopy, UV/Vis spectroscopy, and X-ray diffraction (XRD. It was observed from transmission electronic microscopy (TEM analysis that the reported synthesis route allows the production of SrCO3-Sr(OH2 nanoparticles with particle size below 100 nm which were embedded within a semiconducting polypyrrole matrix (PPy. The SrCO3-Sr(OH2 and SrCO3-Sr(OH2/PPy nanocomposites were tested in the photodegradation of MB dye under visible light irradiation. Also, the effects of MB dye initial concentration and the catalyst load on photodegradation efficiency were studied and discussed. Under the same conditions, the efficiency of photodegradation of MB employing the SrCO3-Sr(OH2/PPy nanocomposite increases as compared with that obtained employing the SrCO3-Sr(OH2 nanocomposite.

  6. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  7. Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid.

    Science.gov (United States)

    Cesarino, Ivana; Galesco, Heloisa V; Machado, Sergio A S

    2014-07-01

    A new sensor has been developed by a simple electrodeposition of multi-walled carbon nanotubes (MWCNT), polypyrrole (PPy) and colloidal silver nanoparticles on the platinum (Pt) electrode surface. The Pt/MWCNT/PPy/AgNPs electrode was applied to the detection of serotonin in plasmatic serum samples using differential pulse voltammetry (DPV). The synergistic effect of MWCNT/PPy/AgNPs nanohybrid formed yielded a LOD of 0.15 μmol L(-1) (26.4 μg L(-1)). Reproducibility and repeatability values of 2.2% and 1.7%, respectively, were obtained compared to the conventional procedure. The proposed electrode can be an effective material to be used in biological analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  9. Protective Behavior of Poly(m-aminophenol) and Polypyrrole Coatings on Mild Steel

    Science.gov (United States)

    Yahaya, Sabrina M.; Harun, M. K.; Rosmamuhamadani, R.; Bonnia, N. N.; Ratim, S.

    2018-01-01

    Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.

  10. Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations

    DEFF Research Database (Denmark)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco

    2013-01-01

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an 10 aqueous pyrrole solution onto...... electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter ions in the monomer solution. Several counter ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity...... in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively...

  11. Development of an Optical Urea Biosensor Using Polypyrrole-polyvinyl Sulphonate Film

    Directory of Open Access Journals (Sweden)

    H. J. KHARAT

    2009-02-01

    Full Text Available Development of an intensity modulated fiber optic PPy-PVS biosensor for the detection of urea has been presented. The sensor design is based on the modified cladding technique. Polypyrrole (PPy film doped with polyvinyl sulfonate (PVS was synthesized (by in-situ chemical polymerization at room temperature with optimized process parameters. The PPy-PVS film provides good porous matrix for the immobilization of enzyme-urease on the sensing probe by cross linking via glutaraldehyde. The characterization of the urea biosensor has been carried out with an indigenously developed sensing chamber and optical fiber test bench. This biosensor showed almost stable and linear response to urea in the range 1-100 mM up to 24 days. It shows very good selectivity and repeatability.

  12. Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose.

    Science.gov (United States)

    Tsai, Yu-Chen; Li, Shih-Ci; Liao, Shang-Wei

    2006-10-15

    A nanobiocomposite film consisted of polypyrrole (PPy), functionalized multiwalled carbon nanotubes (cMWNTs), and glucose oxidase (GOx) were electrochemically synthesized by electrooxidation of 0.1M pyrrole in aqueous solution containing appropriate amounts of cMWNTs and GOx. Potentiostatic growth profiles indicate that the anionic cMWNTs is incorporated within the growing PPy-cMWNTs nanocomposite for maintaining its electrical neutrality. The morphology of the PPy-cMWNTs nanocomposite was characterized by scanning electron microscopy (SEM). The PPy-cMWNTs nanocomposite was deposited homogeneously onto glassy carbon electrode. The amperometric responses vary proportionately to the concentration of hydrogen peroxide at the PPy-cMWNTs nanocomposite modified electrode at an operating potential of 0.7V versus Ag/AgCl (3M). The results indicate that the electroanalytical PPy-cMWNTs-GOx nanobiocomposite film was highly sensitive and suitable for glucose biosensor based on GOx function. The GOx concentration within the PPy-cMWNTs-GOx nanobiocomposite and the film thickness are crucial for the performance of the glucose biosensor. The amperometric responses of the optimized PPy-cMWNTs-GOx glucose biosensor (1.5 mgmL(-1) GOx, 141 mCcm(-2) total charge) displayed a sensitivity of 95 nAmM(-1), a linear range up to 4mM, and a response time of about 8s.

  13. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells.

    Science.gov (United States)

    Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi

    2014-12-19

    A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Performance of the Chemical and Electrochemical Composites of PPy/CNT as Electrodes in Type I Supercapacitors

    Directory of Open Access Journals (Sweden)

    S. C. Canobre

    2015-01-01

    Full Text Available Polypyrrole (PPy is one of the most studied conducting polymers and a very promising material for various applications such as lithium-ion secondary batteries, light-emitting devices, capacitors, and supercapacitors, owing to its many advantages, including good processability, easy handling, and high electronic conductivity. In this work, PPy films were chemically and electrochemically synthesized, both in and around carbon nanotubes (CNTs. The cyclic voltammograms of the device, composed of the electrochemically synthesized PPy/CNT composites as working and counter electrodes (Type I supercapacitor with p-type doping, showed a predominantly capacitive profile with low impedance values and good electrochemical stability, with the anodic charge remaining almost constant (11.38 mC, a specific capacitance value of 530 F g−1 after 50 charge and discharge cycles, and a coulombic efficiency of 99.2%. The electrochemically synthesized PPy/CNT composite exhibited better electrochemical properties compared to those obtained for the chemically synthesized composite. Thus, the electrochemically synthesized PPy/CNT composite is a promising material to be used as electrodes in Type I supercapacitors.

  15. Effects of different polypyrrole/TiO2 nanocomposite morphologies in polyvinyl butyral coatings for preventing the corrosion of mild steel

    Science.gov (United States)

    Mahmoudian, M. R.; Alias, Y.; Basirun, W. J.; Ebadi, M.

    2013-03-01

    This study addresses the synthesis and comparison of the corrosion protective properties of two different polypyrrole/TiO2 nanocomposite (PPy/TiO2 NC) morphologies in a polyvinyl butyral coating on mild steel. The polymerization was performed via low-temperature in situ chemical oxidative polymerization in the presence of methyl orange (MO) and dodecyl benzene sulfonic acid (DBSA). The field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show two different spherical and tube shapes in the core-shell structure of the PPy/TiO2 NCs synthesized in the presence DBSA and MO, respectively. The TEM results indicate that a thinner polypyrrole (PPy) shell is synthesized on the PPy/TiO2 NCs in the presence of MO than that synthesized in the presence of DBSA. Thermogravimetric analysis (TGA) results indicate that the mass percentages of the TiO2 NPs in the PPy/TiO2 NCs synthesized in the presence of MO and DBSA are 29.71 and 33.84%, respectively. The PPy/TiO2 NCs synthesized in the presence of MO were found to yield better anti-corrosion performance than those synthesized in the presence of DBSA. This result is due to the effect of the PPy surface area, which has more influence over corrosion control than the percentage of TiO2 nanoparticles in the nanocomposites.

  16. Synthesis of Polypyrrole Inverse Opal in [bmim]PF6- Containing Acetonitrile and the Application of the Inverse Opal in Cell Prototype

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2013-01-01

    Full Text Available Most primary cells use Zn or Li as the anode, a metallic oxide as the cathode, and an acidic or alkaline solution or moist past as the electrolytic solution. In this paper, highly ordered polypyrrole (PPy inverse opals have been successfully synthesized in the acetonitrile solution containing [bmim]PF6. PPy films were prepared under the same experimental conditions. Cyclic voltammograms of the PPy film and the PPy inverse opal in neutral phosphate buffer solution (PBS were recorded. X-ray photoelectron spectroscopy technique was used to investigate the structural surface of the PPy films and the PPy inverse opals. It is found that the PF6- anions kept dedoping from the PPy films during the potential scanning process, resulting in the electrochemical inactivity. Although PF6- anions also kept dedoping from the PPy inverse opals, the PO43- anions from PBS could dope into the inverse opal, explaining why the PPy inverse opals kept their electrochemical activity. An environmental friendly cell prototype was constructed, using the PPy inverse opal as the anode. The electrolytes in both the cathodic and anodic half-cells were neutral PBSs. The open-circuit potential of the cell prototype reached 0.487 V and showed a stable output over several hundred hours.

  17. Polypyrrole-vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity

    Science.gov (United States)

    Roy, Swarup; Mishra, Suryakant; Yogi, Priyanka; Saxena, Shailendra K.; Mishra, Vikash; Sagdeo, Pankaj R.; Kumar, Rajesh

    2018-01-01

    A hybrid nanocomposite of polypyrrole (Ppy)-V2O5 has been fabricated and characterized for better understanding of material enabling one to use this for appropriate application as the nanocomposite shows better thermal stability. The characterization has been done using XRD, FT-IR, FESEM, and UV-Vis for their structure, surface morphology, respectively, along with TGA and two-probe method used for checking thermal stability, and DC electrical conductance and dielectric behavior of the electrical phenomena of sample. The analysis of XRD demonstrates that crystallinity of nanocomposites is the same as that of the polymer, even though interaction between conducting Ppy and V2O5 is present as evident from FT-IR spectroscopy. A variation in bandgap, in comparison with Ppy, is observed when V2O5 is added into it. The microstructural study of nanocomposites shows encapsulation of V2O5 particles in Ppy matrix with changes in morphology with increase in doping. Conductance results show that electrical conductivity of Ppy decayed on adding V2O5. It has also been found that addition of V2O5 in Ppy has noticeable effect on the dielectric properties.

  18. Electrochemical properties and electrochemical impedance spectroscopy of polypyrrole-coated platinum electrodes

    Directory of Open Access Journals (Sweden)

    M. Fall

    2006-12-01

    Full Text Available Polypyrrole (PPy films of different thickness were characterized by electrochemical impedance spectroscopy (EIS measurements in acetonitrile and aqueous solutions, containing 0.1 M NaClO4 or sodium dodecylsulfate as the dopant. The PPy films were electrochemically deposited on Pt, and their electrochemical properties studied by cyclic voltammetry. Impedance spectra were obtained at potentials ranging from 0 to 0.8 V/SCE. The EIS data were fitted using two different equivalent electrical circuits (depending on the nature of the dopant. They involve a diffusive capacitance, which increased with the passing charge during electrosynthesis (i.e. film thickness for ClO4--doped PPy, but was practically unaffected by the film thickness in the case of SDS-doped PPy. Also, a double-layer capacitance was found only in the circuit of ClO4--doped PPy. It increased with the film thickness, and showed a minimum near the open-circuit potential. Finally the charge-transfer resistance (Rct obtained with SDS is nearly 200-fold higher than that obtained with ClO4- in the same solvent (H2O. With the same dopant (ClO4-, Rct is about five times higher in acetonitrile relative to water. All these EIS results of the different types of PPy suggest a relation with the wettability of the polymer.

  19. Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Jitka Kopecká

    2016-11-01

    Full Text Available Polypyrrole (PPy in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials have been tested in sensing of polar and non-polar organic vapors. The resistivity of sensing element using globular PPy was too high and only nanotubular PPy could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same level as that of their carbonized analogs (i.e., ~18% and 24%, respectively. Surprisingly, there was a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%, while that of their carbonized analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes (in order of seconds compared with 10 s of seconds for original nanotubes, respectively, due to higher specific surface area after carbonization.

  20. Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties

    Science.gov (United States)

    Kopecká, Jitka; Mrlík, Miroslav; Olejník, Robert; Kopecký, Dušan; Vrňata, Martin; Prokeš, Jan; Bober, Patrycja; Morávková, Zuzana; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials have been tested in sensing of polar and non-polar organic vapors. The resistivity of sensing element using globular PPy was too high and only nanotubular PPy could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same level as that of their carbonized analogs (i.e., ~18% and 24%, respectively). Surprisingly, there was a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%), while that of their carbonized analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes (in order of seconds) compared with 10 s of seconds for original nanotubes, respectively, due to higher specific surface area after carbonization. PMID:27854279

  1. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Science.gov (United States)

    Yuan, Wei; Han, Gaoyi; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-01

    In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H3PO4/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH2PO4·2H2O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  2. Constitution of novel polyamic acid/polypyrrole composite films by in-situ electropolymerization

    International Nuclear Information System (INIS)

    Hess, Euodia H.; Waryo, Tesfaye; Sadik, Omowunmi A.; Iwuoha, Emmanuel I.; Baker, Priscilla G.L.

    2014-01-01

    The preparation and characterization of polyamic acid-polypyrrole (PAA/PPy) composite films are reported in this paper. The thin films were synthesized by electrochemical method from a solution containing controlled molar ratio of chemically synthesized polyamic acid (PAA) and pyrrole monomer. Homogenous films were obtained by incorporating PAA into electropolymerized polypyrrole (PPy) thin film. The concentration of PAA (1.37 × 10 −6 M) was kept fixed throughout the composite ratio analysis, whilst the concentration of PPy was varied from 1.90 × 10 −3 M to 9.90 × 10 −3 M. The PAA/PPy thin films were electrodeposited at a glassy carbon electrode (GCE) and characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM) and voltammetry. The composition that best represented the homogenous incorporation of PAA into PPy matrix was observed at a PAA/PPy ratio of 1: 4.13 × 10 −3 . This composite was observed to have two sets of coupled peaks with formal potential 99 mV and 567 mV respectively. The D e determined from cyclic voltammetry using the anodic peak currents were found to be twice as high (5.82 × 10 −4 cm 2 /s) compared to the D e calculated using the cathodic peak currents (2.60 × 10 −4 cm 2 /s), indicating that the composite favours anodic electron mobility. Surface morphology and spectroscopy data support the formation of a homogenous polymer blend at the synthesis ratio of 1: 4.13 × 10 −3

  3. Electrochemically controlled release of anticancer drug methotrexate using nanostructured polypyrrole modified with cetylpyridinium: Release kinetics investigation

    International Nuclear Information System (INIS)

    Alizadeh, Naader; Shamaeli, Ehsan

    2014-01-01

    A new simple strategy for direct electrochemical incorporation of chemotherapeutic methotrexate (MTX) into conductive polypyrrole (PPy) has been suggested for an electrochemically controlled loading and release system. Electropolymerization of MTX doped polypyrrole yielded poor quality with low efficiency of doping, but a well-doped, nanostructure and increased capacity of drug loading (24.5 mg g −1 ) has been obtained in the presence of cetylpyridinium (CP) as a modifier. When CP was preloaded onto PPy, the hydrophobic surface of the PPy serves as a backbone to which the hydrophobic chain of the CP can be attached. Electrostatic interaction between cationic CP with anionic MTX and aromatic interaction between pyridinium head of CP with pyrimidine and pyrazine rings of MTX increases drug doping. Then release kinetics were investigated at various applied potentials and temperatures. Kinetics analysis based on Avrami's equation showed that the drug release was controlled and accelerated by increasing temperature and negative potential and sustained by increasing positive potential. At open circuit condition, the release parameter (n) represented a diffusive mechanism and at applying electrochemical potentials, a first-order mode. Activation energy parameters (E a , ΔG ≠ , ΔH ≠ and ΔS ≠ ) and half-life time (t 1/2 ) of drug release are also analyzed as a function of applied potential. The nanostructured polymer films (PPy/CP/MTX) were characterized by several techniques: scanning electron microscopy, Furrier transforms Infrared, UV-vis spectroscopy. Overall, our results demonstrate that the PPy/CP/MTX films, combined with electrical stimulation, permit a programmable release of MTX by altering the interaction strength between the PPy/CP and MTX

  4. Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes.

    Science.gov (United States)

    Leprince, Lucas; Dogimont, Audrey; Magnin, Delphine; Demoustier-Champagne, Sophie

    2010-03-01

    One of the key challenges to engineering neural interfaces is to reduce their immune response toward implanted electrodes. One potential approach to minimize or eliminate this undesired early inflammatory tissue reaction and to maintain signal transmission quality over time is the delivery of anti-inflammatory biomolecules in the vicinity of the implant. Here, we report on a facile and reproducible method for the fabrication of high surface area nanostructured electrodes coated with an electroactive polymer, polypyrrole (PPy) that can be used to precisely release drug by applying an electrical stimuli. The method consists of the electropolymerization of PPy incorporated with drug, dexamethasone (DEX), onto a brush of metallic nanopillars, obtained by electrodeposition of the metal within the nanopores of gold-coated polycarbonate template. The study of the release of DEX triggered by electrochemical stimuli indicates that the system is a true electrically controlled release system. Moreover, it appears that the presence of metallic nanowires onto the electrode surface improves the adherence between the polymer and the electrode and increases the electroactivity of the PPy coating.

  5. Electrosynthesis of molecularly imprinted polypyrrole for the antibiotic levofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Mazzotta, Elisabetta, E-mail: elisabetta.mazzotta@unisalento.it [Laboratorio di Chimica Analitica, Dipartimento di Scienza dei Materiali, Universita del Salento, via Monteroni 73100 Lecce (Italy); Malitesta, Cosimino [Laboratorio di Chimica Analitica, Dipartimento di Scienza dei Materiali, Universita del Salento, via Monteroni 73100 Lecce (Italy); Diaz-Alvarez, Myriam; Martin-Esteban, Antonio [Departamento de Medio Ambiente, INIA, Carretera de A Coruna km 7.5, 28240 Madrid (Spain)

    2012-01-01

    The development of an electrosynthesized imprinted polypyrrole (PPY) film onto a platinum sheet as sorbent phase for a fluoroquinolone antibiotic (levofloxacin) is described. Experimental conditions for the electropolymerization of PPY in the presence of the template were optimized. The molecularly imprinted polymer (MIP) film was characterized by X-Ray Photoelectron Spectroscopy (XPS) to verify the template entrapment in the polymeric matrix. After being subject to washing procedures, MIP was analyzed by XPS and a very satisfactory template removal was estimated being equal to 83%. The effectiveness of washing protocol was assessed also by UV-vis and High Performance Liquid Chromatography (HPLC) analysis of corresponding washing solutions. Rebinding experiments were performed by exposing the imprinted PPY film to levofloxacin solutions, subsequently analyzed by HPLC. The effect of solvent and time of exposure was investigated. The imprinting effect was verified by comparing recognition abilities of both MIP and not imprinted polymer (a polymer prepared in the same conditions but in the absence of the template).

  6. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  7. Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane with extremely low methanol crossover

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Ma, Wenjia; Li, Hongtao; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-12-15

    The surface of sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) was modified by alternating deposition of oppositely charged polypyrrole (PPY) and phosphotungstic acid (PWA) via the layer-by-layer (LBL) method in order to prevent the crossover of methanol in the direct methanol fuel cell (DMFC). FT-IR confirms that PPY and PWA are assembled in the multilayers successfully. The morphology of the membranes studied in detail by SEM shows the presence and stability of thin PPY/PWA layers coated on SPAEK-C membranes. Methanol permeability was determined and was shown to be effectively reduced. The selectivity of SPAEK-C-(PPY/PWA){sub n} is 1 order more than Nafion {sup registered} 117, which is attractive in DMFCs. Thermal stability, water uptake, water swelling and proton conductivity of the SPAEK-C and SPAEK-C-(PPY/PWA){sub n} membranes were also investigated. (author)

  8. A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Selvarajan, S; Suganthi, A; Rajarajan, M

    2018-06-01

    A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of LDH/Ppi composite and its application as adsorbent of 2,4-dichlorophenoxyacetic (herbicide); Sintese e caracterizacao do composito HDL/Ppi e sua aplicacao como adsorvente do 2,4-diclorofenoxiacetico (herbicida)

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, I.S.; Oliveira, R.S.; Girotto, L.G.; Freitas, L.L. de; Amaral, F.A. do; Canobre, S.C., E-mail: ingrid_1194@hotmail.com [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Quimica

    2016-07-01

    This work had as main objective the synthesis and characterization of LDH [Co-Al-Cl] method by hydrolysis of urea and then its synthesized polypyrrole coating by chemically targeting the application as adsorbent dichlorophenoxyacetic acid (2,4-D). The x-ray diffractogram of well defined showed diffraction peaks corresponding to the planes 003, 006, 009 and 110 which allow them to rhombohedral indexes and lamellar structure. The composite LDH / Ppi had a percentage of 49% herbicide retention in aqueous solution. From the investigated adsorption isotherm models that more fit the experimental data was the Freundlich, so it could be inferred that the interaction between the LDH / Ppi and the herbicide was physical, ie an rapid, reversible adsorption and does not specify. (author)

  10. Synthesis and characterization of LDH/Ppi composite and its application as adsorbent of 2,4-dichlorophenoxyacetic (herbicide)

    International Nuclear Information System (INIS)

    Pacheco, I.S.; Oliveira, R.S.; Girotto, L.G.; Freitas, L.L. de; Amaral, F.A. do; Canobre, S.C.

    2016-01-01

    This work had as main objective the synthesis and characterization of LDH [Co-Al-Cl] method by hydrolysis of urea and then its synthesized polypyrrole coating by chemically targeting the application as adsorbent dichlorophenoxyacetic acid (2,4-D). The x-ray diffractogram of well defined showed diffraction peaks corresponding to the planes 003, 006, 009 and 110 which allow them to rhombohedral indexes and lamellar structure. The composite LDH / Ppi had a percentage of 49% herbicide retention in aqueous solution. From the investigated adsorption isotherm models that more fit the experimental data was the Freundlich, so it could be inferred that the interaction between the LDH / Ppi and the herbicide was physical, ie an rapid, reversible adsorption and does not specify. (author)

  11. Surface characteristics of coated polyester fabric with reduced graphene oxide and polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-03-30

    Graphical abstract: - Highlights: • PET in form of film or membrane is hydrophobic and its wetting behavior follows the Wenzel wetting theory. In the form of textile materials it shows hydrophilicity. • rGO coated PET fabric shows hydrophobicity and its wetting behavior places between Wenzel and Cassie–Baxter models. • PET coated fabric by PPy shows superhydrophobicity and its wetting behavior is consistence with Cassie–Baxter model. • Due to oxidation of the rGO during in situ synthesis of PPy the rGO–PPy coated PET shows hydrophilicity. - Abstract: In this study, the influence of coating polyethylene terephthalate (PET) fabric with reduced graphene oxide (rGO) and polypyrrole (PPy), individually or in combination (rGO–PPy), on surface chemistry and roughness (focusing on wetting behavior), were analyzed systematically. Characterization was carried out by observing the topography (atomic force microscopy – AFM) and stating surface analysis (X-ray photoelectron spectroscopy – XPS), contact angles (goniometry), water shedding angles, and surface energy values of the samples. The results showed that the contact angles of pristine (uncoated), GO and rGO–PPy coated samples were 0°, while it was 92°, 123° and 151° for hot pressed (2nd pristine sample), rGO and PPy samples, respectively. A zero contact angle for PET sample was due to its wicking ability. Results were interpreted with Young, Wenzel and Cassie Baxter equations. It was found that PPy coated samples were consistent with Cassie–Baxter equation, while rGO placed between Wenzel and Cassie–Baxter wetting models.

  12. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    International Nuclear Information System (INIS)

    Kumar, Vijay; Ali, Yasir; Sharma, Kashma; Kumar, Vinod; Sonkawade, R.G.; Dhaliwal, A.S.; Swart, H.C.

    2014-01-01

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li 3+ ion beam irradiation for various fluences (1 × 10 11 , 1 × 10 12 and 1 × 10 13 ions/cm 2 ). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence

  13. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Ali, Yasir [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Sharma, Kashma [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan 173212 (India); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Sonkawade, R.G. [Inter University Accelerator Center, Aruna Asif Ali Marg, New Delhi 110067 (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2014-03-15

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li{sup 3+} ion beam irradiation for various fluences (1 × 10{sup 11}, 1 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence.

  14. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells

    Science.gov (United States)

    Wu, Gaoming; Bao, Han; Xia, Zheng; Yang, Bin; Lei, Lecheng; Li, Zhongjian; Liu, Chunxian

    2018-04-01

    Anode materials, as the core component of microbial fuel cells (MFCs), have huge impacts on power generation performance and overall cost. Stainless-steel sponge (SS) can be a promising material for MFC anodes, due to its open continuous three-dimensional structure, high conductivity and low cost. However, poor biocompatibility limits its application. In this paper, a polypyrrole/sargassum activated carbon modified SS anode (Ppy/SAC/SS) is developed by electrochemical polymerization of pyrrole on the SS with the SAC as a dopant. The maximum power density achieved with the Ppy/SAC/SS anode is 45.2 W/m3, which is increased by 2 orders of magnitude and 2.9 times compared with an unmodified SS anode and a solely Ppy modified SS anode (Ppy/SS), respectively. In addition, the Ppy/SAC layer effectively eliminates electrochemical corrosion of the SS substrate. Electrochemical impedance spectroscopy reveals that Ppy/SAC modification decreases electron transfer resistance between the bacteria and the electrode. Furthermore, in vivo fluorescence imaging indicates that a more uniform biofilm is formed on the Ppy/SAC/SS compared to the unmodified SS and Ppy/SS. Due to the low cost of the materials, easy fabrication process and relatively high performance, our developed Ppy/SAC/SS can be a cost efficient anode material for MFCs in practical applications.

  15. Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI removal in aqueous solution.

    Directory of Open Access Journals (Sweden)

    Shangkun Li

    Full Text Available In this paper, we report on the simple, reliable synthesis of polypyrrole (PPy/graphene oxide (GO composite nanosheets by using sacrificial-template polymerization method. Herein, MnO(2 nanoslices were chosen as a sacrificial-template to deposit PPy, which served as the oxidant as well. During the polymerization of pyrrole on surface of GO nanosheets, MnO(2 component was consumed incessantly. As a result, the PPy growing on the surface of GO nanosheets has the morphology just like the MnO(2 nanoslices. This method can provide the fabrication of PPy nanostructures more easily than conventional route due to its independence of removing template, which usually is a complex and tedious experimental process. The as-prepared PPy/GO composite nanosheets exhibited an enhanced properties for Cr(VI ions removal in aqueous solution based on the synergy effect. The adsorption capacity of the PPy/GO composite nanosheets is about two times as large as that of conventional PPy nanoparticles. We believe that our findings can open a new and effective avenue to improve the adsorption performance in removing heavy metal ions from waste water.

  16. Fabrication and Protein Conjugation of Aligned Polypyrrole-Poly(L-lactic acid) Fibers Film with the Conductivity and Stability.

    Science.gov (United States)

    Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Yang, Anneng; Han, Wei

    2016-03-01

    The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair.

  17. One-step polypyrrole coating of self-assembled silver nanoprisms for enhanced stability and Raman scattering

    Science.gov (United States)

    Jeong, Dong-Won; Jeong, Sugyeong; Jang, Du-Jeon

    2017-07-01

    Self-assemblies of silver nanoprisms (AgPRs) having enhanced structural stability and optical properties have been facilely coated with polypyrrole (PPy) via the in situ polymerization of pyrrole monomers that also act as an assembling agent. The assemblies of AgPRs, whose edge lengths and thicknesses are typically 78 and 4 nm, respectively, have been surrounded by a PPy coating of 6 nm. AgPRs are assembled in a side-to-side orientation, and the degree of assembly has been controlled by varying the concentration of trisodium citrate dihydrate, which attaches selectively to the {111} facets of AgPRs. The morphology deformation time of PPy-coated AgPRs in 0.6 mM H2O2(aq) is seven times longer than that of PPy-free AgPRs, suggesting that PPy coating prevents the sharp tips of AgPRs from being truncated by oxidizing agents. The SERS effect of highly self-assembled and PPy-coated AgPRs becomes as high as 6.3 due to numerous hot spots generated between nanoprisms. Overall, our fabricated AgPRs assemblies with PPy coating have not only improved structural stability but also enhanced optical properties, extending the practical use of noble-metal nanoprisms for various optical applications.

  18. A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sookhakian, M., E-mail: m.sokhakian@gmail.com [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Amin, Y.M. [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Baradaran, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Tajabadi, M.T. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Golsheikh, A. Moradi [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-03

    An organic–inorganic photovoltaic electrode consisting of graphene nanosheets, zinc sulfide nanoparticles (ZnS) and polypyrrole nanotubes (PPy) was fabricated on indium tin oxide (ITO) glass using layer-by-layer electrophoretic deposition. The morphology and structure of the as-fabricated electrode were confirmed by X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and Raman spectroscopy. The photovoltaic properties of the ZnS, ZnS/PPy (ZP) and graphene/ZnS/PPy (GZP) ternary composite films modified on ITO electrodes were investigated for their solar cell performance. Both transient photocurrent and current–voltage curve measurements illustrated that the photocurrent and the power conversion efficiency of the GZP ternary composite film were significantly enhanced compared to the ZnS and ZP films. Based on these results, PPy nanotubes are an excellent sensitizer and hole acceptor, ZnS nanoparticles act as a bridge and graphene nanosheets are an excellent conductive collector and transporter, which means that, altogether, this combination of materials can significantly increase the photovoltaic efficiency. - Highlights: • Zinc sulfide (ZnS)/polypyrrole(PPy)/graphene by electrophoretic deposition • Support of ZnS/PPy composite shows efficient performance of organic–inorganic solar cell. • Current–voltage curve and transient current improved in the presence of graphene.

  19. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Elnaz, E-mail: elnazasghari@yahoo.com; Ashassi-Sorkhabi, Habib; Vahed, Akram; Rezaei-Moghadam, Babak; Charmi, Gholam Reza

    2016-01-01

    Tin oxide nanoparticles were synthesized through a galvanostatic pathway on polypyrrole, PPy, coated nanoporous copper. The morphology and surface analysis of the assemblies were evaluated by field emission scanning electron microscopy, FESEM, and energy dispersive X-ray, EDX, analysis, respectively. The electrocatalytic behavior of electrodes was studied by cyclic voltammetry and chronoamperometry tests in methanol solution. FESEM results showed that uniformly distributed nanoparticles with diameters of about 20–30 nm have been dispersed on PPy matrix. Cyclic voltammetry and chronoamperometry tests in methanol solution showed a significant enhancement in the catalytic action of PPy after decoration of tin oxide nanoparticles. Porous Cu/PPy/SnO{sub x} electrodes showed enhanced anodic peak current density for methanol oxidation compared to smooth Cu/PPy/SnO{sub x} and porous Cu/PPy. The effects of synthesis current density and time on the electrocatalytic behavior of the electrodes were evaluated. The significant enhancement of electrocatalytic behavior of the Cu/PPy electrode after decoration of SnO{sub x} overlayer was attributed to the effect of tin oxide on the adsorption of intermediates of methanol oxidation as well as oxidation of bi-products such as CO; huge tendency of tin oxides for dehydrogenation of the alcohols and the increase in microscopic surface area of the electrodes were introduced as other affecting factors. - Highlights: • Nanoporous copper–zinc substrates were formed by chemical leaching of zinc. • Polypyrrole thin film was electrodeposited on nanoporous copper. • Thin oxide nanoparticles were synthesized electrochemically on polypyrrole layer. • The catalytic performance of the electrodes was evaluated for methanol oxidation.

  20. Effect of conducting polypyrrole on the transport properties of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Foroughi, Javad; Kimiaghalam, Bahram; Ghorbani, Shaban Reza; Safaei, Farzad; Abolhasan, Mehran

    2012-01-01

    Experiments were conducted to measure the electrical conductivity in three types of pristine and carbon nanotube-polypyrrole (CNT-PPy) composite yarns and its dependence on over a wide temperature range. The experimental results fit well with the analytical models developed. The effective energy separation between localized states of the pristine CNT yarn is larger than that for both the electrochemically and chemically prepared CNT-PPy yarns. It was found that all samples are in the critical regime in the insulator–metal transition, or close to the metallic regime at low temperature. The electrical conductivity results are in good agreement with a Three Dimensional Variable Range Hopping model at low temperatures, which provides a strong indication that electron hopping is the main means of current transfer in CNT yarns at T < 100 K. We found that the two shell model accurately describes the electronic properties of CNT and CNT-PPy composite yarns in the temperature range of 5–350 K. - Highlights: ► We developed hybrid carbon nanotube conducting polypyrrole composite yarns. ► The main current transfer scheme in yarn is via three dimensional electrons hopping. ► Two shell model describes well electronic properties of yarns in range of 5-350 K.

  1. 160 MeV Ni12+ ion irradiation effects on the structural, optical and electrical properties of spherical polypyrrole nanoparticles

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    Highlights: • Upon SHI irradiation the average diameters of PPy nanoparticles increases. • Crystallinity of PPy nanoparticles increases with increasing ion fluence. • IR active vibrational bands have different cross sections for SHI irradiation. • Upon SHI irradiation optical band gap energy of PPy nanoparticles decreases. • Upon SHI irradiation thermal stability of PPy nanoparticles increases. -- Abstract: In this study we report 160 MeV Ni 12+ swift heavy ion irradiation induced enhancement in the structural, optical and electrical properties of spherical polypyrrole (PPy) nanoparticles. High resolution transmission electron microscope results show that the pristine PPy nanoparticles have an average diameter of 11 nm while upon irradiation the average diameter increases to 18 nm at the highest ion fluence of 1 × 10 12 ions/cm 2 . X-ray diffraction studies show an enhancement of crystallinity and average crystallite size of PPy nanoparticles with increasing fluence. Studies of Fourier transform infrared spectra suggest the structural modifications of different functional groups upon irradiation. It also reveals that different functional groups have different sensitivity to irradiation. The infrared active N–H vibrational band at 3695 cm −1 is more sensitive to irradiation with a formation cross-section of 5.77 × 10 −13 cm 2 and effective radius of 4.28 nm. The UV–visible absorption spectra of PPy nanoparticles show that the absorption band undergoes a red shift with increasing fluence. Moreover upon irradiation the optical band gap energy decreases and Urbach’s energy increases with fluence. Thermo-gravimetric analysis studies suggest that upon irradiation the thermal stability of PPy nanoparticles increases which may be attributed to their enhanced crystallinity. Current–voltage characteristics of PPy nanoparticles exhibit non-Ohmic, symmetric behavior which increases with fluence

  2. Superhigh-resolution 200ppi series TFT-LCDs; Chokoseisai 200ppi ekisho display series

    Energy Technology Data Exchange (ETDEWEB)

    Kawamata, K.; Hirai, H. [Toshiba Corp., Tokyo (Japan)

    2000-02-01

    We have developed a 202 pixels per inch (ppi) thin-film transistor liquid crystal display (TFT-LCD) using low-temperature polycrystalline silicon (LTPS) technology. The superhigh resolution of 202 ppi offers the same image quality as printed matter such as magazines. The 200 ppi series TFT-LCDs are expected to support further developments in such areas as electronic books (e-books) and personal digital-picture viewers. Our lineup of 200 ppi TFT-LCDs includes a 4-inch display with VGA resolution, which is suitable for palmtop-size applications, and a 6.3-inch display with XGA resolution, which is suitable for typical photograph or paperback book-size applications. Larger size LCDs with 200 ppi resolution will be developed. (author)

  3. Synthesis of fly-ash cenospheres coated with polypyrrole using a layer-by-layer method

    International Nuclear Information System (INIS)

    Li Qin; Wang Bing; Li Chuang; Pang Jianfeng; Zhai Jianping

    2011-01-01

    Uniform polypyrrole (PPy) films, of controlled thickness, were successfully synthesized and immobilized on polyelectrolyte (PE) multilayer-assembled fly-ash cenospheres (FACs) using a simple and versatile method. In this approach, FACs were assembled with multilayers of poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) using a layer-by-layer self-assembly procedure. The FACs were used as templates for the subsequent deposition of PPy. The deposition behaviours of PEs on the surfaces of the FACs were examined, and the results could be fitted to a first-order exponential decay model at pH 6. The surfaces of the PE-deposited FACs (FAC-(PDDA-PSS) n , n is the number of PE layers) became more homogeneous as n increased. Their properties were determined mainly by the PE, not by the FAC itself, after n = 4. PPy-coated FACs with PE precursor layers [(PPy/FAC-(PDDA-PSS) n ] had different morphologies for different numbers of PE layers. The PPy loading amount on the FACs and the conductivities of the composites reached plateaus after the PE layer deposition number exceeded six.

  4. Polypyrrole coated phase-change contrast agents for sono-photoacoustic imaging (Conference Presentation)

    Science.gov (United States)

    Li, David S.; Yoon, Soon Joon; Matula, Thomas J.; O'Donnell, Matthew; Pozzo, Lilo D.

    2017-03-01

    A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption 1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.

  5. Delocalization of π electrons and trapping action of ZnO nanoparticles in PPY matrix for hybrid solar cell application

    Science.gov (United States)

    Singh, Rajinder; Choudhary, Ram Bilash; Kandulna, Rohit

    2018-03-01

    Polypyrrole (PPY)-Zinc Oxide (ZnO) nanocomposites with varying concentration of ZnO (1:1-1:4) were prepared via in-situ polymerization technique by using pyrrole monomer in the presence of ammonium persulphate (APS) as oxidant. Globular morphology of PPY and sheet like structure of ZnO was examined using FESEM and EDAX. FTIR showed the presence of vibration modes in fingerprint region (1500 cm-1-500 cm-1) for metal oxides confirming the presence and interaction of ZnO with the polymer matrix in nanocomposites. Amorphous nature of PPY and hexagonal wurtzite structure of ZnO was confirmed using XRD with average crystallite size within 20 nm-30 nm. PANI-ZnO (1:1) exhibited blue shift in comparison to PPY (neat) and optimized optical band gap ∼ 1.81 eV. The effect of carrier concentration was investigated using electrochemical analyzer and maximum current was recorded for PANI-ZnO (1:1). The highest conductance was calculated for PANI-ZnO (1:1) ∼ 7.3242 × 10-3 S using current -voltage characteristics. Thermal stability was found to be increasing with the increase in ZnO concentration PANI-ZnO nanocomposite.

  6. Evaluation of a New Biosensor Based on in Situ Synthesized PPy-Ag-PVP Nanohybrid for Selective Detection of Dopamine.

    Science.gov (United States)

    Vellaichamy, Balakumar; Periakaruppan, Prakash; Paulmony, Tharmaraj

    2017-02-09

    In the present work, in situ synthesis of polypyrrole-silver-polyvinylpyrrolidone (PPy-Ag-PVP) nanohybrid using AgNO 3 as an oxidant and polyvinylpyrrolidone (PVP) as a stabilizer and surfactant is demonstrated. The obtained ternary PPy-Ag-PVP nanohybrid was characterized by UV-vis, FT-IR, XRD, Raman, TGA, SEM, and HR-TEM analysis. Further the synthesized PPy-Ag-PVP has been investigated for its selective and sensitive sensing of dopamine (DA). The PPy-Ag-PVP modified glassy carbon electrode shows a reversible electrochemical behavior with superior response for DA. The limit of detection and limit of quantification are found to be 0.0126 and 0.042 μM (S/N = 3 and 10), respectively, with remarkable sensitivity (7.26 μA mM -1 cm -2 ). The practical application of the present modified electrode has been validated by determining the concentration of DA in human urine samples of different age group.

  7. ELECTROCHEMICAL SYNTHEZIS AND CHARACTERIZATION OF POLYPYRROLE FOR DODECYLSULFATE SENSOR MEMBRANE

    Directory of Open Access Journals (Sweden)

    Abdul Haris Watoni

    2010-06-01

    Full Text Available A conducting polymer, polypyrrole, has been electrochemically synthesized from pyrrole monomer using cyclic voltammetry technique in aqueous solution in the presence of HDS dopant and KNO3 supporting electrolyte. The polymer was deposited on the surface of an Au-wire and the modified electrode obtained was then used as dodecylsulfate (DS- ion sensor electrode. The best performance PPy-DS modified-Au electrode conditioned in the air system without HDS or SDS solution gave linear potential response for the concentration range of 1.0 x 10-5 - 1.0 x 10-3 M, sensitivity of 54.5 mV/decade, detection limit of 1.0 x 10-5 M, and response time of 23 - 30 second.  The electrode showed good selectivity towards other anions, therefore can be used to determine SDS concentration in real samples system without any change of the samples matrix.   Keywords: polypyrrole, SDS, cyclic voltammetry

  8. A facile method to synthesize polypyrrole nanoparticles in the presence of natural organic phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao; Mo, Haodao [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Zang, Limin, E-mail: D14S004@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Yurihonjo City, Akita 015-0055 (Japan); Qiu, Jianhui; Sakai, Eiichi; Wu, Xueli [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Yurihonjo City, Akita 015-0055 (Japan)

    2014-09-15

    The conductive polymers with unique nanostructures have attracted intense interest due to their potential application. Here the well-defined polypyrrole nanoparticles were facile fabricated via the facile chemical oxidative polymerization of pyrrole with high feeding ratio of phytic acid. Phytic acid is a renewable resource and a natural carbohydrate compound with a vast number of phosphate groups from plant which was used as the template and dopant for the nanostructured conductive polymer for the first time. The samples exhibit the well-defined nanoparticles observed by scanning electron microscope (SEM) and atomic force microscope (AFM). The PPy nanoparticles were achieved and outstanding electrical conductivity as high as 5263 S m{sup −1} was obtained with the feeding mass ratio of phytic acid: pyrrole=3:7. Furthermore, the polypyrrole nanoparticles were characterized with Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and electrical conductivity techniques.

  9. Synthesis of Hollow Conductive Polypyrrole Balls by the Functionalized Polystyrene as Template

    Directory of Open Access Journals (Sweden)

    Choo Hwan Chang

    2010-01-01

    Full Text Available We report the preparation of hollow spherical polypyrrole balls (HSPBs by two different approaches. In the first approach, core-shell conductive balls, CSCBs, were prepared with poly(styrene as core and polypyrrole (PPy as shell by in situ polymerization of pyrrole in the presence of polystyrene (PS latex particles. In the other approach, CSCBs were obtained by in situ copolymerization of pyrrole in the presence of PS(F with hydrophilic groups like anhydride, boronic acid, carboxylic acid, or sulfonic acid, and then HSPBs were obtained by the removal of PS or PS(F core from CSCBs. TEM images reveal the spherical morphology for HSPBs prepared from PS(F. The conductivity of CSCBs and HSPBs was in the range of 0.20–0.90 S/cm2.

  10. Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V.; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India); Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-10-06

    Oxidative electrochemical polymerization of pyrrole at indium-doped tin oxide (ITO) is accomplished from a neat monomer solution with a supporting electrolyte (0.3M n-tetrabutyl ammonium tetrafluoroborate) by multiple-scan cyclic voltammetry. Polypyrrole (Ppy) films containing nanometer-sized platinum and Pt/Pd bimetallic particles are electro-synthesized on ITO glass plates by voltammetric cycling between -0.1 and +1V (versus Ag/AgCl/3M NaCl). The electrocatalytic oxidation of methanol on the nanoparticle-modified polypyrrole films is studied by means of electrochemical techniques. The modified electrode exhibits significant eletrocatalytic activity for methanol oxidation. The enhanced electrocatalytic activities may be due to the uniform dispersion of nanoparticles in the polypyrrole film and a synergistic effect of the highly-dispersed metal particles so that the polypyrrole film reduces electrode poisoning by adsorbed CO species. The monometallic (Pt) and bimetallic (Pt/Pd) nanoparticles are uniformly dispersed in polypyrrole matrixes, as confirmed by scanning electron microscopic and atomic force microscopic analysis. Energy dispersive X-ray analysis is used to characterize the composition of metal present in the nanoparticle-modified electrodes. (author)

  11. Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor.

    Science.gov (United States)

    Kangkamano, Tawatchai; Numnuam, Apon; Limbut, Warakorn; Kanatharana, Proespichaya; Vilaivan, Tirayut; Thavarungkul, Panote

    2018-04-15

    A label-free electrochemical miRNA biosensor was developed based on a pyrrolidinyl peptide nucleic acid (acpcPNA)/polypyrrole (PPy)/silver nanofoam (AgNF) modified electrode. The AgNF was electrodeposited as redox indicator on a gold electrode, which was then functionalized with an electropolymerized layer of PPy, a conducting polymer, to immobilize the PNA probes. The fabrication process was investigated by electrochemical impedance spectroscopy. The biosensor was used to detect miRNA-21, a biomarker abnormally expressed in most cancers. The signal was monitored by the change in current of the AgNF redox reaction before and after hybridization using cyclic voltammetry. Two PNA probe lengths were investigated and the longer probe exhibited a better performance. Nucleotide overhangs on the electrode side affected the signal more than overhangs on the solution side due to the greater insulation of the sensing surface. Under optimal conditions, the electrochemical signal was proportional to miRNA-21 concentrations between 0.20fM and 1.0nM, with a very low detection limit of 0.20fM. The biosensor showed a high specificity which could discriminate between complementary, single-, doubled-base mismatched, and non-complementary targets. Three out of the seven tested plasma samples provided detectable concentrations (63 ± 4, 111 ± 4 and 164 ± 7fM). The sensor also showed good recoveries (81-119%). The results indicated the possibilities of this biosensor for analysis without RNA extraction and/or amplification, making the sensor potentially useful for both the prognosis and diagnosis of cancer in clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The isotope method for the determination of stoichiometry between compounds forming the polypyrrole and glucose oxidase composite.

    Science.gov (United States)

    Garbaras, A; Mikoliunaite, L; Popov, A; Ramanaviciene, A; Remeikis, V; Ramanavicius, A

    2015-01-21

    Stable isotope ratio mass spectrometry is a conventional method used in archaeology, and medical, environmental and paleoenvironmental reconstruction studies. However new insights and applicability of the equipment often open new research areas and improve our understanding of the ongoing processes. Therefore the stable isotope ratio mass spectrometry method was applied for the stoichiometry determination of the complex polypyrrole and glucose oxidase composite (PPy-GOx composite). The enzyme glucose oxidase and conducting polymer polypyrrole were reported to form a composite, which was evaluated in time using the dynamic light scattering method. The consistent enlargement of the PPy-GOx composite and the relative decrease of the spare enzyme molecules were observed in the polymerization solution. UV-VIS spectrometry was employed to follow the polymerization process. The isotope mixing model was applied for the evaluation of the constitution of the PPy-GOx composite. According to the obtained results the determination of the PPy-GOx composite stoichiometry could be more reliably determined using the nitrogen isotope ratio approach in comparison to the carbon approach. We expect that this novel work will widen the applications of stable isotope ratio mass spectrometry in research.

  13. Electropolymerization of Polypyrrole Films in Aqueous Solution with Side-Coupler Agent with Side-Coupler Agent

    Science.gov (United States)

    Alfaro-López, H. M.; Aguilar-Hernandez, J. R.; Garcia-Borquez, A.; Hernandez-Perez, M. A.; Contreras-Puente, G. S.

    A preliminary study of the electrochemical synthesis and optical characterizacion of the conducting polymer polypyrrole (PPy) was carried out, in order to understand the in-situ electropoliymerization of PPy. Electropolymerization was performed in a three electrode cell by using freshly prepared monomer solutions in presence of a side-coupler agent to hydrophobic groups: sodium dodecylsulfate (DDS), in order to improve the adherence polymer film to the surface of the working electrode. The adherence of the polymer film promotes either the ionic or electronic transport at the interface solution-working electrode. A polar chemical reactive, sodium tetrafluoroborate, TFB, was also used. In order to taylor and optimize the physical properties of the PPy films we varied some parameters during the electropolymerization: the monomer concentration, the electrolyte concentration, pH of the solution and the cell potential. This allowed us to control the oxidation level (impurification or doping) of the polymer. The obtained PPy films were characterized by using UV-Vis and IR spectroscopy. Moreover through scanning electronic microscopy we were able to observe well developed helical structures of polypyrrole.

  14. Synthesis and application of carbowax/polypyrrole nanocomposite for fabrication of electrochemical sensor to detect 2,4-DNT vapor

    Science.gov (United States)

    Foroutan Koudehi, Masoumeh; Mahdi Pourmortazavi, Seied

    2017-08-01

    In this study, an electrochemical sensor coated with carbowax/polypyrrole nanocomposite was fabricated so as to be sensitive to 2,4-dinitrotoluene (2,4-DNT) as a nitroaromatic explosive. The variation in electrical resistance was used as the mechanism by which the sensor responded to the concentration of explosive vapor. Polypyrrole (PPy) nanoparticles were synthesized and characterized using a scanning electron microscope (SEM), ATR-FTIR (attenuated total reflection Fourier transform infrared) spectroscopy and x-ray diffraction analysis (XRD). The results showed that the fabricated PPy nanoparticles have a near spherical morphology with an average size of around 56 nm. The surface of the sensor template was then coated with a layer of nanocomposite composed of the synthesized PPy nanoparticles and carbowax polymer. Calibration and performance testing of the fabricated sensors were carried out with a special setup designed for explosive vapor generation under static conditions. The developed sensor was able to sense different concentrations of the explosive (0.5-100 ppm). The coated sensor showed a linear response in the concentration range of 0.5-50 ppm. The results showed that the designed sensor had a favorable sensitivity to the explosive. The calibration curve and sensitivity of the fabricated carbowax/PPy sensor was also determined in the explosive vapor concentration range of 0.5-50 ppm of 2,4-DNT under static conditions.

  15. Phase change induced by polypyrrole in iron-oxide polypyrrole ...

    Indian Academy of Sciences (India)

    Unknown

    polymer. Polypyrrole, one of the conducting polymers, has received lot of attention in the preparation of nanocomposites due to its high stability in conducting oxidized form (Partch et al 1991; Huang and Matijevic. 1995; Maeda and Armes 1995). Nanocomposite materials based on nanosized magnetic materials have been ...

  16. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Shibamura, Ryuji; Naruse, Takuya; Momma, Toshiyuki; Osaka, Tetsuya

    2018-04-01

    Among the recent advancements in lithium-oxygen (Li-O2) chemistries, redox mediators (RMs) have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode). To address this detrimental problem, herein we propose a novel Li-O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy) film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode). In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonyl)imide, is introduced between the cathode and the separator. From the charge-discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3- to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3- and Li2O2 are facilitated by the presence of the PPy film because I3- remains near the cathode surface during the charging process. As a result, the cycling performance in the Li-O2 cells with PPy film exhibits a cycling life four times as long as that of the Li-O2 cells without PPy film.

  17. Removal of Cd+2 from aqueous solutions onto polypyrrole coated reticulated vitreous carbon eletrodes

    OpenAIRE

    Tramontina Jucelânia; Machado Giovanna; Azambuja Denise S.; Piatnicki Clarisse M.S.; Samios Dimitrios

    2001-01-01

    The development of simple methods for removal of heavy metals from aqueous samples is a relevant field of research. In this connection, the electrodeposition of the Cd+2 ion, one of the most toxic species for animals and human beings, was investigated in aerated pH 4.8 sulfuric-sulfate solutions. In potentiostatic conditions, the maximum rate of cadmium deposition at a neutral polypyrrole (PPy0) coated reticulated vitreous carbon (RVC) working electrode occurs at -3.0 V vs. the saturated calo...

  18. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Yu, Qiuhong; Lu, Yang; Peng, Tao; Hou, Xiaoyi; Luo, Rongjie; Wang, Yange; Yan, Hailong; Luo, Yongsong; Liu, Xianming; Kim, Jang-Kyo

    2017-01-01

    A promising hybrid material composed of tubular polypyrrole (T-PPy)-wrapped monodisperse biomass-derived carbon nanospheres (BCSs) was first synthesized successfully via a simple hydrothermal approach by using watermelon juice as the carbon source, and further used as an anchoring object for sulfur (S) of lithium–sulfur (Li–S) batteries. The use of BCSs with hydrophilic nature as a framework could provide large interface areas between the active materials and electrolyte, and improve the dispersion of T-PPy, which could help in the active material utilization. As a result, BCS@T-PPy/S as a cathode material exhibited a high capacity of 1143.6 mA h g −1 and delivered a stable capacity up to 685.8 mA h g −1 after 500 cycles at 0.5 C, demonstrating its promising application for rechargeable Li–S batteries. (paper)

  19. Polypyrrole nanotubes: mechanism of formation

    Czech Academy of Sciences Publication Activity Database

    Kopecká, J.; Kopecký, D.; Vrňata, M.; Fitl, P.; Stejskal, Jaroslav; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Prokeš, J.; Sapurina, I.

    2014-01-01

    Roč. 4, č. 4 (2014), s. 1551-1558 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * polypyrrole * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.840, year: 2014

  20. Conductivity and long term stability of polypyrrole poly(styrene-co-methacrylic acid) core–shell particles at different polypyrrole loadings

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, I., E-mail: isabel.carrillo@upm.es [Dpto. Química Industrial y Polímeros, E.U.I.T. Industrial, Univ. Politécnica de Madrid, 28012 Madrid (Spain); Sanchez de la Blanca, E. [Dpto. Química Física I, Fac. Ciencias Químicas, Univ. Complutense, 28040 Madrid (Spain); Fierro, J.L.G. [Instituto de Catálisis y Petroquímica, CSIC, Cantoblanco, 28049 Madrid (Spain); Raso, M.A.; Acción, F.; Enciso, E.; Redondo, M.I. [Dpto. Química Física I, Fac. Ciencias Químicas, Univ. Complutense, 28040 Madrid (Spain)

    2013-07-31

    Conductive core–shell particles were obtained by chemical polymerization of pyrrole over monodisperse poly(styrene-co-methacrylic acid) particles. The surface composition has been studied by elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy and transmission electron microscopy techniques. XPS, elemental analysis and FTIR results allowed determining doping level and conjugation length of the polypyrrole (PPy) chain deposited on the latex surface. It is shown that the chain conjugation length, and not the doping level, is the principal factor that influences the conductivity. Samples with low PPy loading have short conjugation length and so low conductivity independently of their doping level. The experimental conductivity decay with time has been analysed following the electron hopping model, from this model the characteristic time (τ) of the conductivity degradation process has been determined. - Highlights: • Polypyrrole coated latex were prepared. • Time-dependent conductivity was studied. • Composites conductivity depends on chain conjugation length and not on doping level.

  1. Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Peng Yingjing; Qiu Lihua; Pan Congtao; Wang Cancan; Shang Songmin; Yan Feng

    2012-01-01

    Water dispersible polypyrrole nanotube/silver nanoparticle hybrids (PPyNT-COOAgNP) were synthesized via a cation-exchange method. The approach involves the surface functionalization of PPyNTs with carboxylic acid groups (-COOH), and cation-exchange with silver ions (Ag + ) and followed by the reduction of metal ions. The morphology and optical properties of the produced PPyNT-COOAgNP nanohybrids were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometer, and UV–vis spectroscopy. The as-prepared PPyNT-COOAgNP nanohybrids exhibited well-defined response to the reduction of hydrogen peroxide, and as extremely suitable substrates for surface-enhanced Raman spectroscopy (SERS) with a high enhancement factor of 6.0 × 10 7 , and enabling the detection of 10 −12 M Rhodamine 6G solution.

  2. Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol

    Science.gov (United States)

    Mao, Hui; Ji, Chunguang; Liu, Meihong; Cao, Zhenqian; Sun, Dayin; Xing, Zhiqiang; Chen, Xia; Zhang, Yu; Song, Xi-Ming

    2018-03-01

    High-density and well-dispersed Ag nanoparticles (Ag NPs) with a mean size of 20 nm have been successfully supported on the surface of polyacrylamide functionalized polypyrrole/graphene oxide (PAM/PPy/GO) nanosheets. The obtained Ag/PAM/PPy/GO composite nanosheets exhibited an excellent catalytic activity for reduction of 4-nitrophenol by NaBH4 with the kinetic reaction rate constant of 3.38 × 10-2 s-1 due to the synergistic effect of all the components of the composite nanosheets. The corresponding catalytic mechanism has been revealed by investigating the effect of different components of Ag/PAM/PPy/GO composite nanosheets on the catalytic performance: GO with the excellent two-dimensional structures offered large surface area for the immobilization of more Ag NPs; PPy with a high electric conductivity promoted the electron transport in the reduction of 4-NP; PAM did not only act as a good linker between Ag NPs and PPy/GO nanosheets for the synthesis of Ag/PAM/PPy/GO composite nanosheets, but also could facilitate the efficient contact between 4-NP and Ag NPs; Ag NPs were the catalytic active site for the reduction of 4-NP, respectively.

  3. Cyclic Step-voltammetric Analysis of Cation-driven and Anion-driven Actuation in Polypyrrole Films

    Science.gov (United States)

    Takashima, Wataru; Pandey, Shyam S.; Fuchiwaki, Masaki; Kaneto, Keiichi

    2002-12-01

    Cation-driven and anion-driven electrochemomechanical deformations (ECMD) in electrodeposited polypyrrole (PPy) films have been investigated by means of cyclic voltammetry and cyclic step-voltammetry (CSV). The film deposited from hydrochloric acid (PPyCl) expanded upon anodic reaction (anodic expansion) while that deposited from dodecyl-benzene sulfonic acid (PPyDBS) exhibited cathodic expansion. In the case of the film deposited from p-phenol sulfonic acid (PPyPPS), it was found to show the anodic expansion at 600 mV (vs Ag wire as a reference electrode) along with the cathodic contraction at -800 mV in CSV. The film obtained from the same lot, however, showed cathodic contraction and anodic expansion only by changing the oxidative potential from 600 mV to -100 mV. This phase inversion indicates that not only the polymerization electrolyte but also the redox potential determines the (de)insertion of ions in the PPyPPS film. Contractive electrochemical creeping was only observed in PPyPPS film in chloride salt electrolytes, indicating that the cation insertion induces the deinsertion of initial-dopant anion from the film.

  4. Poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemically detecting dopamine at low concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Hisaeda, Yoshio [Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-08-01

    Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40–1220 nM), especially having a lower detection limit (17.3 nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of −SO{sub 3}{sup −} groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. - Graphical Abstract: Novel poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets were successfully synthesized and presented an excellent performance for determination to DA. Display Omitted - Highlights: • Zwitterionic PVIPS functionalized PPy/GO nanosheets were successfully synthesized. • Their surface charge property has been obviously changed to electronegativity. • The excellent electrochemical catalytic activities towards DA were achieved. • −SO{sub 3}{sup −} groups with negative charge changed the transmission mode of electrons. • PVIPS/PPy/GO can act as an electrode material for detecting DA at low concentration.

  5. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    Energy Technology Data Exchange (ETDEWEB)

    Galář, P., E-mail: pavel.galar@mff.cuni.cz; Malý, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, Prague 121 16 (Czech Republic); Čermák, J.; Kromka, A.; Rezek, B. [Institute of Physics ASCR v.v.i., Cukrovarnická 10, Prague 160 00 (Czech Republic)

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700 nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150 nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200 nm deep inside the NCD film.

  6. A PVC/polypyrrole sensor designed for beef taste detection using electrochemical methods and sensory evaluation.

    Science.gov (United States)

    Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia

    2018-03-01

    An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Corrosion protection of AISI 1018 steel using Co-doped TiO{sub 2}/polypyrrole nanocomposites in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Ladan, Magaji, E-mail: ladanmagaji@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Department of Pure and Industrial Chemistry, Bayero University Kano (Nigeria); Basirun, Wan Jeffrey, E-mail: jeff@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Institute of Nanotechnology and Catalysis (NanoCat), University of Malaya, Kuala Lumpur, 50603 (Malaysia); Kazi, Salim Newaz; Rahman, Fariza Abdul [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2017-05-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO{sub 2} and Co-doped TiO{sub 2} nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO{sub 2}/PPy NTCs was smaller than TiO{sub 2}/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO{sub 2}/PPy NTCs and TiO{sub 2}/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO{sub 2} NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO{sub 2}/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO{sub 2} NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO{sub 2} decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO{sub 2}/PPy NTCs is considerably higher. • TiO{sub 2}/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  8. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shilpa [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Karmakar, Narayan [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Shah, Akshara [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Kothari, D.C. [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); National Centre for Nanosciences& Nanotechnology, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon (India); Shimpi, Navinchandra G, E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India)

    2017-02-28

    Highlights: • Synthesis of 1-Dimensional ZnO-Polypyrrole nanocomposite using In-situ oxidative polymerization technique. • High response ammonia sensing. • Optimization of ZnO content in nanocomposites for maximum sensor response. • Effect of CSA doping on structural, thermal, optical and sensing behavior. • Optimization of CSA concentration for high sensitivity, fast response and recovery time. - Abstract: Nanocomposites of polypyrrole (PPy) with varying concentration of ZnO nanorods (ZnO NRs) were synthesized using in-situ oxidative polymerization technique. The prepared nanocomposites (PPy, PPy-ZnO and CSA doped PPy-ZnO) were studied for various oxidizing and reducing gases at room temperature and found to be more selective towards ammonia gas. Various concentrations of ZnO NRs in Ppy matrix were studied and 15% was found to be optimum in terms of sensor response (66% towards 120 ppm NH{sub 3}). Further, with 15% doping of camphor sulphonic acid (CSA) in PPy-ZnO nanocomposite for 15% ZnO NRs in Ppy matrix, sensor response increased from 66 to 79% towards 120 ppm of NH{sub 3}. Structural, Optical and thermal behavior of nanocomposites were studied using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), UV–vis (UV–vis) absorption spectroscopy, room temperature Photoluminescence (PL) Spectroscopy, Thermo-gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy (FESEM). ZnO has been completely embedded inside the polymeric chains as observed from in SEM. Meanwhile, FT-IR spectra indicate better conjugation and interaction in nanocomposites. With CSA doping interaction grows stronger due to extended delocalization over π electrons leading to higher sensor response and with response time and recovery time of 24 s and 34 s respectively. CSA doped PPy-ZnO (15%) nanocomposites observed to be a potential candidate for ammonia detection at lower ppm level.

  9. A magenta polypyrrole derivatised with Methyl Red azo dye: synthesis and spectroelectrochemical characterisation

    International Nuclear Information System (INIS)

    Almeida, Andresa K.A.; Dias, Jéssica M.M.; Santos, Diego P.; Nogueira, Fred A.R.; Navarro, Marcelo; Tonholo, Josealdo; Lima, Dimas J.P.; Ribeiro, Adriana S.

    2017-01-01

    Highlights: • A pyrrole (Py) derivative functionalised with methyl red (MRPy) was synthesised. • MRPy was polymerised electrochemically in LiClO 4 /CH 3 CN with BFEE. • Electrochromic properties of PMRPy and PPy doped with methyl red (PPy/MR) were compared. • Colour of the PMRPy changes from magenta to yellow depending on the pH. • PMRPy films might be applicable in optoelectronic devices or in pH sensors. - Abstract: A pyrrole derivative bearing 2-(4-dimethylaminophenylazo)benzoic acid, also known as Methyl Red (MR), was prepared by a simple synthetic route, and electropolymerised onto ITO/glass electrodes in (C 4 H 9 ) 4 NBF 4 /CH 3 CN in presence of boron trifluoride diethyl etherate (BFEE). Films of polypyrrole (PPy) and PPy doped with MR (PPy/MR) were also deposited onto ITO/glass in order to compare their electrochromic properties with the films of PPy derivatised with MR. Cyclic voltammogram of the poly[3-(N-pyrrolyl)propyl 2-(4-dimethylaminophenylazo)benzoate] (PMRPy) film displayed a redox pair with anodic peak potential (Epa) at ca. 0.53 V and cathodic peak potential (Epc) at 0.25 V vs. Ag/Ag + , corresponding to the polymer p-doping, whilst the PPy/MR film shows capacitive behaviour with a redox pair in the cathodic region (Epa = −0.36 V and Epc = −0.62 V), similar to the PPy film (Epa = −0.10 V, and Epc = −0.15 V), and an anodic wave in the same potential range of that for PMRPy film. The electrochromic properties of the PMRPy film, such as chromatic contrast (Δ%T = 34.2%), switching time (τ = 10 s) and stability (Δ%T = 15% at the 100th cycle), were enhanced relative to the PPy/MR and PPy films. However, the colour of the PMRPy film changed from yellow (-0.8 V) to magenta (E = 1.0 V) in the first cycle and became light magenta at −0.8 V in the subsequent cycles. PMRPy films were also investigated in phosphate buffer solution (PBS, 2.0 ≤ pH ≤ 9.0) and after exposure to HCl vapour, in which the colour varied from magenta at p

  10. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dhaneswar; Nath, Bikash C. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Saikia, Bhaskar J.; Kamrupi, Isha R. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Dolui, Swapan K., E-mail: dolui@tezu.ernet.in [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India)

    2013-10-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology.

  11. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    International Nuclear Information System (INIS)

    Das, Dhaneswar; Nath, Bikash C.; Phukon, Pinkee; Saikia, Bhaskar J.; Kamrupi, Isha R.; Dolui, Swapan K.

    2013-01-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology

  12. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    OpenAIRE

    Shaista Rafique; Rehana Sharif; Imran Rashid; Sheeba Ghani

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four pr...

  13. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    Science.gov (United States)

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  15. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Syed Draman, Sarifah Fauziah; Daik, Rusli [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); El-Sheikh, Said M. [Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute,11421 Cairo (Egypt); Latif, Famiza Abdul [Faculty of Applied Sciences, Universiti Teknologi MARA Malaysia 40450 Shah Alam, Selangor (Malaysia)

    2013-11-27

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electrical and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level.

  16. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    International Nuclear Information System (INIS)

    Syed Draman, Sarifah Fauziah; Daik, Rusli; El-Sheikh, Said M.; Latif, Famiza Abdul

    2013-01-01

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electrical and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level

  17. Preparation of nano-tentacle polypyrrole with pseudo-molecular template for ATP incorporation.

    Science.gov (United States)

    Xiao, Yinghong; Che, Jianfei; Li, Chang Ming; Sun, Chang Q; Chua, Yek T; Lee, Vee S; Luong, John H T

    2007-03-15

    Polypyrrole was electrochemically synthesized onto a gold electrode in the presence of sodium p-toluenesulfonate (TSNa) as the key dopant. Under the optimal synthesis condition, the surface morphology of PPy/TSNa was tailored and exhibited a nano-tentacle structure. The resulting rough and fuzzy morphology greatly enhanced the apparent surface area as well as the polymer film conductivity. Adenosine triphosphate (ATP) was then incorporated in the structure by subsequent ion exchanging. This procedure could be envisaged as pseudo-molecular templating to eliminate several shortcomings associated with physical templating. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopy were conducted to investigate the incorporation of ATP. The pronounced rough surface of PPy/TSNa provided a higher density of active sites for ATP binding. The resulting PPy/ATP film exhibited a high charged capacity and lower impedance compared to the bare gold electrode. ATP remained stable in the PPy film; however, a negative bias to the electrode stimulated the conducting polymer to release ATP. This concept could serve as a mechanism for drug delivery and biosensing applications.

  18. One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery.

    Science.gov (United States)

    Li, Sha; Shu, Kewei; Zhao, Chen; Wang, Caiyun; Guo, Zaiping; Wallace, Gordon; Liu, Hua Kun

    2014-10-08

    The significance of developing implantable, biocompatible, miniature power sources operated in a low current range has become manifest in recent years to meet the demands of the fast-growing market for biomedical microdevices. In this work, we focus on developing high-performance cathode material for biocompatible zinc/polymer batteries utilizing biofluids as electrolyte. Conductive polymers and graphene are generally considered to be biocompatible and suitable for bioengineering applications. To harness the high electrical conductivity of graphene and the redox capability of polypyrrole (PPy), a polypyrrole fiber/graphene composite has been synthesized via a simple one-step route. This composite is highly conductive (141 S cm(-1)) and has a large specific surface area (561 m(2) g(-1)). It performs more effectively as the cathode material than pure polypyrrole fibers. The battery constructed with PPy fiber/reduced graphene oxide cathode and Zn anode delivered an energy density of 264 mWh g(-1) in 0.1 M phosphate-buffer saline.

  19. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    International Nuclear Information System (INIS)

    Qiu Teng; Xie Huxiao; Zhang Jiangru; Zahoor, Amad; Li Xiaoyu

    2011-01-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac) 2 ), and the Cu 2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac) 2 -treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac) 2 was established. As Cu(Ac) 2 which served as the oxidant can also be replaced by AgNO 3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO 3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu 2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu 2+ is typical for the existence of Cu(I)–pyrrole coordinate structures with strong Cu(I)–N bond signal shown in XPS characterization.

  20. Synthesis and characterization of novel PPy/Bi{sub 2}O{sub 2}CO{sub 3} composite with improved photocatalytic activity for degradation of Rhodamine-B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qizhao, E-mail: wangqizhao@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China); Zheng, Longhui; Chen, Yutao; Fan, Jiafeng [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China); Huang, Haohao, E-mail: scuthhh@hotmail.com [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Su, Bitao [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China)

    2015-07-15

    Highlights: • A new photocatalyst PPy/Bi{sub 2}O{sub 2}CO{sub 3} was synthesized by a simple hydrothermal method. • The PPy/Bi{sub 2}O{sub 2}CO{sub 3} photocatalyst shows enhanced degradation activity of RhB under UV light irradiation. • A photocatalytic mechanism is proposed based on the synergistic effect of PPy and Bi{sub 2}O{sub 2}CO{sub 3}. - Abstract: Photocatalyst Bi{sub 2}O{sub 2}CO{sub 3} modified by polypyrrole (PPy) was synthesized via a facile hydrothermal method. As-prepared PPy/Bi{sub 2}O{sub 2}CO{sub 3} composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV–vis diffuse reflectance spectroscopy (DRS). Presence of PPy did not affect the crystal structure, but exerted great influence on the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} and enhanced absorption band of pure Bi{sub 2}O{sub 2}CO{sub 3}. The photocatalytic activities of the PPy/Bi{sub 2}O{sub 2}CO{sub 3} samples were determined by photocatalytic degradation of Rhodamine-B (RhB) under ultra violet (UV) irradiation and 0.75 wt.% PPy/Bi{sub 2}O{sub 2}CO{sub 3} composite showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the synergistic effect of PPy and Bi{sub 2}O{sub 2}CO{sub 3}. A possible photocatalytic mechanism of the PPy/Bi{sub 2}O{sub 2}CO{sub 3} photocatalysts was proposed in order to guide the further improvement of its photocatalytic performance.

  1. Dye-doped nanostructure polypyrrole film for electrochemically switching solid-phase microextraction of Ni(II) and ICP-OES analysis of waste water.

    Science.gov (United States)

    Shamaeli, Ehsan; Alizadeh, Naader

    2012-01-01

    A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry

  2. Preparation of PPy-Coated MnO2Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-02

    MnO 2 @PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO 2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO 2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO 2 @PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO 2 has the best cyclic performances as has 620 mAh g -1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO 2 materials falls to below 200 mAh g -1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO 2 @PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO 2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO 2 . This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  3. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    Science.gov (United States)

    Panigrahi, Ritwik; Srivastava, Suneel K.

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59-23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported.

  4. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-02-01

    A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO-PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO-PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  5. L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery

    Science.gov (United States)

    Liao, Qishu; Hou, Hongying; Liu, Xianxi; Yao, Yuan; Dai, Zhipeng; Yu, Chengyi; Li, Dongdong

    2018-04-01

    In this work, polypyrrole (PPy) was co-doped with L-lactic acid (LA) and sodium p-toluenesulfonate (TsONa) for high performance cathode in sodium ion battery (SIB) via facile one-step electropolymerization on Fe foil. The as-synthesized LA/TsONa co-doped PPy cathode was investigated in terms of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), galvanostatic charge/discharge and cyclic voltammetry (CV). The results suggested that some oval-bud-like LA/TsONa co-doped PPy particles did form and tightly combine with the surface of Fe foil; furthermore, LA/TsONa co-doped PPy cathode also delivered higher electrochemical performances than TsONa mono-doped PPy cathode. For example, the initial specific discharge capacity was as high as about 124 mAh/g, and the reversible specific capacity still maintained at about 110 mAh/g even after 50 cycles, higher than those of TsONa mono-doped PPy cathode. The synergy effect of multi components of LA/TsONa co-doped PPy cathode should be responsible for high electrochemical performances.

  6. Electrochemical characteristics of graphene nanoribbon/polypyrrole composite prepared via oxidation polymerization in the presence of poly-(sodium 4-styrenesulfonate)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Hao; Huang, Jyun-Wei; Wu, Tzong-Ming, E-mail: tmwu@dragon.nchu.edu.tw

    2015-07-01

    Graphene nanoribbon (GNR)/polypyrrole (PPy) composite is synthesized via in situ chemical oxidation polymerization in presence of poly-(sodium 4-styrenesulfonate) (PSS) as a surfactant. The morphology of GNR/PPy composites is observed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The electrochemical properties are characterized using galvanostatic charge–discharge and cycle voltammetry (CV). The specific capacitance of GNR/PPy composites shows the highest value of 881 F g{sup −1} that in presence of 9 wt% GNR at a current density of 0.5 A g{sup −1}. The GNR/PPy composite also demonstrates the good cycle stability with only 16% decay of initial capacitance that much lower than 64% decay of pure PPy after 1000 cycles. - Highlights: • PPy/GNR nanocomposites are synthesized using in situ chemical polymerization. • The notable specific capacitance of 881 F g{sup −1} at a current density of 0.5 A g{sup −1} is obtained. • Excellent cyclic stability of PPy/GNR nanocomposites is achieved.

  7. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-01

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g-1 at the scan rate of 5 mV s-1. In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  8. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  9. Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Shengchang; Yang, Na; Gao, Fei [School of Life Sciences, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Jing, E-mail: jingzhao@nju.edu.cn [School of Life Sciences, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing 210093 (China); Li, Liang, E-mail: msell08@163.com [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Teng, Chao, E-mail: tengc@pkusz.edu.cn [Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055 (China)

    2017-08-31

    Highlights: • Three-dimensional polypyrrole-derived carbon nanotube frameworks are prepared. • They display outstanding absorption capacity (609 mg g{sup −1}) towards methylene blue. • They possess high specific capacitance (167 F g{sup −1}) and good rate capability (64%). • They have excellent cycling performance with no capacitance loss over 1000 cycles. - Abstract: Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.

  10. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  11. Synthesis and Characterization of Ag-Ag2O/TiO2@polypyrrole Heterojunction for Enhanced Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-05-01

    Full Text Available Hybrid multi-functional nanomaterials comprising two or more disparate materials have become a powerful approach to obtain advanced materials for environmental remediation applications. In this work, an Ag-Ag2O/TiO2@polypyrrole (Ag/TiO2@PPy heterojunction has been synthesized by assembling a self-stabilized Ag-Ag2O (p type semiconductor (denoted as Ag and polypyrrole (π-conjugated polymer on the surface of rutile TiO2 (n type. Ag/TiO2@PPy was synthesized through simultaneous oxidation of pyrrole monomers and reduction of AgNO3 in an aqueous solution containing well-dispersed TiO2 particles. Thus synthesized Ag/TiO2@PPy was characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and UV-Vis diffuse reflectance spectroscopy (UV-vis DSR. The photocatalytic activity of synthesized heterojunction was investigated for the decomposition of methylene blue (MB dye under UV and visible light irradiation. The results revealed that π-conjugated p-n heterojunction formed in the case of Ag/TiO2@PPy significantly enhanced the photodecomposition of MB compared to the p-n type Ag/TiO2 and TiO2@PPy (n-π heterojunctions. A synergistic effect between Ag-Ag2O and PPy leads to higher photostability and a better electron/hole separation leads to an enhanced photocatalytic activity of Ag/TiO2@PPy under both UV and visible light irradiations.

  12. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution

    International Nuclear Information System (INIS)

    Wang, Jianqiang; Pan, Kai; He, Qiwei; Cao, Bing

    2013-01-01

    Highlights: ► PAN nanofibers obtained by electrospinning. ► PAN/PPy core/shell nanofiber membrane was prepared. ► PAN/PPy core/shell nanofiber membrane used for Cr(VI) removal. ► Adsorption capacity remained up to 80% within 5 times cycles. -- Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core–shell structure nanofibers were prepared via electrospinning followed by in situ polymerization of pyrrole monomer for the removal of hexavalent chromium (Cr(VI)) from aqueous solution. Attenuated total reflections Fourier transform infrared (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) results confirmed the presence of the polypyrrole (PPy) layer on the surface of PAN nanofibers. The morphology and structure of the core–shell PAN/PPy nanofibers were studied by scanning electron microscopy (SEM) and transmission electron microscope (TEM), and the core–shell structure can be clearly proved from the SEM and TEM images. Adsorption results indicated that the adsorption capacity increased with the initial solution pH decreased. The adsorption equilibrium reached within 30 and 90 min as the initial solution concentration increased from 100 to 200 mg/L, and the process can be described using the pseudo-second-order model. Isotherm data fitted well to the Langmuir isotherm model. Thermodynamic study revealed that the adsorption process is endothermic and spontaneous in nature. Desorption results showed that the adsorption capacity can remain up to 80% after 5 times usage. The adsorption mechanism was also studied by XPS

  13. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode

    International Nuclear Information System (INIS)

    Jian, Xuan; Yang, Hui-min; Li, Jia-gang; Zhang, Er-hui; Cao, Le-le; Liang, Zhen-hai

    2017-01-01

    Highlights: • Porous nanostructure carbon quantum dots/polypyrrole composite film was successfully synthesized by direct electrochemical method. • A flexible all-solid-state supercapacitor device was fabricated using the carbon quantum dots/polypyrrole composite electrode. • The flexible supercapacitor exhibits high specific capacitance, excellent reliability and long cycling life. - Abstract: Recently, carbon quantum dots (CQDs) as a new zero-dimensional carbon nanomaterial have become a focus in electrochemical energy storage. In this paper, flexible all-solid-state supercapacitors (ASSSs) were electrochemically synthesized by on-step co-deposition of appropriate amounts of pyrrole monomer and CQDs in aqueous solution. The different electrodeposition time plays an important role in controlling morphologies of stainless steel wire meshes (SSWM)-supported CQDs/PPy composite film. The morphologies and compositions of the obtained CQDs/PPy composite electrodes were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Furthermore, a novel flexible ASSS device was fabricated using CQDs/PPy composite as the electrode and separated by polyvinyl alcohol/LiCl gel electrolyte. Benefiting from superior electrochemical properties of CQDs and PPy, the as-prepared CQDs/PPy composite ASSSs exhibit outstanding electrochemical performance with the areal capacitance 315 mF cm −2 (corresponding to specific capacitance of 308 F g −1 ) at a current density of 0.2 mA cm −2 and long cycle life with 85.7% capacitance retention after 2 000 cycles.

  14. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  15. A Study on Tannic Acid-doped Polypyrrole Films on Gold Electrodes for Selective Electrochemical Detection of Dopamine

    Science.gov (United States)

    Jiang, Ling; Xie, Qingji; Li, Zhili; Li, Yunlong; Yao, Shouzhuo

    2005-01-01

    Tannic acid-doped polypyrrole (PPY/TA) films have been grown on gold electrodes for selective electrochemical detection of dopamine (DA). Electrochemical quartz crystal microbalance (EQCM) studies revealed that, in vivid contrast to perchlorate-doped polypyrrole films (PPY/ClO4-), the redox switching of PPY/TA films in aqueous solutions involved only cation transport if the solution pH was greater than 3∼4. The PPY/TA Au electrodes also exhibited attractive permselectivity for electroactive cations, namely, effectively blocking the electrochemical reactions of anionic ferricyanide and ascorbic acid (AA) while well retaining the electrochemical activities of hexaammineruthenium (III) and dopamine as cationic species. A 500 Hz PPY/TA film could effectively block the redox current of up to 5.0 mM AA. The coexistence of ascorbic acid in the measurement solution notably enhanced the current signal for dopamine oxidation, due probably to the chemical regeneration of dopamine through an ascorbic acid-catalyzed reduction of the electro-oxidation product of dopamine (EC’ mechanism), and the greatest amplification was found at an ascorbic acid concentration of 1.0 mM. The differential pulse voltammetry peak current for DA oxidation was linear with DA concentration in the range of 0 to 10 μM, with sensitivity of 0.125 and 0.268 μA/μM, as well as lower detection limit of 2.0 and 0.3 μM in a PBS solution without AA and with 1.0 mM coexisting AA, respectively.

  16. PdCo porous nanostructures decorated on polypyrrole @ MWCNTs conductive nanocomposite—Modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Fard, Leyla Abolghasemi [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of); Ojani, Reza, E-mail: fer-o@umz.ac.ir [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of); Raoof, Jahan Bakhsh [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of); Zare, Ehsan Nazarzadeh; Lakouraj, Moslem Mansour [Polymer Research Laboratory Department of Organic-Polymer Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • The PdCo PNS/PPy@MWCNT electrocatalyst was easily prepared. • The electrocatalyst exhibits high electrocatalytic activity and stability toward the EOR. • The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm{sup −2}) is higher than those of other compared electrocatalysts. • The high electrocatalytic performance is attributed to concerted effects of Porous nature, Co and PPy@MWCNT. • The PdCo PNS/PPy@MWCNT electrocatalyst has never been reported. - Abstract: In the current study, well-defined PdCo porous nanostructure (PdCo PNS) is prepared by a simple one-pot wet-chemical method and polypyrrole@multi-walled carbon nanotubes (PPy@MWCNTs) nanocomposite is used as a catalyst support. The morphology and the structural properties of the prepared catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic performance of PdCo PNS/PPy@MWCNTs on glassy carbon electrode has been evaluated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) techniques. The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm{sup −2}) is higher than those of other compared electrocatalysts. Also, PdCo PNS/PPy@MWCNTs catalyst represented higher electrocatalytic activity, better long-term stability and high level of poisoning tolerance to the carbonaceous oxidative intermediates for ethanol electrooxidation reaction in alkaline media. Furthermore, the presence of PPY@MWCNTs on the surface of GCE produce a high activity to electrocatalyst, which might be due to the easier charge transfer at polymer/carbon nanotubes interfaces, higher electrochemically accessible surface areas and electronic conductivity. The superior catalytic activity of PdCo PNS/PPy@MWCNTs suggests it to be as a promising electrocatalyst for future direct ethanol fuel cells.

  17. 160 MeV Ni{sup 12+} ion irradiation effects on the structural, optical and electrical properties of spherical polypyrrole nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-01-01

    Highlights: • Upon SHI irradiation the average diameters of PPy nanoparticles increases. • Crystallinity of PPy nanoparticles increases with increasing ion fluence. • IR active vibrational bands have different cross sections for SHI irradiation. • Upon SHI irradiation optical band gap energy of PPy nanoparticles decreases. • Upon SHI irradiation thermal stability of PPy nanoparticles increases. -- Abstract: In this study we report 160 MeV Ni{sup 12+} swift heavy ion irradiation induced enhancement in the structural, optical and electrical properties of spherical polypyrrole (PPy) nanoparticles. High resolution transmission electron microscope results show that the pristine PPy nanoparticles have an average diameter of 11 nm while upon irradiation the average diameter increases to 18 nm at the highest ion fluence of 1 × 10{sup 12} ions/cm{sup 2}. X-ray diffraction studies show an enhancement of crystallinity and average crystallite size of PPy nanoparticles with increasing fluence. Studies of Fourier transform infrared spectra suggest the structural modifications of different functional groups upon irradiation. It also reveals that different functional groups have different sensitivity to irradiation. The infrared active N–H vibrational band at 3695 cm{sup −1} is more sensitive to irradiation with a formation cross-section of 5.77 × 10{sup −13} cm{sup 2} and effective radius of 4.28 nm. The UV–visible absorption spectra of PPy nanoparticles show that the absorption band undergoes a red shift with increasing fluence. Moreover upon irradiation the optical band gap energy decreases and Urbach’s energy increases with fluence. Thermo-gravimetric analysis studies suggest that upon irradiation the thermal stability of PPy nanoparticles increases which may be attributed to their enhanced crystallinity. Current–voltage characteristics of PPy nanoparticles exhibit non-Ohmic, symmetric behavior which increases with fluence.

  18. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Mejri-Omrani, Nawel [ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay (France); BAE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan (France); Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d' Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis (Tunisia); Miodek, Anna; Zribi, Becem [ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay (France); Marrakchi, Mouna [Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d' Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis (Tunisia); Université de Tunis El Manar, Higher Institute of Applied Biological Sciences (ISSBAT), 1006 Tunis (Tunisia); Hamdi, Moktar [Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d' Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis (Tunisia); Marty, Jean-Louis [BAE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan (France); Korri-Youssoufi, Hafsa, E-mail: hafsa.korri-youssoufi@u-psud.fr [ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay (France)

    2016-05-12

    Ochratoxin A (OTA) is a carcinogenic mycotoxin that contaminates food such as cereals, wine and beer; therefore it represents a risk for human health. Consequently, the allowed concentration of OTA in food is regulated by governmental organizations and its detection is of major agronomical interest. In the current study we report the development of an electrochemical aptasensor able to directly detect trace OTA without any amplification procedure. This aptasensor was constructed by coating the surface of a gold electrode with a film layer of modified polypyrrole (PPy), which was thereafter covalently bound to polyamidoamine dendrimers of the fourth generation (PAMAM G4). Finally, DNA aptamers that specifically binds OTA were covalently bound to the PAMAM G4 providing the aptasensor, which was characterized by using both Atomic Force Microscopy (AFM) and Surface Plasmon Resonance (SPR) techniques. The study of OTA detection by the constructed electrochemical aptasensor was performed using Electrochemical Impedance Spectroscopy (EIS) and revealed that the presence of OTA led to the modification of the electrical properties of the PPy layer. These modifications could be assigned to conformational changes in the folding of the aptamers upon specific binding of OTA. The aptasensor had a dynamic range of up to 5 μg L{sup −1} of OTA and a detection limit of 2 ng L{sup −1} of OTA, which is below the OTA concentration allowed in food by the European regulations. The efficient detection of OTA by this electrochemical aptasensor provides an unforeseen platform that could be used for the detection of various small molecules through specific aptamer association. - Highlights: • Development of innovative platform for direct and ultra-sensitive toxins detection. • Aptasensor based on modified conductive polypyrrole layer. • We demonstrate the conformation change of aptamer upon toxin binding. • We highlight that detection was obtained by modification of charge of

  19. A Mediated BOD Biosensor Based on Immobilized B. Subtilis on Three-Dimensional Porous Graphene-Polypyrrole Composite

    Directory of Open Access Journals (Sweden)

    Jingfang Hu

    2017-11-01

    Full Text Available We have developed a novel mediated biochemical oxygen demand (BOD biosensor based on immobilized Bacillus subtilis (B. subtilis on three-dimensional (3D porous graphene-polypyrrole (rGO-PPy composite. The 3D porous rGO-PPy composite was prepared using hydrothermal method following with electropolymerization. Then the 3D porous rGO-PPy composite was used as a support for immobilizing negatively charged B. subtilis denoted as rGO-PPy-B through coordination and electrostatic interaction. Further, the prepared rGO-PPy-B was used as a microbial biofilm for establishing a mediated BOD biosensor with ferricyanide as an electronic acceptor. The indirect determination of BOD was performed by electrochemical measuring ferrocyanide generated from a reduced ferricyanide mediator using interdigited ultramicroelectrode array (IUDA as the working electrode. The experimental results suggested a good linear relationship between the amperometric responses and BOD standard concentrations from 4 to 60 mg/L, with a limit detection of 1.8 mg/L (S/N ≥ 3. The electrochemical measurement of real water samples showed a good agreement with the conventional BOD5 method, and the good anti-interference as well as the long-term stability were well demonstrated, indicating that the proposed mediated BOD biosensor in this study holds a potential practical application of real water monitoring.

  20. Synthesis of Fe3O4/polypyrrole/polyaniline nanocomposites by in-situ method and their electromagnetic absorbing properties

    Directory of Open Access Journals (Sweden)

    Bingzhen Li

    2017-05-01

    Full Text Available Fe3O4/PPy/PANI (Fe3O4/polypyrrole/polyaniline nanocomposites with excellent microwave absorbing properties have been successfully synthesized and characterized systematically. In detail, Fe3O4 nanoparticles were prepared via an environmental friendly, modified co-precipitation method. Afterward, two conductive polymers, PPy and PANI, were deposited onto the surface of Fe3O4 nanoparticles by in-situ polymerization of pyrrole and aniline. PPy and PANI was “glued” by the strong affinity between the carbonyl groups of PPy and the conjugated chains of PANI. The obtained Fe3O4/PPy/PANI nanocomposites have been found to possess excellent microwave absorbing property with the absorption bandwidth of 10.7 GHz (6.7–17.4 GHz and maximum reflection loss at 10.1 GHz (−40.2 dB. It proves that the combination of ultra-small Fe3O4 nanoparticles with two different conductive polymers have a great potential in the application of microwave absorbing materials.

  1. A new graphene oxide/polypyrrole foam material with pipette-tip solid-phase extraction for determination of three auxins in papaya juice.

    Science.gov (United States)

    Wang, Lihui; Wang, Mingyu; Yan, Hongyuan; Yuan, Yanan; Tian, Jing

    2014-11-14

    A new material, graphene oxide/polypyrrole (GO/Ppy), was synthesized by mixing graphene oxide and polypyrrole in a specific proportion. It possesses a unique structure similar to that of foam. A homemade pipette-tip solid-phase extraction (PT-SPE) device, which is more simple and convenient than traditional devices, was used for saving reagents and operation time. When GO/Ppy was used as the adsorbent of PT-SPE for determining three auxins (indole-3-propionic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid) present in trace amounts in papaya juice, it showed high affinity and adsorption capacity for all the three auxins. GO/Ppy-PT-SPE also had a significant capacity for eliminating the interferences from the papaya juice matrix. Under optimized conditions, a good linearity of auxins was obtained in the range 16.3-812.5 ng g(-1); the average recoveries at the three spiked levels of the three auxins ranged from 89.4% to 105.6% with the relative standard deviations ≤ 3.0%. Meanwhile, six papaya juice samples with different growth stages were analyzed under optimum conditions, and trace auxins in the range 18.3-100.6 ng g(-1) were observed. Because of its high selectivity, simplicity, and reliability, the GO/Ppy-PT-SPE method developed herein can be potentially applied for determining trace auxins in complex biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H@PPy@Au spheres: Fabrication, characterization and application in SERS

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Guohong; Shang, Mengying; Zou, Hanzhi; Wang, Wenqin, E-mail: wangwenqin@nbu.edu.cn

    2016-04-15

    In this work, the sulfonic acid (–SO{sub 3}H) group terminated Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic spheres were prepared. Polypyrrole (PPy) was in-situ polymerized on Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H spheres due to the dual roles of the –SO{sub 3}H groups: acting as both “anchoring sites” for adsorbing of pyrrole monomer and dopant agent in PPy. By adsorbing gold nanoseeds on the as-prepared Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H@PPy spheres followed the seed-mediated growth method, the multifunctional Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H@PPy@Au spheres were obtained. The application of Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H@PPy@Au spheres in surface-enhanced Raman scattering (SERS) was investigated, and the results exhibited the enhancement in the order of 10{sup 4} using 4-aminothiophenol as the probe molecule. - Highlights: • The sulfonic acid-terminated Fe{sub 3}O{sub 4}@SiO{sub 2} (Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H) spheres were prepared. • The –SO{sub 3}H groups of Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H spheres played dual roles in adsorbing pyrrole and protonating polypyrrole. • Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H@PPy core/gold shell composites can act as SERS substrate for detecting 4-ATP molecule.

  3. Influence of Monomer Concentration on the Morphologies and Electrochemical Properties of PEDOT, PANI, and PPy Prepared from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shalini Kulandaivalu

    2016-01-01

    Full Text Available Poly(3,4-ethylenedioxyhiophene (PEDOT, polyaniline (PANI, and polypyrrole (PPy were prepared on indium tin oxide (ITO substrate via potentiostatic from aqueous solutions containing monomer and lithium perchlorate. The concentration of monomers was varied between 1 and 10 mM. The effects of monomer concentration on the polymers formation were investigated and compared by using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, scanning electron microscopy (SEM, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS measurements. FTIR and Raman spectra showed no changes in the peaks upon the increment of the concentration. Based on the SEM images, the increment in monomer concentration gives significant effect on morphologies and eventually affects the electrochemical properties. PEDOT electrodeposited from 10 mM solution showed excellent electrochemical properties with the highest specific capacitance value of 12.8 mF/cm2.

  4. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Razaq, Aamir; Sjoedin, Martin; Stroemme, Maria; Mihranyan, Albert [Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala (Sweden); Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden); Nyholm, Leif [Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden)

    2012-04-15

    Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 {mu}m-thick chopped carbon filaments, can be used as electrode materials to obtain paper-based energy-storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g{sup -1} (PPy) are obtained for paper-based electrodes at potential scan rates as high as 500 mV s{sup -1}, whereas cell capacitances of {proportional_to}60-70 F g{sup -1} (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm{sup -2}) when charged to 0.6 V using current densities as high as 31 A g{sup -1} based on the PPy weight (i.e., 99 mA cm{sup -2}). Energy and power densities of 1.75 Wh kg{sup -1} and 2.7 kW kg{sup -1}, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g{sup -1} (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low-cost and environmentally friendly paper-based energy-storage devices for high-power applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Immobilization of Trichoderma harzianum α-amylase on PPyAgNp/Fe3O4-nanocomposite: chemical and physical properties.

    Science.gov (United States)

    Mohamed, Saleh A; Al-Harbi, Majed H; Almulaiky, Yaaser Q; Ibrahim, Ibrahim H; Salah, Hala A; El-Badry, Mohamed O; Abdel-Aty, Azza M; Fahmy, Afaf S; El-Shishtawy, Reda M

    2018-03-26

    In this study, a new support has been developed by immobilization of α-amylase onto modified magnetic Fe 3 O 4 -nanoparticles. The characterization of soluble and immobilized α-amylases with regards to kinetic parameters, pH, thermal stability and reusability was studied. The effect of polypyrrole/silver nanocomposite (PPyAgNp) percentage on weight of Fe 3 O 4 and pH on the immobilization of α-amylase was studied. The highest immobilization efficiency (75%) was detected at 10% PPyAgNp/Fe 3 O 4 -nanocomposite and pH 7.0. Immobilization of α-amylase on PPyAgNp/Fe 3 O 4 -nanocomposite was characterized by FT-IR spectroscopy and scanning electron microscopy. The reusability of the immobilized enzyme activity was 80% of its initial activity after 10 reuses. The immobilized enzyme was more stable towards pH, temperature and metal ions compared with soluble enzyme. The kinetic study appeared higher affinity of immobilized enzyme (K m 2.5 mg starch) compared with soluble enzyme (K m 3.5 mg starch). In conclusion, the immobilization of α-amylase on PPyAgNp/Fe 3 O 4 -nanocomposite could successfully be used in industrial and medical applications.

  6. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    Science.gov (United States)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  7. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.

    Science.gov (United States)

    Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung

    2010-01-15

    In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.

  8. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Aihua; Kamata, Kaori; Nakagawa, Masaru; Iyoda, Tomokazu; Haiqiao Wang, Haiqiao; Li, Xiaoyu

    2005-10-06

    We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.

  10. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2017-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC. A polypyrrole (PPy-modified GAC composite (PPy/GAC was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR and Brunauer-Emmett-Teller (BET surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation, the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.

  11. Polypyrrole/poly(vinyl alcohol-co-ethylene) quasi-solid gel electrolyte for iodine-free dye-sensitized solar cells

    Science.gov (United States)

    Jung, Mi-Hee

    2014-12-01

    Conducting polymer gel electrolyte is synthesized using the Cl- doped polypyrrole (PPy)/1-buty-2,3-dimethylimidazolium iodide (BDI)/poly(vinyl alcohol-co-ethylene)(PVA-EL), which yield an overall energy-conversion efficiency of about 4.72% comparable to the liquid electrolyte 4.69% under irradiation at 100 mW cm-2 AM 1.5. The introduction of PPy and PVA-EL into the BDI (which dissolves in the dimethylsulfoxide) increases the ion conductivity and effectively decreases the charge transfer resistance in the PPy gel electrolyte/TiO2/dye interfaces. With the change of the PVA-EL composition, PPy gel electrolyte exhibits independence of the content of PVA-EL, which means ion conductivity of PPy gel electrolyte as a dominant role for the contribution of cell performance. Employing intensity-modulated photo-voltage spectroscopy, intensity-modulated photo-current spectroscopy, and charge-extraction measurement, it demonstrate that the effective charge collection in PPy gel electrolyte devices rather than liquid electrolyte one is occurred due to the larger diffusion coefficient and long electron lifetime, resulting in the higher-efficiency solar cell.

  12. Silica-Polypyrrole Hybrids as High-Performance Metal-Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media.

    Science.gov (United States)

    Feng, Jin-Xian; Xu, Han; Ye, Sheng-Hua; Ouyang, Gangfeng; Tong, Ye-Xiang; Li, Gao-Ren

    2017-07-03

    Constructing inorganic-organic hybrids with superior properties in terms of water adsorption and activation will lead to catalysts with significantly enhanced electrocatalytic activity in the hydrogen evolution reaction (HER) in environmentally benign neutral media. Herein, we report SiO 2 -polypyrrole (PPy) hybrid nanotubes supported on carbon fibers (CFs) (SiO 2  /PPy NTs-CFs) as inexpensive and high-performance electrocatalysts for the HER in neutral media. Because of the strong electronic interactions between SiO 2 and PPy, the SiO 2 uniquely serves as the centers for water adsorption and activation, and accordingly promotes the HER. The metal-free SiO 2  /PPy NTs-CFs displayed high catalytic activity in the HER in neutral media, such as a low onset potential and small Tafel slope, as well as excellent long-term durability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    In this paper, we report the 160 MeV Ni 12+ swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10 10 , 1 × 10 11 , 5 × 10 11 and 1 × 10 12 ions/cm 2 have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M ″ ) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R ω ) of the charge carriers decreases with increasing the ion fluence. Binding energy (W m ) calculations depict that polarons are the dominant charge carriers

  14. Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array.

    Science.gov (United States)

    Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei

    2017-06-27

    Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.

  15. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate.

    Science.gov (United States)

    Mazouz, Zouhour; Rahali, Seyfeddine; Fourati, Najla; Zerrouki, Chouki; Aloui, Nadia; Seydou, Mahamadou; Yaakoubi, Nourdin; Chehimi, Mohamed M; Othmane, Ali; Kalfat, Rafik

    2017-11-09

    There is a global debate and concern about the use of glyphosate (Gly) as an herbicide. New toxicological studies will determine its use in the future under new strict conditions or its replacement by alternative synthetic or natural herbicides. In this context, we designed biomimetic polymer sensing layers for the selective molecular recognition of Gly. Towards this end, complementary surface acoustic wave (SAW) and electrochemical sensors were functionalized with polypyrrole (PPy)-imprinted polymer for the selective detection of Gly. Their corresponding limits of detection were on the order of 1 pM, which are among the lowest values ever reported in literature. The relevant dissociation constants between PPy and Gly were estimated at [K d1 = (0.7 ± 0.3) pM and K d2 = (1.6 ± 1.4) µM] and [K d1 = (2.4 ± 0.9) pM and K d2 = (0.3 ± 0.1) µM] for electrochemical and gravimetric measurements, respectively. Quantum chemical calculations permitted to estimate the interaction energy between Gly and PPy film: ΔE = -145 kJ/mol. Selectivity and competitivity tests were investigated with the most common pesticides. This work conclusively shows that gravimetric and electrochemical results indicate that both MIP-based sensors are perfectly able to detect and distinguish glyphosate without any ambiguity.

  16. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    Science.gov (United States)

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Improved antibacterial behavior of titanium surface with torularhodin–polypyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Ungureanu, Camelia; Popescu, Simona; Purcel, Gabriela [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania); Tofan, Vlad [“Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independentei, Sector 5, 050096 Bucharest (Romania); Popescu, Marian [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania); National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Sălăgeanu, Aurora [“Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independentei, Sector 5, 050096 Bucharest (Romania); Pîrvu, Cristian, E-mail: c_pirvu@chim.pub.ro [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania)

    2014-09-01

    The problem of microorganisms attaching and proliferating on implants and medical devices surfaces is still attracting interest in developing research on different coatings based on antibacterial agents. The aim of this work is centered on modifying titanium (Ti) based implants surfaces through incorporation of a natural compound with antimicrobial effect, torularhodin (T), by means of a polypyrrole (PPy) film. This study tested the potential antimicrobial activity of the new coating against a range of standard bacterial strains: Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and Pseudomonas aeruginosa. The morphology, physical and electrochemical properties of the synthesized films were assessed by SEM, AFM, UV–Vis, FTIR and cyclic voltammetry. In addition, biocompatibility of this new coating was evaluated using L929 mouse fibroblast cells. The results showed that PPy–torularhodin composite film acts as a corrosion protective coating with antibacterial activity and it has no harmful effect on cell viability. - Highlights: • Modification of titanium surfaces by incorporating a natural compound • new PPy - torularhodin corrosion protective composite coatings • antibacterial activity for the new PPy - torularhodin coating • cytocompatibility of new coating was demonstrated using mouse fibroblast cells.

  18. Detection of napropamide by microwave resonator sensor using carbon nanotube – polypyrrole- chitosan layer

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi

    2017-10-01

    Full Text Available This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs and Polypyrrole-Chitosan (PPy-CHI layers as a napropamide sensor. Computer Simulation Technology (CST microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers were coated on the disk resonator using electric field deposition and chemical interaction between sensing layer and napropamide was investigated by Fourier Transform Infrared Spectroscopy (FT-IR. The evaluation of the system was performed using different concentrations of commercial napropamide and pure napropamide at room temperature (25 0C. Experimental results prove that proximity coupled feed disk resonator coated with MWCNTs-PPy-CHI layers is a simple, fast (Measurement- time=5 seconds, accurate (as low as 0.1 ppm, low cost and it has the potential of fabrication as a portable instrumentation system for detecting pesticides in water and soil.

  19. Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shi-chang Wang

    2005-12-01

    Full Text Available Polypyrrole(PPy nanowire modified electrodes were developed by template-freeelectrochemical method based on graphite electrode. The modified electrode wascharacterized by their amperometric response towards nitrate ions. Before reduction ofnitrate ions, electrochemical solid-phase extraction (EC-SPE of nitrate in/on modifiedelectrodes was conducted. It is found that the unusual nanowired structure of polypyrrolelayer (instead of well known cauliflower structure allows us to increase the effectivesurface area of the electrode and subsequently the sensitivity. And the effects ofelectrochemical preparation parameters of PPy nanowire modified electrodes on theircorresponding characters were evaluated. The experimental results show that theelectrochemical preparation parameters of the modified electrodes such as scan rate,polymerization potential, temperature of polymerization solution and polymerization timehave significantly effects on the morphology of PPy nanowires and subsequently effectivesurface area of the electrode and electroreduction current density of nitrate. Thedetermination sensitivity may be varied according to the modification parameters. Under acertain polymerization conditions, the corresponding sensitivity reaches 336.28 mA/M cm2 and the detection limit is 1.52×10-6 M. The proposed method was successfully applied in thedetection of nitrate in the real samples.

  20. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate

    Directory of Open Access Journals (Sweden)

    Zouhour Mazouz

    2017-11-01

    Full Text Available There is a global debate and concern about the use of glyphosate (Gly as an herbicide. New toxicological studies will determine its use in the future under new strict conditions or its replacement by alternative synthetic or natural herbicides. In this context, we designed biomimetic polymer sensing layers for the selective molecular recognition of Gly. Towards this end, complementary surface acoustic wave (SAW and electrochemical sensors were functionalized with polypyrrole (PPy-imprinted polymer for the selective detection of Gly. Their corresponding limits of detection were on the order of 1 pM, which are among the lowest values ever reported in literature. The relevant dissociation constants between PPy and Gly were estimated at [Kd1 = (0.7 ± 0.3 pM and Kd2 = (1.6 ± 1.4 µM] and [Kd1 = (2.4 ± 0.9 pM and Kd2 = (0.3 ± 0.1 µM] for electrochemical and gravimetric measurements, respectively. Quantum chemical calculations permitted to estimate the interaction energy between Gly and PPy film: ΔE = −145 kJ/mol. Selectivity and competitivity tests were investigated with the most common pesticides. This work conclusively shows that gravimetric and electrochemical results indicate that both MIP-based sensors are perfectly able to detect and distinguish glyphosate without any ambiguity.

  1. Thin composite films consisting of polypyrrole and polyparaphenylene

    International Nuclear Information System (INIS)

    Golovtsov, I.; Bereznev, S.; Traksmaa, R.; Opik, A.

    2007-01-01

    This study demonstrates that the combined method for the formation of thin composite films, consisting of polypyrrole (PPy) as a film forming agent and polyparaphenylene (PPP) with controlled electrical properties and high stability, enables one to avoid the low processability of PPP and to extend the possibilities for the development of electronic devices. The high temperature (250-600 deg. C) doping method was used for PPP preparation. The crystallinity and grindability of PPP was found to be increasing with the thermochemical modification. Thin composite films were prepared onto the light transparent substrates using the simple electropolymerization technique. The properties of films were characterized by the optical transmittance and temperature-dependent conductivity measurements. The morphology and thickness of the prepared films were determined using the scanning electron microscopy. The composite films showed a better adhesion to an inorganic substrate. It was found to be connected mostly with the improved properties of the high temperature doped PPP. The current-voltage characteristics of indium tin oxide/film/Au hybrid organic-inorganic structures showed the influence of the doping conditions of PPP inclusions in the obtained films

  2. Synthesis and Development of Gold Polypyrrole Actuator for Underwater Application

    Science.gov (United States)

    Panda, S. K.; Bandopadhya, D.

    2018-02-01

    Electro-active polymer (EAP) such as Polypyrrole has gained much attention in the category of functional materials for fabrication of both active actuator and sensor. Particularly, PPy actuator has shown potential in fluid medium application because of high strain, large bending displacement and work density. This paper focuses on developing a low cost active actuator promising in delivering high performance in underwater environment. The proposed Au-pyrrole actuator is synthesized by adopting the layer-by-layer electrochemical polymerization technique and is fabricated as strip actuator from aqueous solution of Pyrrole and NaDBS in room temperature. In the follow-up, topographical analysis has been carried out using SEM and FESEM instruments showing surface morphology and surface integrity of chemical components of the structure. Several experiments have been conducted under DC input voltage evaluating performance effectiveness such as underwater bending displacement and tip force etc. This is observed that the actuator exhibits quite similar stress profile as of natural muscle, endowed with high modulus makes them effective in working nearly 10,000 cycles underwater environment. In addition, the bending displacement up to 5.4 mm with a low input voltage 1.3 V makes the actuator suitable for underwater micro-robotics applications.

  3. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  4. Characterization of poly pyrrole/montmorillonite electro polymerised onto Pt; Caracterizacao de filmes PPy/montmorilonita eletropolimerizados sobre Pt

    Energy Technology Data Exchange (ETDEWEB)

    Castagno, K.R.L., E-mail: katiarlc@pelotas.ifsul.edu.b [Instituto Federal Sul-rio-grandense (IFSul), RS (Brazil). Dept. de Quimica; Azambuja, D.S.; Dalmoro, V.; Mauller, R.S. [Universidade Federal do Rio Grande do Sul (UFRGS), Pelotas, RS (Brazil). Inst. de Quimica

    2010-07-01

    In this study films of polypyrrole/montmorillonite (PPy/MT) were electropolymerized on platinum in order to evaluate the performance of this technique in the preparation of nanocomposite materials and to determine the thermal properties and conductivity of the composites. The films were synthesized from a solution containing pyrrole, dodecylbenzene sulfonate, acid and two types of clays: montmorillonite-Na + (MT-Na) and montmorillonite-30B (MT-M). The characterization of the films we have used FT-IR, TEM, XRD, TGA, DSC and resistivity measurement by the four-point van der Pauw method. The study showed that the adopted method of exfoliation and the electropolymerization method used, allows obtaining nanocomposite materials. Analyses of FT-IR, TEM and XRD show that the clays are exfoliated in the polymer matrix. Thermal analysis of the films indicates that the addition of clay reflects an enhancement in the thermal properties of the matrix of PPy, but decreases the conductivity of the same. (author)

  5. Polypyrrole solid phase microextraction: A new approach to rapid sample preparation for the monitoring of antibiotic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szultka, Malgorzata [Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus, Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kegler, Ricarda [Institute of Clinical Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock (Germany); Fuchs, Patricia [Department of Anaesthesia and Intensive Care, University of Rostock, Schillingallee 35, D-18057 Rostock (Germany); Olszowy, Pawel [Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus, Copernicus University, Gagarin 7, 87-100 Torun (Poland); Miekisch, Wolfram; Schubert, Jochen K. [Department of Anaesthesia and Intensive Care, University of Rostock, Schillingallee 35, D-18057 Rostock (Germany); Buszewski, Boguslaw [Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus, Copernicus University, Gagarin 7, 87-100 Torun (Poland); Mundkowski, Ralf G., E-mail: ralf.mundkowski@med.uni-rostock.de [Institute of Clinical Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock (Germany)

    2010-05-14

    Simple or even rapid bioanalytical methods are rare, since they generally involve complicated, time-consuming sample preparation from the biological matrices like LLE or SPE. SPME provides a promising approach to overcome these limitations. The full potential of this innovative technique for medical diagnostics, pharmacotherapy or biochemistry has not been tapped yet. In-house manufactured SPME probes with polypyrrole (PPy) coating were evaluated using three antibiotics of high clinical relevance - linezolid, daptomycin, and moxifloxacin - from PBS, plasma, and whole blood. The PPy coating was characterised by scanning electron microscopy. Influences of pH, inorganic salt, and blood anticoagulants were studied for optimum performance. Extraction yields were determined from stagnant media as well as re-circulating human blood using the heart-and-lung machine model system. The PPy-SPME fibres showed high extraction yields, particularly regarding linezolid. The reproducibility of the method was optimised to achieve RSDs of 9% or 17% and 7% for SPME from stagnant or re-circulating blood using fresh and re-used fibres, respectively. The PPy-SPME approach was demonstrated to meet the requirements of therapeutic monitoring of the drugs tested, even from re-circulating blood at physiological flow rates. SPME represents a rapid and simple dual-step procedure with potency to significantly reduce the effort and expenditure of complicated sample preparations in biomedical analysis.

  6. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    Science.gov (United States)

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A novel non-enzymatic H{sub 2}O{sub 2} sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites

    Energy Technology Data Exchange (ETDEWEB)

    Moozarm Nia, Pooria, E-mail: pooriamn@yahoo.com; Lorestani, Farnaz, E-mail: farnaz.lorestani@siswa.um.edu.my; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-03-30

    Graphical abstract: - Highlights: • Decorating silver nanoparticles on the surface of graphene oxide nanocomposites. • Using and comparing two different electrochemical methods for reducing graphene oxide. • Investigating the effect of cyclic voltammetry and amperometry on electropolymerization of polypyrrole nanofibers. • The senor shows superior performances (LOD, LOQ, selectivity, repeatability, reproducibility and stability) towards H{sub 2}O{sub 2}. - Abstract: Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1–5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  8. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites

    International Nuclear Information System (INIS)

    Moozarm Nia, Pooria; Lorestani, Farnaz; Meng, Woi Pei; Alias, Y.

    2015-01-01

    Graphical abstract: - Highlights: • Decorating silver nanoparticles on the surface of graphene oxide nanocomposites. • Using and comparing two different electrochemical methods for reducing graphene oxide. • Investigating the effect of cyclic voltammetry and amperometry on electropolymerization of polypyrrole nanofibers. • The senor shows superior performances (LOD, LOQ, selectivity, repeatability, reproducibility and stability) towards H 2 O 2 . - Abstract: Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1–5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  9. Hybrid thin films based on bilayer heterojunction of titania nanocrystals/polypyrrole/natural dyes (Kappaphycus alvarezii) materials

    Science.gov (United States)

    Ghazali, Salmah Mohd; Salleh, Hasiah; Dagang, Ahmad Nazri; Ghazali, Mohd Sabri Mohd; Ali, Nik Aziz Nik; Rashid, Norlaily Abdul; Kamarulzaman, Nurul Huda; Ahmad, Wan Almaz Dhafina Che Wan

    2017-09-01

    In this research, hybrid thin films which consist of a combination of organic red seaweed (RS) (Kappaphycus alvarezii) and polypyrrole (PPy) with inorganic titania nanocrystals (TiO2 NCs) materials were fabricated. These hybrid thin films were fabricated accordingly with bilayer heterojunction of ITO/TiO2 NCs/PPy/RS via electrochemical method using Electrochemical Impedance Spectroscopy (EIS). The effect of number of scans (thickness) of titania on optical and electrical properties of hybrid thin films were studied. TiO2 NCs function as an electron acceptor and electronic conductor. Meanwhile, PPy acts as holes conductor and RS dye acts as a photosensitizer enhances the optical and electrical properties of the thin films. The UV absorption spectrum of TiO2 NCs, PPy and RS are characterized by UV-Visible spectroscopy, while the functional group of RS was characterized by Fourier transform infrared spectroscopy (FTIR). The UV-Vis spectra showed that TiO2 NCs, PPy and RS were absorbed over a wide range of light spectrum which were 200-300 nm, 300-900 nm and 250-900 nm; respectively. The FTIR spectra of the RS showed the presence of hydroxyl group which was responsible for a good sensitizer for these hybrid solar cells. The electrical conductivity of these hybrid thin films were measured by using four point probes. The electrical conductivity of ITO/ (1)TiO2 NCs/PPy/RS thin film under the radiation of 100 Wm-2 was 0.062 Scm-1, hence this hybrid thin films can be applied in solar cell application.

  10. Conductance measurement by two-line probe method of polypyrrole nano-films formed on mica by admicellar polymerization

    International Nuclear Information System (INIS)

    Mou, C.-Y.; Yuan, W.-L.; Tsai, I-S.; O'Rear, Edgar A.; Barraza, Harry

    2008-01-01

    Measuring the electrical conductance is of importance in fabricating electronic devices based on semiconducting thin films. In this report, electrically conducting polypyrrole (PPy) nano-films were deposited on insulating mica plates by admicellar polymerization. It becomes difficult to measure such film conductance in the lateral direction due the nanometric thickness which only allows for very low electrical current. In order to understand the effects of surfactant on the film conductivity, morphological studies using atomic force microscopy and conductance measurements with a sub-fA multimeter were performed. Higher conductances were found for PPy thin films made using surfactant templates, than that of a bare mica surface. Using the two-line probe method by drawing two lines of silver glue 8 mm apart on the sample surface, the current-voltage curves of bare mica surface yielded a lateral conductance of 6.0 x 10 -13 S. In comparison, PPy thin films made using sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) as surfactant templates showed conductances of 1.2 x 10 -11 S and 7.7 x 10 -12 S, respectively. The higher conductances indicate tunneling, hopping, and percolation of charge carriers throughout the films. The lower-bound conductivities were calculated as 4.0 x 10 -3 S/cm and 2.6 x 10 -3 S/cm, measured based on the average thickness 2.3 nm for the SDS-PPy films and 2.4 nm for the CTAB-PPy films. Conductivities for both SDS and CTAB template PPy films are found to be of the same order

  11. Conductance measurement by two-line probe method of polypyrrole nano-films formed on mica by admicellar polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mou, C.-Y. [Graduate Institute of Textile Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Yuan, W.-L. [Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan (China)], E-mail: wyuan@fcu.edu.tw; Tsai, I-S. [Graduate Institute of Textile Engineering, Feng Chia University, Taichung 40724, Taiwan (China); O' Rear, Edgar A. [School of Chemical, Biological and Material Engineering, University of Oklahoma, Norman, OK 73019 (United States); Barraza, Harry [Unilever R and D HPC, Quarry Road East, Bebington, Wirral, CH63 3JW (United Kingdom)

    2008-10-01

    Measuring the electrical conductance is of importance in fabricating electronic devices based on semiconducting thin films. In this report, electrically conducting polypyrrole (PPy) nano-films were deposited on insulating mica plates by admicellar polymerization. It becomes difficult to measure such film conductance in the lateral direction due the nanometric thickness which only allows for very low electrical current. In order to understand the effects of surfactant on the film conductivity, morphological studies using atomic force microscopy and conductance measurements with a sub-fA multimeter were performed. Higher conductances were found for PPy thin films made using surfactant templates, than that of a bare mica surface. Using the two-line probe method by drawing two lines of silver glue 8 mm apart on the sample surface, the current-voltage curves of bare mica surface yielded a lateral conductance of 6.0 x 10{sup -13} S. In comparison, PPy thin films made using sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) as surfactant templates showed conductances of 1.2 x 10{sup -11} S and 7.7 x 10{sup -12} S, respectively. The higher conductances indicate tunneling, hopping, and percolation of charge carriers throughout the films. The lower-bound conductivities were calculated as 4.0 x 10{sup -3} S/cm and 2.6 x 10{sup -3} S/cm, measured based on the average thickness 2.3 nm for the SDS-PPy films and 2.4 nm for the CTAB-PPy films. Conductivities for both SDS and CTAB template PPy films are found to be of the same order.

  12. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior

    Science.gov (United States)

    Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra; Shimpi, Navinchandra G.

    2017-02-01

    Nanocomposites of polypyrrole (PPy) with varying concentration of ZnO nanorods (ZnO NRs) were synthesized using in-situ oxidative polymerization technique. The prepared nanocomposites (PPy, PPy-ZnO and CSA doped PPy-ZnO) were studied for various oxidizing and reducing gases at room temperature and found to be more selective towards ammonia gas. Various concentrations of ZnO NRs in Ppy matrix were studied and 15% was found to be optimum in terms of sensor response (66% towards 120 ppm NH3). Further, with 15% doping of camphor sulphonic acid (CSA) in PPy-ZnO nanocomposite for 15% ZnO NRs in Ppy matrix, sensor response increased from 66 to 79% towards 120 ppm of NH3. Structural, Optical and thermal behavior of nanocomposites were studied using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) Spectroscopy, Thermo-gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy (FESEM). ZnO has been completely embedded inside the polymeric chains as observed from in SEM. Meanwhile, FT-IR spectra indicate better conjugation and interaction in nanocomposites. With CSA doping interaction grows stronger due to extended delocalization over π electrons leading to higher sensor response and with response time and recovery time of 24 s and 34 s respectively. CSA doped PPy-ZnO (15%) nanocomposites observed to be a potential candidate for ammonia detection at lower ppm level.

  13. A novel EIS field effect structures coated with TESUD-PPy-PVC-dibromoaza[7]helicene matrix for potassium ions detection

    Energy Technology Data Exchange (ETDEWEB)

    Tounsi, Moncef, E-mail: tounsi1981@live.fr [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Braiek, Mourad [Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène, Faculté des Sciences, Université de Monastir, Avenue de l' environnement, 5019, Monastir (Tunisia); Barhoumi, Houcine [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Baraket, Abdoullatif; Lee, Michael; Zine, Nadia [Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France); Maaref, Abderrazak [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-04-01

    In this work, we describe the development of new Aza[7]helicene-containing PVC-based membranes for the K{sup +} ions quantification. Here, silicon nitride-based structures (Si-p/SiO{sub 2}/Si{sub 3}N{sub 4}) were developed and the surface was activated, functionalized with an aldehyde–silane (11-(Triethoxysilyl)undecanal (TESUD)), functionalized with polypyrrole (PPy), and coated with the polyvinylchloride (PVC)-membrane containing the Aza[7]helicene as ionophore. All stages of functionalization process have been thoroughly studied by contact angle measurements (CAMs) and atomic force microscopy (AFM). The developed ion-selective electrode (ISE) was then applied using electrochemical impedance spectroscopy (EIS) for the detection of potassium ions. A linear range was observed between 1.0 × 10{sup −8} M to 1.0 × 10{sup −3} M and a detection limit of 1.0 × 10{sup −8} M was observed. The EIS results have showed a good sensitivity to potassium ion using this novel technique. The target helicene exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td > 300 °C) and it indicates that helicene may be a promising material as ionophore for ion-selective electrodes (ISEs) elaboration. - Highlights: • Synthesis and characterization of a new derivatives of Aza[7]helicenes • Manufacture of PPy structures on the SiO{sub 2}/Si{sub 3}N{sub 4} surface using the TESUD as cross linking agent. • The PPy fabricated microstructures can be used as support matrix in biosensing. • Impedimetric K{sup +}-ISEs was developed by using dibromoaza[7]helicene as ionophore for K{sup +} ions determination.

  14. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process.

    Science.gov (United States)

    Upadhyay, J; Kumar, A; Gogoi, B; Buragohain, A K

    2015-09-01

    Polypyrrole nanotube-silver nanoparticle nanocomposites (PPy-NTs:Ag-NPs) have been synthesized by in-situ reduction of silver nitrate (AgNO3) to suppress the agglomeration of Ag-NPs. The morphology and chemical structure of the nanocomposites have been studied by HRTEM, SEM, XRD, FTIR and UV-vis spectroscopy. The average diameter of the polypyrrole nanotubes (PPy-NTs) is measured to be 130.59±5.5 nm with their length in the micrometer range, while the silver nanoparticles (Ag-NPs) exhibit spherical shape with an average diameter of 23.12±3.23 nm. In-vitro blood compatibility of the nanocomposites has been carried out via hemolysis assay. Antimicrobial activity of the nanocomposites has been investigated with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. The results depict that the hemolysis and antimicrobial activities of the nanocomposites increase with increasing Ag-NP concentration that can be controlled by the AgNO3 precursor concentration in the in-situ process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Yücel Sahin

    2008-09-01

    Full Text Available A molecularly imprinted polymer (MIP polypyrrole (PPy-based film was fabricated for the determination of ascorbic acid. The film was prepared by incorporation of a template molecule (ascorbic acid during the electropolymerization of pyrrole onto a pencil graphite electrode (PGE in aqueous solution using a cyclic voltammetry method. The performance of the imprinted and non-imprinted (NIP films was evaluated by differential pulse voltammetry (DPV. The effect of pH, monomer and template concentrations, electropolymerization cycles and interferents on the performance of the MIP electrode was investigated and optimized. The molecularly imprinted film exhibited a high selectivity and sensitivity toward ascorbic acid. The DPV peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 0.25 to 7.0 mM of ascorbic acid with a correlation coefficient of 0.9946. The detection limit (3σ was determined as 7.4x10-5 M (S/N=3. The molecularly-imprinted polypyrrole-modified pencil graphite electrode showed a stable and reproducible response, without any influence of interferents commonly existing in pharmaceutical samples. The proposed method is simple and quick. The PPy electrodes have a low response time, good mechanical stability and are disposable simple to construct.

  16. Electrical and dielectric investigation of intercalated polypyrrole montmorillonite nanocomposite prepared by spontaneous polymerization of pyrrole into Fe(III)-montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Zidi, Rabii, E-mail: rabiizidi@gmail.com [Physical Chemistry Laboratory for Mineral Materials and their Applications, National Center for Research in Materials Sciences (CNRSM), B.P.73, 8020 Soliman (Tunisia); Bekri-Abbes, Imene; Sdiri, Nasr [Physical Chemistry Laboratory for Mineral Materials and their Applications, National Center for Research in Materials Sciences (CNRSM), B.P.73, 8020 Soliman (Tunisia); Vimalanandan, Ashokanand; Rohwerder, Michael [Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Srasra, Ezzeddine [Physical Chemistry Laboratory for Mineral Materials and their Applications, National Center for Research in Materials Sciences (CNRSM), B.P.73, 8020 Soliman (Tunisia)

    2016-10-15

    Highlights: • We have prepared and characterized a Fe-MMT/PPy nanocomposites. • Investigate electrical conductivity and dielectric properties of the nanocomposite. • Investigate the temperature and frequency dependencies of alternating current conductivity of nanocomposites. - Abstract: Pyrrole was introduced into Fe(III)-exchanged montmorillonite to spontaneously polymerize within the interlayer resulting in the formation of intercalated polypyrrole-montmorillonite nanocomposite. The molar proportion of pyrrole to interlayer Fe{sup 3+} (R) has been varied from 0.5 to 5. The nanocomposite has been characterized by X-ray diffraction, Scanning Electronic Microscope, FTIR spectroscopy and impedance spectroscopy. It has been shown that intercalated polypyrrole montmorillonite nanocomposite was obtained. The results showed that the dc conductivity and dielectric properties of polypyrrole depend on R. The alternating current (ac) conductivity of the polymer obeys the power law, i.e., σ{sub ac}(ω) = Aω{sup s}. The alternating conductivity of nanocomposite was controlled by the correlated barrier hopping model. The activation energy for alternating current mechanism decreases with increasing frequency which confirms the hopping conduction to the dominant mechanism as compared with the dc activation energy. The dielectric relaxation mechanism was explained on the basis of complex dielectric modulus.

  17. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    Science.gov (United States)

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2008-09-01

    Full Text Available A new amperometric uric acid biosensor was developed by immobilizing uricase by a glutaraldehyde crosslinking procedure on polyaniline-polypyrrole (pani-ppy composite film on the surface of a platinum electrode. Determination of uric acid was performed by the oxidation of enzymatically generated H2O2 at 0.4 V vs. Ag/AgCl. The linear working range of the biosensor was 2.5×10-6 – 8.5×10-5 M and the response time was about 70 s. The effects of pH, temperature were investigated and optimum parameters were found to be 9.0, 55 oC, respectively. The stability and reproducibility of the enzyme electrode have been also studied.

  19. Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media

    International Nuclear Information System (INIS)

    Valarselvan, S.; Manisankar, P.

    2011-01-01

    Graphical abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . Highlights: → Hydroxyl derivatives of anthraquinones as electrocatalysts for dioxygen reduction. → AQ/PPy composite film on GC electrode exhibits potent electrocatalytic activity. → Substituent groups influence electrocatalytic dioxygen reduction. → Surface coverage varies the rate of electrocatalytic dioxygen reduction. - Abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O 2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.

  20. Super high precision 200 ppi liquid crystal display series; Chokoseido 200 ppi ekisho display series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In mobile equipment, in demand is a high precision liquid crystal display (LCD) having the power of expression equivalent to printed materials like magazines because of the necessity of displaying a large amount of information on a easily potable small screen. In addition, with the spread and high-quality image of digital still cameras, it is strongly desired to display photographed digital image data in high quality. Toshiba Corp., by low temperature polysilicone (p-Si) technology, commercialized the liquid crystal display series of 200 ppi (pixels per inch) precision dealing with the rise of the high-precision high-image quality LCD market. The super high precision of 200 ppi enables the display of smooth beautiful animation comparable to printed sheets of magazines and photographs. The display series are suitable for the display of various information services such as electronic books and electronic photo-viewers including internet. The screen sizes lined up are No. 4 type VGA (640x480 pixels) of a small pocket notebook size and No. 6.3 type XGA (1,024x768 pixels) of a paperback size, with a larger screen to be furthered. (translated by NEDO)

  1. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor.

    Science.gov (United States)

    Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying

    2015-09-30

    In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.

  2. Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors

    Science.gov (United States)

    Weng, Yu-Ting; Pan, Hsiao-An; Wu, Nae-Lih; Chen, Geroge Zheng

    2015-01-01

    This is the first investigation on electrically conducting polymers-based supercapacitor electrodes over a wide temperature range, from -18 °C to 60 °C. A high-performance supercapacitor electrode material consisting of TiC nanocube core and conformal crystalline polypyrrole (PPy)/poly-vinyl-alcohol (PVA) lamellar shell has been synthesized by heterogeneous nucleation-induced interfacial crystallization. PPy is induced to crystallize on the negatively charged TiC nanocube surfaces via strong interfacial interactions. In this organic-inorganic hybrid nanocomposite, the long chain PVA enables enhanced cycle life due to improved mechanical properties, and the TiC nanocube not only contributes to electron conduction, but also dictates the PPy morphology/crystallinity for maximizing the charging-discharging performance. The crystalline PPy/PAV layer on the TiC nanocube offers unprecedented high capacity (>350 F g-1-PPy at 300 mV s-1 with ΔV = 1.6 V) and cycling stability in a temperature range from -18 °C to 60 °C. The presented hybrid-filler and interfacial crystallization strategies can be applied to the exploration of new-generation high-power conducting polymer-based supercapacitor materials.

  3. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba [Department of Physics, University of Engineering and Technology, Lahore, 54000 (Pakistan); Rashid, Imran, E-mail: f.imran.rashid@gmail.com [Department of Electrical Engineering, The University of Lahore, Islamabad, 44000 (Pakistan)

    2016-08-15

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. The four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  4. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Shaista Rafique

    2016-08-01

    Full Text Available This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE for the precious platinum (Pt free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR, X-ray diffraction, Scanning electron microscope (SEM, cyclic voltammetry (CV and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance Rct(2.50 Ω cm2 for I3−/I− redox solution. The four probe studies showed the large electrical conductivity (226S cm−1 of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm−2 and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  5. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Science.gov (United States)

    Rafique, Shaista; Sharif, Rehana; Rashid, Imran; Ghani, Sheeba

    2016-08-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance Rct(2.50 Ω cm2) for I3-/I- redox solution. The four probe studies showed the large electrical conductivity (226S cm-1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm-2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  6. One-Step Electrosynthesis of Graphene Oxide-Doped Polypyrrole Nanocomposite as a Nanointerface for Electrochemical Impedance Detection of Cell Adhesion and Proliferation Using Two Approaches

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-01-01

    Full Text Available A novel nanointerface of graphene oxide-doped polypyrrole (GO/PPy is prepared on the surface of an indium tin oxide (ITO electrode for electrochemical impedance detection of cell adhesion and proliferation through a facile one-step electropolymerization. The prepared GO/PPy nanocomposite had a robust surface and provided a biocompatible substrate for A549 cells adhesion and proliferation. The adhesion and proliferation of A549 cells on the surface of the GO/PPy modified ITO electrode directly increased the electron transfer resistance of [Fe(CN6]3−/4− redox probe and influenced the impedance properties of the GO/PPy modified ITO electrode system. Based on these results, the adhesion and proliferation of A549 cells could be detected by electrochemical impedance technology using two approaches. Therefore, the present paper confirms that the GO/PPy nanocomposite film provides an excellent biological-electrical interface for cell immobilization and offers advantages of simple, low-cost fabrication and multiparameter detection and possesses potential application in cytological studies.

  7. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.

    Science.gov (United States)

    Yang, Sumi; Jang, LindyK; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung-Woo; Lee, Jae Young

    2016-11-01

    Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20-200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Removal of Cd+2 from aqueous solutions onto polypyrrole coated reticulated vitreous carbon eletrodes

    Directory of Open Access Journals (Sweden)

    Tramontina Jucelânia

    2001-01-01

    Full Text Available The development of simple methods for removal of heavy metals from aqueous samples is a relevant field of research. In this connection, the electrodeposition of the Cd+2 ion, one of the most toxic species for animals and human beings, was investigated in aerated pH 4.8 sulfuric-sulfate solutions. In potentiostatic conditions, the maximum rate of cadmium deposition at a neutral polypyrrole (PPy0 coated reticulated vitreous carbon (RVC working electrode occurs at -3.0 V vs. the saturated calomel reference electrode (SCE. Moreover, the conversion rate depends both on the applied potential and on the mass transport regime, and, for solutions containing 10 mg L-1 of Cd2+, the highest removal efficiency achieved is 84% after 90 min of electrolysis. The concentration decay of the Cd+2 ion in the solution was monitored by anodic stripping voltammetry (ASV at a hanging mercury drop electrode. Besides, metallic cadmium deposited onto the polypyrrole modified RVC electrode was evidenced by Scanning Electron Microscopy (SEM analysis using the backscattered electron image (BEI technique and by Energy Dispersive Spectrometry (EDS.

  9. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag{sup 8+})

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dhillon, Anju [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Avasthi, D.K. [Inter University Accelerator Center (IUAC), Aruna Asaf Ali Road, New Delhi 110067 (India)

    2013-07-15

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10{sup 10} to 10{sup 12} ions cm{sup −2} of 100 MeV silver (Ag{sup 8+}) ions. The temperature dependence of ac conductivity [σ{sub m}(ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag{sup 8+}) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation.

  10. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag8+)

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D.K.

    2013-01-01

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10 10 to 10 12 ions cm −2 of 100 MeV silver (Ag 8+ ) ions. The temperature dependence of ac conductivity [σ m (ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag 8+ ) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation

  11. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Ebrahimiasl S

    2014-12-01

    Full Text Available Saeideh Ebrahimiasl,1,2 Azmi Zakaria,3 Anuar Kassim,4 Sri Norleha Basri4 1Department of Nanotechnology, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran; 3Department of Physics, Universiti Putra Malaysia, Serdang, Malaysia; 4Department of Chemistry, Universiti Putra Malaysia, Serdang, Malaysia Abstract: An antibacterial and conductive bionanocomposite (BNC film consisting of polypyrrole (Ppy, zinc oxide (ZnO nanoparticles (NPs, and chitosan (CS was electrochemically synthesized on indium tin oxide (ITO glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO–Ppy/CS and ITO–Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%, while it was increased gradually for higher ratios (10, 15, and 20 wt%. The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were

  12. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  13. Synthesis of polystyrene@(silver-polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Science.gov (United States)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2015-01-01

    We reported the synthesis of polystyrene@(silver-polypyrrole) (PS@(Ag-PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag+ and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA)2]+) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO3 and Py, the introduction of [Ag(TEA)2]+ ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag-PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA)2]+ ions resulted in the increase of Ag-PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag-PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 105 - 9×105 cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag-PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.

  14. Ligand functionalization as a deactivation pathway in a fac-Ir(ppy)3-mediated radical addition.

    Science.gov (United States)

    Devery Iii, James J; Douglas, James J; Nguyen, John D; Cole, Kevin P; Flowers Ii, Robert A; Stephenson, Corey R J

    2015-01-01

    Knowledge of the kinetic behavior of catalysts under synthetically relevant conditions is vital for the efficient use of compounds that mediate important transformations regardless of their composition or driving force. In particular, these data are of great importance to add perspective to the growing number of applications of photoactive transition metal complexes. Here we present kinetic, synthetic, and spectroscopic evidence of the mechanistic behavior of fac -Ir(ppy) 3 in a visible light-mediated radical addition to 3-methylindole, demonstrating the instability of fac -Ir(ppy) 3 under these conditions. During the reaction, rapid in situ functionalization of the photocatalyst occurs, eventually leading to deactivation. These findings demonstrate a conceivable deactivation process for catalytic single electron reactions in the presence of radicophilic ligands. Attempts to inhibit photocatalyst deactivation through structural modification provide further insight into catalyst selection for a given system of interest.

  15. Sensitivity of PPI analysis to differences in noise reduction strategies.

    Science.gov (United States)

    Barton, M; Marecek, R; Rektor, I; Filip, P; Janousova, E; Mikl, M

    2015-09-30

    In some fields of fMRI data analysis, using correct methods for dealing with noise is crucial for achieving meaningful results. This paper provides a quantitative assessment of the effects of different preprocessing and noise filtering strategies on psychophysiological interactions (PPI) methods for analyzing fMRI data where noise management has not yet been established. Both real and simulated fMRI data were used to assess these effects. Four regions of interest (ROIs) were chosen for the PPI analysis on the basis of their engagement during two tasks. PPI analysis was performed for 32 different preprocessing and analysis settings, which included data filtering with RETROICOR or no such filtering; different filtering of the ROI "seed" signal with a nuisance data-driven time series; and the involvement of these data-driven time series in the subsequent PPI GLM analysis. The extent of the statistically significant results was quantified at the group level using simple descriptive statistics. Simulated data were generated to assess statistical improvement of different filtering strategies. We observed that different approaches for dealing with noise in PPI analysis yield differing results in real data. In simulated data, we found RETROICOR, seed signal filtering and the addition of data-driven covariates to the PPI design matrix significantly improves results. We recommend the use of RETROICOR, and data-driven filtering of the whole data, or alternatively, seed signal filtering with data-driven signals and the addition of data-driven covariates to the PPI design matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Polypyrrole Film as a Drug Delivery System for the Controlled Release of Risperidone

    Science.gov (United States)

    Svirskis, Darren; Travas-Sejdic, Jadranka; Rodgers, Anthony; Garg, Sanjay

    2009-07-01

    Conducting polymers are finding applications in medicine including drug delivery systems, biosensors and templates for the regeneration of nervous pathways. We aim to develop a novel system where the drug release rate can be controlled by electrical stimulation. Polypyrrole (PPY) is being used as a drug delivery system due to its inherent electrical conductivity, ease of preparation and apparent biocompatibility. Risperidone is an atypical antipsychotic drug used in the treatment of psychosis and related disorders, including schizophrenia. PPY was synthesised using p-toluene sulfonic acid as a primary dopant, in the presence of risperidone. A validated high performance liquid chromatography (HPLC) analytical method was used to quantify risperidone release. It has been demonstrated that the release rate of risperidone can be altered through the application, or absence, of electrical stimulation. Technology such as this would find use in drug-delivering implants where the dose could be adjusted through application of external stimulus, optimising benefit to side effect ratio, while simultaneously ensuring patient adherence (which is a particular challenge in mental health conditions).

  17. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries

    Science.gov (United States)

    Anguchamy, Yogesh K.; Lee, Jong-Won; Popov, Branko N.

    Polypyrrole (PPy)/silver vanadium oxide (SVO) composite cathode materials were synthesized by polymerizing pyrrole onto the surface of pure SVO particles. Electrochemical characterization was carried out by performing galvanostatic discharge, pulse discharge and ac-impedance experiments. The composite electrode exhibited better performance than pristine SVO in all the experiments. The composite electrodes yielded a higher discharge capacity and a better pulse discharge capability when compared to the pristine SVO electrode. The pulse discharge and ac-impedance studies indicated that PPy forms an effective conductive network on the SVO surface and thereby reduces the particle-to-particle contact resistance and facilitates the interfacial charge transfer kinetics. To determine the thermal stability of the composite cathode, galvanostatic discharge and ac-impedance experiments were performed at different temperatures. The capacity increased with temperature due to enhanced charge transfer kinetics and low mass transfer limitations. The peak capacity was obtained at 60 °C, after which the performance degraded with any further increase in temperature.

  18. Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants.

    Science.gov (United States)

    Pintér, Enikõ; Patakfalvi, Rita; Fülei, Tamas; Gingl, Zoltan; Dékany, Imre; Visy, Csaba

    2005-09-22

    Conducting polypyrrole (PPy) powder synthesized by using FeCl3 x 6 H2O and/or Fe(NO3)3 oxidants was impregnated in silver salt solutions. The stability and decomposition of the material was followed by thermogravimetric measurements. The total silver content was determined by atom absorption spectroscopy (ICP-AAS). The heat and electric conductivities of the composites were measured and correlated with the silver content. The incorporated silver was speciated and measured by X-ray diffraction (XRD). The spectra proved that the chemical state of the silver incorporated into the composite depends on the anion used in the polymerization process. In the case of the polymerization in a nitrate ion containing solution, the impregnation leads exclusively to the formation of metallic silver. The size distribution of the AgCl and Ag nanoparticles, determined from transmission electron microscopy (TEM) pictures in the different composites, proves the formation of a rather uniform species below 10 and 7 nm, respectively. The observations can be correlated with the different interactions in the PPy-chloride/nitrate-silver systems. The redox type interaction based conclusions can be considered as a guide during the preparation of other metal-conducting polymer composites.

  19. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Anguchamy, Yogesh K.; Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2008-09-15

    Polypyrrole (PPy)/silver vanadium oxide (SVO) composite cathode materials were synthesized by polymerizing pyrrole onto the surface of pure SVO particles. Electrochemical characterization was carried out by performing galvanostatic discharge, pulse discharge and ac-impedance experiments. The composite electrode exhibited better performance than pristine SVO in all the experiments. The composite electrodes yielded a higher discharge capacity and a better pulse discharge capability when compared to the pristine SVO electrode. The pulse discharge and ac-impedance studies indicated that PPy forms an effective conductive network on the SVO surface and thereby reduces the particle-to-particle contact resistance and facilitates the interfacial charge transfer kinetics. To determine the thermal stability of the composite cathode, galvanostatic discharge and ac-impedance experiments were performed at different temperatures. The capacity increased with temperature due to enhanced charge transfer kinetics and low mass transfer limitations. The peak capacity was obtained at 60 C, after which the performance degraded with any further increase in temperature. (author)

  20. Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention

    International Nuclear Information System (INIS)

    Gonzalez, M.B.; Saidman, S.B.

    2011-01-01

    Research highlights: → PPy films were electrodeposited on 316L SS in solutions containing MoO 4 2- and/or NO 3 - . → The coatings completely inhibit pitting corrosion in chloride solutions. → At pH 12, the PPy is electroactive and the oxide film is more stable. → The more protective films were obtained in presence of MoO 4 2- and NO 3 - at pH 12. - Abstract: The electrosynthesis of polypyrrole films onto 316L stainless steel from near neutral and alkaline solutions containing molybdate and nitrate is reported. The corrosion behavior of the coated electrodes was investigated in NaCl solutions by electrochemical techniques and scanning electron microscopy. The polymer formed potentiostatically in a solution of pH 12 is the most efficient in terms of adhesion and corrosion protection. The coating significantly reduces the pitting corrosion of the substrate. The results are interpreted in terms of the nature of dopants, the good electroactivity of the polymer formed in alkaline solution and the passivating properties of the oxide layer.

  1. β-Cyclodextrin grafted polypyrrole magnetic nanocomposites toward the targeted delivery and controlled release of doxorubicin

    Science.gov (United States)

    Hong, Shasha; Li, Zengbo; Li, Chenzhong; Dong, Chuan; Shuang, Shaomin

    2018-01-01

    The Fe3O4@PPy-HA-β-CD nanocomposites as the novel nanocarrier were prepared by grafting ethylenediamine derivative of​ β-​CD to the surface of polypyrrole-coated magnetic nanoparticles (Fe3O4@PPy) via using hyaluronan (HA) as the intermediate linker. HA was also the efficient target ligand for CD44. The as-prepared drug carrier was characterized by TEM, TGA, XRD, and VSM and used for the delivery of doxorubicin hydrochloride (DOX) with the high loading content of 447 mg/g. The multilayer Freundlich isotherm model was found to be a good fit for the loading of the drug carrier for DOX. Significant NIR-triggered release of DOX was observed in a weak acidic pH. And the release data in vitro was well described using the Retiger-Pepper kinetic model. Furthermore, MTT assay and confocal microscopy against Hep-G2 cells clearly illustrated that the drug carrier had no associated cytotoxicity and could easily enter the cells. The release and accumulation of DOX were observed in the cell nuclei. Thus, the DOX-loaded drug carrier killed the cancer cells efficaciously and minimized adverse side effects due to its target effect. These results suggested the as-prepared drug carrier would be of great potential for the controlled release and targeted delivery of DOX.

  2. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  3. Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaojuan, E-mail: cherry-820@163.com; Shi, Yanlong; Jin, Shuping

    2015-10-30

    The three-dimensional microporous polypyrrole/polysulfone (PPY/PSF) composite film was fabricated via a simple polymerization method. The morphology structure and chemical composition of the composite film were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The electrochemical properties of the composite film electrode were evaluated by cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The material exhibits excellent capacitance performance including high capacitance of 500 F g{sup −1} at 0.3 A g{sup −1} current density, good cycle stability in 800 continuous cycles (only 4.5% decay after 800 cycles at 0.3 A g{sup −1}), and low inter resistance. The good property of the PPY/PSF electrode should be attributed to its structural features, including two-layer microporous structure which facilitates the penetration of electrolytes into the inner surface, high surface area which provides more active sites. These results show that the composite film is a promising candidate for high energy electrochemical capacitors.

  4. Stretched graphene tented by polycaprolactone and polypyrrole net–bracket for neurotransmitter detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying, E-mail: ying.wen@shnu.edu.cn; Yang, Haifeng, E-mail: Hfyang@shnu.edu.cn

    2017-02-28

    Highlights: • A new DA sensor is constructed with RGO and electrospun polymer fiber film. • RGO sheets can be mechanically stretched by the as-fabricated net-brackets. • The DA sensor shows highly catalytic activity toward the oxidation of dopamine. • The as-prepared sensor is used to detect DA in injection or urine. • The protocol to make sensors in large scale way has good reproducibility. - Abstract: A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.

  5. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  6. On the development of polypyrrole coatings with self-healing properties for iron corrosion protection

    International Nuclear Information System (INIS)

    Paliwoda-Porebska, G.; Stratmann, M.; Rohwerder, M.; Potje-Kamloth, K.; Lu, Y.; Pich, A.Z.; Adler, H.-J.

    2005-01-01

    This paper presents studies on the efficacy and on the limits of polypyrrole (Ppy) doped with either MoO 4 2- or [PMo 12 O 40 ] 3- as self-healing corrosion protecting coatings. The kinetics of the cathodic delamination were studied by means of the Scanning Kelvin Probe (SKP). This method, in combination with cyclic voltammetry, UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS), shows a potential driven anion release from the Ppy coating that results in an inhibition of the corrosion process taking place in the defect. Thus, an intelligent release of inhibitor occurs only when the potential at the interface decreases. Inhibitor anions are released only due to an active defect. However, the release mechanism can be easily negatively affected by the presence of small cations and/or by too high pH values at the buried interface. Hence, such a self-healing coating has to be carefully designed in order to ensure an effective performance

  7. Towards conducting inks: polypyrrole-silver colloids

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Bober, Patrycja; Morávková, Zuzana; Peřinka, N.; Kaplanová, M.; Syrový, T.; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 122, 10 March (2014), s. 296-302 ISSN 0013-4686 R&D Projects: GA TA ČR TE01020022; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conducting inks * polypyrrole * colloids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.504, year: 2014

  8. Electrosynthesis and characterization of conducting polypyrrole ...

    African Journals Online (AJOL)

    The preparation of polypyrrole conducting polymer in aqueous medium by electrochemical method containing several alkylsulfonate dopants such as methylsulfonate (C1), butylsulfonate (C4), octylsulfonate (C8) and dodecylsulfonate (C12) are reported. The prepared polymer films were characterized by cyclic voltammetry, ...

  9. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug

    Science.gov (United States)

    Karimi-Maleh, Hassan; Bananezhad, Asma; Ganjali, Mohammad R.; Norouzi, Parviz; Sadrnia, Abdolhossein

    2018-05-01

    Didanosine is nucleoside analog reverse transcriptase inhibitors with many side effects such as nausea and vomiting, stomach pain, tingling, burning and numbness and determination of this drug is very important in biological samples. This paper presents a DNA biosensor for determination of didanosine (DDI) in pharmaceutical samples. A pencil graphite electrode modified with conductive materials such as polypyrrole (PPy) and reduced graphene oxide (rGO) (PGE/PPy/rGO) was used for this goal. The double-stranded DNA was successfully immobilized on PGE/PPy/rGO. The PGE/PPy/rGO was characterized by microscopic and electrochemical methods. Then, the interaction of DDI with DNA was identified by decreases in the oxidation currents of guanine and adenine by differential pulse voltammetric (DPV) method. The dynamic range of DDI identified in the range of 0.02-50.0 μM and this electrode provided a low limit of detection (LOD = 8.0 nM) for DDI. The PGE/PPy/rGO loaded with ds-DNA was utilized for the measurement of DDI in real samples and obtained data were compared with HPLC method. The statistical tests such as F-test and t-test were used for confirming ability of PGE/PPy/rGO loaded with ds-DNA for analysis of DDI in real samples.

  10. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2017-11-15

    A dramatic enhancement of organics degradation and electricity generation has been achieved in a wastewater fuel cell (WFC) system via strengthening superoxide radical with radical chain reaction by using a novel 3D anthraquinone/polypyrrole modified graphite felt (AQS/PPy-GF) cathode. The AQS/PPy-GF was synthesized by one-pot electrochemical polymerization method and used to in-situ generate superoxide radical by reducing oxygen under self-imposed electric field. Results showed that methyl orange (MO) were effectively degraded in AQS/PPy-GF/Fe 2+ system with a high apparent rate constant (0.0677 min -1 ), which was 3.9 times that (0.0174 min -1 ) in the Pt/Fe 2+ system and even 9.4 times that (0.0072 min -1 ) in the traditional WFC system (without Fe 2+ ). Meanwhile, it showed a superior performance for electricity generation and the maximum power density output (1.130 mW cm -2 ) was nearly 3.3 times and 5.0 times higher, respectively, when compared with the Pt/Fe 2+ system and traditional WFC. This dramatic advance was attributed to 3D AQS/PPy-GF cathode which produces more O 2 - via one-electron reduction process. The presence of O 2 - cannot only directly contribute to MO degradation, but also promotes the final complete mineralization by turning itself to OH. Additionally, O 2 - accelerates the Fe 2+ /Fe 3+ couple cycling, thus avoiding continuous addition of any external ferrous ions. Inhibition and probe studies were conducted to ascertain the role of several radicals (OH and O 2 - ) on the MO degradation. Superoxide radicals were considered as the primary reactive oxidants, and the degradation mechanism of MO was proposed. The proposed WFC system provides a more economical and efficient way for energy recovery and wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids.

    Science.gov (United States)

    Chen, Liangbi; Chen, Wenfeng; Ma, Chunhua; Du, Dan; Chen, Xi

    2011-03-15

    A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes/polypyrrole (MWCNTs/Ppy) was prepared with an electrochemical method and used for the extraction of pyrethroids in natural water samples. The results showed that the MWCNTs/Ppy coated fiber had high organic stability, and remarkable acid and alkali resistance. In addition, the MWCNTs/Ppy coated fiber was more effective and superior to commercial PDMS and PDMS/DVD fibers in extracting pyrethroids in natural water samples. Under optimized conditions, the calibration curves were found to be linear from 0.001 to 10 μg mL(-1) for five of the six pyrethroids studied, the exception being fenvalerate (which was from 0.005 to 10 μg mL(-1)), and detection limits were within the range 0.12-0.43 ng mL(-1). The recoveries of the pyrethroids spiked in water samples at 10 ng mL(-1) ranged from 83 to 112%. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand.

    Science.gov (United States)

    Jiang, Yinlai; Togane, Masami; Lu, Baoliang; Yokoi, Hiroshi

    2017-01-01

    One of the greatest challenges of using a myoelectric prosthetic hand in daily life is to conveniently measure stable myoelectric signals. This study proposes a novel surface electromyography (sEMG) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy electrodes) to allow people with disabilities to control prosthetic limbs. The PPy electrodes are sewn on an elastic band to guarantee close contact with the skin and thus reduce the contact electrical impedance between the electrodes and the skin. The sensor is highly customizable to fit the size and the shape of the stump so that people with disabilities can attach the sensor by themselves. The performance of the proposed sensor was investigated experimentally by comparing measurements of Ag/AgCl electrodes with electrolytic gel and the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the two types of sensors suggests the effectiveness of the proposed sensor. Another experiment of sEMG pattern recognition to control myoelectric prosthetic hands showed that the PPy electrodes are as effective as Ag/AgCl electrodes for measuring sEMG signals for practical myoelectric control. We also investigated the relation between the myoelectric signals' signal-to-noise ratio and the source impedances by simultaneously measuring the source impedances and the myoelectric signals with a switching circuit. The results showed that differences in both the norm and the phase of the source impedance greatly affect the common mode noise in the signal.

  13. A novel methanol sensor based on gas-penetration through a porous polypyrrole-coated polyacrylonitrile nanofiber mat.

    Science.gov (United States)

    Jun, Tae-Sun; Ho, Thi Anh; Rashid, Muhammad; Kim, Yong Shin

    2013-09-01

    In this work, we propose a novel chemoresistive gas sensor operated under a vertical analyte flow passing through a permeable sensing membrane. Such a configuration is different from the use of a planar sensor implemented under a conventional horizontal flow. A highly porous core-shell polyacrylonitrile-polypyrrole (PAN@PPy) nanofiber mat was prepared as the sensing element via electrospinning and two-step vapor-phase polymerization (VPP). Various analysis methods such as SEM, TEM, FT-IR and XPS measurements were employed in order to characterize structural features of the porous sensing mat. These analyses confirmed that very thin (ca. 10 nm) conductive PPy sheath layers were deposited by VPP on electrospun PAN nanofibers with an average diameter of 258 nm. Preliminary results revealed that the gas penetration-type PAN@PPy sensor had a higher sensor response and shorter detection and recovery times upon exposure to methanol analyte when compared with a conventional horizontal flow sensor due to efficient and fast analyte transfer into the sensing layer.

  14. Design and Fabrication of an All-Solid-State Polymer Supercapacitor with Highly Mechanical Flexibility Based on Polypyrrole Hydrogel.

    Science.gov (United States)

    Zang, Limin; Liu, Qifan; Qiu, Jianhui; Yang, Chao; Wei, Chun; Liu, Chanjuan; Lao, Li

    2017-10-04

    A conducting polymer-based hydrogel (PPy/CPH) with a polypyrrole-poly(vinyl alcohol) interpenetrating network was prepared by utilization of a chemical cross-linked poly(vinyl alcohol)-H 2 SO 4 hydrogel (CPH) film as flexible substrate followed by vapor-phase polymerization of pyrrole. Then an all-solid-state polymer supercapacitor (ASSPS) was fabricated by sandwiching the CPH film between two pieces of the PPy/CPH film. The ASSPS is mechanically robust and flexible with a tensile strength of 20.83 MPa and a break elongation of 377% which is superior to other flexible conducting polymer hydrogel-based supercapacitors owing to the strong hydrogen bonding interactions among the layers and the high mechanical properties of the PPy/CPH. It exhibits maximum volumetric specific capacitance of 13.06 F/cm 3 and energy density of 1160.9 μWh/cm 3 . The specific capacitance maintains 97.9% and 86.3% of its initial value after 10 000 folding cycles and 10 000 charge-discharge cycles, respectively. The remarkable electrochemical and mechanical performance indicates this novel ASSPS device is promising for flexible electronics.

  15. The Polypyrrole/Multiwalled Carbon Nanotube Modified Au Microelectrode for Sensitive Electrochemical Detection of Trace Levels of Pb2+

    Directory of Open Access Journals (Sweden)

    Xuxing Zhu

    2017-03-01

    Full Text Available The sensitive detection of trace levels of heavy metal ions such as Pb2+ is of significant importance due to the health hazard they pose. In this paper, we present a polypyrrole (PPy/multiwalled carbon nanotube (MWCNT-modified Au microelectrode. The PPy/MWCNT composite film was electrochemically deposited on the microelectrode by cyclic voltammetry (CV. The composite film was investigated by scanning electron microscope (SEM, CV, and electrochemical impedance spectroscopy (EIS, and the results show that this film presents a uniformly distributed and web-like entangled structure and good conductivity. Differential pulse stripping voltammetry (DPSV was applied to determine trace levels of Pb2+. Experimental conditions including accumulation time and deposition potential were optimized. In optimal conditions, the PPy/MWCNT-modified microelectrode performed sensitive detection of Pb2+ within a concentration range from 1 to 100 μg·L−1, and the limit of detection was 0.65 μg·L−1 at the signal-to-noise ratio of three.

  16. Preparation and properties of electro-conductive fabrics based on polypyrrole: covalent vs. non-covalent attachment

    Science.gov (United States)

    David, N. C.; Anavi, D.; Milanovich, M.; Popowski, Y.; Frid, L.; Amir, E.

    2017-10-01

    Electro-conductive fabrics were prepared via in situ oxidative polymerization of pyrrole (Py) in the presence of unmodified and chemically modified cotton fabrics. Chemical modification of cotton fabric was achieved by covalent attachment of a bifunctional linker molecule to the surface of the fabric, followed by incorporation of a monomer unit onto the linker. The fabrics were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron spectroscopy, and thermal analysis. Furthermore, the effect of Py concentration on the degree of polypyrrole (PPy) grafting, surface morphology, electrical resistivity, and laundering durability were studied for both types of cotton fabrics. Reductions of several orders of magnitude in surface and volume electrical resistivities were observed for both non-covalently and covalently linked cotton-PPy systems, whereas the effect of covalent pre-treatment of the fabric was stronger at low Py concentration. On the other hand, at higher monomer concentration, the electrical properties and laundering durability of the fabrics we comparable for both unmodified and chemically pre-treated cotton fabrics, indicating that only a small fraction of PPy chains were chemically grafted onto the fabric surface with the majority of the polymer being connected to the fabric through hydrogen bonds.

  17. NaYF4:Yb/Er@PPy core-shell nanoplates: an imaging-guided multimodal platform for photothermal therapy of cancers

    Science.gov (United States)

    Huang, Xiaojuan; Li, Bo; Peng, Chen; Song, Guosheng; Peng, Yuxuan; Xiao, Zhiyin; Liu, Xijian; Yang, Jianmao; Yu, Li; Hu, Junqing

    2015-12-01

    Imaging guided photothermal agents have attracted great attention for accurate diagnosis and treatment of tumors. Herein, multifunctional NaYF4:Yb/Er@polypyrrole (PPy) core-shell nanoplates are developed by combining a thermal decomposition reaction and a chemical oxidative polymerization reaction. Within such a composite nanomaterial, the core of the NaYF4:Yb/Er nanoplate can serve as an efficient nanoprobe for upconversion luminescence (UCL)/X-ray computed tomography (CT) dual-modal imaging, the shell of the PPy shows strong near infrared (NIR) region absorption and makes it effective in photothermal ablation of cancer cells and infrared thermal imaging in vivo. Thus, this platform can be simultaneously used for cancer diagnosis and photothermal therapy, and compensates for the deficiencies of individual imaging modalities and satisfies the higher requirements on the efficiency and accuracy for diagnosis and therapy of cancer. The results further provide some insight into the exploration of multifunctional nanocomposites in the photothermal theragnosis therapy of cancers.Imaging guided photothermal agents have attracted great attention for accurate diagnosis and treatment of tumors. Herein, multifunctional NaYF4:Yb/Er@polypyrrole (PPy) core-shell nanoplates are developed by combining a thermal decomposition reaction and a chemical oxidative polymerization reaction. Within such a composite nanomaterial, the core of the NaYF4:Yb/Er nanoplate can serve as an efficient nanoprobe for upconversion luminescence (UCL)/X-ray computed tomography (CT) dual-modal imaging, the shell of the PPy shows strong near infrared (NIR) region absorption and makes it effective in photothermal ablation of cancer cells and infrared thermal imaging in vivo. Thus, this platform can be simultaneously used for cancer diagnosis and photothermal therapy, and compensates for the deficiencies of individual imaging modalities and satisfies the higher requirements on the efficiency and accuracy for

  18. Characterization and electrocatalytic application of silver modified polypyrrole electrodes

    OpenAIRE

    A. DEKANSKI; S. TERZIC; V. M. JOVANOVIC

    2005-01-01

    Silver modified polypyrrole electrodeswere preparedwith the aim of testing them for the electrooxidation of formaldehyde in alkaline solution. The modification of polypyrrole by immersion in aqueous AgNO3 solution was studied by cyclic voltammetry and vacuum techniques (AES and XPS). The influence of time of immersion and the thickness of the polypyrrole film, prepared by electrochemical polymerization, on the modification of the polymer were examined. The results acquired from both electroch...

  19. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    Energy Technology Data Exchange (ETDEWEB)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif, E-mail: e.erhan@gyte.edu.tr

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 {mu}g/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: Black-Right-Pointing-Pointer K{sub 3}Fe(CN){sub 6} has been used for the first time as mediator for nitrate reductase. Black-Right-Pointing-Pointer Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. Black-Right-Pointing-Pointer Analytical parameters were better than standard nitrate analysis methods.

  20. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    International Nuclear Information System (INIS)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44–1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: ► K 3 Fe(CN) 6 has been used for the first time as mediator for nitrate reductase. ► Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. ► Analytical parameters were better than standard nitrate analysis methods.

  1. Effect of anionic dopants on thickness, morphology and electrical properties of polypyrrole ultra-thin films prepared by in situ chemical polymerization

    International Nuclear Information System (INIS)

    Mahmoodian, Mehrnoosh; Pourabbas, Behzad; Mohajerzadeh, Shams

    2015-01-01

    The effect of different dopant anions on deposition and characteristics of polypyrrole (PPy) thin film has been studied in this work. Ultra-thin films of conducting PPy were deposited on insulating surfaces of glass and oxidized silicon wafer by in situ chemical polymerization in the presence of different anionic dopants including sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, α-naphthalene sulfonic acid, anthraquinone-2-sulfonic acid sodium salt monohydrate/5-sulfosalicylic acid dehydrate, and camphor sulfonic acid. Hydrophilic/hydrophobic properties and morphology of the self-assembled monolayer of N-(3-trimethoxysilylpropyl)pyrrole, the surface modifying agent in this work, and PPy thin films were characterized before and after deposition by contact angle measurements, field emission scanning electron microscopy, and atomic force microscopy. Chemical structure, thickness, and conductivity of the thin films were also studied by attenuated total reflectance Fourier transform infrared spectrometer, ellipsometry, and four-point probe measurements. The results showed deposition of thin films of conducting PPy with comparable thickness in the range of 6-31 nm and different morphologies, uniformity, and smoothness with average roughness in the range of 0.3-6 nm and relatively high range of conductivity on the modified surfaces. - Highlights: • Conducting thin films of polypyrrole were deposited on glass and SiO 2 substrates. • Surface modification using pyrrole-silane was employed prior to polymerization. • Films as thin as ≈ 7 nm were deposited using different surfactant/counter ions. • Chemistry of the counter ion affects thickness, conductivity and morphology. • Lower thickness/higher conductivity were obtained by structurally flexible dopants

  2. Effect of anionic dopants on thickness, morphology and electrical properties of polypyrrole ultra-thin films prepared by in situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodian, Mehrnoosh [Dep. of Polymer Engineering, Nanostructured Materials Research Center, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Pourabbas, Behzad, E-mail: pourabas@sut.ac.ir [Dep. of Polymer Engineering, Nanostructured Materials Research Center, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Mohajerzadeh, Shams [Nano-Electronics and Thin Film Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of)

    2015-05-29

    The effect of different dopant anions on deposition and characteristics of polypyrrole (PPy) thin film has been studied in this work. Ultra-thin films of conducting PPy were deposited on insulating surfaces of glass and oxidized silicon wafer by in situ chemical polymerization in the presence of different anionic dopants including sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, α-naphthalene sulfonic acid, anthraquinone-2-sulfonic acid sodium salt monohydrate/5-sulfosalicylic acid dehydrate, and camphor sulfonic acid. Hydrophilic/hydrophobic properties and morphology of the self-assembled monolayer of N-(3-trimethoxysilylpropyl)pyrrole, the surface modifying agent in this work, and PPy thin films were characterized before and after deposition by contact angle measurements, field emission scanning electron microscopy, and atomic force microscopy. Chemical structure, thickness, and conductivity of the thin films were also studied by attenuated total reflectance Fourier transform infrared spectrometer, ellipsometry, and four-point probe measurements. The results showed deposition of thin films of conducting PPy with comparable thickness in the range of 6-31 nm and different morphologies, uniformity, and smoothness with average roughness in the range of 0.3-6 nm and relatively high range of conductivity on the modified surfaces. - Highlights: • Conducting thin films of polypyrrole were deposited on glass and SiO{sub 2} substrates. • Surface modification using pyrrole-silane was employed prior to polymerization. • Films as thin as ≈ 7 nm were deposited using different surfactant/counter ions. • Chemistry of the counter ion affects thickness, conductivity and morphology. • Lower thickness/higher conductivity were obtained by structurally flexible dopants.

  3. Metal | polypyrrole battery with the air regenerated positive electrode

    Science.gov (United States)

    Grgur, Branimir N.

    2014-12-01

    Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.

  4. Theoretical study of electronic and transport properties of PPy-Pt(111) and PPy-C(111):H interfaces

    Czech Academy of Sciences Publication Activity Database

    Kaminski, W.; Rozsíval, V.; Jelínek, Pavel

    2010-01-01

    Roč. 22, č. 4 (2010), 045003/1-045003/10 ISSN 0953-8984 R&D Projects: GA AV ČR KAN400100701; GA MŠk OC09028; GA ČR GA202/09/0545 Institutional research plan: CEZ:AV0Z10100521 Keywords : molecular electronics * electron transport * DFT * Green´s function * polypyrrole Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.332, year: 2010

  5. A review on comparative study of PPI and PAMAM dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Daljeet; Jain, Keerti, E-mail: keertijain02@gmail.com; Mehra, Neelesh Kumar [ISF College of Pharmacy, Pharmaceutical Nanotechnology Research Laboratory (India); Kesharwani, Prashant [Wayne State University, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (United States); Jain, Narendra K., E-mail: jnarendr@yahoo.co.in, E-mail: dr.jnarendr@gmail.com [ISF College of Pharmacy, Pharmaceutical Nanotechnology Research Laboratory (India)

    2016-06-15

    Dendrimers are hyperbranched, monodispersed macromolecules with multivalent functional end groups. Dendrimers have been explored as carrier for many drugs like anticancer, antiviral, antimalarial, antiprotozoal, anti tubercular drugs. Although a number of different types of dendrimers containing different core molecules, branching monomers and surface functional groups have been designed till date for drug delivery applications, yet the poly(propyleneimine) (PPI) and poly(amidoamine) (PAMAM) dendrimers have been the most explored dendrimers in this regard. In this review, we have summarized a comparative data on PPI and PAMAM dendrimers particularly relevant to their properties, synthesis, toxicity, biomedical applications and drug delivery attributes.

  6. Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery

    International Nuclear Information System (INIS)

    Xu, Lihuan; Yang, Fang; Su, Chang; Ji, Lvlv; Zhang, Cheng

    2014-01-01

    Two 2,2,6,6-tetramethylpiperidinyl-N-oxy (TEMPO) contained polypyrrole (PPy) derivatives with the different side-chain length were synthesized by esterification of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radial with pyrrole butyric acid and pyrrole caproic acid. Then the homopolymers of 4-(3-(Pyrrol-1-yl)butyryloxy)-2,2,6,6-tetramethylpiperidin-1-yloxy (PPy-B-TEMPO) and 4-(3-(Pyrrol-1-yl)hexanoyloxy)-2,2,6,6-tetramethylpiperidin-1-yloxy (PPy-C-TEMPO) were prepared by chemical oxidative polymerization. The structure, morphology, electrochemical properties of prepared polymers were characterized by fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis), scanning electron microscopy (SEM), cyclic voltammograms (CV) and electrochemical impedance spectra (EIS), respectively. Also, the charge-discharge properties of the prepared polymers were studied by galvanostatic charge-discharge testing. The results demonstrated that the as-synthesized nitroxide radical polymers showed a reversible two-electron redox reaction process in the potential limits of 2.5–3.0 V and 3.4–3.8 V vs Li/Li + , respectively. Under our experimental conditions, PPy only presented the discharge capacity of 16.5 mAh·g −1 at 20 mA·g −1 between 2.5 and 4.2 V, while PPy-B-TEMPO with the short side-chain linked to TEMPO groups exhibited an initial discharge capacity of up to 86.5 mAh·g −1 with two well-defined plateaus. Furthermore, the PPy-C-TEMPO with the longer linking side-chain even displayed a discharge capacity of 115 mAh·g −1 . These superior electrochemical performances were ascribed to the flexible linking side-chain and the introduction of stable conductive PPy main chain, which benefits the improvement of charge carrier transportation in the aggregated polymer bulk

  7. Diffusion barrier and adhesion properties of SiO(x)N(y) and SiO(x) layers between Ag/polypyrrole composites and Si substrates.

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2014-06-25

    This paper describes the interface reactions and diffusion between silver/polypyrrole (Ag/PPy) composite and silicon substrate. This composite material can be used as a novel technique for 3D-LSI (large-scale integration) by the fast infilling of through-silicon vias (TSV). By immersion of the silicon wafer with via holes into the dispersed solution of Ag/PPy composite, the holes are filled with the composite. It is important to develop a layer between the composite and the Si substrate with good diffusion barrier and adhesion characteristics. In this paper, SiOx and two types of SiOxNy barrier layers with various thicknesses were investigated. The interface structure between the Si substrate, the barrier, and the Ag/PPy composite was characterized by transmission electron microscopy. The adhesion and diffusion properties of the layers were established for Ag/PPy composite. Increasing thickness of SiOx proved to permit less Ag to transport into the Si substrate. SiOxNy barrier layers showed very good diffusion barrier characteristics; however, their adhesion depended strongly on their composition. A barrier layer composition with good adhesion and Ag barrier properties has been identified in this paper. These results are useful for filling conductive metal/polymer composites into TSV.

  8. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution.

    Science.gov (United States)

    Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping

    2017-10-04

    Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.

  9. One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction.

    Science.gov (United States)

    Lu, Xin; Lin, Yingwu; Dong, Haifeng; Dai, Wenhao; Chen, Xin; Qu, Xuanhui; Zhang, Xueji

    2017-02-14

    Herein, a facile and cost-effective strategy for hydrothermal synthesis of three-dimensional (3D) MoS 2 with adequate active edge sites and advanced hydrogen evolution reaction (HER) performance using polypyrrole (PPy) as template is reported. The MoS 2 is first thermally nucleated using hexaammonium heptamolybdate tetrahydrate (NH 4 ) 6 Mo 7 O 24 ·4H 2 O and thiourea as precursor in the presence of PPy, and then they are further annealed to remove PPy at higher temperature to generate 3D MoS 2 -P. Morphology and composition characterizations reveal that the 3D MoS 2 -P exhibits a nanoflower morphology. It presents larger stretched "thin folding leaves" and higher mesoporous volume of 0.608 cm 3 g -1 than the MoS 2 without PPy as template. Importantly, the 3D MoS 2 -P shows enhanced HER catalytic activity (onset potential at -100 mV) than previously reports that MoS 2 -based HER catalysts. The large "thin folding leaves" possessing efficient edge active sites and defects are responsible to for the enhanced HER performance, while the high mesoporous volume facilitates the transfer of reaction substrate. Our study provides a facile and cost-effective method for synthesis of 3D MoS 2 with advanced HER performances, which has great potential for larger-scale production and practical industrial applications.

  10. Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine.

    Science.gov (United States)

    Wang, Lei; Tricard, Simon; Yue, Pengwei; Zhao, Jihua; Fang, Jian; Shen, Weiguo

    2016-03-15

    A novel polypyrrole (PPy) and graphene quantum dots (GQDs) @ Prussian Blue (PB) nanocomposite has been grafted on a graphite felt (GF) substrate (PPy/GQDs@PB/GF), and has been proven to be an efficient electrochemical sensor for the determination of l-cysteine (l-cys). GQDs, which were fabricated by carbonization of citric acid and adsorbed on GF surface ultrasonically, played an important role for promoting the synthesis process of PB via a spontaneous redox reaction between Fe(3+) and [Fe(CN)6](3-). The PPy film has been electro-polymerized to improve the electrochemical stability of the PPy/GQDs@PB/GF electrode. The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and electrochemical methods. It exhibited an excellent activity for the electrocatalytic oxidation of l-cys, with a detection sensitivity equal to 0.41 Amol(-1) L for a concentration range of 0.2-50 μmolL(-1), and equal to 0.15 Amol(-1) L for a concentration range of 50-1000 μmolL(-1). A low detection limit of 0.15 μmolL(-1), as well as a remarkable long-time stability and a negligible sensitivity to interfering analytes, were also ascertained. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study.

    Science.gov (United States)

    Feng, Wei; Zhou, Xiaojun; Nie, Wei; Chen, Liang; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong

    2015-02-25

    Construction of multifunctional nanocomposites as theranostic platforms has received considerable biomedical attention. In this study, a triple-functional theranostic agent based on the cointegration of gold nanorods (Au NRs) and superparamagnetic iron oxide (Fe3O4) into polypyrrole was developed. Such a theranostic agent (referred to as Au/PPY@Fe3O4) not only exhibits strong magnetic property and high near-infrared (NIR) optical absorbance but also produces high contrast for magnetic resonance (MR) and X-ray computed tomography (CT) imaging. Importantly, under the irradiation of the NIR 808 nm laser at the power density of 2 W/cm(2) for 10 min, the temperature of the solution containing Au/PPY@Fe3O4 (1.4 mg/mL) increased by about 35 °C. Cell viability assay showed that these nanocomposites had low cytotoxicity. Furthermore, an in vitro photothermal treatment test demonstrates that the cancer cells can be efficiently killed by the photothermal effects of the Au/PPY@Fe3O4 nanocomposites. In summary, this study demonstrates that the highly versatile multifunctional Au/PPY@Fe3O4 nanocomposites have great potential in simultaneous multimodal imaging-guided cancer theranostic applications.

  12. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    Directory of Open Access Journals (Sweden)

    Patrizia Bocchetta

    2016-01-01

    Full Text Available This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM and Atomic Force Microscope (AFM; (ii local electrical conductivity, as measured by Scanning Probe Microscopy (SPM; and (iii molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt. Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.

  13. Enhanced photo-stability and photocatalytic activity of Ag3PO4 via modification with BiPO4 and polypyrrole

    Science.gov (United States)

    Cai, Li; Jiang, Hui; Wang, Luxi

    2017-10-01

    Ag3PO4 photocatalysts modified with BiPO4 and polypyrrole (PPy) were successfully synthesized via a combination of co-precipitation hydrothermal technique and oxidative polymerization method. Their morphologies, structures and optical and electronic properties were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), X-ray photo-electron spectroscopy (XPS), UV-vis diffuse reflection spectra (UV-vis DRS), photocurrent technique and electrochemical impedance spectra (EIS). The typical triphenylmethane dye (malachite green) was chosen as a target organic contaminants to estimate the photocatalytic activities and photo-stabilities of Ag3PO4-BiPO4-PPy heterostructures under visible light irradiation. The results indicated that the existence of BiPO4 and PPy not only showed great influences on the photocatalytic activity, but also significantly enhanced photo-stability of Ag3PO4 in repeated and long-term applications. The degradation conversion of Ag3PO4-BiPO4-PPy heterostructures (ABP-3) was 1.58 times of that of pure Ag3PO4. The photo-corrosion phenomenon of Ag3PO4 was effectively avoided. The photocatalytic activity of up to 87% in the Ag3PO4-BiPO4-PPy heterostructures (ABP-3) can be remained after five repeated cycles, while only about 33% of the degradation efficiency can be reserved in pure Ag3PO4. The possible mechanism of enhanced photo-stability and photocatalytic activity of Ag3PO4-BiPO4-PPy heterostructures was also discussed in this work.

  14. [Study on the land use optimization based on PPI].

    Science.gov (United States)

    Wu, Xiao-Feng; Li, Ting

    2012-03-01

    Land use type and managing method which is greatly influenced by human activities, is one of the most important factors of non-point pollution. Based on the collection and analysis of non-point pollution control methods and the concept of the three ecological fronts, 9 land use optimized scenarios were designed according to rationality analysis of the current land use situation in the 3 typed small watersheds in Miyun reservoir basin. Take Caojialu watershed for example to analyze and compare the influence to environment of different scenarios based on potential pollution index (PPI) and river section potential pollution index (R-PPI) and the best combination scenario was found. Land use scenario designing and comparison on basis of PPI and R-PPI could help to find the best combination scenario of land use type and managing method, to optimize space distribution and managing methods of land use in basin, to reduce soil erosion and to provide powerful support to formulation of land use planning and pollution control project.

  15. Thermal properties of conducting polypyrrole nanotubes

    Czech Academy of Sciences Publication Activity Database

    Rudajevová, A.; Varga, M.; Prokeš, J.; Kopecká, J.; Stejskal, Jaroslav

    2015-01-01

    Roč. 128, č. 4 (2015), s. 730-736 ISSN 0587-4246. [ISPMA 13 - International Symposium on Physics of Materials /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * polypyrrole Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015

  16. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers-silver nanoparticles decorated reduced graphene oxide nano composites

    Science.gov (United States)

    Moozarm Nia, Pooria; Lorestani, Farnaz; Meng, Woi Pei; Alias, Y.

    2015-03-01

    Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1-5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  17. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption

    Science.gov (United States)

    Tong, Yuan; He, Man; Zhou, Yuming; Zhong, Xi; Fan, Lidan; Huang, Tingyuan; Liao, Qiang; Wang, Yongjuan

    2018-03-01

    In this study, multilayer sandwich heterostructural Ti3C2Tx MXenes decorated with polypyrrole chains have been synthesized successfully via HF etching treatment and in-situ chemical oxidative polymerization approach. The hybrids were investigated as EM wave absorbers for the first time. It is found that the composites consisting of 25 wt% Ti3C2Tx/PPy hybrids in a paraffin matrix exhibit a minimum reflection loss of -49.2 dB (∼99.99% absorption) at the thickness of 3.2 mm and a maximum effective absorption bandwidth of 4.9 GHz (12.4-17.3 GHz) corresponding to an absorber thickness of 2.0 mm. Additionally, a broad effective absorption bandwidth of 13.7 GHz (4.3-18.0 GHz) can be reached up by adjusting the thickness from 1.5 to 5.0 mm. Furthermore, the highest effective absorption bandwidth of 5.7 GHz can be reached when the mass fraction is 15 wt%. The enhanced comprehensive electromagnetic wave absorption has close correlation with the well-designed heterogeneous multilayered microstructure, generated heterogeneous interfaces, conductive paths, surface functional groups, localized defects and synergistic effect between laminated Ti3C2Tx and conductive polypyrrole network, which significantly improve impedance matching and attenuation abilities. The superior absorbing performance together with strong absorption and broad bandwidth endows the Ti3C2Tx/PPy hybrids with the potential prospect to be advanced EM wave absorbers.

  18. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells

    Science.gov (United States)

    Sonawane, Jayesh M.; Patil, Sunil A.; Ghosh, Prakash C.; Adeloju, Samuel B.

    2018-03-01

    A conducting polymer coated stainless-steel wool (SS-W) is proposed for use as a low-cost anode for microbial fuel cells (MFCs). When coated with polyaniline (PANi) and polypyrrole (PPy), the pristine SS-W, SS/PANi-W and SS/PPy-W anodes produced maximum current densities of 0.30 ± 0.04, 0.67 ± 0.05, 0.56 ± 0.07 mA cm-2, respectively, in air-cathode MFCs. Also, based on achieved power density, both SS/PANi-W and SS/PPy-W achieved 0.288 ± 0.036 mW cm-2 and 0.187 ± 0.017 mW cm-2, respectively, which were superior to 0.127 ± 0.011 mW cm-2 obtained with pristine SS-W. Further, in comparison with SS-P based anodes, all SS-W based anodes gave improved power densities under similar experimental conditions by at least 70%. Moreover, the charge transfer resistance of the SS-W was much lower (240 ± 25 Ω cm-2) than for the SS-P (3192 ± 239 Ω cm-2). The j0(apparent) values obtained for SS/PANi-W (0.098 ± 0.007 mA cm-2) and SS/PPy-W (0.036 ± 0.004 mA cm-2) anodes were also much higher than that of the pristine SS-W (0.020 ± 0.005 mA cm-2), as well as than those of all SS-P based anodes. The observed enhancement of the bioelectrocatalytic performances were well supported by physicochemical and electrochemical characterisation.

  19. Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Mosnáčková, K.; Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Fedorko, P.; Prokeš, J.

    2010-01-01

    Roč. 160, 7-8 (2010), s. 701-707 ISSN 0379-6779 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * polypyrrole base * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2010

  20. Clopidogrel and proton pump inhibitor (PPI interaction: separate intake and a non-omeprazole PPI the solution?

    Directory of Open Access Journals (Sweden)

    Kenngott S

    2010-05-01

    Full Text Available Abstract Background Dual therapy with aspirin and clopidogrel increases the risk of gastrointestinal bleeding. Therefore, co-therapy with a proton pump inhibitor (PPI is recommended by most guidelines. However, there are warnings against combining PPIs with clopidogrel because of their interactions with cytochrome P450 isoenzyme 2C19 (CYP2C19. Methods The effects of the combined or separate intake of 20 mg of omeprazole and 75 mg of clopidogrel on the clopidogrel-induced inhibition of platelet aggregation were measured in four healthy subjects whose CYP2C19 exon sequences were determined. The effects of co-therapy with 10 mg of rabeprazole were also examined. Results Two subjects showed the wild-type CYP2C19 sequence. The concurrent intake of omeprazole had no effect on clopidogrel-induced platelet inhibition in these subjects. Two subjects were heterozygous for the *2 allele, with predicted reduced CYP2C19 activity. One of them was a clopidogrel non-responder. In the second heterozygous subject, omeprazole co-therapy reduced the clopidogrel anti-platelet effect when taken simultaneously or separately. However, the simultaneous intake of rabeprazole did not reduce the clopidogrel effect. Conclusion The clopidogrel-PPI interaction does not seem to be a PPI class effect. Rabeprazole did not affect the clopidogrel effect in a subject with a clear omeprazole-clopidogrel interaction. The separate intake of PPI and clopidogrel may not be sufficient to prevent their interaction.

  1. (1)H-NMR and charge transport in metallic polypyrrole at ultra-low temperatures and high magnetic fields.

    Science.gov (United States)

    Jugeshwar Singh, K; Clark, W G; Ramesh, K P; Menon, Reghu

    2008-11-19

    The temperature dependence of conductivity, proton spin relaxation time (T(1)) and magnetoconductance (MC) in metallic polypyrrole (PPy) doped with PF(6)(-) have been carried out at mK temperatures and high magnetic fields. At T50 K-relaxation is due to the dipolar interaction modulated by the reorientation of the symmetric PF(6) groups following the Bloembergen, Purcell and Pound (BPP) model. The data analysis shows that the Korringa ratio is enhanced by an order of magnitude. The positive and negative MC at TmK is due to the contributions from weak localization and Coulomb-correlated hopping transport, respectively. The role of EEI is observed to be consistent in conductivity, T(1) and MC data, especially at T<1 K.

  2. Single conducting polymer nanowire based conductometric sensors

    Science.gov (United States)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  3. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid.

    Science.gov (United States)

    Texidó, Robert; Orgaz, Antonio; Ramos-Pérez, Victor; Borrós, Salvador

    2017-07-01

    In this paper, we report the modification of polypirrole (PPy) with dopaminated hyaluronic acid (HADA). This design improves PPy adhesion onto stretchable materials such as poly(dimethylsiloxane) (PDMS) allowing the formation of conducting films on this kind of very flexible, hydrophobic materials. The results revealed that described PPy modification allows to obtain stable PPy:HADA nano-suspension able to cast films directly on PDMS. The comparison of PPy:HADA films with conventional PPy and other modified PPy shows that the modification improved the strength of the films under tension stress and their water resistance. Moreover, the modification proposed does not affect significantly the conductivity of the PPy films. The resulting properties of the material make it especially suitable for bio-integrated device applications, where a biocompatible material with stable electrical behaviour under deformation and water media is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao; Zhang, Liling [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Hu, Nantao, E-mail: hunantao@sjtu.edu.cn [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Yang, Zhi; Wei, Hao [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Wang, Yanyan, E-mail: yywang@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006 (China); Zhang, Yafei, E-mail: yfzhang@sjtu.edu.cn [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China)

    2016-11-30

    Highlights: • The addition of methyl orange can affect the size of polypyrrole nanoparticles. • The flexible hybrid paper has a highly-interconnected sandwich framework. • The hybrid paper shows a high areal and volumetric specific capacitance. • Flexible all-solid-state supercapacitor exhibits excellent capacitive performances. - Abstract: Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It’s a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm{sup 2} and 94.9 F/cm{sup 3} at 0.5 mA/cm{sup 2}. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm{sup 2} and 26.4 mWh/cm{sup 3} are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  5. Voltammetric Behaviour of Sulfamethoxazole on Electropolymerized-Molecularly Imprinted Overoxidized Polypyrrole

    Directory of Open Access Journals (Sweden)

    Yücel Sahin

    2008-12-01

    Full Text Available In this work, preparation of a molecularly imprinted polymer (MIP film and its recognition properties for sulfamethoxazolewere investigated. The overoxidized polypyrrole (OPPy film was prepared by the cyclic voltammetric deposition of pyrrole (Py in the presence of supporting electrolyte (tetrabutylammonium perchlorate-TBAP with and without a template molecule (sulfamethoxazole on a pencil graphite electrode (PGE. The voltammetric behaviour of sulfamethoxazole on imprinted and non-imprinted (NIP films was investigated by differential pulse voltammetry (DPV in Britton-Robinson (BR buffer solutions prepared in different ratio of acetonitrile-water binary mixture, between the pH 1.5 and 7.0. The effect of the acetonitrile-water ratio and pH, monomer and template concentrations, electropolymerization cycles on the performance of the MIP electrode was investigated and optimized. The MIP electrode exhibited the best reproducibility and highest sensitivity. The results showed that changing acetonitrile-water ratio and pH of BR buffer solution changes the oxidation peak current values. The highest anodic signal of sulfamethoxazole was obtained in BR buffer solution prepared in 50% (v/v acetonitrile-water at pH 2.5. The calibration curve for sulfamethoxazole at MIP electrode has linear region for a concentration range of 25.10-3 to 0.75 mM (R2=0.9993. The detection limit of sulfamethoxazole was found as 3.59.10-4 mM (S/N=3. The same method was also applied to determination of sulfamethoxazole in commercial pharmaceutical samples. Method precision (RSD87% were satisfactory. The proposed method is simple and quick. The polypyrrole (PPy electrodes have low response time, good mechanical stability and are disposable simple to construct.

  6. Polypyrrole-silver composites prepared by the reduction of silver ions with polypyrrole nanotubes

    Czech Academy of Sciences Publication Activity Database

    Škodová, J.; Kopecký, D.; Vrňata, M.; Varga, M.; Prokeš, J.; Cieslar, M.; Bober, Patrycja; Stejskal, Jaroslav

    2013-01-01

    Roč. 4, č. 12 (2013), s. 3610-3616 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polypyrrole * silver * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.368, year: 2013

  7. The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Stejskal, Jaroslav; Šeděnková, Ivana; Trchová, Miroslava; Martinková, L.; Marek, J.

    2015-01-01

    Roč. 356, 30 November (2015), s. 737-741 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : conducting textile * cotton * globular polypyrrole Subject RIV: CG - Electrochemistry Impact factor: 3.150, year: 2015

  8. Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Ciric-Marjanovic, G.; Mentus, S.; Pašti, I.; Gavrilov, N.; Krstic, J.; Travas-Sejdic, J.; Strover, L. T.; Kopecká, J.; Morávková, Zuzana; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 118, č. 27 (2014), s. 14770-14784 ISSN 1932-7447 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polypyrrole * conductive polymer * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.772, year: 2014

  9. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    Science.gov (United States)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting

  10. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid.

    Science.gov (United States)

    Xie, Yibing; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. © 2013 Elsevier B.V. All rights reserved.

  11. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  12. Properties of electropolymerised polypyrrole thin film on silver

    Science.gov (United States)

    Jamadade, Shivaji A.; Puri, Vijaya

    2009-07-01

    This paper reports the properties of electropolymerised polypyrrole thin film on silver. The transmission, reflection, conductivity and dielectric behavior of polypyrrole coated silver has been studied in the 8-12 GHz frequency range of the electromagnetic spectrum. The polypyrrole thin film makes silver a better conductor for microwaves. The microwave conductivity is larger than the DC conductivity by many orders of magnitude. The real and imaginary part of dielectric constant increases in magnitude with increasing doping level and also it decreases in magnitude with increasing frequency.

  13. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  14. Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole

    Science.gov (United States)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-10-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 1010 to 1012 ions/cm2 of 100 MeV silver (Ag8+) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  15. Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-01-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 10 10 to 10 12 ions/cm 2 of 100 MeV silver (Ag 8+ ) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  16. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    International Nuclear Information System (INIS)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-01-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements. (paper)

  17. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni{sup 12+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-08-15

    In this paper, we report the 160 MeV Ni{sup 12+} swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10{sup 10}, 1 × 10{sup 11}, 5 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M{sup ″}) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R{sub ω}) of the charge carriers decreases with increasing the ion fluence. Binding energy (W{sub m}) calculations depict that polarons are the dominant charge carriers.

  18. Vanadium oxide/polypyrrole aerogel nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dave, B.C.; Dunn, B.S.; Wong, H.P. [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Leroux, F.; Nazar, L.F. [Univ. of Waterloo, Ontario (Canada). Dept. of Chemistry

    1996-12-31

    Vanadium pentoxide/polypyrrole aerogel (ARG) nanocomposites were prepared by hydrolysis of VO(OC{sub 3}H{sub 7}){sub 3} using pyrrole/water/acetone mixtures. Monolithic green-black gels with polypyrrole/V ratios ranging from 0.15 to 1.0 resulted from simultaneously polymerization of the pyrrole and vanadium alkoxide precursors. Supercritical drying yielded high surface (150--200 m{sup 2}/g) aerogels, of sufficient mechanical integrity to allow them to be cut without fracturing. TEM studies of the aerogels show that they are comprised of fibers similar to that of V{sub 2}O{sub 5} ARG`s, but with a much shorter chain length. Evidence from IR that the inorganic and organic components strongly interact leads them to propose that this impedes the vanadium condensation process. The result is ARG`s that exhibit decreased electronic conductivity with increasing polymer content. Despite the unexpected deleterious effect of the conductive polymer on the bulk conductivity, at low polymer content, the nanocomposite materials show enhanced electrochemical properties for Li insertion compared to the pristine aerogel.

  19. Analysis of polypyrrole-coated stainless steel electrodes ...

    Indian Academy of Sciences (India)

    WINTEC

    obtained by non-linear regression analysis. Keywords. Polypyrrole; equivalent circuit; impedance spectroscopy; specific capacitance; charge– discharge; supercapacitors. 1. Introduction. The development of electrochemical supercapacitors occupies a pivotal role in the context of electro- chemical energy storage and ...

  20. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  1. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    International Nuclear Information System (INIS)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2015-01-01

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag + and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA) 2 ] + ) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO 3 and Py, the introduction of [Ag(TEA) 2 ] + ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA) 2 ] + ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10 5  – 9×10 5  cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract

  2. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [Ministry of Education, Beijing University of Chemical Technology, Key Laboratory of Carbon Fiber and Functional Polymer (China)

    2015-01-15

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag{sup +} and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA){sub 2}]{sup +}) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO{sub 3} and Py, the introduction of [Ag(TEA){sub 2}]{sup +} ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA){sub 2}]{sup +} ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10{sup 5} – 9×10{sup 5} cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract.

  3. Synthesis, Characterization, and Microwave-Absorbing Properties of Polypyrrole/MnFe2O4 Nanocomposite

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hosseini

    2012-01-01

    Full Text Available Conductive polypyrrole (PPy-manganese ferrite (MnFe2O4 nanocomposites with core-shell structure were synthesized by in situ polymerization in the presence of dodecyl benzene sulfonic acid (DBSA as the surfactant and dopant and iron chloride (FeCl3 as the oxidant. The structure and magnetic properties of manganese ferrite nanoparticles were measured by using powder X-ray diffraction (XRD and vibrating sample magnetometer (VSM, respectively. Its morphology, microstructure, and DC conductivity of the nanocomposite were characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and four-wire technique, respectively. The microwave-absorbing properties of the nanocomposite powders dispersing in resin acrylic coating with the coating thickness of 1.5 mm were investigated by using vector network analyzers in the frequency range of 8–12 GHz. A minimum reflection loss of −12 dB was observed at 11.3 GHz.

  4. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification

    Science.gov (United States)

    Ferraz, Natalia; Carlsson, Daniel O.; Hong, Jaan; Larsson, Rolf; Fellström, Bengt; Nyholm, Leif; Strømme, Maria; Mihranyan, Albert

    2012-01-01

    Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility. PMID:22298813

  5. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  6. Effect of dopamine D3 antagonists on PPI in DBA/2J mice or PPI deficit induced by neonatal ventral hippocampal lesions in rats.

    Science.gov (United States)

    Zhang, Min; Ballard, Michael E; Kohlhaas, Kathy L; Browman, Kaitlin E; Jongen-Rêlo, Ana-Lucia; Unger, Liliane V; Fox, Gerard B; Gross, Gerhard; Decker, Michael W; Drescher, Karla U; Rueter, Lynne E

    2006-07-01

    Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animal models such as the test of prepulse inhibition of startle response (PPI) in rodents. It has been found that antipsychotics enhanced PPI in DBA mice and reversed the PPI deficit induced by neonatal ventral hippocampal (NVH) lesions in rats. However, the relative involvement of D(3) and D(2) receptors in these effects is unknown since all antipsychotics are D(2)/D(3) antagonists with limited binding preference at D(2) receptors. Therefore, in the current study, we investigated the influence of several dopamine antagonists with higher selectivity at D(3) vs D(2) receptors on PPI in DBA/2J mice and in NVH-lesioned rats. The PPI in DBA/2J mice was enhanced by the nonselective D(2)/D(3) antagonists, haloperidol at 0.3-3 mg/kg, or risperidone at 0.3-1 mg/kg, while PPI-enhancing effects were observed after the administration of higher doses of the preferential D(3)/D(2) antagonist, BP 897 at 8 mg/kg, and the selective D(3) antagonists, SB 277011 at 30 mg/kg and A-437203 at 30 mg/kg. No effect was observed following the treatment with the selective D(3) antagonist, AVE 5997 up to 30 mg/kg. The PPI deficits induced by NVH lesions were reversed by haloperidol but not by the more selective D(3) antagonists, A-437203 and AVE 5997. BP 897 enhanced PPI nonselectivity, that is, in both lesioned and nonlesioned rats. In summary, the present study indicates that PPI-enhancing effects induced by antipsychotics in DBA/2J mice and in NVH-lesioned rats are unlikely to be mediated by D(3) receptors.

  7. Novel polypyrrole films with excellent crystallinity and good thermal stability

    International Nuclear Information System (INIS)

    Jeeju, Pullarkat P.; Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M.; Jayalekshmi, Sankaran

    2012-01-01

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: ► Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. ► The solution casted films exhibit semi-crystallinity and good thermal stability. ► Percentage crystallinity estimated using XRD and DSC analysis is about 65%. ► Raman studies support the enhancement in crystallinity based on XRD and DSC data. ► The conductivity of the film is 30 times higher than that of HCl doped sample.

  8. Novel polypyrrole films with excellent crystallinity and good thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, Pullarkat P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Jayalekshmi, Sankaran, E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2012-06-15

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: Black-Right-Pointing-Pointer Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. Black-Right-Pointing-Pointer The solution casted films exhibit semi-crystallinity and good thermal stability. Black-Right-Pointing-Pointer Percentage crystallinity estimated using XRD and DSC analysis is about 65%. Black-Right-Pointing-Pointer Raman studies support the enhancement in crystallinity based on XRD and DSC data. Black-Right-Pointing-Pointer The conductivity of the film is 30 times higher than that of HCl doped sample.

  9. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Amanzadeh, Hatam; Yamini, Yadollah [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175 Tehran (Iran, Islamic Republic of); Moradi, Morteza [Department of Semiconductors, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2015-07-16

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L{sup −1}, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  10. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  11. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria*

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. PMID:26269598

  12. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria.

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-09-25

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Electrochemiluminescence behavior of AgNCs and its application in immunosensors based on PANI/PPy-Ag dendrite-modified electrode.

    Science.gov (United States)

    Zhang, Lina; Wang, Yanhu; Shen, Lei; Yu, Jinghua; Ge, Shenguang; Yan, Mei

    2017-07-10

    In this study, hyperbranched polyethyleneimine-protected silver nanoclusters (hPEI-AgNCs) with excellent electrochemiluminescence (ECL) emission in the presence of coreactant K 2 S 2 O 8 were prepared by chemical reduction of silver ions (silver nitrate) coordinated with dendrigraft polymer, and successfully used for the construction of an ECL immunosensor. Polyaniline (PANI)/polypyrrole (PPy)-silver (Ag) dendrites with good electrical conductivity and biocompatibility were electropolymerized on the surface of indium tin oxide (ITO) electrode as carriers. Porous ZnO sphere-loaded hPEI-AgNCs-induced signal amplification strategies were integrated exquisitely and applied sufficiently. Taking carcinoembryonic antigen (CEA) as an example, under optimal conditions, the CEA concentration was determined to be in the range of 10 -3 ng mL -1 -100 ng mL -1 and with a detection limit of 0.4 pg mL -1 using this method; it exhibited excellent selectivity, high stability, and acceptable fabrication reproducibility. It was anticipated that hPEI-AgNCs would have promising applications in green, selective, and sensitive detection of target analytes in the future.

  14. In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics

    Science.gov (United States)

    Xue, P.; Tao, X. M.; Tsang, H. Y.

    2007-01-01

    This paper studies a flexible fabric strain sensor from PPy-coated fabrics prepared by a chemical vapor deposition method under low temperature, placing an emphasis on mechanisms of its strain sensing behavior. In situ tensile tests in a scanning electron microscope (SEM) were conducted for PPy-coated electrically conducting yarns, which were prepared by the same procedure as that for the PPy-coated fabrics, enabling it possible to observe in situ the phenomena that occurred on the fiber surface during fabric deformation. The investigation revealed that the PPy-coated nylon/polyurethane fabrics exhibited a high strain sensitivity of over 400 and very large workable strain range greater than 50%, which mainly attributes to the high conductivity and crack-opening and crack-closing mechanisms of PPy-coated polyurethane yarn, as well as the excellent properties of knitted fabric structure.

  15. Does the Sustainable PPI Investments Promote Financial Market’s Sustainable Development?

    Directory of Open Access Journals (Sweden)

    Tong Fu

    2016-01-01

    Full Text Available Since the late 1980s, most developing countries adopt a policy of attracting investments for Private Participation in Infrastructure (PPI projects. With a perspective of sustainability, this paper offers a first attempt to examine whether the sustainable PPI investments promote financial market development. First, we demonstrate how the PPI policy enlargers the size of financial markets and then fosters the liquidity of financial markets in the static and dynamic conditions. Using the data from 33 developing countries during 1997–2012, we discover the significant promotion effect of PPI investments on the development of financial markets in the dimensions of size and liquidity. Additionally, we confirm the significant mediator effect of financial market size for the positive relationship between PPI investments and financial market liquidity. Both the promotion effect and mediation effect are robust to different control variables and estimation techniques used.

  16. A novel modified electrode as GC/PPy-AuNPs-rGO/L-Cys/Ag@MUA nanostructure configuration for determination of CCP and CRP antibodies in human blood serum samples.

    Science.gov (United States)

    Babakhanian, Arash; Ehzari, Hosna; Kaki, Samineh; Hamidi, Zohreh

    2015-01-15

    In this work, silver nanoparticles were synthesized and stabilized with 11-mercaptoundecanoateanions to produce a new Ag@MUA core shell structure, and its utilizing for fabrication of a new sensing film. Gold nanoparticles (AuNPs) were electrochemically produced and simultaneously immobilized into the electropolymerized polypyrrole (PPy) film with the reduced graphene oxide (rGO). The Ag@MUA was then grafted to the surface of GC/PPy-AuNPs-rGO film using L-cysteine (L-Cys) linker agent and trifluoromethanesulfonic anhydride (TF2O), at ambient temperature and under the electrode stirring. The characterization of the sensor was studied by scanning electron microscopy, electrochemical impedance spectroscopy, cyclic and square wave voltammetry techniques. The utility of the modified electrode for clinical diagnosis has been successfully demonstrated by the analysis of human blood serums with a certified CRP and CCP content. Thus, the proposed sensor shows simple preparation, accuracy and precision in the analysis of cytochrome c protein (CCP) and C-reactive protein (CRP (with less side interferences. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Status of PPI (Pohang Photo-Injector) for PAL XFEL

    CERN Document Server

    Park, Sung-Ju; Oh, Jong-Seok; Park, Chong-Do; Park Jang Ho; Soo Ko In; Wang, Xijie; Woon Parc, Yong

    2005-01-01

    A X-Ray Free Electron Laser (XFEL) project based on the Self-Amplified Spontaneous Emission (SASE) is under progress at the Pohang Accelerator Laboratory (PAL). One of the critical R&D for the PAL XFEL* is to develop the Pohang Photo-Injector (PPI) which is required to deliver electron beams with normalized emittance < 1.5 mm-mrad. In order to achieve the required beam quality with high stability and reliability, we will use photocathode with quantum efficiency > 0.1 % and long lifetime. This will greatly lessen the laser energy requirement for producing flat-top UV pulses, and open the possibility of using only regenerative amplifiers (RGAs) to drive the photocathode RF gun. The RGAs can produce mJs output with much better stability than multi-pass amplifiers. Both the Cs2Te and Mg are under consideration for the possible photo-cathode. To demonstrate the suitability of the Mg and Cs2Te for the future 4th generation light source application, an improved BNL-type S-band RF gun with a high-pe...

  18. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    Science.gov (United States)

    Ahmad, Hasan; Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar; Minami, Hideto; Tauer, Klaus; Gafur, Mohammad Abdul; Rahman, Mohammad Mahbubor

    2016-08-01

    A combination of maghemite polypyrrole (PPy/γ-Fe2O3) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe2O3 nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl3 as a oxidant and p-toluene sulfonic acid (p-TSA) as a dopant. In the reaction system FeCl3 functioned as a source of Fe(III) for the formation of γ-Fe2O3. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl2. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water.

  19. Absorption, phosphorescence and Raman spectra of IrQ(ppy){sub 2} organometallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, Silviu, E-mail: silv@infim.ro [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, Iulia Corina [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Tsuboi, Taiju [Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2015-07-15

    The absorption and photoluminescence (PL) spectra, PL decays, Raman spectrum, cyclic voltammetry (CV) and nuclear magnetic resonance of heteroleptic Ir-compound IrQ(ppy){sub 2} compound with two phenylpyridine (ppy) ligands and one quinoline (Q) ligand have been investigated experimentally and theoretically. Two very weak absorption bands due to the transitions to the triplet states are found at about 560 and 595 nm in IrQ(ppy){sub 2} doped in CH{sub 2}Cl{sub 2} solution. IrQ(ppy){sub 2} exhibits a dual emission of red and green phosphorescence bands. The red emission intensity is much higher than the green one in IrQ(ppy){sub 2} powder, but much lower than the green one in lightly IrQ(ppy){sub 2}-doped CH{sub 2}Cl{sub 2} solution and PMMA film. The intensity ratio of the red emission to the green emission, however, is observed to increase with increasing the IrQ(ppy){sub 2} concentration in CH{sub 2}Cl{sub 2} solution and PMMA film. The enhancement of the red emission is suggested to be caused by the Forester energy transfer from Ir-ppy component to Ir–Q components between two neighboring IrQ(ppy){sub 2} molecules. The HOMO energy is estimated to be −4.865 eV from the CV measurement, which is close to the HOMO energy of −4.844 eV calculated using the time dependent density function theory (TD-DFT). The LUMO energy is estimated as −2.856 eV from the HOMO energy and the long-wavelength absorption edge found at 617 nm in the absorption spectrum. The absorption spectrum of IrQ(ppy){sub 2} is calculated by the TD-DFT. Discussion is given on a deviation of the calculated spectrum from the measured spectrum. - Graphical abstract: Display Omitted - Highlights: • IrQ(ppy){sub 2} has red and green emissions of different ratio between film and solution. • Intensity ratio of red to green emissions increases with IrQ(ppy){sub 2} concentration. • Enhancement of red emission is due to energy transfer in two neighboring IrQ(ppy){sub 2}. • Lowest-energy absorption

  20. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo2Se4Nanosheet and NiCo2O4/Polypyrrole Electrodes.

    Science.gov (United States)

    Wang, Qiufan; Ma, Yun; Wu, Yunlong; Zhang, Daohong; Miao, Menghe

    2017-04-10

    Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo 2 Se 4 positive electrode and a NiCo 2 O 4 @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.2 F cm -3 ) and excellent cycling performance (94 % retention after 5000 cycles at 0.6 mA) owing to their nanosheet and nanosphere structures. The asymmetric all-solid-state threadlike supercapacitor expanded the stability voltage window from 0-1.0 V to 0-1.7 V and exhibits high volume energy density (5.18 mWh cm -3 ) and superior flexibility under different bending conditions. This study provides a scalable method for fabricating high performance flexible supercapacitors from easily available materials for use in wearable and portable electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Potentiometric sulfite biosensor based on entrapment of sulfite oxidase in a polypyrrole film on a platinum electrode modified with platinum nanoparticles

    International Nuclear Information System (INIS)

    Adeloju, Samuel B.; Hussain, Shahid

    2016-01-01

    The surface of a platinum electrode has been modified with platinum nanoparticles (PtNPs) and the enzyme sulfite oxidase (SOx), was entrapped on its surface in an ultrathin polypyrrole (PPy) film. The PtNPs, with a diameter of 30-40 nm, were deposited on the Pt electrode by cycling the electrode potential 20 times from -200 to 200 mV at a sweep rate of 50 mV.s -1 . Morphological evidence of the successful incorporation of SOx and the presence of PtNPs were obtained by scanning electron microscopy. Also, the electrochemical behavior of the PtNPs/PPy-SOx film was examined by cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy and potentiometry. Under optimized conditions, the biosensor achieved a sensitivity of 57.5 mV.decade -1 , a linear response that extends from 0.75 to 65 μM of sulfite, a detection limit of 12.4 nM, and a response time of 3-5 s. The biosensor was successfully applied to the determination of sulfite in wine and beer samples. (author)

  2. Synthesis of polypyrrole on nanodiamonds with hydrogenated and oxidized surfaces

    Czech Academy of Sciences Publication Activity Database

    Miliaieva, Daria; Stehlík, Štěpán; Štenclová, Pavla; Rezek, Bohuslav

    2016-01-01

    Roč. 213, č. 10 (2016), 2687-2692 ISSN 1862-6300 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : atomic force microscopy * composites * diamond * infrared spectroscopy * nanomaterials * polypyrrole Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  3. Dye-stimulated control of conducting polypyrrole morphology

    Czech Academy of Sciences Publication Activity Database

    Valtera, S.; Prokeš, J.; Kopecká, J.; Vrňata, M.; Trchová, Miroslava; Varga, M.; Stejskal, Jaroslav; Kopecký, D.

    2017-01-01

    Roč. 7, č. 81 (2017), s. 51495-51505 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : polypyrrole * conducting polymers * hybrid materials Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.108, year: 2016

  4. ROOM TEMPERATURE BULK SYNTHESIS OF SILVER NANOCABLES WRAPPED WITH POLYPYRROLE

    Science.gov (United States)

    Wet chemical synthesis of silver cables wrapped with polypyrrole is reported in aqueous media without use of any surfactant/capping agent and/or template. The method employs direct polymerization of pyrrole of an aqueous solution with AgNO3 as an oxidizing agent. The four probe c...

  5. Analysis of polypyrrole-coated stainless steel electrodes-Estimation ...

    Indian Academy of Sciences (India)

    Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific capacitances and construction of equivalent circuits. R Ramya M V Sangaranarayanan ... The galvanostatic polymerization of pyrrole is carried out on stainless steel electrodes using -toluene sulphonic acid. The morphology of the film is ...

  6. Effects of preparation temperature on the conductivity of polypyrrole ...

    Indian Academy of Sciences (India)

    An attempt has been made to investigate the effect of temperature on the conductivity of polypyrrole conducting polymer films prepared by an electrochemical method in an aqueous medium using camphor sulfonate as the dopant. The polymer was grown from aqueous solutions employing a range of temperatures (1-60°C).

  7. Chemical Changes and photoluminescence properties of UV modified polypyrrole

    Czech Academy of Sciences Publication Activity Database

    Galář, P.; Dzurňák, B.; Malý, P.; Čermák, Jan; Kromka, Alexander; Omastová, M.; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 1 (2013), s. 57-70 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : photoluminescence * polypyrrole * monocrystalline diamond Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/papers/vol8/80100057.pdf

  8. The ageing of polypyrrole nanotubes synthesized with methyl orange

    Czech Academy of Sciences Publication Activity Database

    Varga, M.; Kopecký, D.; Kopecká, J.; Křivka, I.; Hanuš, J.; Zhigunov, Alexander; Trchová, Miroslava; Vrňata, M.; Prokeš, J.

    2017-01-01

    Roč. 96, November (2017), s. 176-189 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polypyrrole nanotubes * ageing * electrical conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  9. Electrorheological properties of suspensions of polypyrrole coated titanate nanorods

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Pavlínek, V.; Saha, P.; Quadrat, Otakar

    2011-01-01

    Roč. 21, č. 5 (2011), 52365_1-52365_7 ISSN 1430-6395 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * nanorods * electrorheology Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2011

  10. Electrochemical Synthesis of Polypyrrole Layers Doped with Glutamic Ions

    NARCIS (Netherlands)

    Meteleva-Fischer, Yulia V.; Von Hauff, Elizabeth; Parisi, Juergen

    2009-01-01

    Electrochemically synthesized polypyrrole thin films doped with glutamic ions were investigated as interesting materials for potential use as molecularly selective surfaces. Pyrrole and glutamate interact in aqueous solution, resulting in the formation of a prominent band at 240 nm in the absorption

  11. Polypyrrole/silver composites prepared by single-step synthesis

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Mosnáčková, K.; Fedorko, P.; Trchová, Miroslava; Stejskal, Jaroslav

    2013-01-01

    Roč. 166, 15 February (2013), s. 57-62 ISSN 0379-6779 R&D Projects: GA TA ČR TE01020022; GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : conducting polymer * hybrid composite * oxidation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.222, year: 2013

  12. Thermal electric effects and heat generation in polypyrrole coated PET fabrics

    OpenAIRE

    Avloni, J.; Florio, L.; Henn, A. R.; Sparavigna, A.

    2007-01-01

    Polypyrrole chemically synthesized on PET gives rise to textiles with a high electric conductivity, suitable for several applications from antistatics to electromagnetic interference shielding devices. Here, we discuss investigations on thermal electric performances of the polypyrrole coated PET in a wide range of temperatures above room temperature. The Seebeck coefficient turns out to be comparable with that of metal thermocouple materials. Since polypyrrole shows extremely low thermal diff...

  13. Characterization of electrogenerated polypyrrole-benzophenone films coated on poly(pyrrole-methyl metacrylate) optic-conductive fibers.

    Science.gov (United States)

    Abu-Rabeah, Khalil; Atias, Danit; Herrmann, Sebastien; Frenkel, Julia; Tavor, Dorith; Cosnier, Serge; Marks, Robert S

    2009-09-01

    A conductive surface was created for the development of a biosensing platform via chemical polymerization of pyrrole onto the surface of poly(methyl methacrylate) (PMMA) fibers, with a subsequent electrogeneration of a photoactive linker pyrrole-benzophenone (PyBz) monomer on the fiber surface. Irradiation of the benzophenone groups embedded in the polypyrrole (Ppy) films by UV (350 nm) formed active radicals, allowing covalent attachment of the desired biomaterials. Characterization and optimization of this platform were carried out, with the platform showing conductive, stable, thin, controllable, and light-transmissible film features. Various parameters such as time deposition, process temperature, and activator plus pyrrole monomer concentrations were examined in the study. The morphology and permeability of the optic-fiber PMMA fibers were investigated to examine mass transfer ability. Cyclic voltammetry and amperometry techniques were applied to characterize the electrical features of the surface and charge transfer. The platform potential was then demonstrated by the construction of both amperometric and optical biosensors.

  14. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating.

    Science.gov (United States)

    He, Weina; Li, Guangyong; Zhang, Shangquan; Wei, Yong; Wang, Jin; Li, Qingwen; Zhang, Xuetong

    2015-04-28

    To obtain ideal sensing materials with nearly zero temperature coefficient resistance (TCR) for self-temperature-compensated pressure sensors, we proposed an Incipient Network Conformal Growth (INCG) technology to prepare hybrid and elastic porous materials: the nanoparticles (NPs) are first dispersed in solvent to form an incipient network, another component is then introduced to coat the incipient network conformally via wet chemical route. The conformal coatings not only endow NPs with high stability but also offer them additional structural elasticity, meeting requirements for future generations of portable, compressive and flexible devices. The resultant polypyrrole/silver coaxial nanowire hybrid aero-sponges prepared via INCG technology have been processed into a piezoresistive sensor with highly sensing stability (low TCR 0.86 × 10(-3)/°C), sensitivity (0.33 kPa(-1)), short response time (1 ms), minimum detectable pressure (4.93 Pa) after suffering repeated stimuli, temperature change and electric heating. Moreover, a stress-triggered Joule heater can be also fabricated mainly by the PPy-Ag NW hybrid aero-sponges with nearly zero temperature coefficient.

  15. Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials for super-capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mallouki, M.; Tran-Van, F.; Sarrazin, C.; Chevrot, C. [Cergy-Pontoise Univ., Lab. de Physicochimie des Polymeres et des Interfaces (LPPI), EA 2528 95 (France); Fauvarque, J.F. [CNAM, Lab. d' Electrochimie Industrielle, 75 - Paris (France); Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, UMR 5085, 31 - Toulouse (France); De, A. [Saha Institute of Nuclear Physics, Calcutta (India)

    2004-07-01

    Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials chemically synthesized from colloid particles of iron oxide in aqueous solution have been processed to realize electrode materials for super-capacitor applications. The performances have been evaluated by cyclic voltammetry and galvano-static techniques in a three-electrode cell. The capacitance of Fe{sub 2}O{sub 3}-PPy hybrid nano-composite doped with para-toluene-sulfonate reaches 47 mAh/g in PC/NEt{sub 4}BF{sub 4} with a good stability during cycling (loss of 3% after 1000 cycles). Transmission Electronic Microscopy indicates a porous nano-structure with spherical particles in a range of 400-500 nm which ensures a good accessibility of the electrolyte in the bulk of the electro-active hybrid material. Preliminary studies with room temperature ionic liquid show promising results since the specific capacitance reaches 427 F/g in 1- ethyl-3-methyl-imidazolium bis((tri-fluoro-methyl)sulfonyl)amide (EMITFSI). (authors)

  16. In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    Directory of Open Access Journals (Sweden)

    Thi Luyen Tran

    2015-01-01

    Full Text Available A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS- based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an open system. The DNA probe sequences were simply introduced into the channel to form bonds with the nanowires. A detection limit of 20 pM was achieved using a lock-in amplifier. The electrochemical characteristics produced by the hybridization of DNA strands in the microchamber showed a good signal/noise ratio and high sensitivity. Measurement of the DNA sensor in narrow space also required much less volume of the analytical sample compared with that in an open measuring cell. Results showed that this simple system can potentially fabricate nanostructures and detect bio/chemical molecules in a sealed system.

  17. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2016-11-01

    Full Text Available Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy, reduced graphene oxide (RGO, and gold nanoparticles (nanoAu biocomposite on a glassy carbon electrode (GCE. The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+ in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3 with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  18. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  19. Simple One-Step Method to Synthesize Polypyrrole-Indigo Carmine-Silver Nanocomposite

    Directory of Open Access Journals (Sweden)

    Lara Fernandes Loguercio

    2016-01-01

    Full Text Available A nanocomposite of indigo carmine doped polypyrrole/silver nanoparticles was obtained by a one-step electrochemical process. The nanocomposite was characterized by scanning electron microscopy, infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and cyclic voltammetry. The simple one-step process allowed the growth of silver nanoparticles during the polymerization of polypyrrole, resulting in films with electrochromic behavior and improved electroactivity. In addition, polypyrrole chains in the nanocomposite were found to present longer conjugation length than pristine polypyrrole films.

  20. iPPI-DB: an online database of modulators of protein-protein interactions.

    Science.gov (United States)

    Labbé, Céline M; Kuenemann, Mélaine A; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A F; Lagorce, David; Miteva, Maria A; Villoutreix, Bruno O; Sperandio, Olivier

    2016-01-04

    In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein-protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. iPPI-DB: an online database of modulators of protein–protein interactions

    Science.gov (United States)

    Labbé, Céline M.; Kuenemann, Mélaine A.; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A.F.; Lagorce, David; Miteva, Maria A.; Villoutreix, Bruno O.; Sperandio, Olivier

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein–protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein–protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL. PMID:26432833

  2. Discovering overlapped protein complexes from weighted PPI networks by removing inter-module hubs.

    Science.gov (United States)

    Maddi, A M A; Eslahchi, Ch

    2017-06-12

    Detecting known protein complexes and predicting undiscovered protein complexes from protein-protein interaction (PPI) networks help us to understand principles of cell organization and its functions. Nevertheless, the discovery of protein complexes based on experiment still needs to be explored. Therefore, computational methods are useful approaches to overcome the experimental limitations. Nevertheless, extraction of protein complexes from PPI network is often nontrivial. Two major constraints are large amount of noise and ignorance of occurrence time of different interactions in PPI network. In this paper, an efficient algorithm, Inter Module Hub Removal Clustering (IMHRC), is developed based on inter-module hub removal in the weighted PPI network which can detect overlapped complexes. By removing some of the inter-module hubs and module hubs, IMHRC eliminates high amount of noise in dataset and implicitly considers different occurrence time of the PPI in network. The performance of the IMHRC was evaluated on several benchmark datasets and results were compared with some of the state-of-the-art models. The protein complexes discovered with the IMHRC method show significantly better agreement with the real complexes than other current methods. Our algorithm provides an accurate and scalable method for detecting and predicting protein complexes from PPI networks.

  3. Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Yue, Binbin; Wang, Caiyun; Ding, Xin; Wallace, Gordon G.

    2013-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. Being an indispensable part of these electronics, lightweight, stretchable and wearable power sources are strongly demanded. Here we describe a daily-used cotton fabric coated with polypyrrole as electrode for stretchable supercapacitors. Polypyrrole was synthesized on the Au coated fabric via an electrochemical polymerization process with p-toluenesulfonic acid (p-TS) as dopant from acetonitrile solution. This material was characterized with FESEM, tensile stress, and studied as a supercapacitor electrode in 1.0 M NaCl. This conductive textile electrode can sustain up to 140% strain without electric failure. It delivers a high specific capacitance of 254.9 F g −1 at a scan rate of 10 mV s −1 , and keeps almost unchanged at an applied strain (i.e. 30% and 50%) but with an improved cycling stability

  4. Ammonia sensing properties of silver nanocomposite with polypyrrole

    Science.gov (United States)

    Karmakar, N. S.; Kothari, D. C.; Bhat, N. V.

    2013-02-01

    Silver-polypyrrole nanocomposite thin film was prepared by a novel method. UV-Vis spectroscopic studies confirmed the presence of silver nanoparticles and also polymerization of pyrrole surrounding the silver nanoparticles. All the important X-ray diffraction peaks corresponding to silver were present in the composites. The silver nanoparticles and its composites with polypyrrole were observed by SEM and TEM. Electrical conductivity measurements were carried out using two probe method and it was found that the conductivity of nanocomposites is 10-5 S/cm. It was found that functionalized silver nanoparticles can act as efficient gas sensor for ammonia. The present result of the increase in conductivity with ammonia exposure is in contrast with the previously reported results of the decrease in conductivity.

  5. Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites

    Science.gov (United States)

    Kabir, L.; Mandal, S. K.

    2012-05-01

    Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites are reported here. The nanocomposites are synthesized by wet chemical technique with different amount of silver loadings (5-15 mol%). The sensitivity of the nanocomposites upon exposure to gas molecules is critically dependent on the silver loadings and the concentration of the exposed gas. This is possibly instigated by the modified metal-polymer interface and the polar nature of the constituent metal and the exposed gas. Interaction of the alcohol gas with the polypyrrole chains in the presence of silver effectively determines the change in resistance and hence the sensitivity of the nanocomposites upon exposure to methanol. The adsorption of methanol molecules within the nanocomposites and the subsequent chemical reactions are studied by Fourier transform infrared (FTIR) spectroscopy.

  6. PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Nicolas Trémillon

    Full Text Available BACKGROUND: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases were searched for in lactococcal genomes. RESULTS: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H(2O(2 conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H(2O(2. Induction of a ppiA copy provided in trans had no effect i on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. CONCLUSIONS: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.

  7. A patient and public involvement (PPI) toolkit for meaningful and flexible involvement in clinical trials - a work in progress.

    Science.gov (United States)

    Bagley, Heather J; Short, Hannah; Harman, Nicola L; Hickey, Helen R; Gamble, Carrol L; Woolfall, Kerry; Young, Bridget; Williamson, Paula R

    2016-01-01

    Funders of research are increasingly requiring researchers to involve patients and the public in their research. Patient and public involvement (PPI) in research can potentially help researchers make sure that the design of their research is relevant, that it is participant friendly and ethically sound. Using and sharing PPI resources can benefit those involved in undertaking PPI, but existing PPI resources are not used consistently and this can lead to duplication of effort. This paper describes how we are developing a toolkit to support clinical trials teams in a clinical trials unit. The toolkit will provide a key 'off the shelf' resource to support trial teams with limited resources, in undertaking PPI. Key activities in further developing and maintaining the toolkit are to: ● listen to the views and experience of both research teams and patient and public contributors who use the tools; ● modify the tools based on our experience of using them; ● identify the need for future tools; ● update the toolkit based on any newly identified resources that come to light; ● raise awareness of the toolkit and ● work in collaboration with others to either develop or test out PPI resources in order to reduce duplication of work in PPI. Background Patient and public involvement (PPI) in research is increasingly a funder requirement due to the potential benefits in the design of relevant, participant friendly, ethically sound research. The use and sharing of resources can benefit PPI, but available resources are not consistently used leading to duplication of effort. This paper describes a developing toolkit to support clinical trials teams to undertake effective and meaningful PPI. Methods The first phase in developing the toolkit was to describe which PPI activities should be considered in the pathway of a clinical trial and at what stage these activities should take place. This pathway was informed through review of the type and timing of PPI activities within

  8. Polyaniline and polypyrrole: A comparative study of the preparation

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.; Omastová, M.

    2007-01-01

    Roč. 43, č. 6 (2007), s. 2331-2341 ISSN 0014-3057 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504; GA MŠk ME 847 Grant - others:VEGA(SK) 2/7103/27 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * polypyrrole Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.248, year: 2007

  9. Impact ionisation mass spectrometry of polypyrrole-coated pyrrhotite microparticles

    Science.gov (United States)

    Hillier, Jon K.; Sternovsky, Zoltan; Armes, Steven P.; Fielding, Lee A.; Postberg, Frank; Bugiel, Sebastian; Drake, Keith; Srama, Ralf; Kearsley, Anton T.; Trieloff, Mario

    2014-07-01

    Cation and anion impact ionization mass spectra of polypyrrole-coated pyrrhotite cosmic dust analogue particles are analysed over a range of cosmically relevant impact speeds. Spectra with mass resolutions of 150-300 were generated by hypervelocity impacts of charged particles, accelerated to up to 37 km s-1 in a Van de Graaff electrostatic accelerator, onto a silver target plate in the Large Area Mass Analyzer (LAMA) spectrometer. Ions clearly indicative of the polypyrrole overlayer are identified at masses of 93, 105, 117, 128 and 141 u. Organic species, predominantly derived from the thin (20 nm) polypyrrole layer on the surface of the particles, dominate the anion spectra even at high (>20 km s-1) impact velocities and contribute significantly to the cation spectra at velocities lower than this. Atomic species from the pyrrhotite core (Fe and S) are visible in all spectra at impact velocities above 6 km s-1 for 56Fe+, 9 km s-1 for 32S+ and 16 km s-1 for 32S- ions. Species from the pyrrhotite core are also frequently visible in cation spectra at impact speeds at which surface ionisation is believed to dominate (Silver was confirmed as an excellent choice for the target plate of an impact ionization mass spectrometer, as it provided a unique isotope signature for many target-projectile cluster peaks at masses above 107-109 u. The affinity of Ag towards a dominant organic fragment ion (CN-) derived from fragmentation of the polypyrrole component led to molecular cluster formation. This resulted in an enhanced sensitivity to a particular particle component, which may be of great use when investigating astrobiologically relevant chemicals, such as amino acids.

  10. Electrochemical synthesis and electronic properties of polypyrrole on intrinsic diamond

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Rezek, Bohuslav; Kromka, Alexander; Ledinský, Martin; Kočka, Jan

    2009-01-01

    Roč. 18, č. 9 (2009), 1098-1101 ISSN 0925-9635 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * polypyrrole * electrochemistry * atomic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  11. Colloids of polypyrrole nanotubes/nanorods: a promising conducting ink

    Czech Academy of Sciences Publication Activity Database

    Li, Yu; Bober, Patrycja; Apaydin, D. H.; Syrový, T.; Sariciftci, N. S.; Hromádková, Jiřina; Sapurina, Irina; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    Roč. 221, November (2016), s. 67-74 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GP14-05568P; GA TA ČR(CZ) TE01020022; GA MŠk(CZ) LH14199; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : colloids * polypyrrole * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.435, year: 2016

  12. Electronic properties of polyamide-PPy/metal junction and electrical conductivity of a typical sample at low temperatures

    International Nuclear Information System (INIS)

    Suenel, N.; Sedef, A.G.; Parlak, M.; Toppare, L.

    2005-01-01

    Electronic properties of junctions fabricated by polyamide-polypyrrole composite films polymerized with adjusted doping concentration and various metal contacts (In, Al, Au and Ag) were investigated. For the junctions giving good rectification I 0 , n and φ b were specified. Conductivity of polyamide-polypyrrole composite polymer was obtained as a function of temperature in the 70-320 K range and was found to obey the VRH model. In addition the Mott parameters were evaluated

  13. Electronic properties of polyamide-PPy/metal junction and electrical conductivity of a typical sample at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Suenel, N. [Gaziosmanpasa University, Physics Department, Tasliciftlik Kampasu, Tokat (Turkey)]. E-mail: nsunel@gop.edu.tr; Sedef, A.G. [Gaziosmanpasa University, Physics Department, Tasliciftlik Kampasu, Tokat (Turkey); Parlak, M. [Middle East Technical University, Physics Department, Ankara (Turkey); Toppare, L. [Middle East Technical University, Chemistry Department, Ankara (Turkey)

    2005-05-15

    Electronic properties of junctions fabricated by polyamide-polypyrrole composite films polymerized with adjusted doping concentration and various metal contacts (In, Al, Au and Ag) were investigated. For the junctions giving good rectification I{sub 0}, n and {phi}{sub b} were specified. Conductivity of polyamide-polypyrrole composite polymer was obtained as a function of temperature in the 70-320 K range and was found to obey the VRH model. In addition the Mott parameters were evaluated.

  14. Growth of N-substituted polypyrrole layers in ionic liquids: synthesis and its electrochromic properties

    Czech Academy of Sciences Publication Activity Database

    Ahmad, S.; Sen Gursoy, S.; Kazim, Samrana; Uygun, A.

    2012-01-01

    Roč. 99, SI (2012), s. 95-100 ISSN 0927-0248 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * substituted polypyrrole * ionic liquids Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.630, year: 2012

  15. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  16. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    International Nuclear Information System (INIS)

    Pirvu, Cristian; Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana

    2011-01-01

    Highlights: → Electrochemical monitoring of PPy and PPy-PEG films over immersion time. → Electrochemical and surface analysis showed that PEG improves the stability of PPy films. → Mott-Schottky analysis reveals p-type conductance for both films. → In situ AFM analysis sustains electrochemical behaviour. → A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O 2 inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  17. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Hasan, E-mail: samarhass@yahoo.com [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Minami, Hideto [Graduate School of Engineering, Kobe University, Kobe 657-8501 (Japan); Tauer, Klaus [Max Planck Institute of Colloid and Interfaces, Am Mühlenberg, 14476 Golm (Germany); Gafur, Mohammad Abdul [Pilot Plant and Process Development Centre, BCSIR, Dhaka 1205 (Bangladesh); Rahman, Mohammad Mahbubor [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh)

    2016-08-15

    A combination of maghemite polypyrrole (PPy/γ-Fe{sub 2}O{sub 3}) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl{sub 3} as a oxidant and p-toluene sulfonic acid ( p-TSA) as a dopant. In the reaction system FeCl{sub 3} functioned as a source of Fe(III) for the formation of γ-Fe{sub 2}O{sub 3}. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl{sub 2}. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water. - Highlights: • P(S-NIPAM-MAA-PEGMA) hydrogel particles were prepared. • P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles were prepared. • Oxidative polymerization of pyrrole and precipitation of γ-Fe{sub 2}O{sub 3

  18. PPI finder: a mining tool for human protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: The exponential increase of published biomedical literature prompts the use of text mining tools to manage the information overload automatically. One of the most common applications is to mine protein-protein interactions (PPIs from PubMed abstracts. Currently, most tools in mining PPIs from literature are using co-occurrence-based approaches or rule-based approaches. Hybrid methods (frame-based approaches by combining these two methods may have better performance in predicting PPIs. However, the predicted PPIs from these methods are rarely evaluated by known PPI databases and co-occurred terms in Gene Ontology (GO database. METHODOLOGY/PRINCIPAL FINDINGS: We here developed a web-based tool, PPI Finder, to mine human PPIs from PubMed abstracts based on their co-occurrences and interaction words, followed by evidences in human PPI databases and shared terms in GO database. Only 28% of the co-occurred pairs in PubMed abstracts appeared in any of the commonly used human PPI databases (HPRD, BioGRID and BIND. On the other hand, of the known PPIs in HPRD, 69% showed co-occurrences in the literature, and 65% shared GO terms. CONCLUSIONS: PPI Finder provides a useful tool for biologists to uncover potential novel PPIs. It is freely accessible at http://liweilab.genetics.ac.cn/tm/.

  19. Ag@polypyrrole: A highly efficient nanocatalyst for the N-alkylation of amines using alcohols.

    Science.gov (United States)

    Mandi, Usha; Kundu, Sudipta K; Salam, Noor; Bhaumik, Asim; Islam, Sk Manirul

    2016-04-01

    We have synthesized Ag@polypyrrole nanomaterial by dispersing ultrafine silver nanoparticles (Ag NPs) over the organic polymer polypyrrole. The Ag@polypyrrole material has been characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), Fourier transform infrared (FT-IR), ultraviolet-visible absorption (UV-vis) and atomic adsorption spectroscopy (AAS), and thermogravimetric analysis (TGA). The XRD pattern suggested the cubic crystalline phase of Ag NPs in Ag@polypyrrole. TEM image analysis revealed that silver nanoparticles are highly dispersed in the polymer matrix. The Ag@polypyrrole acts as an efficient and versatile heterogeneous nanocatalyst in the N-alkylation of amines using alcohols. The catalyst can be easily prepared, highly robust and reused several times without decrease in its catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether.

    Science.gov (United States)

    Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R

    2014-01-01

    A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.

  1. Evolutionary, kinetic and thermodynamic aspects on the bioenergetics of inorganic pyrophosphate (PPi) and adenosine triphosphate (ATP)

    International Nuclear Information System (INIS)

    Baltscheffsky, H.; Baltscheffsky, M.

    1995-01-01

    Energy barriers for energy carriers are of fundamental significance for the successful operation of the bioenergetic reactions in living cells. PPi and ATP are outstanding ''energy-rich'' examples of molecular ''energy currencies'' in biological systems, with kinetic barriers preventing excessively fast thermodynamically feasible hydrolysis from occurring. The barriers may be considered to facilitate the energy coupling roles of these phosphate compounds, which are to secure growth and maintain numerous other energy requiring functions. The enzymes involved in overcoming the energies of activation of the bioenergetic reactions have evolved to be very well tuned for their roles. Three aspects will be discussed in some detail. The first is the fact that ATP at neutral pH is considerably more energy-rich than PPi, which thus has been called a ''poor man's ATP''. This is exemplified by the kinetic and thermodynamic differences observed between the requirements for the photosynthetic formation of PPi and ATP in certain photobacterial chromatophores by varying levels of energy supply. At lower pH, PPi and ATP are equally energy-rich, which may be of significance for acidophiles. The second concerns the possible evolutionary significance of the finding that, in the dark, a pH gradient suffices to drive extensive PPi synthesis, whereas ATP synthesis requires both a pH gradient and a membrane potential (Strid et al, Biochim. Biophys. Acta 892 (1987) 236-244). Thirdly, PPi as the most plausible predecessor to ATP in the origin and early evolution of life, will be discussed. (author). Abstract only

  2. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.

    Science.gov (United States)

    Wrobel, Dominika; Appelhans, Dietmar; Signorelli, Marco; Wiesner, Brigitte; Fessas, Dimitrios; Scheler, Ulrich; Voit, Brigitte; Maly, Jan

    2015-07-01

    The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between

  3. Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution.

    Science.gov (United States)

    Brenner, B; Chalovich, J M; Greene, L E; Eisenberg, E; Schoenberg, M

    1986-10-01

    The stiffness of single skinned rabbit psoas fibers was measured during rapid length changes applied to one end of the fibers. Apparent fiber stiffness was taken as the initial slope when force was plotted vs. change in sarcomere length. In the presence of MgATP, apparent fiber stiffness increased with increasing speed of stretch. With the fastest possible stretches, the stiffness of relaxed fibers at an ionic strength of 20 mM reached more than 50% of the stiffness measured in rigor. However, it was not clear whether apparent fiber stiffness had reached a maximum, speed independent value. The same behavior was seen at several ionic strengths, with increasing ionic strength leading to a decrease in the apparent fiber stiffness measured at any speed of stretch. A speed dependence of apparent fiber stiffness was demonstrated even more clearly when stiffness was measured in the presence of 4 mM MgPPi. In this case, stiffness varied with speed of stretch over about four decades. This speed dependence of apparent fiber stiffness is likely due to cross-bridges detaching and reattaching during the stiffness measurement (Schoenberg, 1985. Biophys. J. 48:467). This means that obtaining an estimate of the maximum number of cross-bridges attached to actin in relaxed fibers at various ionic strengths is not straightforward. However, the data we have obtained are consistent with other estimates of cross-bridge affinity for actin in fibers (Brenner et al., 1986. Biophys. J. In press.) which suggest that ~60-90% of the cross-bridges attached in rigor are attached in relaxed fibers at an ionic strength of 20 mM and ~2-10% of this number of cross-bridges are attached in a relaxed fiber at an ionic strength of 170 mM.

  4. Effect of borax additive on the dielectric response of polypyrrole

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... solution in a dropwise fashion and then stirred 24 h at room temperature. After polymerization, the solution was filtered and washed with chloroform and ..... used as a low-cost fire retardant in wood industry, has a promising potential for improving the dielectric properties of PPy for electronic applications.

  5. Analysis of polypyrrole-coated stainless steel electrodes ...

    Indian Academy of Sciences (India)

    WINTEC

    The galvanostatic polymerization of pyrrole is carried out on stainless steel electrodes using .... polymerization. Figure 3b indicates that the essential peaks anticipated for SS substrates are noticed. 3.2 Characterization of Ppy coated SS. In order to test the feasibility ..... Jesus Lopez-Palacios 2006 Polymer degradation and.

  6. Pentanol as Co-Surfactant in Polypyrrole Actuators

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Skaarup, Steen

    2002-01-01

    of the film is changed considerable upon pentanol addition, although electrochemical quartz crystal microbalance measurements indicate that pentanol is only incorporated in the polymer to a small extent. The mechanical properties, conductivity and doping level of PPy-DBS films show little or no changes...

  7. Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries

    Science.gov (United States)

    Gao, Xuanwen; Luo, Wenbin; Zhong, Chao; Wexler, David; Chou, Shu-Lei; Liu, Hua-Kun; Shi, Zhicong; Chen, Guohua; Ozawa, Kiyoshi; Wang, Jia-Zhao

    2014-01-01

    Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine the polypyrrole content. The electrochemical properties of the samples have been investigated and their suitability as anode materials for the lithium-ion battery was examined. The discharge capacity of the Ge nanoparticles calculated in the Ge-polypyrrole composite is 1014 mAh g−1 after 50 cycles at 0.2 C rate, which is much higher than that of pristine germanium (439 mAh g−1). The composite also demonstrates high specific discharge capacities at different current rates (1318, 1032, 661, and 460 mAh g−1 at 0.5, 1.0, 2.0, and 4.0 C, respectively). The superior electrochemical performance of Ge-polypyrrole composite could be attributed to the polypyrrole core, which provides an efficient transport pathway for electrons. SEM images of the electrodes have demonstrated that polypyrrole can also act as a conductive binder and alleviate the pulverization of electrode caused by the huge volume changes of the nanosized germanium particles during Li+ intercalation/de-intercalation. PMID:25168783

  8. iPPI-DB: an online database of modulators of protein-protein interactions

    NARCIS (Netherlands)

    Labbe, C.M.; Kuenemann, M.A.; Zarzycka, B.; Vriend, G.; Nicolaes, G.A.; Lagorce, D.; Miteva, M.A.; Villoutreix, B.O.; Sperandio, O.

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about

  9. 77 FR 76303 - Notice of Availability of Producer Price Index (PPI) Data Users Survey

    Science.gov (United States)

    2012-12-27

    ... trends, for inventory valuation, and as a measure of purchasing power of the dollar at the primary-market... conducted a survey of PPI data users in late 1976 through early 1977. Since that time, numerous new time... contracts and purchase agreements. Producer Price Index data provide a description of the magnitude and...

  10. Synthesis of ferromagnetic sandwich FeCo@graphene@PPy and enhanced electromagnetic wave absorption properties

    Science.gov (United States)

    Wang, Yan; Wu, Xinming; Zhang, Wenzhi; Luo, Chunyan; Li, Jinhua

    2017-12-01

    In this work, a ternary sandwich structure of FeCo@RGO@PPy was successfully fabricated by a three-step method. The structure and morphology of samples were characterized by XRD, FTIR, XPS, TEM and FESEM. TEM and FESEM images indicate that FeCo particles with a size of about 20-40 nm are grown on surface of RGO@PPy, between RGO and PPy. VSM results reveal that FeCo@RGO@PPy composite possesses a ferromagnetic behavior, and the electromagnetic wave absorption properties of its were investigated at 2-18 GHz. The maximum reflection loss of ternary composite can reach -40.7 dB at 4.5 GHz and the absorption bandwidth with the reflection loss exceeding -10 dB is 5.7 GHz (3.1-6 GHz and 12.8-15.6 GHz) with the thickness of 2.5 mm, which shows an improved microwave absorption properties compared with FeCo. The microwave absorption mechanisms were also investigated in detail.

  11. Seven-day PPI-triple therapy with levofloxacin is very effective for Helicobacter pylori eradication.

    NARCIS (Netherlands)

    Schrauwen, R.W.; Janssen, M.J.R.; Boer, W.A. de

    2009-01-01

    BACKGROUND: Helicobacter pylori infection causes lifelong gastritis and is associated with the development of peptic ulcer disease, MALT lymphoma and gastric cancer. Many patients benefit from H. pylori eradication therapy. PPI-triple therapy is recommended as initial therapy. Quadruple therapy,

  12. C-element: a new clustering algorithm to find high quality functional modules in PPI networks.

    Science.gov (United States)

    Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-01-01

    Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used.

  13. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  14. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  15. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole

    International Nuclear Information System (INIS)

    German, Natalija; Kausaite-Minkstimiene, Asta; Ramanavicius, Arunas; Semashko, Tatiana; Mikhailova, Raisa; Ramanaviciene, Almira

    2015-01-01

    Graphical abstract: Display Omitted -- ABSTRACT: The amperometric glucose biosensors based on adsorbed electron transfer mediator (ETM) tetrathiafulvalene (TTF) or 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx) from Aspergillus niger (GOx A.niger ), Penicillium adametzii (GOx P.adametzii ) or Penicillium funiculosum (GOx P.funiculosum ) cross-linked with glutaraldehyde were investigated. ETM and enzyme were immobilized layer by layer on bare graphite rod electrode (GR) premodified with gold nanoparticles (AuNP) of (i) 3.5 nm (GOx/ETM/AuNP 3.5 /GR), (ii) 6.0 nm (GOx/ETM/AuNP 6.0 /GR) and (iii) 13.0 nm (GOx/ETM/AuNP 13.0 /GR) size. The amperometric signals for all the developed biosensors were higher using PD in comparison with TTF. The biosensor based on GOx P.funiculosum showed higher analytical signal to glucose in a comparison to biosensors based on GOx A.niger and GOx P.adametzii . The registered current to glucose using GOx P.funiculosum /PD/AuNP 3.5 /GR electrode was linear in the glucose range from 0.1 to 10.0 mmol L −1 and the limit of detection was 0.024 mmol L −1 . Enzymatical synthesis of polypyrrole (Ppy) layer on the electrode was applied in order to expand the linear glucose detection range. After 22 h of polymerization the amperometric signal was linear in the glucose concentration range from 0.1 to 25.0 mmol L −1 , while after 69 h this rage was increased up to 50.0 mmol L −1 . Additionally Ppy layer on the electrode surface reduced the influence of interfering species on the amperometric signal. The performance of developed biosensor was investigated in human serum samples

  17. Electrical Properties of PPy-Coated Conductive Fabrics for Human Joint Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Jiyong Hu

    2016-03-01

    Full Text Available Body motion signals indicate several pathological features of the human body, and a wearable human motion monitoring system can respond to human joint motion signal in real time, thereby enabling the prevention and treatment of some diseases. Because conductive fabrics can be well integrated with the garment, they are ideal as a sensing element of wearable human motion monitoring systems. This study prepared polypyrrole conductive fabric by in situ polymerization, and the anisotropic property of the conductive fabric resistance, resistance–strain relationship, and the relationship between resistance and the human knee and elbow movements are discussed preliminarily.

  18. Hybrid materials of kaolinite clay with polypyrrole and polyaniline.

    Science.gov (United States)

    Burridge, Kerstin A; Johnston, James H; Borrmann, Thomas

    2009-12-01

    Composites of the alumino silicate mineral kaolinite, with the conducting polymers polypyrrole and polyaniline have been successfully synthesised. In doing so hybrid materials have been produced in which the high surface area of the mineral is retained, whilst also incorporating the desired chemical and physical properties of the polymer. Scanning electron microscopy shows polypyrrole coatings to comprise of individual polymer spheres, approximately 10 to 15 nm in diameter. The average size of the polymer spheres of polyaniline was observed to be approximately 5 nm in diameter. These spheres fuse together in a continuous sheet to coat the kaolinite platelets in their entirety. The reduction of silver ions to metallic silver nanoparticles onto the redox active surface of the polymers has also been successful, and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterization of the hybrid materials has been undertaken through scanning electron microscopy, energy dispersive spectroscopy, electrical conductivity, cyclic voltammetry, X-ray diffraction, infra red spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and the testing of their anti-microbial activity.

  19. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood.

    Science.gov (United States)

    Nyström, Gustav; Mihranyan, Albert; Razaq, Aamir; Lindström, Tom; Nyholm, Leif; Strømme, Maria

    2010-04-01

    It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained upon normal drying without the use of any solvent exchange. Thus, the employed chemical polymerization of polypyrrole on the microfibrillated cellulose (MFC) nanofibers in the hydrogel gives rise to a composite, the structure of which-unlike that of uncoated MFC paper-does not collapse upon drying. The dry composite has a surface area of approximately 90 m(2)/g and a conductivity of approximately 1.5 S/cm, is electrochemically active, and exhibits an ion-exchange capacity for chloride ions of 289 C/g corresponding to a specific capacity of 80 mAh/g. The straightforwardness of the fabrication of the present nanocellulose composites should significantly facilitate industrial manufacturing of highly porous, electroactive conductive paper materials for applications including ion-exchange and paper-based energy storage devices.

  20. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    International Nuclear Information System (INIS)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han

    2016-01-01

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  1. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-02-15

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  2. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Liu, J.; Mikkonen, K. S.; Ihalainen, P.; Pesonen, M.; Plumed-Ferrer, C.; Von Wright, A.; Lindfors, T.; Xu, C.; Latonen, R.-M.

    2014-01-01

    Roč. 15, č. 10 (2014), s. 3655-3663 ISSN 1525-7797 Institutional support: RVO:61389013 Keywords : biocomposites * polypyrrole * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.750, year: 2014

  3. Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhu Jun; Sattler, Rita R.; Garsuch, Arnd; Yepez, Omar; Pickup, Peter G.

    2006-01-01

    Acidic and neutral Nafion[reg] 115 perfluorosulphonate membranes have been modified by in situ polymerization of pyrrole using Fe(III) and H 2 O 2 as oxidizing agents, in order to decrease methanol crossover in direct methanol fuel cells. Improved selectivities for proton over methanol transport and improved fuel cell performances were only obtained with membranes that were modified while in the acid form. Use of Fe(III) as the oxidizing agent can produce a large decrease in methanol crossover, but causes polypyrrole deposition on the surface of the membrane. This increases the resistance of the membrane, and leads to poor fuel cell performances due to poor bonding with the electrodes. Surface polypyrrole deposition can be minimized, and surface polypyrrole can be removed, by using H 2 O 2 . The use of Nafion in its tetrabutylammonium form leads to very low methanol permeabilities, and appears to offer potential for manipulating the location of polypyrrole within the Nafion structure

  4. The influence of polymerization rate on conductivity and crystallinity of electropolymerized polypyrrole

    DEFF Research Database (Denmark)

    Dyreklev, P.; Granström, M.; Inganäs, O.

    1996-01-01

    We report studies on electronic conductivity and crystallinity in electropolymerized polypyrrole. Different growth rates during electropolymerization strongly influence and determine structural and electronic properties. Polymer films grown using low current density show higher electronic...

  5. Simple One-Step Method to Synthesize Polypyrrole-Indigo Carmine-Silver Nanocomposite

    OpenAIRE

    Loguercio, Lara Fernandes; Demingos, Pedro; Manica, Luiza de Mattos; Griep, Jordana Borges; Santos, Marcos José Leite; Ferreira, Jacqueline

    2016-01-01

    A nanocomposite of indigo carmine doped polypyrrole/silver nanoparticles was obtained by a one-step electrochemical process. The nanocomposite was characterized by scanning electron microscopy, infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and cyclic voltammetry. The simple one-step process allowed the growth of silver nanoparticles during the polymerization of polypyrrole, resulting in films with electrochromic behavior and improved electroactivity. In addition, poly...

  6. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Md. Mominul [Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Smith, Warren T. [Samadha Pacifica Pty Ltd, Woonona, NSW 2517 (Australia); Wong, Danny K.Y., E-mail: Danny.Wong@mq.edu.au [Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 (Australia)

    2015-02-11

    Highlights: • Anion exchange property of polypyrrole films exploited in developing a treatment method for Acid Red 1. • An environmentally friendly treatment method for Acid Red 1 without generating any toxic by-products. • Acid Red 1 is anodically entrapped and cathodically liberated at polypyrrole films. • Analytical characteristics of Acid Red 1-entrapped polypyrrole films. - Abstract: In this paper, we demonstrate conducting polypyrrole films as a potential green technology for electrochemical treatment of azo dyes in wastewaters using Acid Red 1 as a model analyte. These films were synthesised by anodically polymerising pyrrole in the presence of Acid Red 1 as a supporting electrolyte. In this way, the anionic Acid Red 1 is electrostatically attracted to the cationic polypyrrole backbone formed to maintain electroneutrality, and is thus entrapped in the film. These Acid Red 1-entrapped polypyrrole films were characterised by electrochemical, microscopic and spectroscopic techniques. Based on a two-level factorial design, the solution pH, Acid Red 1 concentration and polymerisation duration were identified as significant parameters affecting the entrapment efficiency. The entrapment process will potentially aid in decolourising Acid Red 1-containing wastewaters. Similarly, in a cathodic process, electrons are supplied to neutralise the polypyrrole backbone, liberating Acid Red 1 into a solution. In this work, following an entrapment duration of 480 min in 2000 mg L{sup −1} Acid Red 1, we estimated 21% of the dye was liberated after a reduction period of 240 min. This allows the recovery of Acid Red 1 for recycling purposes. A distinctive advantage of this electrochemical Acid Red 1 treatment, compared to many other techniques, is that no known toxic by-products are generated in the treatment. Therefore, conducting polypyrrole films can potentially be applied as an environmentally friendly treatment method for textile effluents.

  7. A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines.

    Science.gov (United States)

    Li, JingHong; Xu, Hui

    2017-05-15

    Exploration of volatile organic compounds (VOCs) generated by lung cell lines is a powerful and non-invasive tool for the detection of potential volatile biomarkers of lung cancer. In this study, a simple and sensitive solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method was developed for the determination of VOCs in the headspace gas of lung cell lines. For the purpose of preconcentration, a novel polyaniline/polypyrrole/graphene oxide (PANI/PPy/GO) coating was prepared on the surface of stainless steel fiber via in-situ electrochemical deposition for the first time. The characteristic properties of the coating were studied and the results revealed that the coating possessed large surface area, high extraction efficiency, excellent thermal and mechanical stability as well as long lifespan. Some parameters affecting the extraction efficiency such as synthesis conditions, extraction and desorption conditions were optimized. Under the optimal conditions, the method displayed relatively wide linear range (three or four orders of magnitude) with correlation coefficients above 0.9916. Low detection limits from 1.0 to 12ngL -1 were obtained. Relative standard deviations ranged from 1.2% to 18.0% indicating good repeatability and reproducibility of the method. This method has been successfully applied to analyze VOCs in the headspace gas of lung adenocarcinoma epithelial cell line (A549) and human embryonic fibroblast cell line (MRC-5). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polypyrrole-polyaniline/Fe{sub 3}O{sub 4} magnetic nanocomposite for the removal of Pb(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Amirhossein; Sadjadi, Seyed Abolfazl Seyed; Mollahosseini, Afsaneh; Eskandarian, Mohammad Reza [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Lead ion which is engaged in aqueous solution has been successfully removed. A novel technique was utilized for the separation and absorption of Pb(II) ions from aqueous solution. Magnetic Fe{sub 3}O{sub 4} coated with newly investigated polypyrrole-polyaniline nanocomposite was used for the removal of extremely noxious Pb(II). Characteristic of the prepared magnetic nanocomposite was done using X-ray diffraction pattern, Field emission scanning electron microscopy (FE-SEM), Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive x-ray spectroscopy (EDX). Up to 100% adsorption was found with 20mg/L Pb(II) aqueous solution in the range of pH=8-10. Adsorption results illustrated that Pb(II) removal efficiency by the nanocomposite increased with an enhance in pH. Adsorption kinetics was best expressed by the pseudo-second-order rate form. Isotherm data fitted well to the Freundlich isotherm model. Upon using HCl and HNO{sub 3}, 75% PPy-PAn/Fe{sub 3}O{sub 4} nanocomposite, desorption experiment showed that regenerated adsorbent can be reused successfully for two successive adsorption-desorption cycles without appreciable loss of its original capacity.

  9. Electrochemical properties of polypyrrole/polyfuran polymer composite electrode

    International Nuclear Information System (INIS)

    Cha, Seong Keuck

    1998-01-01

    Poly pyrrole polymer(ppy) has an excellent electrical conductivity and can be easily polymerized on anode to give various morphology according to doped anion on electroactive sites. To improve the properties of brittleness, ageing and hydrophobicity, poly furan polymer(pfu) having a high initiation potential was anodically implanted in this porous ppy film matrix to get the Pt/ppy/pfu(x)type of polymer campsite electrode. Cyclic voltammetry and electrochemical impedance methods were used to these electrode, where PF 6 - , BF 4 - , and ClO 4 - ions were employed as dopants. The composition of the pfu(x) at the electrode was changed from 0 to 1.10, but the range was useful only at 0.1 to 0.2 as the redox electrode. The polymer composite electrode doped with PF 6 - was better in charge transfer resistance by a factor of 40 times and in double layer capacitance by a factor of 20 times than others. The charge transfer in the polymer film of the electrode was influenced on frequency change and equivalent circuit of this electrode had Warburg impedance including mass transfer

  10. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)

    Science.gov (United States)

    Kaye, Karl; Bryant, David E.; Marriott, Katie E. R.; Ohara, Shohei; Fishwick, Colin W. G.; Kee, Terence P.

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O5 2-; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO-). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO-. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  11. Photoluminescence and magnetic circular dichroism of IrQ(ppy){sub 2}-5Cl

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, S., E-mail: Spol68@yahoo.com [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Faculty of Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Radu, I.C. [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Tsuboi, T. [Faculty of Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2012-04-15

    Photoluminescence and magnetic circular dichroism of the IrQ(ppy){sub 2}-5Cl compound were investigated between 15 and 295 K. These results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software and some additional packages. The experimental results confirm the first triplet state absorption which arises from d to {pi}{sub Q} transition. The temperature dependence photoluminescence have shown a small interaction with the polystyrene, used for dispersion of IrQ(ppy){sub 2}-5Cl compound. The green and red phosphorescence have the same temperature dependence. The MCD spectra, especially at 15 K, reveals the main transitions involved in the Metal-to-Ligand Charge Transfer processes from the Ir towards the two ligands, phenylpyridine and quinoline, respectively. - Highlights: Black-Right-Pointing-Pointer Mixed-ligand of IrQ(ppy){sub 2}-5Cl synthesis with green and red phosphorescence. Black-Right-Pointing-Pointer Photoluminescence and magnetic circular dichroism measurements from 15 to 295 K. Black-Right-Pointing-Pointer Experimental results have been compared with DFT theoretical calculations. Black-Right-Pointing-Pointer Triplet state which arises from d to {pi}{sub Q} transition was experimentally confirmed. Black-Right-Pointing-Pointer Green and red phosphorescence have the same temperature dependence.

  12. A validity assessment of the Progress out of Poverty Index (PPI)™.

    Science.gov (United States)

    Desiere, Sam; Vellema, Wytse; D'Haese, Marijke

    2015-04-01

    Development organisations need easy-to-use and quick-to-implement indicators to quantify poverty when requested to measure program impact. In this paper we assess the validity of the Progress out of Poverty Index (PPI)™, a country-specific indicator based on ten closed questions on directly observable household characteristics, by its compliance to the SMART criteria. Each response receives a pre-determined score, such that the sum of these scores can be converted into the likelihood the household is living below the poverty line. We focus on the PPI scorecard for Rwanda, which was validated using two national household surveys conducted in 2005/06 and 2010/11. The PPI is Specific, Measurable, Available cost effectively, and Timely available. Yet, its Relevance depends on the way it is used. Although it accurately distinguishes poor from non-poor households, making it a useful reporting tool, its limited sensitivity to changes in poverty status restricts its usefulness for evaluating the impact of development projects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  14. The infrared spectrum of polypyrrole-T2O system

    International Nuclear Information System (INIS)

    Kanesaka, Isao; Oda, Kazuhiro

    1995-01-01

    The infrared spectra of polypyrrole contacting with T 2 O gas were observed for ca. 100 days. After adding T 2 O (1.2 Ci; isotopic purity: 15%) the band at 2180 cm -1 was observed, which is assigned to the N-T stretch. Although the bands at 1560 and 1204 cm -1 were initially strong, they became relatively weak by Tβ-irradiation. On the other hand, the bands at 1655 and 1400 cm -1 , as well as 1700 cm -1 , became relatively strong by Tβ-irradiation. This is explained in that the quinonoid-type structure with partially aromatic-type structure decreases and a structure with probable C=N bonds is formed. It was also found that many carbonyl defects are formed in both the atmosphere and Tβ-radiolysis. (author)

  15. Tailoring The Conducting Polymers PPY And PANI With Ionic Liquid BMIMBr For Enhanced Electrochromic Properties

    Directory of Open Access Journals (Sweden)

    Barkat Ul-ain

    2017-06-01

    Full Text Available Conservation of energy is the biggest need of the hour for developing countries. Smart windows with electrochromic characteristics can be one of the solutions for power shortfall. In this study ionic liquid BMIMBr is successfully synthesized by the reflux method. Ionogels comprising of ionic liquid and polymers Polyaniline and Polypyrrol were electrochemically deposited by galvanostatic methods. These films are structurally characterized by XRD and SEM. Concentration of monomer and ionic liquid was changed in order to study the effect on electrochemical and electrochromic properties. The electrochromic character was analyzed by optical studies and colour change was evident at different potentials. To further investigate the electron transport properties electrical conductivity studies were carried out. In a nutshell different parameters are studied with respect to concentration and temperature so that best material could be obtained showing high optical contrast and stability. Taking these studies in account an effective electrochromic device can be fabricated.

  16. Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Kopecký, D.; Vrňata, M.; Prokeš, J.; Varga, M.; Watzlová, E.

    2016-01-01

    Roč. 6, č. 91 (2016), s. 88382-88391 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polypyrrole salt * polypyrrole base * methyl orange Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.108, year: 2016

  17. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  18. Non-linear time variant model intended for polypyrrole-based actuators

    Science.gov (United States)

    Farajollahi, Meisam; Madden, John D. W.; Sassani, Farrokh

    2014-03-01

    Polypyrrole-based actuators are of interest due to their biocompatibility, low operation voltage and relatively high strain and force. Modeling and simulation are very important to predict the behaviour of each actuator. To develop an accurate model, we need to know the electro-chemo-mechanical specifications of the Polypyrrole. In this paper, the non-linear time-variant model of Polypyrrole film is derived and proposed using a combination of an RC transmission line model and a state space representation. The model incorporates the potential dependent ionic conductivity. A function of ionic conductivity of Polypyrrole vs. local charge is proposed and implemented in the non-linear model. Matching of the measured and simulated electrical response suggests that ionic conductivity of Polypyrrole decreases significantly at negative potential vs. silver/silver chloride and leads to reduced current in the cyclic voltammetry (CV) tests. The next stage is to relate the distributed charging of the polymer to actuation via the strain to charge ratio. Further work is also needed to identify ionic and electronic conductivities as well as capacitance as a function of oxidation state so that a fully predictive model can be created.

  19. Measurement of the asymmetry parameter for the decay $\\bar\\Lambda \\to \\bar p\\pi^+$

    OpenAIRE

    BES collaboration

    2009-01-01

    Based on a sample of $58\\times10^6J/\\psi$ decays collected with the BESII detector at the BEPC, the $\\bar\\Lambda$ decay parameter $\\alpha_{\\bar\\Lambda}$ for $\\bar\\Lambda\\to \\bar p \\pi^+$ is measured using about 9000 $J/\\psi\\to\\Lambda\\bar\\Lambda\\to p \\bar p \\pi^+\\pi^-$ decays. A fit to the joint angular distributions yields $\\alpha_{\\bar\\Lambda}(\\bar\\Lambda\\to \\bar p\\pi^+)=-0.755\\pm0.083\\pm0.063$, where the first error is statistical, and the second systematic.

  20. Alzheimer Europe's position on involving people with dementia in research through PPI (patient and public involvement)

    DEFF Research Database (Denmark)

    Gove, Dianne; Diaz-Ponce, Ana; Georges, Jean

    2018-01-01

    This paper reflects Alzheimer Europe's position on PPI (patient and public involvement) in the context of dementia research and highlights some of the challenges and potential risks and benefits associated with such meaningful involvement. The paper was drafted by Alzheimer Europe in collaboration...... with members of INTERDEM and the European Working Group of People with Dementia. It has been formally adopted by the Board of Alzheimer Europe and endorsed by the Board of INTERDEM and by the JPND working group 'Dementia Outcome Measures - Charting New Territory'. Alzheimer Europe is keen to promote...

  1. Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO ...

    Indian Academy of Sciences (India)

    The PPy/1-D ZnO nanocompositeswere used for the sensing of NH 3 , LPG, CO 2 and H 2 S gases, respectively, at room temperature. It was observed that PPy/1-D ZnO nanocomposites with different 1-D ZnO nanorod weight ratios (15 and 25%) had better selectivity and sensitivity towards NH3 at room temperature.

  2. Polypyrrole-coated halloysite nanotube clay nanocomposite: synthesis, characterization and Cr(VI) adsorption behaviour

    CSIR Research Space (South Africa)

    Ballav, N

    2014-12-01

    Full Text Available confirmed the formation of the nanocomposite. The FE-SEM and TEM images revealed the coating of PPy in the halloysite matrix and the surface morphology of the PPy-HNTs NC. Batch adsorption study showed that the adsorption process was very fast and kinetic...

  3. Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO

    Indian Academy of Sciences (India)

    PPy/1-D ZnO nanocomposites with different 1-D ZnO nanorod weight ratios (15 and 25%) had better selectivity and sensitivity towards NH3 at room temperature. Keywords. 1-D ZnO nanorods; PPy/1-D ZnO nanocomposites; photocatalytic activity; sensitivity. 1. Introduction. The synthesis of zinc oxide (ZnO) nanostructures ...

  4. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    Directory of Open Access Journals (Sweden)

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  5. Electrical Characterization and Hydrogen Peroxide Sensing Properties of Gold/Nafion:Polypyrrole/MWCNTs Electrochemical Devices

    Directory of Open Access Journals (Sweden)

    Gaetano Saitta

    2013-03-01

    Full Text Available Electrochemical devices using as substrates copier grade transparency sheets are developed by using ion conducting Nafion:polypyrrole mixtures, deposited between gold bottom electrodes and upper electrodes based on Multi Walled Carbon Nanotubes (MWCNTs. The electrical properties of the Nafion:polypyrrole blends and of the gold/Nafion:polypyrrole/MWCNTs devices are investigated under dry conditions and in deionized water by means of frequency dependent impedance measurements and time domain electrical characterization. According to current-voltage measurements carried out in deionized water, the steady state current forms cycles characterized by redox peaks, the intensity and position of which reversibly change in response to H2O2, with a lower detection limit in the micromolar range. The sensitivity that is obtained is comparable with that of other electrochemical sensors that however, unlike our devices, require supporting electrolytes.

  6. Dual emitter IrQ(ppy){sub 2} for OLED applications: Synthesis and spectroscopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ciobotaru, I.C. [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Polosan, S., E-mail: silv@infim.ro [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, C.C. [Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 149 Calea Victoriei, 010072 (Romania)

    2014-01-15

    The synthesis of organometallic compound with iridium and two types of ligands, quinoline and phenylpyridine, was done successfully. The absorption spectra of this compound have shown broad peaks in a visible region assigned to metal-to-ligands charge transfer and in UV region assigned to intraligand absorptions. The photoluminescence spectra exhibit dual character in which the red emission is more intense than the green one. In cathodoluminescence measurements, under electron beam, the powder obtained after recrystallization from dichloromethane, shows similar behaviors with photoluminescence spectra. The cathodoluminescence images have shown a luminescent crystalline powder with triclinic structure. This compound exhibits combined vibrational modes, which proves the presence in the same molecule of both ligands. Density Functional Theory calculation was involved in order to identify the main vibrations of this compound. Highlights: • Mixed-ligand of IrQ(ppy){sub 2} synthesis which gives green and red phosphorescence due to the MCLT processes coming from two types of ligands. • Absorption, photoluminescence, infrared spectroscopy and cathodoluminescence measurements for characterization of IrQ(ppy){sub 2} organometallic compound. • Experimental results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software.

  7. IsoBase: a database of functionally related proteins across PPI networks.

    Science.gov (United States)

    Park, Daniel; Singh, Rohit; Baym, Michael; Liao, Chung-Shou; Berger, Bonnie

    2011-01-01

    We describe IsoBase, a database identifying functionally related proteins, across five major eukaryotic model organisms: Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus and Homo Sapiens. Nearly all existing algorithms for orthology detection are based on sequence comparison. Although these have been successful in orthology prediction to some extent, we seek to go beyond these methods by the integration of sequence data and protein-protein interaction (PPI) networks to help in identifying true functionally related proteins. With that motivation, we introduce IsoBase, the first publicly available ortholog database that focuses on functionally related proteins. The groupings were computed using the IsoRankN algorithm that uses spectral methods to combine sequence and PPI data and produce clusters of functionally related proteins. These clusters compare favorably with those from existing approaches: proteins within an IsoBase cluster are more likely to share similar Gene Ontology (GO) annotation. A total of 48,120 proteins were clustered into 12,693 functionally related groups. The IsoBase database may be browsed for functionally related proteins across two or more species and may also be queried by accession numbers, species-specific identifiers, gene name or keyword. The database is freely available for download at http://isobase.csail.mit.edu/.

  8. Search for $B_c^+$ decays to the $p\\overline p\\pi^+$ final state

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Ma