WorldWideScience

Sample records for single polypeptide chains

  1. Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain.

    OpenAIRE

    Murphy, P A; Cebula, T A; Windle, B E

    1981-01-01

    Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of a...

  2. Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain.

    Science.gov (United States)

    Murphy, P A; Cebula, T A; Windle, B E

    1981-10-01

    Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause.

  3. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  4. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan, E-mail: wangjn@suda.edu.cn

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0 kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8 kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. - Highlights: • A non-repetitive domain and its multimers of silk fibroin were expressed by E. coli. • The corresponding target polypeptides F(1), F(4) and F(8) were cleaved clearly. • Their

  5. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    Mamasakhlisov, E.S.; Badasyan, A.V.; Tsarukyan, A.V.; Grigoryan, A.V.; Morozov, V.F.

    2005-07-01

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  6. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    Science.gov (United States)

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  7. Analysis of various types of single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complexes and their allosteric receptor–receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Toshio, E-mail: kamiya@z2.keio.jp [Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526 (Japan); Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526 (Japan); Cell Biology Laboratory, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Yoshioka, Kazuaki; Nakata, Hiroyasu [Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526 (Japan)

    2015-01-09

    Highlights: • Various scA{sub 2A}R/D{sub 2}R constructs, with spacers between the two receptors, were created. • Using whole cell binding assay, constructs were examined for their binding activity. • Although the apparent ratio of A{sub 2A}R to D{sub 2}R binding sites should be 1, neither was 1. • Counter agonist-independent binding cooperativity occurred in context of scA{sub 2A}R/D{sub 2}R. - Abstract: Adenosine A{sub 2A} receptor (A{sub 2A}R) heteromerizes with dopamine D{sub 2} receptor (D{sub 2}R). However, these class A G protein-coupled receptor (GPCR) dimers are not fully formed, but depend on the equilibrium between monomer and dimer. In order to stimulate the heteromerization, we have previously shown a successful design for a fusion receptor, single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complex. Here, using whole cell binding assay, six more different scA{sub 2A}R/D{sub 2}R constructs were examined. Not only in scA{sub 2A}R/D{sub 2}R ‘liberated’ with longer spacers between the two receptors, which confer the same configuration as the prototype, the A{sub 2A}R-odr4TM-D{sub 2L}R, but differ in size (Forms 1–3), but also in scA{sub 2A}R/D{sub 2L}R (Form 6) fused with a transmembrane (TM) of another type II TM protein, instead of odr4TM, neither of their fixed stoichiometry (the apparent ratios of A{sub 2A}R to D{sub 2}R binding sites) was 1, suggesting their compact folding. This suggests that type II TM, either odr4 or another, facilitates the equilibrial process of the dimer formation between A{sub 2A}R and D{sub 2L}R, resulting in the higher-order oligomer formation from monomer of scA{sub 2A}R/D{sub 2L}R itself. Also, in the reverse type scA{sub 2A}R/D{sub 2L}R, i.e., the D{sub 2L}R-odr4TM-A{sub 2A}R, counter agonist-independent binding cooperativity (cooperative folding) was found to occur (Forms 4 and 5). In this way, the scA{sub 2A}R/D{sub 2L}R system has unveiled the cellular phenomenon as a snapshot of the

  8. RECOMBINATION OF ANTIBODY POLYPEPTIDE CHAINS IN THE PRESENCE OF ANTIGEN

    Science.gov (United States)

    Metzger, Henry; Mannik, Mart

    1964-01-01

    Conditions were developed by which the separated H and L chains of gamma2 globulins recombined to form four-chained molecules in good yields. In the absence of antigen, anti-2,4-dinitrophenyl (anti-DNP) H chains randomly reassociated with a mixture of antibody and non-specific gamma2 globulin L chains. In the presence of a specific hapten, however, the antibody H chains preferentially interacted with the anti-DNP L chains. Antibody H chain-antibody L chain recombinants formed in the presence of hapten were more active than the corresponding recombinants formed in the absence of hapten. Speculations are made regarding the possible mechanisms and biological significance of these effects. PMID:14247718

  9. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  10. Ab initio study of alanine polypeptide chain twisting

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...

  11. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    Science.gov (United States)

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  12. Advances in single chain technology.

    Science.gov (United States)

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-07

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  13. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  14. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    Science.gov (United States)

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-07

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.

  15. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    Science.gov (United States)

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  16. The mining of toxin-like polypeptides from EST database by single residue distribution analysis.

    Science.gov (United States)

    Kozlov, Sergey; Grishin, Eugene

    2011-01-31

    Novel high throughput sequencing technologies require permanent development of bioinformatics data processing methods. Among them, rapid and reliable identification of encoded proteins plays a pivotal role. To search for particular protein families, the amino acid sequence motifs suitable for selective screening of nucleotide sequence databases may be used. In this work, we suggest a novel method for simplified representation of protein amino acid sequences named Single Residue Distribution Analysis, which is applicable both for homology search and database screening. Using the procedure developed, a search for amino acid sequence motifs in sea anemone polypeptides was performed, and 14 different motifs with broad and low specificity were discriminated. The adequacy of motifs for mining toxin-like sequences was confirmed by their ability to identify 100% toxin-like anemone polypeptides in the reference polypeptide database. The employment of novel motifs for the search of polypeptide toxins in Anemonia viridis EST dataset allowed us to identify 89 putative toxin precursors. The translated and modified ESTs were scanned using a special algorithm. In addition to direct comparison with the motifs developed, the putative signal peptides were predicted and homology with known structures was examined. The suggested method may be used to retrieve structures of interest from the EST databases using simple amino acid sequence motifs as templates. The efficiency of the procedure for directed search of polypeptides is higher than that of most currently used methods. Analysis of 39939 ESTs of sea anemone Anemonia viridis resulted in identification of five protein precursors of earlier described toxins, discovery of 43 novel polypeptide toxins, and prediction of 39 putative polypeptide toxin sequences. In addition, two precursors of novel peptides presumably displaying neuronal function were disclosed.

  17. The mining of toxin-like polypeptides from EST database by single residue distribution analysis

    Directory of Open Access Journals (Sweden)

    Grishin Eugene

    2011-01-01

    Full Text Available Abstract Background Novel high throughput sequencing technologies require permanent development of bioinformatics data processing methods. Among them, rapid and reliable identification of encoded proteins plays a pivotal role. To search for particular protein families, the amino acid sequence motifs suitable for selective screening of nucleotide sequence databases may be used. In this work, we suggest a novel method for simplified representation of protein amino acid sequences named Single Residue Distribution Analysis, which is applicable both for homology search and database screening. Results Using the procedure developed, a search for amino acid sequence motifs in sea anemone polypeptides was performed, and 14 different motifs with broad and low specificity were discriminated. The adequacy of motifs for mining toxin-like sequences was confirmed by their ability to identify 100% toxin-like anemone polypeptides in the reference polypeptide database. The employment of novel motifs for the search of polypeptide toxins in Anemonia viridis EST dataset allowed us to identify 89 putative toxin precursors. The translated and modified ESTs were scanned using a special algorithm. In addition to direct comparison with the motifs developed, the putative signal peptides were predicted and homology with known structures was examined. Conclusions The suggested method may be used to retrieve structures of interest from the EST databases using simple amino acid sequence motifs as templates. The efficiency of the procedure for directed search of polypeptides is higher than that of most currently used methods. Analysis of 39939 ESTs of sea anemone Anemonia viridis resulted in identification of five protein precursors of earlier described toxins, discovery of 43 novel polypeptide toxins, and prediction of 39 putative polypeptide toxin sequences. In addition, two precursors of novel peptides presumably displaying neuronal function were disclosed.

  18. Intersegment interactions and helix-coil transition within the generalized model of polypeptide chains approach

    Science.gov (United States)

    Badasyan, A. V.; Hayrapetyan, G. N.; Tonoyan, Sh. A.; Mamasakhlisov, Y. Sh.; Benight, A. S.; Morozov, V. F.

    2009-09-01

    The generalized model of polypeptide chains is extended to describe the helix-coil transition in a system comprised of two chains interacting side-by-side. The Hamiltonian of the model takes into account four possible types of interactions between repeated units of the two chains, i.e., helix-helix, helix-coil, coil-helix, and coil-coil. Analysis reveals when the energy Ihh+Icc of (h-h, c-c) interactions overwhelms the energy Ihc+Ich of mixed (h-c, c-h) interactions, the correlation length rises substantially, resulting in narrowing of the transition interval. In the opposite case, when Ihh+Icc

  19. Hemoglobin variants as models for investigation of dissociation of intact polypeptide chains by ESI tandem mass spectrometry

    International Nuclear Information System (INIS)

    Light, K.J.; Loo, J.A.; Edmonds, C.G.; Smith, R.D.

    1991-06-01

    Electrospray ionization mass spectroscopy (ESI-MS) is rapidly becoming a practical biochemical tool for peptide and protein sequence analysis. The utility of ESI-MS is through use of Collisionally Activated Dissociation (ESI-CAD-MS). Human hemoglobin (Hb, ∼62 kDa) consists of four polypeptide chains and a prosthetic heme group. There are over 400 Hb variants, characterized by amino acid substitutions in either the alpha or beta polypeptide chains. We investigated ESI-CAD-MS as a tool for rapidly analyzing amino acid substitutions, using eight Hb beta chain variants. The approximate location of the modification can be deduced from comparison of the CAD mass spectra and observance of the mass shifts of the fragment ion containing the substitution. Fragmentation occurs preferentially at the amino terminus of proline residues. For most substitutions, differences in CAD mass spectra were not seen. 2 figs

  20. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    Science.gov (United States)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  1. Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain

    Directory of Open Access Journals (Sweden)

    Garabaya Cecilia

    2006-03-01

    Full Text Available Abstract Background We have previously described the identification and characterization of polyserase-1 and polyserase-2, two human serine proteases containing three different catalytic domains within the same polypeptide chain. Polyserase-1 shows a complex organization and it is synthesized as a membrane-bound protein which can generate three independent serine protease domains as a consequence of post-translational processing events. The two first domains are enzymatically active. By contrast, polyserase-2 is an extracellular glycosylated protein whose three protease domains remain embedded in the same chain, and only the first domain possesses catalytic activity. Results Following our interest in the study of the human degradome, we have cloned a human liver cDNA encoding polyserase-3, a new protease with tandem serine protease domains in the same polypeptide chain. Comparative analysis of polyserase-3 with the two human polyserases described to date, revealed that this novel polyprotein is more closely related to polyserase-2 than to polyserase-1. Thus, polyserase-3 is a secreted protein such as polyserase-2, but lacks additional domains like the type II transmembrane motif and the low-density lipoprotein receptor module present in the membrane-anchored polyserase-1. Moreover, analysis of post-translational mechanisms operating in polyserase-3 maturation showed that its two protease domains remain as integral parts of the same polypeptide chain. This situation is similar to that observed in polyserase-2, but distinct from polyserase-1 whose protease domains are proteolytically released from the original chain to generate independent units. Immunolocalization studies indicated that polyserase-3 is secreted as a non-glycosylated protein, thus being also distinct from polyserase-2, which is a heavily glycosylated protein. Enzymatic assays indicated that recombinant polyserase-3 degrades the α-chain of fibrinogen as well as pro

  2. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    Science.gov (United States)

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  3. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    Science.gov (United States)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  4. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna; Houbenov, Nikolay; Karatzas, A.; Hadjichristidis, Nikolaos; Hirao, Akira; Iatrou, Hermis; Ikkala, Olli T.

    2012-01-01

    polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between

  5. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins II reactions at side-chain loci in model systems

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1983-11-01

    The major emphasis in radiation biology at the molecular level has been on the nucleic acid component of the nucleic acid-protein complex because of its primary genetic importance. But there is increasing evidence that radiation damage to the protein component also has important biological implications. Damage to capsid protein now appears to be a major factor in the radiation inactivation of phage and other viruses. And, there is increasing evidence that radiation-chemical change in the protein component of chromation leads to changes in the stability of the repressor-operator complexes involved in gene expression. Knowledge of the radiation chemistry of protein is also of importance in other fields such as the application of radiation sterilization to foods and drugs. Recent findings that a class of compounds, the α,α'-diaminodicarboxylic acids, not normally present in food proteins, are formed in protein radiolysis is of particular significance since certain of their peptide derivatives have been showing to exhibit immunological activity. The purpose of this review is to bring together and to correlate our present knowledge of products and mechanisms in the radiolysis of peptides, polypeptides and proteins both aqueous and solid-state. In part 1 we presented a discussion of the radiation-induced reactions of the peptide main-chain in model peptide and polypeptide systems. Here in part 2 the emphasis is on the competing radiation chemistry at side-chain loci of peptide derivatives of aliphatic, aromatic-unsaturated and sulfur-containing amino acids in similar systems. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis, and ESR spectroscopy are included

  6. Elementary excitations in single-chain magnets

    Science.gov (United States)

    Lutz, Philipp; Aguilà, David; Mondal, Abhishake; Pinkowicz, Dawid; Marx, Raphael; Neugebauer, Petr; Fâk, Björn; Ollivier, Jacques; Clérac, Rodolphe; van Slageren, Joris

    2017-09-01

    Single-chain magnets (SCMs) are one-dimensional coordination polymers or spin chains that display slow relaxation of the magnetization. Typically their static magnetic properties are described by the Heisenberg model, while the description of their dynamic magnetic properties is based on an Ising-like model. The types of excitations predicted by these models (collective vs localized) are quite different. Therefore we probed the nature of the elementary excitations for two SCMs abbreviated Mn2Ni and Mn2Fe , as well as a mononuclear derivative of the Mn2Fe chain, by means of high-frequency electron paramagnetic resonance spectroscopy (HFEPR) and inelastic neutron scattering (INS). We find that the HFEPR spectra of the chains are clearly distinct from those of the monomer. The momentum transfer dependence of the INS intensity did not reveal significant dispersion, indicating an essentially localized nature of the excitations. At the lowest temperatures these are modified by the occurrence of short-range correlations.

  7. Domain walls in single-chain magnets

    Science.gov (United States)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  8. Nicked apomyoglobin: a noncovalent complex of two polypeptide fragments comprising the entire protein chain.

    Science.gov (United States)

    Musi, Valeria; Spolaore, Barbara; Picotti, Paola; Zambonin, Marcello; De Filippis, Vincenzo; Fontana, Angelo

    2004-05-25

    Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the

  9. Earlinet single calculus chain: new products overview

    Science.gov (United States)

    D'Amico, Giuseppe; Mattis, Ina; Binietoglou, Ioannis; Baars, Holger; Mona, Lucia; Amato, Francesco; Kokkalis, Panos; Rodríguez-Gómez, Alejandro; Soupiona, Ourania; Kalliopi-Artemis, Voudouri

    2018-04-01

    The Single Calculus Chain (SCC) is an automatic and flexible tool to analyze raw lidar data using EARLINET quality assured retrieval algorithms. It has been already demonstrated the SCC can retrieve reliable aerosol backscatter and extinction coefficient profiles for different lidar systems. In this paper we provide an overview of new SCC products like particle linear depolarization ratio, cloud masking, aerosol layering allowing relevant improvements in the atmospheric aerosol characterization.

  10. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain.

    Science.gov (United States)

    Wu, R; Wilton, R; Cuff, M E; Endres, M; Babnigg, G; Edirisinghe, J N; Henry, C S; Joachimiak, A; Schiffer, M; Pokkuluri, P R

    2017-04-01

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from Lake Retba, in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously, and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport. © 2017 The Protein Society.

  11. Pressure effects on single chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mito, M. E-mail: mitoh@elcs.kyutech.ac.jp; Shindo, N.; Tajiri, T.; Deguchi, H.; Takagi, S.; Miyasaka, H.; Yamashita, M.; Clerac, R.; Coulon, C

    2004-05-01

    Pressure effects on a single chain magnet [Mn{sub 2}(saltmen){sub 2}Ni(pao){sub 2}(py){sub 2}](ClO{sub 4}){sub 2} (saltmen{sup 2-}=N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminate), and pao{sup -}=pyridine-2-aldoximate) have been investigated through AC magnetic measurements under pressure (P). The slow relaxation of the magnetization depends on pressure. Both the blocking temperature (T{sub B}) and energy barrier ({delta}) increase by pressurization, and those enhancements saturate at around P=7 kbar.

  12. Single-ion and single-chain magnetism in triangular spin-chain oxides

    Science.gov (United States)

    Seikh, Md. Motin; Caignaert, Vincent; Perez, Olivier; Raveau, Bernard; Hardy, Vincent

    2017-05-01

    S r4 -xC axM n2Co O9 oxides (x =0 and x =2 ) are found to exhibit magnetic responses typical of single-chain magnets (SCMs) and single-ion magnets (SIMs), two features generally investigated in coordination polymers or complexes. The compound x =0 appears to be a genuine SCM, in that blocking effects associated with slow spin dynamics yield remanence and coercivity in the absence of long-range ordering (LRO). In addition, SIM signatures of nearly identical nature are detected in both compounds, coexisting with SCM in x =0 and with LRO in x =2 . It is also observed that a SCM response can be recovered in x =2 after application of magnetic field. These results suggest that purely inorganic systems could play a valuable role in the topical issue of the interplay among SIM, SCM, and LRO phenomena in low-dimensional magnetism.

  13. Novel scenario of the folding transition of a single chain

    International Nuclear Information System (INIS)

    Yoshikawa, Kenichi; Yoshinaga, Natsuhiko

    2005-01-01

    Unique characteristics of a single polymer chain with the effects of stiffness and charge are discussed. It has been well established that a flexible polymer chain undergoes a continuous transition from an elongated coil to a compact globule, corresponding to the transition between disordered gas-like and disordered liquid-like states. Here, we will show that a semiflexible chain exhibits a discrete transition from coil to compact states, corresponding to a disorder-order transition to an ordered crystalline state. We will propose a novel strategy to obtain various kinds of nano-ordered structures from single chains connecting a pair of chains of different stiffness. We will also discuss the effect of charge, putting emphasis on intramolecular segregation in a single polyelectrolyte chain

  14. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    Science.gov (United States)

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop specific single chain variable fragments (scFv) against ... libraries. The binding ability of the selected scFv antibody fragments against the IBDV particles was ..... Hermelink H, Koscielniak E. A human recombinant.

  16. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate.

    Science.gov (United States)

    Zhang, Yi; Li, Kunhua; Yang, Guang; McBride, Joshua L; Bruner, Steven D; Ding, Yousong

    2018-05-03

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important family of natural products. Their biosynthesis follows a common scheme in which the leader peptide of a precursor peptide guides the modifications of a single core peptide. Here we describe biochemical studies of the processing of multiple core peptides within a precursor peptide, rare in RiPP biosynthesis. In a cyanobacterial microviridin pathway, an ATP-grasp ligase, AMdnC, installs up to two macrolactones on each of the three core peptides within AMdnA. The enzyme catalysis occurs in a distributive fashion and follows an unstrict N-to-C overall directionality, but a strict order in macrolactonizing each core peptide. Furthermore, AMdnC is catalytically versatile to process unnatural substrates carrying one to four core peptides, and kinetic studies provide insights into its catalytic properties. Collectively, our results reveal a distinct biosynthetic logic of RiPPs, opening up the possibility of modular production via synthetic biology approaches.

  17. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    Science.gov (United States)

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  18. Mechanics of biopolymer materials: Single chains to bulk properties

    NARCIS (Netherlands)

    Amuasi, H.E.; Storm, C.

    2010-01-01

    We outline the first stages in the multiscale modeling of biopolymer materials, starting with the statistical mechanics of single stiff chains. In the first coarse graining step, we demonstrate how to integrate out the single polymer degrees of freedom in supramolecular assemblies of such

  19. Unexpectedly normal phase behavior of single homopolymer chains

    International Nuclear Information System (INIS)

    Paul, W.; Strauch, T.; Rampf, F.; Binder, K.

    2007-01-01

    Employing Monte Carlo simulations, we show that the topology of the phase diagram of a single flexible homopolymer chain changes in dependence on the range of an attractive square well interaction between the monomers. For a range of attraction larger than a critical value, the equilibrium phase diagram of the single polymer chain and the corresponding polymer solution phase diagram exhibit vapor (swollen coil, dilute solution), liquid (collapsed globule, dense solution), and solid phases. Otherwise, the liquid-vapor transition vanishes from the equilibrium phase diagram for both the single chain and the polymer solution. This change in topology of the phase diagram resembles the behavior known for colloidal dispersions. The interplay of enthalpy and conformational entropy in the polymer case thus can lead to the same topology of phase diagrams as the interplay of enthalpy and translational entropy in simple liquids

  20. Single-copy entanglement in critical quantum spin chains

    International Nuclear Information System (INIS)

    Eisert, J.; Cramer, M.

    2005-01-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results--which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains--are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ∼(1/6)log 2 (L), and contrast it with the block entropy

  1. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Purpose: To develop specific single chain variable fragments (scFv) against infectious bursal disease virus (IBDV) via phage display technology. Methods: Purified viruses were initially applied for iterative panning rounds of scFv phage display libraries. The binding ability of the selected scFv antibody fragments against the ...

  2. Expression, production and renaturation of a functional single-chain ...

    African Journals Online (AJOL)

    The single-chain variable antibody fragment (scFv) against human intercellular adhesion molecule-1 (ICAM-1) was expressed at a high level in Escherichia coli as inclusion bodies. We attempted to refold the scFv by ion-exchange chromatography (IEC), dialysis and dilution. The results show that the column ...

  3. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So

    1998-01-01

    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  4. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  5. Unconventional phase transitions in a constrained single polymer chain

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M

    2011-01-01

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil–globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid–liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  6. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Wilton, R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Cuff, M. E. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Endres, M. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Babnigg, G. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Edirisinghe, J. N. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Henry, C. S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Joachimiak, A. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Schiffer, M. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Pokkuluri, P. R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-03-06

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.

  7. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  8. Phase transitions in polypeptides: analysis of energy fluctuations

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...... of simulation time. This study provides a comparison of methods for the description of structural transitions in polypeptides....

  9. Markov chain analysis of single spin flip Ising simulations

    International Nuclear Information System (INIS)

    Hennecke, M.

    1997-01-01

    The Markov processes defined by random and loop-based schemes for single spin flip attempts in Monte Carlo simulations of the 2D Ising model are investigated, by explicitly constructing their transition matrices. Their analysis reveals that loops over all lattice sites using a Metropolis-type single spin flip probability often do not define ergodic Markov chains, and have distorted dynamical properties even if they are ergodic. The transition matrices also enable a comparison of the dynamics of random versus loop spin selection and Glauber versus Metropolis probabilities

  10. Screened ion-ion interaction in mercury-chain compounds: Single chain

    International Nuclear Information System (INIS)

    Mohan, M.M.; Griffin, A.

    1985-01-01

    At room temperature, the mercury chains in Hg/sub 3-delta/AsF 6 exhibit phonons characteristic of a one-dimensional lattice. We calculate the screening of the Hg ion-ion interaction in a single chain by electrons moving in a cylindrical potential of finite radius, within the random-phase approximation. The resulting Bohm-Staver-type expression for the phonon velocity is (Z 2 mN/sub I//MN/sub e/)/sup 1/2/v/sub F/, where Z is the Hg ionic charge and N/sub I/ (N/sub e/) is the number of ions (electrons) per unit length. Use of the Tomonaga-Luttinger solution for the electronic response function (keeping only the small-momentum scattering processes) just renormalizes the Fermi velocity in this expression

  11. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    Science.gov (United States)

    Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.

    2018-01-01

    Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.

  12. From single magnetic adatoms on superconductors to coupled spin chains

    Science.gov (United States)

    Franke, Katharina J.

    Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.

  13. Dynamical behavior of a single polymer chain under nanometric confinement

    Science.gov (United States)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  14. Conformation of Single Pentablock Ionomer Chains in Dilute Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Dipak [Clemson Univ., SC (United States); Perahia, Dvora [Clemson Univ., SC (United States); Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    The conformation of single chain pentablock ionomers (A-B-C-B-A) containing randomly sulfonated polystyrene in the center block, tethered to poly-ethylene-r-propylene end-capped by poly-t-butyl styrene is studied in dilute solutions by molecular dynamics simulations. Multi-block copolymers offer a means to tailor several properties into one molecule, taking advantage of their rich phase diagram together with unique properties of specific blocks. For this pentablock the ionic block facilitates transport while the A and B components are incorporated for mechanical stability. The present study investigates the confirmation of a single chain of pentablock ionomer of molecular weight Mw ~ 50,000 g/mol and sulfonated polystyrene of the same molecular weight as that of the center block for six sulfonation fractions f from f=0.0-0.55. For the sulfonated systems Na+ counterions are included. Results for the equilibrium conformation of the chains and the three blocks in water and 1:1 mixture of cyclohexane and n-heptane are compared to simulations in implicit poor solvents with dielectric constants ε =1.0 and 77.73. In water, the pentablock is collapsed with sulfonated groups on the outer surface. As the sulfonation fraction f increases, the ionic, center block is increasingly segregated from the hydrophobic regions. In the 1:1 mixture of cyclohexane and heptane both the flexible and end blocks are swollen while the center ionic block is collasped for f>0, while for f=0 all blocks are swollen. In both implicit poor solvents the pentablock is collapsed into a nearly spherical shape for all f. The sodium counterions are dispersed widely throughout the simulation cell for both water and ε =77.73 whereas for ε =1.0 the counterions are largely condensed on the collapsed pentablock.

  15. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.

    Science.gov (United States)

    Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z

    2018-02-16

    Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.

  16. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    Science.gov (United States)

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  17. Monte Carlo simulated dynamical magnetization of single-chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn

    2015-03-15

    Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.

  18. Targeting nanodisks via a single chain variable antibody - Apolipoprotein chimera

    International Nuclear Information System (INIS)

    Iovannisci, David M.; Beckstead, Jennifer A.; Ryan, Robert O.

    2009-01-01

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that α-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  19. Equivalence of chain conformations in the surface region of a polymer melt and a single Gaussian chain under critical conditions.

    Science.gov (United States)

    Skvortsov, A M; Leermakers, F A M; Fleer, G J

    2013-08-07

    In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of floating free chains of concentration φ by the self-consistent field (SCF) method. Apart from the grafting, probe chain and floating chains are identical. Most of the results were obtained for a standard SCF model with freely jointed chains on a six-choice lattice, where immediate step reversals are allowed. A few data were generated for a five-choice lattice, where such step reversals are forbidden. These coarse-grained models describe the equilibrium properties of flexible atactic polymer chains at the scale of the segment length. The concentration was varied over the whole range from φ = 0 (single grafted chain) to φ = 1 (probe chain in the melt). The number of contacts with the surface, average height of the free end and its dispersion, average loop and train length, tail size distribution, end-point and overall segment distributions were calculated for a grafted probe chain as a function of φ, for several chain lengths and substrate∕polymer interactions, which were varied from strong repulsion to strong adsorption. The computations show that the conformations of the probe chain in the melt do not depend on substrate∕polymer interactions and are very similar to the conformations of a single end-grafted chain under critical conditions, and can thus be described analytically. When the substrate∕polymer interaction is fixed at the value corresponding to critical conditions, all equilibrium properties of a probe chain are independent of φ, over the whole range from a dilute solution to the melt. We believe that the conformations of all flexible chains in the surface region of the melt are close to those of an appropriate single chain in critical conditions, provided

  20. EARLINET Single Calculus Chain - overview on methodology and strategy

    Science.gov (United States)

    D'Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.

    2015-11-01

    In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network - Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation

  1. A Polypeptide-DNA Hybrid with Selective Linking Capability Applied to Single Molecule Nano-Mechanical Measurements Using Optical Tweezers

    NARCIS (Netherlands)

    Moayed, F.; Mashaghi, A.; Tans, S.J.

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an

  2. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.

    Directory of Open Access Journals (Sweden)

    Fatemeh Moayed

    Full Text Available Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN and the peptide StrepTag II (ST. We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST. In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV linkage. It can be used in conjunction with Neutravidin (NTV-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.

  3. Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level.

    Science.gov (United States)

    Mahendran, Kozhinjampara R; Lamichhane, Usha; Romero-Ruiz, Mercedes; Nussberger, Stephan; Winterhalter, Mathias

    2013-01-03

    The TOM protein complex facilitates the transfer of nearly all mitochondrial preproteins across outer mitochondrial membranes. Here we characterized the effect of temperature on facilitated translocation of a mitochondrial presequence peptide pF1β. Ion current fluctuations analysis through single TOM channels revealed thermodynamic and kinetic parameters of substrate binding and allowed determining the energy profile of peptide translocation. The activation energy for the on-rate and off-rate of the presequence peptide into the TOM complex was symmetric with respect to the electric field and estimated to be about 15 and 22 kT per peptide. These values are above that expected for free diffusion of ions in water (6 kT) and reflect the stronger interaction in the channel. Both values are in the range for typical enzyme kinetics and suggest one process without involving large conformational changes within the channel protein.

  4. Critical role in CXCR4 signaling and internalization of the polypeptide main chain in the amino terminus of SDF-1α probed by novel N-methylated synthetically and modularly modified chemokine analogues.

    Science.gov (United States)

    Dong, Chang-Zhi; Tian, Shaomin; Choi, Won-Tak; Kumar, Santhosh; Liu, Dongxiang; Xu, Yan; Han, Xiaofeng; Huang, Ziwei; An, Jing

    2012-07-31

    The replication of human immunodeficiency virus type 1 (HIV-1) can be profoundly inhibited by the natural ligands of two major HIV-1 coreceptors, CXCR4 and CCR5. Stromal cell-derived factor-1α (SDF-1α) is a natural ligand of CXCR4. We have recently developed a synthetic biology approach of using synthetically and modularly modified (SMM)-chemokines to dissect various aspects of the structure-function relationship of chemokines and their receptors. Here, we used this approach to design novel SMM-SDF-1α analogues containing unnatural N-methylated residues in the amino terminus to investigate whether the polypeptide main chain amide bonds in the N-terminus of SDF-1α play a role in SDF-1α signaling via CXCR4 and/or receptor internalization. The results show that SDF-1α analogues with a modified N-methylated main chain at position 2, 3, or 5 retain significant CXCR4 binding and yet completely lose signaling activities. Furthermore, a representative N-methylated analogue has been shown to be incapable of causing CXCR4 internalization. These results suggest that the ability of SDF-1α to activate CXCR4 signaling and internalization is dependent upon the main chain amide bonds in the N-terminus of SDF-1α. This study demonstrates the feasibility and value of applying a synthetic biology approach to chemically engineer natural proteins and peptide ligands as probes of important biological functions that are not addressed by other biological techniques.

  5. Calculation of single chain cellulose elasticity using fully atomistic modeling

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2011-01-01

    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  6. Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yijia [Department; Ford, Nicole R. [Marine; Hecht, Karen A. [Marine; Roesijadi, Guritno [Marine; Department; Squier, Thomas C. [Department

    2017-10-12

    Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39 amino-acid targeting sequence (Sil3T8) to direct a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundances in excess of 200,000 proteins per frustule. The fluorescence of either a derivative of trinitrotoluene (TNT) bound to the scFv or the endogenous fluorescence of EGFP was used to monitor pro-tein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. We find that proteins within isolated frustules undergo isotropic rotational motions with two-fold increases in rotational correlation times, which are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibod-ies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). These results argue that dramatic increases in protein conforma-tional stability within the biosilica frustule matrices arise through molecular crowding, acting to retain native protein folds and associated functionality to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.

  7. Force Spectroscopy of Hyaluronan by AFM; From H-bonded Networks Towards Single Chain Behavior

    NARCIS (Netherlands)

    Giannotti, M.I.; Rinaudo, Marguerite; Vancso, Gyula J.

    2007-01-01

    The conformational behavior of hyaluronan (HA) polysaccharide chains in aqueous NaCl solution was characterized directly at the single-molecule level. This comunication reports on one of the first single-chain atomic force microscopy (AFM) experiments performed at variable temperatures,

  8. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    International Nuclear Information System (INIS)

    Surinder Batra

    2006-01-01

    increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  9. Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects

    NARCIS (Netherlands)

    Braat, E. A.; Levi, M. [=Marcel M.; Bos, R.; Haverkate, F.; Lassen, M. R.; de Maat, M. P.; Rijken, D. C.

    1999-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu-PA) into a virtually inactive two-chain form (tcu-PA/T), a process that may protect a blood clot from early fibrinolysis. It is not known under what circumstances tcu-PA/T can be generated in vivo. We have studied the occurrence

  10. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    Science.gov (United States)

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  11. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    International Nuclear Information System (INIS)

    Steenbakkers, Rudi J A; Schieber, Jay D; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi–Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated. (paper)

  12. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  13. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi; Fujiwara, Susumu; Yamamoto, Takuya; Vá cha, Martin; Tezuka, Yasuyuki

    2013-01-01

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  14. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  15. Exploring single chain amphiphile self-assembly and their possible roles in light transduction

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Self-assembled structures of single-chain amphiphiles have been used as hosts for biochemical, and chemical reactions. Their use as models for protocells (i.e., precursors to the first biological cells) has been extensively researched by various groups because the availability of single chain......: the medium composition in terms of ionic strengths and the medium physical parameters, such as temperature, significantly influence the formation of structures, as well as their subsequent stability. In addition, membranes composed of a single amphiphile type seem to be implausible as no potential amphiphile...... source studied to date can supply one single type of amphiphile at concentrations conducive to self-assembly. Mixtures of single-chain amphiphiles were therefore proposed to better model primitive membranes and potentially enhance their structural integrity1-3. Recently, we have established that complex...

  16. Structural and electronic properties of a single C chain doped zigzag BN nanoribbons

    International Nuclear Information System (INIS)

    Wu, Ping; Wang, Qianwen; Cao, Gengyu; Tang, Fuling; Huang, Min

    2014-01-01

    The effects of single C-chain on the stability, structural and electronic properties of zigzag BN nanoribbons (ZBNNRs) were investigated by first-principles calculations. C-chain was expected to dope at B-edge for all the ribbon widths N z considered. The band gaps of C-chain doped N z -ZBNNR are narrower than that of perfect ZBNNR due to new localized states induced by C-chain. The band gaps of N z -ZBNNR-C(n) are direct except for the case of C-chain position n=2. Band gaps of BN nanoribbons are tunable by C-chain and its position n, which may endow the potential applications of BNNR in electronics.

  17. Supramolecular Nanoparticles via Single-Chain Folding Driven by Ferrous Ions.

    Science.gov (United States)

    Wang, Fei; Pu, Hongting; Jin, Ming; Wan, Decheng

    2016-02-01

    Single-chain nanoparticles can be obtained via single-chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single-chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N-hydroxyethylacrylamide-co-4'-(propoxy urethane ethyl acrylate)-2,2':6',2''-terpyridine) (P(HEAm-co-EMA-Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single-chain folding and intramolecular crosslinking of P(HEAm-co-EMA-Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV-vis spectroscopy), proton nuclear magnetic resonance ((1)H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe(2+) plays an important role in the intramolecular collapsing of the single-chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    DEFF Research Database (Denmark)

    Moreno, Angel J; Bacova, Petra; Lo Verso, Federica

    2018-01-01

    of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness...... or 'crumpled' globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour...... can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs. ....

  19. Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media

    OpenAIRE

    Gracia R.; Marradi M.; Cossío U.; Benito A.; Pérez-San Vicente A.; Gómez-Vallejo V.; Grande H.-J.; Llop J.; and Loinaz I.

    2017-01-01

    Water-dispersible dextran-based single-chain polymer nanoparticles (SCPNs) were prepared in aqueous media and under mild conditions. Radiolabeling of the resulting biocompatible materials allowed the study of lung deposition of aqueous aerosols after intratracheal nebulization by means of single-photon emission computed tomography (SPECT), demonstrating their potential use as imaging contrast agents.

  20. Efficient Synthesis of Single-Chain Polymer Nanoparticles via Amide Formation

    Directory of Open Access Journals (Sweden)

    Ana Sanchez-Sanchez

    2015-01-01

    Full Text Available Single-chain technology (SCT allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful “click” chemistry driving force for SCNP construction. By employing poly(methyl methacrylate- (PMMA- based copolymers bearing β-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, dynamic light scattering (DLS, and elemental analysis (EA.

  1. Molecular dynamics simulation of AFM studies of a single polymer chain

    International Nuclear Information System (INIS)

    Wang Wenhai; Kistler, Kurt A.; Sadeghipour, Keya; Baran, George

    2008-01-01

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks

  2. Molecular dynamics simulation of AFM studies of a single polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenhai [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Kistler, Kurt A. [Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122 (United States); Sadeghipour, Keya [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Baran, George [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States)], E-mail: grbaran@temple.edu

    2008-11-24

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks.

  3. Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Peters, D; Selke, W; McCulloch, I P

    2010-01-01

    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.

  4. Real-time observation of conformational switching in single conjugated polymer chains.

    Science.gov (United States)

    Tenopala-Carmona, Francisco; Fronk, Stephanie; Bazan, Guillermo C; Samuel, Ifor D W; Penedo, J Carlos

    2018-02-01

    Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.

  5. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  6. Development of anti-bovine IgA single chain variable fragment and its application in diagnosis of foot-and-mouth disease

    Science.gov (United States)

    Sridevi, N. V.; Shukra, A. M.; Neelakantam, B.; Anilkumar, J.; Madhanmohan, M.; Rajan, S.; Dev Chandran

    2014-01-01

    Recombinant antibody fragments like single chain variable fragments (scFvs) represent an attractive yet powerful alternative to immunoglobulins and hold great potential in the development of clinical diagnostic/therapeutic reagents. Structurally, scFvs are the smallest antibody fragments capable of retaining the antigen-binding capacity of whole antibodies and are composed of an immunoglobulin (Ig) variable light (VL) and variable heavy (VH) chain joined by a flexible polypeptide linker. In the present study, we constructed a scFv against bovine IgA from a hybridoma cell line IL-A71 that secretes a monoclonal antibody against bovine IgA using recombinant DNA technology. The scFv was expressed in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The binding activity and specificity of the scFv was established by its non-reactivity toward other classes of immunoglobulins as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Kinetic measurement of the scFv indicated that the recombinant antibody fragment had an affinity in picomolar range toward purified IgA. Furthermore, the scFv was used to develop a sensitive ELISA for the detection of foot and mouth disease virus (FMDV) carrier animals. PMID:24678404

  7. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch

    2009-06-10

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  8. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    International Nuclear Information System (INIS)

    Vindigni, Alessandro; Pini, Maria Gloria

    2009-01-01

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  9. Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions.

    Science.gov (United States)

    Xin, Na; Wang, Jinying; Jia, Chuancheng; Liu, Zitong; Zhang, Xisha; Yu, Chenmin; Li, Mingliang; Wang, Shuopei; Gong, Yao; Sun, Hantao; Zhang, Guanxin; Liu, Zhirong; Zhang, Guangyu; Liao, Jianhui; Zhang, Deqing; Guo, Xuefeng

    2017-02-08

    Biphenyl, as the elementary unit of organic functional materials, has been widely used in electronic and optoelectronic devices. However, over decades little has been fundamentally understood regarding how the intramolecular conformation of biphenyl dynamically affects its transport properties at the single-molecule level. Here, we establish the stereoelectronic effect of biphenyl on its electrical conductance based on the platform of graphene-molecule single-molecule junctions, where a specifically designed hexaphenyl aromatic chain molecule is covalently sandwiched between nanogapped graphene point contacts to create stable single-molecule junctions. Both theoretical and temperature-dependent experimental results consistently demonstrate that phenyl twisting in the aromatic chain molecule produces different microstates with different degrees of conjugation, thus leading to stochastic switching between high- and low-conductance states. These investigations offer new molecular design insights into building functional single-molecule electrical devices.

  10. Single-chain statistics and the upper wave-vector cutoff in polymer blends

    International Nuclear Information System (INIS)

    Holyst, R.; Vilgis, T.A.

    1994-01-01

    We derive the equation for the single-chain correlation function in polymer blends. The chains in the incompressible blend have a radius of gyration smaller than the radius of gyration for ideal chains. The chains shrink progressively as we approach the critical temperature T c . The correction responsible for shrinking is proportional to 1/ √N , where N is the polymerization index. At T=T c and for N=1000, the size of the chain has been estimated to be 10% smaller than the size of the ideal coil. The estimate relies on the appropriate cutoff. In the limit of N→∞ the chains approach the random walk limit. Additionally, we propose in this paper a self-consistent determination of the radius of gyration and the upper wave-vector cutoff. Our model is free from any divergences such as were encountered in the previous mean-field studies; we make an estimate of the chain size at the true critical temperature and not the mean-field one

  11. The exact solution of the Ising quantum chain with alternating single and sector defects

    International Nuclear Information System (INIS)

    Zhang Degang; Li Bozang; Li Yun

    1992-10-01

    The Ising quantum chain with alternating single and sector defects is solved exactly by using the technique of Lieb, Schultz and Mattis. The energy spectrum of this model is shown to have a tower structure if and only if these defects constitute a commensurate configuration. This means that conformal invariance is preserved under these circumstances. (author). 13 refs

  12. Jet and ultrasonic nebulization of single chain urokinase plasminogen activator (scu-PA)

    DEFF Research Database (Denmark)

    Münster, Anna-Marie; Bendstrup, E; Jensen, J.I.

    2000-01-01

    locally by nebulization in a recombinant zymogen form as single chain urokinase plasminogen activator (scu-PA). We aimed to characterize the particle size distribution, drug output, and enzymatic activity of scu-PA after nebulization with a Ventstream jet nebulizer (Medic-Aid, Bognor Regis, UK) and a Syst...

  13. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    Science.gov (United States)

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  14. Well-defined single-chain polymer nanoparticles via thiol-Michael addition

    NARCIS (Netherlands)

    Kröger, A. Pia P.; Boonen, Roy J.E.A.; Paulusse, Jos M.J.

    2017-01-01

    A synthetic strategy has been developed giving facile access to well-defined single-chain polymer nanoparticles (SCNPs) from styrene-, acrylate- and methacrylate-based polymers. Random copolymers (polydispersity indices 1.10–1.15) of methyl (meth)acrylate, benzyl methacrylate or styrene containing

  15. Optimization of the crystallizability of a single-chain antibody fragment

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Král, Vlastimil; Fábry, Milan; Sedláček, Juraj; Veverka, Václav; Řezáčová, Pavlína

    2014-01-01

    Roč. 70, č. 12 (2014), s. 1701-1706 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : single-chain antibody fragment * Thermofluor assay * differential scanning fluorimetry * crystallizability optimization * oligomerization * crystallization Subject RIV: CE - Biochemistry Impact factor: 0.527, year: 2014

  16. Choice between Single and Multiple Reinforcers in Concurrent-Chains Schedules

    Science.gov (United States)

    Mazur, James E.

    2006-01-01

    Pigeons responded on concurrent-chains schedules with equal variable-interval schedules as initial links. One terminal link delivered a single reinforcer after a fixed delay, and the other terminal link delivered either three or five reinforcers, each preceded by a fixed delay. Some conditions included a postreinforcer delay after the single…

  17. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  18. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram

    2015-08-24

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  19. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram; Serag, Maged F.; Habuchi, Satoshi

    2015-01-01

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  20. Covalent bond force profile and cleavage in a single polymer chain

    Science.gov (United States)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  1. Mediating Dynamic Supply Chain Formation by Collaborative Single Machine Earliness/Tardiness Agents in Supply Mesh

    Directory of Open Access Journals (Sweden)

    Hang Yang

    2014-01-01

    Full Text Available Nowadays, a trend of forming dynamic supply chains with different trading partners over different e-marketplaces has emerged. These supply chains, which are called “supply mesh,” generally refer to heterogeneous electronic marketplaces in which dynamic supply chains, as per project (often make-to-order, are formed across different parties. Conceptually, in a supply mesh a dynamic supply chain is formed vertically, mediating several companies for a project. Companies that are on the same level horizontally are either competitors or cohorts. A complex scenario such as this makes it challenging to find the right group of members for a dynamic supply chain. Earlier on, a multiagent model called the collaborative single machine earliness/tardiness (CSET model was proposed for the optimal formation of make-to-order supply chains. This paper contributes the particular agent designs, for enabling the mediation of CSET in a supply mesh, and the possibilities are discussed. It is demonstrated via a computer simulation, based on samples from the U.S. textile industry, that by using intelligent agents under the CSET model it is possible to automatically find an ideal group of trading partners from a supply mesh.

  2. Radiolysis of polypeptide

    International Nuclear Information System (INIS)

    Ogura, Isao; Nakamura, Katsuichi; Tanaka, Hiroshi; Takahashi, Katsuhiro; Ozaki, Makoto

    1981-01-01

    Almost the same results were obtained from the additional dipeptide, Gly-DL-Ala and DL-Ala-DL-Phe, by the γ-irradiation as previous report. Tri and tetrapeptide consisted of the same amino acid signified good stability than the others. Every polypeptide composed from sulfur contained amino acid exhaled the smell of hydrogen sulfide by the irradiation. It seemed that the stability by the difference of position of amino group in amino acid increased in order α, β, γ ... amino acid and that by the existence of hydroxyl group became smaller. (author)

  3. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    Science.gov (United States)

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  4. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  5. Finite-size effects on the static properties of a single-chain magnet

    Science.gov (United States)

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  6. Conductance of single microRNAs chains related to the autism spectrum disorder

    Science.gov (United States)

    Oliveira, J. I. N.; Albuquerque, E. L.; Fulco, U. L.; Mauriz, P. W.; Sarmento, R. G.; Caetano, E. W. S.; Freire, V. N.

    2014-09-01

    The charge transport properties of single-stranded microRNAs (miRNAs) chains associated to autism disorder were investigated. The computations were performed within a tight-binding model, together with a transfer matrix technique, with ionization energies and hopping parameters obtained by quantum chemistry method. Current-voltage (I× V) curves of twelve miRNA chains related to the autism spectrum disorders were calculated and analysed. We have obtained both semiconductor and insulator behavior, and a relationship between the current intensity and the autism-related miRNA bases sequencies, suggesting that a kind of electronic biosensor can be developed to distinguish different profiles of autism disorders.

  7. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  8. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.

    Science.gov (United States)

    Sharma, Damyanti

    2013-07-01

    Gold nanoparticle (AuNP) chains have been formed by a single step method in a lecithin/water system where lecithin itself plays the role of a reductant and a template for AuNP chain formation. Two preparative strategies were explored: (1) evaporating lecithin solution with aqueous gold chloride (HAuCl4) at different pHs and (2) dispersing lecithin vesicles in aqueous HAuCl4 solutions of various pHs in the range of 2.5-11.3. In method 1, at initial pH 2.5, 20-50 nm AuNPs are found attached to lecithin vesicles. When pH is raised to 5.5 there are no vesicles present and 20 nm monodisperse particles are found aggregating. Chain formation of fine nanoparticles (3-5 nm) is observed from neutral to basic pH, between 6.5-10.3 The chains formed are hundreds of nanometers to micrometer long and are usually 2-3 nanoparticles wide. On further increasing pH to 11.3, particles form disk-like or raft-like structures. When method (ii) was used a little chain formation was observed. Most of the nanoparticles formed were found either sitting together as raft like structures or scattered on lecithin structures. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Adsorption of a single polymer chain on a surface: effects of the potential range.

    Science.gov (United States)

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why

  10. Strong-coupling behaviour of two t - J chains with interchain single-electron hopping

    International Nuclear Information System (INIS)

    Zhang Guangming; Feng Shiping; Yu Lu.

    1994-01-01

    Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs

  11. The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs

    International Nuclear Information System (INIS)

    Wittel, Uwe A.; Jain, Maneesh; Goel, Apollina; Chauhan, Subhash C.; Colcher, David; Batra, Surinder K.

    2005-01-01

    Engineered multivalent single-chain Fv (scFv) constructs have been demonstrated to exhibit rapid blood clearance and better tumor penetration. To understand the short plasma half-life of multivalent single-chain antibody fragments, the pharmacokinetic properties of covalent dimeric scFv [sc(Fv) 2 ], noncovalent tetrameric scFv {[sc(Fv) 2 ] 2 } and IgG of MAb CC49 were examined. The scFvs displayed an ability to form higher molecular aggregates in vivo. A specific proteolytic cleavage of the linker sequence of the covalent dimeric or a deterioration of the noncovalent association of the dimeric scFv into tetravalent scFv constructs was not observed. In conclusion, sc(Fv) 2 and [sc(Fv) 2 ] 2 are stable in vivo and have significant potential for diagnostic and therapeutic applications

  12. Single-chain vascular endothelial growth factor variant with antagonist activity

    DEFF Research Database (Denmark)

    Boesen, Thomas P; Soni, Bobby; Schwartz, Thue W

    2002-01-01

    receptor molecules and inducing dimerization. By mixing two vascular endothelial growth factor monomers, each with different substitutions, heterodimers with only one active receptor binding site have previously been prepared. These heterodimers bind the receptor molecule but are unable to induce...... dimerization and activation. However, preparation of heterodimers is cumbersome, involving separate expression of different monomers, refolding the mixture, and separating heterodimers from homodimers. Here we show that a fully functional ligand can efficiently be expressed as a single protein chain containing...

  13. Analysis of the paired TCR α- and β-chains of single human T cells.

    Directory of Open Access Journals (Sweden)

    Song-Min Kim

    Full Text Available Analysis of the paired i.e. matching TCR α- and β-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and β-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV and multiple sclerosis (MS. In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and β-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8(+ T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8(+ T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vβ and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αβ-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αβ-T cell of choice that can be used for investigating their specificity.

  14. Early recognition is important when multiple magnets masquerade as a single chain after foreign body ingestion

    Directory of Open Access Journals (Sweden)

    Auriel August

    2016-10-01

    Full Text Available Ingestions of multiple magnets can lead to serious damage to the gastrointestinal tract. Moreover, these foreign bodies can take deceptive shapes such as single chains which may mislead clinicians. We report the case of a ten-year-old boy who swallowed 33 magnets, the most yet reported, which took on the appearance of a single loop in the stomach, while actually being located in the stomach, small bowel, and colon. Early recognition and prompt intervention are necessary to avoid complications of this foreign body misadventure.

  15. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    Science.gov (United States)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  16. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    Science.gov (United States)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  17. Single-Chain Conformation for Interacting Poly(N-isopropylacrylamide in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Boualem Hammouda

    2015-04-01

    Full Text Available The demixing phase behavior of Poly(N-isopropylacrylamide (PNIPAM aqueous solution is investigated using small-angle neutron scattering. This polymer phase separates upon heating and demixes around 32 °C. The pre-transition temperature range is characterized by two scattering modes; a low-Q (large-scale signal and a high-Q dissolved chains signal. In order to get insight into this pre-transition region, especially the origin of the low-Q (large-scale structure, the zero average contrast method is used in order to isolate single-chain conformations even in the demixing polymers transition region. This method consists of measuring deuterated and non-deuterated polymers dissolved in mixtures of deuterated and non-deuterated water for which the polymer scattering length density matches the solvent scattering length density. A fixed 4% polymer mass fraction is used in a contrast variation series where the d-water/h-water fraction is varied in order to determine the match point. The zero average contrast (match point sample displays pure single-chain scattering with no interchain contributions. Our measurements prove that the large scale structure in this polymer solution is due to a transient polymer network formed through hydrophobic segment-segment interactions. Scattering intensity increases when the temperature gets close to the phase boundary. While the apparent radius of gyration increases substantially at the Lower Critical Solution Temperature (LCST transition due to strong interchain correlation, the single-chain true radius of gyration has been found to decrease slightly with temperature when approaching the transition.

  18. Experimental studies of the dynamic mechanical response of a single polymer chain

    DEFF Research Database (Denmark)

    Thormann, Esben; Evans, Drew R.; Craig, Vincent S. J.

    2006-01-01

    The high-frequency and low-amplitude dynamic mechanical response from a single poly(vinyl alcohol) chain was investigated. Modification of a commercial atomic force microscope enabled high-frequency and low-amplitude periodic deformations of polymer chains during extension to be performed...... mechanical response from poly(vinyl alcohol) does not differ from its static response. This result is not unexpected as poly(vinyl alcohol) is a highly flexible polymer with intramolecular relaxation processes taking place on a short time scale. The choice of a polymer with a fast relaxation allows its...... static properties to be recovered from the dynamic measurements and enables the method suggested in this paper for decoupling the polymer response from the hydrodynamic response to be validated....

  19. Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains

    KAUST Repository

    Lavieville, Romain; Zhang, Yang; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    The nature of metal-semiconductor interfaces at the nanoscale is an important issue in micro- and nanoelectronic engineering. The study of charge transport through chains of CdSe semiconductor nanorods linked by Au particles represents an ideal model system for this matter, because the metal semiconductor interface is an intrinsic feature of the nanosystem. Here we show the controlled fabrication of all-inorganic hybrid metal-semiconductor networks with different size, in which the semiconductor nanorods are linked by Au domains at their tips. We demonstrate different approaches to selectively contact the networks and single nanorod chains with planar electrodes, and we investigate their charge transport at room temperature. © 2013 Elsevier B.V. All rights reserved.

  20. Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains

    KAUST Repository

    Lavieville, Romain

    2013-11-01

    The nature of metal-semiconductor interfaces at the nanoscale is an important issue in micro- and nanoelectronic engineering. The study of charge transport through chains of CdSe semiconductor nanorods linked by Au particles represents an ideal model system for this matter, because the metal semiconductor interface is an intrinsic feature of the nanosystem. Here we show the controlled fabrication of all-inorganic hybrid metal-semiconductor networks with different size, in which the semiconductor nanorods are linked by Au domains at their tips. We demonstrate different approaches to selectively contact the networks and single nanorod chains with planar electrodes, and we investigate their charge transport at room temperature. © 2013 Elsevier B.V. All rights reserved.

  1. Equivalence of chain conformations in the surface region of a polymer melt and a single Gaussian chain nder critical conditions

    NARCIS (Netherlands)

    Skvortsov, A.M.; Leermakers, F.A.M.; Fleer, G.J.

    2013-01-01

    In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of

  2. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    Science.gov (United States)

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  3. First-order reversal curves of single domain particles: diluted random assemblages and chains

    Science.gov (United States)

    Egli, R.

    2009-04-01

    Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first

  4. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation

    Science.gov (United States)

    Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert

    2018-06-01

    In this paper, we present a chain-of-sphere implementation of the external exchange term, the computational bottleneck of coupled-cluster calculations at the singles and doubles level. This implementation is compared to standard molecular orbital, atomic orbital and resolution of identity implementations of the same term within the ORCA package and turns out to be the most efficient one for larger molecules, with a better accuracy than the resolution-of-identity approximation. Furthermore, it becomes possible to perform a canonical CC calculation on a tetramer of nucleobases in 17 days, 20 hours.

  5. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...... expression of MHC isoforms within histochemical type II fibres of human skeletal muscle with body building. Furthermore, in human skeletal muscle differences in expression of MHC isoforms may not always be reflected in the traditional histochemical classification of types I, IIa, IIb and IIc fibres....

  6. Characterization of a Single Chain Fv Antibody that Reacts with Free Morphine

    OpenAIRE

    Matsukizono, Miho; Kamegawa, Mariko; Tanaka, Koichi; Kohra, Shinya; Arizono, Koji; Hamazoe, Yuta; Sugimura, Kazuhisa

    2013-01-01

    An immune phage library derived from mice, hyperimmunized with morphine-conjugated BSA, was used to isolate a single-chain Fv (scFv) clone, M86, with binding activity to morphine-conjugated thyroglobulin (morphine-C-Tg) but not to codeine-, cocaine-, or ketamine-conjugated Tg. Surface plasmon resonance analysis using a morphine-C-Tg-coupled CM5 sensor chip showed that the Kd value was 1.26 × 10−8 M. To analyze its binding activity to free morphine and related compounds, we performed a competi...

  7. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    Science.gov (United States)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  8. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    Science.gov (United States)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  9. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  10. Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism

    Science.gov (United States)

    di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.

    2000-01-01

    The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.

  11. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    International Nuclear Information System (INIS)

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture

  12. Cell surface expression of single chain antibodies with applications to imaging of gene expression in vivo

    International Nuclear Information System (INIS)

    Northrop, Jeffrey P.; Bednarski, Mark; Li, King C.; Barbieri, Susan O.; Lu, Amy T.; Nguyen, Dee; Varadarajan, John; Osen, Maureen; Star-Lack, Josh

    2003-01-01

    Imaging of gene expression in vivo has many potential uses for biomedical research and drug discovery, ranging from the study of gene regulation and cancer to the non-invasive assessment of gene therapies. To streamline the development of imaging marker gene technologies for nuclear medicine, we propose a new approach to the design of reporter/probe pairs wherein the reporter is a cell surface-expressed single chain antibody variable fragment that has been raised against a low molecular weight imaging probe with optimized pharmacokinetic properties. Proof of concept of the approach was achieved using a single chain antibody variable fragment that binds with high affinity to fluorescein and an imaging probe consisting of fluorescein isothiocyanate coupled to the chelator diethylene triamine penta-acetic acid labeled with the gamma-emitter 111 In. We demonstrate specific high-affinity binding of this probe to the cell surface-expressed reporter in vitro and assess the in vivo biodistribution of the probe both in wild-type mice and in mice harboring tumor xenografts expressing the reporter. Specific uptake of the probe by, and in vivo imaging of, tumors expressing the reporter are shown. Since ScFvs with high affinities can be raised to almost any protein or small molecule, the proposed methodology may offer a new flexibility in the design of imaging tracer/reporter pairs wherein both probe pharmacokinetics and binding affinities can be readily optimized. (orig.)

  13. Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Binder, K; Paul, W; Strauch, T; Rampf, F; Ivanov, V; Luettmer-Strathmann, J

    2008-01-01

    The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of small molecule systems, since the thermodynamic limit can also be approached when the number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute limit) is approaching infinity. One can introduce effective attractive interactions into a simulation model for a single chain such that a swollen coil contracts when the temperature is reduced, until excluded volume interactions are effectively canceled by attractive forces, and the chain conformation becomes almost Gaussian at the theta point. This state corresponds to a tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid globule is predicted (at nonzero concentration then phase separation between dilute and semidilute solutions occurs), while at still lower temperature a transition to a solid phase (crystal or glass) occurs. Monte Carlo simulations have shown, however, that the fluid globule phase may become suppressed, when the range of the effective attractive forces becomes too short, with the result that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This behavior is analogous to the behavior of colloidal particles with a very short range of attractive forces, where liquid-vapor-type phase separation may be suppressed. Analogous first-order transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions are addressed.

  14. A conceptual framework for economic optimization of single hazard surveillance in livestock production chains.

    Science.gov (United States)

    Guo, Xuezhen; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W

    2014-06-01

    Economic analysis of hazard surveillance in livestock production chains is essential for surveillance organizations (such as food safety authorities) when making scientifically based decisions on optimization of resource allocation. To enable this, quantitative decision support tools are required at two levels of analysis: (1) single-hazard surveillance system and (2) surveillance portfolio. This paper addresses the first level by presenting a conceptual approach for the economic analysis of single-hazard surveillance systems. The concept includes objective and subjective aspects of single-hazard surveillance system analysis: (1) a simulation part to derive an efficient set of surveillance setups based on the technical surveillance performance parameters (TSPPs) and the corresponding surveillance costs, i.e., objective analysis, and (2) a multi-criteria decision making model to evaluate the impacts of the hazard surveillance, i.e., subjective analysis. The conceptual approach was checked for (1) conceptual validity and (2) data validity. Issues regarding the practical use of the approach, particularly the data requirement, were discussed. We concluded that the conceptual approach is scientifically credible for economic analysis of single-hazard surveillance systems and that the practicability of the approach depends on data availability. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition.

    Science.gov (United States)

    Brotosudarmo, Tatas H P; Kunz, Ralf; Böhm, Paul; Gardiner, Alastair T; Moulisová, Vladimíra; Cogdell, Richard J; Köhler, Jürgen

    2009-09-02

    Rhodopseudomonas palustris belongs to the group of purple bacteria that have the ability to produce LH2 complexes with unusual absorption spectra when they are grown at low-light intensity. This ability is often related to the presence of multiple genes encoding the antenna apoproteins. Here we report, for the first time to our knowledge, direct evidence that individual low-light LH2 complexes have a heterogeneous alphabeta-apoprotein composition that modulates the site energies of Bchl a molecules, producing absorption bands at 800, 820, and 850 nm. The arrangement of the Bchl a molecules in the "tightly coupled ring" can be modeled by nine alphabeta-Bchls dimers, such that the Bchls bound to six alphabeta-pairs have B820-like site energies and the remaining Bchl a molecules have B850-like site energies. Furthermore, the experimental data can only be satisfactorily modeled when these six alphabeta-pairs with B820 Bchl a molecules are distributed such that the symmetry of the assembly is reduced to C(3). It is also clear from the measured single-molecule spectra that the energies of the electronically excited states in the mixed B820/850 ring are mainly influenced by diagonal disorder.

  16. Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy

    Science.gov (United States)

    Ren, Jie; Wang, Yimin; You, Wen-Long

    2018-04-01

    We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 X X Z chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical points of quantum phase transitions. Results drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy Δ and the rhombic single-ion anisotropy E .

  17. Single-chain magnet features in 1D [MnR4TPP][TCNE] compounds

    International Nuclear Information System (INIS)

    Balanda, Maria; Tomkowicz, Zbigniew; Rams, Michal; Haase, Wolfgang

    2011-01-01

    Molecular chains of antiferrimagnetically coupled Mn III -ion (S = 2) and TCNE (tetracyanoethylene) radical moments (s = 1/2 ) show different behaviour depending on group R substituted to TPP (tetraphenylporphyrin) and on the substitution site. The compound with R = F in Ortho position is a Single-Chain Magnet (SCM) with blocking temperature T b = 6.6K, while that with R = F in Meta position shows both blocking (T b = 5.4 K) and magnetic ordering transition (T c = 10 K). For bulky groups R = OC n H 2n+1 , the magnetically ordered phase is observed (T c ∼ 22 K), which does not however prevent slow relaxation at T c of 2 T at 2.3 K is like that of SCM. The frequency dependent AC susceptibility in the superimposed DC field reveals common features of all systems. The energy of intrachain ferromagnetic coupling between effective spin units 3/2, relevant at low temperatures, is determined for all compounds and the interchain dipolar coupling is estimated. It is concluded that slow relaxation is inherent for all quasi one-dimensional compounds and for the magnetically ordered ones shows up in the high enough magnetic field.

  18. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  19. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  20. Population pharmacokinetics of recombinant coagulation factor VIII-SingleChain in patients with severe hemophilia A.

    Science.gov (United States)

    Zhang, Y; Roberts, J; Tortorici, M; Veldman, A; St Ledger, K; Feussner, A; Sidhu, J

    2017-06-01

    Essentials rVIII-SingleChain is a unique recombinant factor VIII (FVIII) molecule. A population pharmacokinetic model was based on FVIII activity of severe hemophilia A patients. The model was used to simulate factor VIII activity-time profiles for various dosing scenarios. The model supports prolonged dosing of rVIII-SingleChain with intervals of up to twice per week. Background Single-chain recombinant coagulation factor VIII (rVIII-SingleChain) is a unique recombinant coagulation factor VIII molecule. Objectives To: (i) characterize the population pharmacokinetics (PK) of rVIII-SingleChain in patients with severe hemophilia A; (ii) identify correlates of variability in rVIII-SingleChain PK; and (iii) simulate various dosing scenarios of rVIII-SingleChain. Patients/Methods A population PK model was developed, based on FVIII activity levels of 130 patients with severe hemophilia A (n = 91 for ≥ 12-65 years; n = 39 for  85% and > 93% of patients were predicted to maintain FVIII activity level above 1 IU dL -1 , at all times with three-times-weekly dosing (given on days 0, 2, and 4.5) at the lowest (20 IU kg -1 ) and highest (50 IU kg -1 ) doses, respectively. For twice weekly dosing (days 0 and 3.5) of 50 IU kg -1 rVIII-SingleChain, 62-80% of patients across all ages were predicted to maintain a FVIII activity level above 1 IU dL -1 at day 7. Conclusions The population PK model adequately characterized rVIII-SingleChain PK, and the model can be utilized to simulate FVIII activity-time profiles for various dosing scenarios. © 2017 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  1. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yiding; (

    2001-01-01

    [1]Straus, D. S., Growth-stimulatory of insulin in vitro and in vivo, Endocr. Rev., 1984, 5(2): 356-369.[2]Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68-72.[3]Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104-121.[4]Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473-480.[5]King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223-265.[6]Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats, J. Biol. Chem., 1985, 260: 13989-13994.[7]Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425-433.[8]Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238-241.[9]Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129-138.[10]Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981-986.[11]Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445-462.[12]Cooke, R. M

  2. Magnetic properties of CsCrCl/sub 3/, an antiferromagnetic chain compound with single-ion anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Day, P; Gregson, A K; Leech, D H [Oxford Univ. (UK). Inorganic Chemistry Lab.; Hutchings, M T [UKAEA Atomic Energy Research Establishment, Harwell. Materials Physics Div.; Rainford, B D [Imperial Coll. of Science and Technology, London (UK). Dept. of Physics

    1979-01-01

    The magnetic structure and excitations of the linear chain hexagonal perovskite salt CsCrCl/sub 3/ have been studied by susceptibility, powder and single crystal neutron diffraction, and coherent inelastic neutron scattering. Below the Neel temperature, Tsub(N) = 16 K, the spins lie in the basal plane with antiferromagnetic ordering along the c-axis chains. At 4.5 K there is strong dispersion of the spin-wave energy along c but no measurable dispersion perpendicular to c.

  3. Pricing and ordering policies for price-dependent demand in a supply chain of a single retailer and a single manufacturer

    Science.gov (United States)

    Kim, Jungkyu; Hong, Yushin; Kim, Taebok

    2011-01-01

    This article discusses joint pricing and ordering policies for price-dependent demand in a supply chain consisting of a single retailer and a single manufacturer. The retailer places orders for products according to an EOQ policy and the manufacturer produces them on a lot-for-lot basis. Four mechanisms with differing levels of coordination are presented. Mathematical models are formulated and solution procedures are developed to determine the optimal retail prices and order quantities. Through extensive numerical experiments, we analyse and compare the behaviours and characteristics of the proposed mechanisms, and find that enhancing the level of coordination has important benefits for the supply chain.

  4. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  5. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  6. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins

    OpenAIRE

    Deming, TJ

    2017-01-01

    Recent developments in the modification of methionine and other thioether-containing residues in peptides, polypeptides, and proteins are reviewed. Properties and potential applications of the resulting functionalized products are also discussed. While much of this work is focused on natural Met residues, modifications at other side-chain residues have also emerged as new thioether-containing amino acids have been incorporated into peptidic materials. Functional modification of thioether-cont...

  7. Methods for using polypeptides having cellobiohydrolase activity

    Science.gov (United States)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  9. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  10. Single base mutation in the proα2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 29 and synthesis of a shortened but in-frame proα2(I) chain

    International Nuclear Information System (INIS)

    Tromp, G.; Prockop, D.J.

    1988-01-01

    Previous observations demonstrated that a lethal variant of osteogenesis imperfecta had two altered alleles for proα2(I) chains of type I procollagen. One mutation produced a nonfunctioning allele in that there was synthesis of mRNA but no detectable synthesis of proα2(I) chains from the allele. The mutation in the other allele caused synthesis of shortened proα2(I) chains that lacked most or all of the 18 amino acids encoded by exon 28. Subclones of the proα2(I) gene were prepared from the proband's DNA and the DNA sequence was determined for a 582-base-pair (bp) region that extended from the last 30 bp of intervening sequence 26 to the first 26 bp of intervening sequence 29. Data from six independent subclones demonstrated that all had the same sequence as a previously isolated normal clone for the proα2(I) gene except that four subclones had a single base mutation at the 3' end of intervening sequence 27. The mutation was a substitution of guanine for adenine that changed the universal consensus sequence for the 3' splicing site of RNA from -AG- to -GG-. S1 nuclease experiments demonstrated that about half the proα2(I) mRNA in the proband's fibroblasts was abnormally spliced and that the major species of abnormal proα2(I) mRNA was completely spliced from the last codon of exon 27 to the first codon of exon 29. The mutation is apparently unique among RNA splicing mutations of mammalian systems in producing a shortened polypeptide chain that is in-frame in terms of coding sequences, that is used in the subunit assembly of a protein, and that contributes to a lethal phenotype

  11. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  12. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W.M.

    1985-01-01

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs.

  13. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1985-01-01

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs

  14. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis

    Directory of Open Access Journals (Sweden)

    Chi-Hsin Lee

    2017-10-01

    Full Text Available Russell’s vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs containing 3.4 × 107 and 5.5 × 107 transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.

  15. Reaction pathway towards formation of cobalt single chain magnets and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, G.; Desilva, Rohini M.; Palshin, V. [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Desilva, N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Palmer, G. [Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main street, Houston, TX 77251 (United States); Kumar, Challa S.S.R., E-mail: ckumar1@lsu.ed [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States)

    2010-03-15

    With the advent of molecular magnets the quest for suitable high density magnetic storage materials has fuelled further research in this area. Here in this report, we present a detailed mechanistic investigation of thermal decomposition of cyclopentadienyl cobalt [CoCp(CO){sub 2}] precursor where Cp is the cyclopentadienyl moiety. The reaction revealed the formation of cobalt nanoparticles (Co-NPs) through an isolable reaction intermediate characterized as a Single Chain Magnet (SCM), [Co(Cp){sub 2}]{sub 2}CoCl{sub 4} (1). The SQUID magnetic measurements showed the presence of very strong antiferromagnetic interactions between Co{sup 2+} ions. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves branch out below 5 K and there is evidence for frequency dependent complex susceptibility along with a maximum observed around 2.5 K. The optical studies indicated that the Co{sup 2+} d-d transition is influenced by the polarity of the solvents. The cobalt nanoparticles (Co-NPs) were obtained, either directly from 1 or from its precursor. They are spherical in shape with a mean size 15 nm, have fcc crystal structure and were found to be ferromagnetic at room temperature.

  16. A family of rare-earth-based single chain magnets: playing with anisotropy.

    Science.gov (United States)

    Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta

    2006-06-21

    The first family of rare-earth-based single chain magnets is presented. Compounds of general formula [M(hfac)3(NITPhOPh)], where M = Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is the nitronyl-nitroxide radical (2,4'-benzoxo-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been structurally characterized and found to be isostructural. The characterization of both static and dynamic magnetic properties of the whole family is reported. Dy, Tb, and Ho compounds display slow relaxation of the magnetization, and ac susceptibility shows a thermally activated regime with energy barriers of 69, 45, and 34 K for Dy, Tb, and Ho compounds, respectively, while only a frequency-dependent susceptibility is observed for Er below 2.0 K. In Gd and Yb derivatives, antiferromagnetic interactions dominate. The pre-exponential factors differ by about 4 orders of magnitude. Finite size effects, due to naturally occurring defects, affect the static and dynamic properties of the compounds differently.

  17. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis.

    Science.gov (United States)

    Lee, Chi-Hsin; Lee, Yu-Ching; Lee, Yueh-Lun; Leu, Sy-Jye; Lin, Liang-Tzung; Chen, Chi-Ching; Chiang, Jen-Ron; Mwale, Pharaoh Fellow; Tsai, Bor-Yu; Hung, Ching-Sheng; Yang, Yi-Yuan

    2017-10-27

    Russell's vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF) venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY) antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs) containing 3.4 × 10⁷ and 5.5 × 10⁷ transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.

  18. Solvable single-species aggregation-annihilation model for chain-shaped cluster growth

    International Nuclear Information System (INIS)

    Ke Jianhong; Lin Zhenquan; Zheng Yizhuang; Chen Xiaoshuang; Lu Wei

    2007-01-01

    We propose a single-species aggregation-annihilation model, in which an aggregation reaction between two clusters produces an active cluster and an annihilation reaction produces an inert one. By means of the mean-field rate equation, we respectively investigate the kinetic scaling behaviours of three distinct systems. The results exhibit that: (i) for the general aggregation-annihilation system, the size distribution of active clusters consistently approaches the conventional scaling form; (ii) for the system with the self-degeneration of the cluster's activities, it takes the modified scaling form; and (iii) for the system with the self-closing of active clusters, it does not scale. Moreover, the size distribution of inert clusters with small size takes a power-law form, while that of large inert clusters obeys the scaling law. The results also show that all active clusters will eventually transform into inert ones and the inert clusters of any size can be produced by such an aggregation-annihilation process. This model can be used to mimic the chain-shaped cluster growth and can provide some useful predictions for the kinetic behaviour of the system

  19. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    Science.gov (United States)

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  20. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)

    2016-06-27

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  1. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery.

    Science.gov (United States)

    Zhou, Li; Wang, Hsuan-Yao; Tong, Shanshan; Okamoto, Curtis T; Shen, Wei-Chiang; Zaro, Jennica L

    2017-02-01

    Fc fusion protein technology has been successfully used to generate long-acting forms of several protein therapeutics. In this study, a novel Fc-based drug carrier, single chain Fc-dimer (sc(Fc) 2 ), was designed to contain two Fc domains recombinantly linked via a flexible linker. Since the Fc dimeric structure is maintained through the flexible linker, the hinge region was omitted to further stabilize it against proteolysis and reduce FcγR-related effector functions. The resultant sc(Fc) 2 candidate preserved the neonatal Fc receptor (FcRn) binding. sc(Fc) 2 -mediated delivery was then evaluated using a therapeutic protein with a short plasma half-life, human growth hormone (hGH), as the protein drug cargo. This novel carrier protein showed a prolonged in vivo half-life and increased hGH-mediated bioactivity compared to the traditional Fc-based drug carrier. sc(Fc) 2 technology has the potential to greatly advance and expand the use of Fc-technology for improving the pharmacokinetics and bioactivity of protein therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization of a Single Chain Fv Antibody that Reacts with Free Morphine

    Directory of Open Access Journals (Sweden)

    Kazuhisa Sugimura

    2013-02-01

    Full Text Available An immune phage library derived from mice, hyperimmunized with morphine-conjugated BSA, was used to isolate a single-chain Fv (scFv clone, M86, with binding activity to morphine-conjugated thyroglobulin (morphine-C-Tg but not to codeine-, cocaine-, or ketamine-conjugated Tg. Surface plasmon resonance analysis using a morphine-C-Tg-coupled CM5 sensor chip showed that the Kd value was 1.26 × 10−8 M. To analyze its binding activity to free morphine and related compounds, we performed a competitive ELISA with M86 and morphine-C-Tg in the absence or presence of varying doses of free morphine and related compounds. IC50 values for opium, morphine, codeine, and heroin were 257 ng/mL, 36.4, 7.3, and 7.4 nM, respectively. Ketamine and cocaine exhibited no competitive binding activity to M86. Thus, we established a phage library-derived scFv, M86, which recognized not only free morphine and codeine as opium components but also heroin. This characteristic of M86 may be useful for developing therapeutic reagents for opiate addiction and as a free morphine-specific antibody probe.

  3. Effective single chain antibody (scFv) concentrations in vivo via adenoviral vector mediated expression of secretory scFv

    NARCIS (Netherlands)

    Arafat, WO; Gomez-Navarro, J; Buchsbaum, DJ; Xiang, J; Casado, E; Barker, SD; Mahasreshti, PJ; Haisma, HJ; Barnes, MN; Siegal, GP; Alvarez, RD; Hemminki, A; Nettelbeck, DM; Curiel, DT

    Single chain antibodies (scFv) represent powerful interventional agents for the achievement of targeted therapeutics. The practical utility of these agents have been limited, however, by difficulties related to production of recombinant scFv and the achievement of effective and sustained levels of

  4. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  5. Single and multiple objective biomass-to-biofuel supply chain optimization considering environmental impacts

    Science.gov (United States)

    Valles Sosa, Claudia Evangelina

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers diminishing climate change by reducing Green House Gas Emissions, as well as providing energy security and enhancing rural development. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supply future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. Approaching this complex logistic problem as a multi-commodity network flow structure, the present work proposes the use of a genetic algorithm as a single objective optimization problem that considers the maximization of profit and the present work also proposes the use of a Multiple Objective Evolutionary Algorithm to simultaneously maximize profit while minimizing global warming potential. Most transportation optimization problems available in the literature have mostly considered the maximization of profit or the minimization of total travel time as potential objectives to be optimized. However, on this research work, we take a more conscious and sustainable approach for this logistic problem. Planners are increasingly expected to adopt a multi-disciplinary approach, especially due to the rising importance of environmental stewardship. The role of a transportation planner and designer is shifting from simple economic analysis to promoting sustainability through the integration of environmental objectives. To

  6. Spin canting in a Dy-based single-chain magnet with dominant next-nearest-neighbor antiferromagnetic interactions

    Science.gov (United States)

    Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.

    2009-04-01

    We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.

  7. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    KAUST Repository

    Hou, Zhipeng; Zhang, Qiang; Xu, Guizhou; Gong, Chen; Ding, Bei; Wang, Yue; Li, Hang; Liu, Enke; Xu, Feng; Zhang, Hongwei; Yao, Yuan; Wu, Guangheng; Zhang, Xixiang; Wang, Wenhong

    2018-01-01

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  8. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    KAUST Repository

    Hou, Zhipeng

    2018-01-04

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  9. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  10. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    Science.gov (United States)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  11. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    Science.gov (United States)

    D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina

    2016-02-01

    In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  12. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  13. Single Chain Fv Constructs of Anti-Ganglioside GD2 Antibodies for Radioimaging and Radioimmunotherapy

    International Nuclear Information System (INIS)

    Cheung, Nai-Kong

    2003-01-01

    because of its broad and usually homogeneous distribution in human solid tumors, and most importantly, their absence on cell membranes of normal human tissues. In separate experiments, we have shown that T-cells transduced with the herpes simplex viral thymidine kinase (HSV-tk) gene can be radiolabeled with 131 I-FIAU to a safe nuclear radiation dose. Using a dicistronic construct we are inserting chimeric immune receptor plus HSV-tk into T-cells to allow such their trafficking to be radioactively monitored. We plan to study the role of cytokines, chemoreceptors and CD4 helper T-cells in recruiting CD8+ transduced T-cells to the tumor site. These studies should provide us with an adoptive cell therapy approach to target cytotoxicity to human tumors, and a lymphocyte tracking tool to study delivery to the tumor sites, to determine if they proliferate locally and/or recirculate. Such pharmacologic information is crucial for optimizing gene-modified T-cells in future clinical trials. Single chain FV constructs of anti-ganglioside GD2 antibodies for radioimaging

  14. Evidence for single-chain magnet behavior in a Mn(III)-Ni(II) chain designed with high spin magnetic units: a route to high temperature metastable magnets.

    Science.gov (United States)

    Clérac, Rodolphe; Miyasaka, Hitoshi; Yamashita, Masahiro; Coulon, Claude

    2002-10-30

    We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization

  15. Magnetic hysteresis and domain wall dynamics in single chain magnets with antiferromagnetic interchain coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bukharov, A A; Ovchinnikov, A S; Baranov, N V [Department of Physics, Ural State University, Ekaterinburg, 620083 (Russian Federation); Inoue, K [Institute for Advanced Materials Research, Hiroshima University, Hiroshima (Japan)

    2010-11-03

    Using Monte Carlo simulations we investigate magnetic hysteresis in two- and three-dimensional systems of weakly antiferromagnetically coupled spin chains based on a scenario of domain wall (kink) motion within the chains. By adapting the model of walkers to simulate the domain wall dynamics and using the Ising-like dipole-dipole model, we study the effects of interchain coupling, temperature and anisotropy axis direction on hysteresis curves.

  16. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    International Nuclear Information System (INIS)

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-01-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4 2 , with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement

  17. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    Directory of Open Access Journals (Sweden)

    Zoltán Balogh

    2015-06-01

    Full Text Available We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  18. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    Science.gov (United States)

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  19. Consistency of the single calculus chain for climatological studies using long-term measurements from thessaloniki lidar station

    Science.gov (United States)

    Siomos, Nikolaos; Voudouri, Kalliopi A.; Filioglou, Maria; Giannakaki, Eleni; Amiridis, Vasilis; D'Amico, Giuseppe; Balis, Dimitris S.

    2018-04-01

    The long term analysis of 15 years of lidar data derived from a Raman lidar at Thessaloniki is presented here. All measurements have been processed with the latest version 4 of the EARLINET Single Calculus Chain algorithm and are compared with the results from the current operational retrieval algorithm. In this paper we investigate the consistency between the EARLINET database and SCC for the case of Thessaloniki and we identify the issues to be considered when switching from current operations to SCC.

  20. Quantum phase transitions driven by rhombic-type single-ion anisotropy in the S =1 Haldane chain

    Science.gov (United States)

    Tzeng, Yu-Chin; Onishi, Hiroaki; Okubo, Tsuyoshi; Kao, Ying-Jer

    2017-08-01

    The spin-1 Haldane chain is an example of the symmetry-protected-topological (SPT) phase in one dimension. Experimental realization of the spin chain materials usually involves both the uniaxial-type, D (Sz)2 , and the rhombic-type, E [(Sx)2-(Sy)2] , single-ion anisotropies. Here, we provide a precise ground-state phase diagram for a spin-1 Haldane chain with these single-ion anisotropies. Using quantum numbers, we find that the Z2 symmetry breaking phase can be characterized by double degeneracy in the entanglement spectrum. Topological quantum phase transitions take place on particular paths in the phase diagram, from the Haldane phase to the large-Ex, large-Ey, or large-D phases. The topological critical points are determined by the level spectroscopy method with a newly developed parity technique in the density matrix renormalization group [Phys. Rev. B 86, 024403 (2012), 10.1103/PhysRevB.86.024403], and the Haldane-large-D critical point is obtained with an unprecedented precision, (D/J ) c=0.9684713 (1 ) . Close to this critical point, a small rhombic single-ion anisotropy |E |/J ≪1 can destroy the Haldane phase and bring the system into a y -Néel phase. We propose that the compound [Ni (HF2) (3-Clpy ) 4] BF4 is a candidate system to search for the y -Néel phase.

  1. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  2. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    Science.gov (United States)

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.

  4. Size, shape, and diffusivity of a single Debye-Hückel polyelectrolyte chain in solution

    Science.gov (United States)

    Soysa, W. Chamath; Dünweg, B.; Prakash, J. Ravi

    2015-08-01

    Brownian dynamics simulations of a coarse-grained bead-spring chain model, with Debye-Hückel electrostatic interactions between the beads, are used to determine the root-mean-square end-to-end vector, the radius of gyration, and various shape functions (defined in terms of eigenvalues of the radius of gyration tensor) of a weakly charged polyelectrolyte chain in solution, in the limit of low polymer concentration. The long-time diffusivity is calculated from the mean square displacement of the centre of mass of the chain, with hydrodynamic interactions taken into account through the incorporation of the Rotne-Prager-Yamakawa tensor. Simulation results are interpreted in the light of the Odjik, Skolnick, Fixman, Khokhlov, and Khachaturian blob scaling theory (Everaers et al., Eur. Phys. J. E 8, 3 (2002)) which predicts that all solution properties are determined by just two scaling variables—the number of electrostatic blobs X and the reduced Debye screening length, Y. We identify three broad regimes, the ideal chain regime at small values of Y, the blob-pole regime at large values of Y, and the crossover regime at intermediate values of Y, within which the mean size, shape, and diffusivity exhibit characteristic behaviours. In particular, when simulation results are recast in terms of blob scaling variables, universal behaviour independent of the choice of bead-spring chain parameters, and the number of blobs X, is observed in the ideal chain regime and in much of the crossover regime, while the existence of logarithmic corrections to scaling in the blob-pole regime leads to non-universal behaviour.

  5. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    Science.gov (United States)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  6. Polypeptides having catalase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2018-02-06

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.

    Science.gov (United States)

    Eichmann, Cédric; Preissler, Steffen; Riek, Roland; Deuerling, Elke

    2010-05-18

    The folding of proteins in living cells may start during their synthesis when the polypeptides emerge gradually at the ribosomal exit tunnel. However, our current understanding of cotranslational folding processes at the atomic level is limited. We employed NMR spectroscopy to monitor the conformation of the SH3 domain from alpha-spectrin at sequential stages of elongation via in vivo ribosome-arrested (15)N,(13)C-labeled nascent polypeptides. These nascent chains exposed either the entire SH3 domain or C-terminally truncated segments thereof, thus providing snapshots of the translation process. We show that nascent SH3 polypeptides remain unstructured during elongation but fold into a compact, native-like beta-sheet assembly when the entire sequence information is available. Moreover, the ribosome neither imposes major conformational constraints nor significantly interacts with exposed unfolded nascent SH3 domain moieties. Our data provide evidence for a domainwise folding of the SH3 domain on ribosomes without significant population of folding intermediates. The domain follows a thermodynamically favorable pathway in which sequential folding units are stabilized, thus avoiding kinetic traps during the process of cotranslational folding.

  9. Application of dimensional regularization to single chain polymer static properties: Conformational space renormalization of polymers. III

    International Nuclear Information System (INIS)

    Oono, Y.; Ohta, T.; Freed, K.F.

    1981-01-01

    A dimensional regularization approach to the renormalization group treatment of polymer excluded volume is formulated in chain conformation space where monomers are specified by their spatial positions and their positions along the chain and the polymers may be taken to be monodisperse. The method utilizes basic scale invariance considerations. First, it is recognized that long wavelength macroscopic descriptions must be well defined in the limit that the minimum atomic or molecular scale L is set to zero. Secondly, the microscopic theory is independent of the conveniently chosen macroscopic scale of length k. The freedom of choice of k is exploited along with the assumed renormalizability of the theory to provide the renormalization group equations which directly imply the universal scaling laws for macroscopic properties. The renormalizability of the model implies the existence of the general relations between the basic macroparameters, such as chain length, excluded volume, etc., and their microscopic counterparts in the microscopic model for the system. These macro--micro relations are defined through the condition that macroscopic quantities be well defined for polymer chains for any spatial dimensionality. The method is illustrated by calculating the end vector distribution function for all values of end vectors R. The evaluation of this distribution function currently requires the use of expansions in e = 4-d. In this case our distribution reduces to known limits for R→0 or infinity. Subsequent papers will present calculations of the polymer coherent scattering function, the monomer spatial distribution function, and concentration dependent properties

  10. Baculovirus display of single chain antibody (scFv using a novel signal peptide

    Directory of Open Access Journals (Sweden)

    Gonzalez Gaëlle

    2010-11-01

    Full Text Available Abstract Background Cells permissive to virus can become refractory to viral replication upon intracellular expression of single chain fragment variable (scFv antibodies directed towards viral structural or regulatory proteins, or virus-coded enzymes. For example, an intrabody derived from MH-SVM33, a monoclonal antibody against a conserved C-terminal epitope of the HIV-1 matrix protein (MAp17, was found to exert an inhibitory effect on HIV-1 replication. Results Two versions of MH-SVM33-derived scFv were constructed in recombinant baculoviruses (BVs and expressed in BV-infected Sf9 cells, N-myristoylation-competent scFvG2/p17 and N-myristoylation-incompetent scFvE2/p17 protein, both carrying a C-terminal HA tag. ScFvG2/p17 expression resulted in an insoluble, membrane-associated protein, whereas scFvE2/p17 was recovered in both soluble and membrane-incorporated forms. When coexpressed with the HIV-1 Pr55Gag precursor, scFvG2/p17 and scFvE2/p17 did not show any detectable negative effect on virus-like particle (VLP assembly and egress, and both failed to be encapsidated in VLP. However, soluble scFvE2/p17 isolated from Sf9 cell lysates was capable of binding to its specific antigen, in the form of a synthetic p17 peptide or as Gag polyprotein-embedded epitope. Significant amounts of scFvE2/p17 were released in the extracellular medium of BV-infected cells in high-molecular weight, pelletable form. This particulate form corresponded to BV particles displaying scFvE2/p17 molecules, inserted into the BV envelope via the scFv N-terminal region. The BV-displayed scFvE2/p17 molecules were found to be immunologically functional, as they reacted with the C-terminal epitope of MAp17. Fusion of the N-terminal 18 amino acid residues from the scFvE2/p17 sequence (N18E2 to another scFv recognizing CD147 (scFv-M6-1B9 conferred the property of BV-display to the resulting chimeric scFv-N18E2/M6. Conclusion Expression of scFvE2/p17 in insect cells using a BV

  11. A uranium-based UO_2"+-Mn"2"+ single-chain magnet assembled trough cation-cation interactions

    International Nuclear Information System (INIS)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella; Caciuffo, Roberto; Colineau, Eric; Tuna, Floriana; Magnani, Nicola; Geyer, Arnaud de

    2014-01-01

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]_n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO_2(salen)py][Cp"*_2Co] (Cp"*=pentamethylcyclopentadienyl) with Cd(NO_3)_2 or Mn(NO_3)_2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm"-"1), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.

  12. A uranium-based UO_2"+-Mn"2"+ single-chain magnet assembled trough cation-cation interactions

    International Nuclear Information System (INIS)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella; Caciuffo, Roberto; Colineau, Eric; Tuna, Floriana; Magnani, Nicola; Geyer, Arnaud de

    2014-01-01

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]_n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO_2(salen)py][Cp*_2Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO_3)_2 or Mn(NO_3)_2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134 ±0.8 K (93 ±0.5 cm"-"1), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T <6 K, with an impressive coercive field of 3.4 T at 2 K. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  14. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten

    2008-01-01

    Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable ...... MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association...... antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...

  15. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins.

    Science.gov (United States)

    Deming, Timothy J

    2017-03-15

    Recent developments in the modification of methionine and other thioether-containing residues in peptides, polypeptides, and proteins are reviewed. Properties and potential applications of the resulting functionalized products are also discussed. While much of this work is focused on natural Met residues, modifications at other side-chain residues have also emerged as new thioether-containing amino acids have been incorporated into peptidic materials. Functional modification of thioether-containing amino acids has many advantages and is a complementary methodology to the widely utilized methods for modification at cysteine residues.

  16. Glucose-dependent Insulinotropic Polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel B; Calanna, Salvatore; Holst, Jens Juul

    2014-01-01

    CONTEXT: Patients with type 2 diabetes mellitus (T2DM) have clinically relevant disturbances in the effects of the hormone glucose-dependent insulinotropic polypeptide (GIP). OBJECTIVE: We aimed to evaluate the importance of the prevailing plasma glucose levels for the effect of GIP on responses......: During fasting glycemia (plasma glucose ∼8 mmol/L), GIP elicited significant increments in both insulin and glucagon levels, resulting in neutral effects on plasma glucose. During insulin-induced hypoglycemia (plasma glucose ∼3 mmol/L), GIP elicited a minor early-phase insulin response and increased...... glucagon levels during the initial 30 minutes, resulting in less glucose needed to be infused to maintain the clamp (29 ± 8 vs 49 ± 12 mg × kg(-1), P glucose ∼12 mmol/L), GIP augmented insulin secretion throughout the clamp, with slightly less glucagon...

  17. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    International Nuclear Information System (INIS)

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  18. Study of local conformation and molecular movements of homo-polypeptides in aqueous solutions by using magnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Perly, Bruno

    1980-01-01

    The objective of this research thesis is to study local conformations and mobilities of some typical homo-polypeptides by using techniques of magnetic resonance. By using these techniques, it is possible to make highly local observations of molecular elements which allows very efficient analysis of structural and dynamic properties of several biologically important compounds to be performed, and the study of their interactions. After a presentation of the general properties of the studied polypeptides, of magnetic resonance and of magnetic relaxation, the author presents some elements of macromolecular dynamics and movement models. Then, he reports the study of local conformations and structural transitions, applications of spin marking to the dynamic study of polypeptides, a dynamic study of the polypeptide skeleton under the form of statistic balls, the study of local movements of side chains by using nuclear relaxation, the study of the coupling of movements of main and side chains, and of the nuclear relaxation induced by a radical spin marker

  19. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles

    Science.gov (United States)

    Oyarzún, Bernardo; Mognetti, Bortolo Matteo

    2018-03-01

    We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.

  20. Block copolymer systems: from single chain to self-assembled nanostructures.

    Science.gov (United States)

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  1. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  2. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    Science.gov (United States)

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Evidence for a single hydrogen molecule connected by an atomic chain

    DEFF Research Database (Denmark)

    Kiguchi, M.; Stadler, Robert; Bækgaard, Iben Sig Buur

    2007-01-01

    Stable, single-molecule conducting-bridge configurations are typically identified from peak structures in a conductance histogram. In previous work on Pt with H-2 at cryogenic temperatures it has been shown that a peak near 1G(0) identifies a single-molecule Pt-H-2-Pt bridge. The histogram shows...

  4. Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins.

    Science.gov (United States)

    Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.

  5. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    Science.gov (United States)

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  6. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  7. Exactly solved mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy

    International Nuclear Information System (INIS)

    Lisnyi, Bohdan; Strečka, Jozef

    2015-01-01

    The mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration–iteration transformation and the transfer-matrix method. The decoration–iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume–Emery–Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively. - Highlights: • Mixed spin-(1,1/2) Ising–Heisenberg diamond chain is exactly solved. • Quantum ground states with a singlet-dimer state of the Heisenberg spins are found. • Magnetization curve displays intermediate plateaus at zero and half of full magnetization. • Thermal dependences of specific heat may display up to four distinct peaks

  8. [Fe(III)(dmbpy)(CN)4]-: a new building block for designing single-chain magnets.

    Science.gov (United States)

    Toma, Luminita Marilena; Pasán, Jorge; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2012-11-28

    We herein present the synthesis and magneto-structural study of a new family of heterobimetallic chains of general formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n)·pnH(2)O [dmbpy = 4,4'-dimethyl-2,2'-bipyridine; M = Mn (2), Cu (3), Ni (4) and Co (5) with p = 4 (2), 3 (3), 9 (4) and 3.5 (5)] which were prepared by using the mononuclear PPh(4)[Fe(III)(dmbpy)(CN)(4)]·3H(2)O (1) building block (PPh(4)(+) = tetraphenylphosphonium) as a ligand toward fully solvated M(II) ions. The structure of 1 consists of discrete [Fe(III)(dmbpy)(CN)(4)](-) anions, tetraphenylphosphonium cations and noncoordinated water molecules. Complexes 2-5 are isostructural compounds whose structure consists of neutral 4,2-wave like heterobimetallic chains of formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n) where the [Fe(III)(dmbpy)(CN)(4)](-) entity adopts a bis-monodentate coordination mode toward trans-[M(II)(H(2)O)(2)] units through two of its four cyanide groups in cis positions. 1 exhibits the magnetic behaviour of magnetically isolated six-coordinate low-spin Fe(III) complexes with an important orbital contribution. 2 behaves as ferrimagnetic Fe(III)(2)Mn(II) chains, whereas 3-5 exhibit intrachain ferromagnetic couplings between the low-spin Fe(III) and either Cu(II) (3), Ni (4) or Co(II) (5) as well as frequency-dependence of the out-of-phase ac susceptibility signals below 3.0 (3), 5.5 (4) and 5.0 K (5). The relaxation time and the energy to reverse the magnetization of 3-5 are related to the anisotropy of the M(II) center and to the intra- and interchain magnetic interactions. Unprecedentedly in the world of cyanide-bearing complexes, 5 exhibits a double slow relaxation of the magnetization.

  9. Analysis of the relationship between end-to-end distance and activity of single-chain antibody against colorectal carcinoma.

    Science.gov (United States)

    Zhang, Jianhua; Liu, Shanhong; Shang, Zhigang; Shi, Li; Yun, Jun

    2012-08-22

    We investigated the relationship of End-to-end distance between VH and VL with different peptide linkers and the activity of single-chain antibodies by computer-aided simulation. First, we developed (G4S)n (where n = 1-9) as the linker to connect VH and VL, and estimated the 3D structure of single-chain Fv antibody (scFv) by homologous modeling. After molecular models were evaluated and optimized, the coordinate system of every protein was built and unified into one coordinate system, and End-to-end distances calculated using 3D space coordinates. After expression and purification of scFv-n with (G4S)n as n = 1, 3, 5, 7 or 9, the immunoreactivity of purified ND-1 scFv-n was determined by ELISA. A multi-factorial relationship model was employed to analyze the structural factors affecting scFv: rn=ABn-ABO2+CDn-CDO2+BCn-BCst2. The relationship between immunoreactivity and r-values revealed that fusion protein structure approached the desired state when the r-value = 3. The immunoreactivity declined as the r-value increased, but when the r-value exceeded a certain threshold, it stabilized. We used a linear relationship to analyze structural factors affecting scFv immunoreactivity.

  10. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  11. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun

    2013-09-01

    We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.

  12. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Y.A.

    2003-01-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories

  13. Opportunities and Barriers related to Supply Chain Collaboration for Delivering Integrated Single-Family Home Renovations

    NARCIS (Netherlands)

    Mlecnik, E.; Kondratenko, I.; Haavik, T.

    2013-01-01

    Single-family home renovations often show deficiencies in project management. There might be a market addressing house owners who would prefer integrated renovation services and clear responsibilities. Companies that would respond to these client’s needs would have a clear market potential,

  14. Single-Chain Antibody Fragment VEGF Inhibitor RTH258 for Neovascular Age-Related Macular Degeneration

    DEFF Research Database (Denmark)

    Holz, Frank G; Dugel, Pravin U.; Weissgerber, Georges

    2016-01-01

    Purpose To assess the safety and efficacy of different doses of RTH258 applied as single intravitreal administration compared with ranibizumab 0.5 mg in patients with neovascular age-related macular degeneration (AMD). Design Six-month, phase 1/2, prospective, multicenter, double-masked, randomized...

  15. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    Science.gov (United States)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  16. Analysis of urine composition in type Ⅱ diabetic mice after intervention therapy using holothurian polypeptides

    Science.gov (United States)

    Li, Yanyan; Xu, Jiajie; Su, Xiurong

    2017-07-01

    Hydrolysates and peptide fractions (PF) obtained from sea cucumber with commercial enzyme were studied on the hpyerglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR), and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of holothurian polypeptides treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  17. Homoallylglycine residues are superior precursors to orthogonally modified thioether containing polypeptides.

    Science.gov (United States)

    Perlin, Pesach; Gharakhanian, Eric G; Deming, Timothy J

    2018-06-12

    Homoallylglycine N-carboxyanhydride, Hag NCA, monomers were synthesized and used to prepare polypeptides containing Hag segments with controllable lengths of up to 245 repeats. Poly(l-homoallylglycine), GHA, was found to adopt an α-helical conformation, which provided good solubility in organic solvents and allowed high yield functionalization of its alkene side-chains via radical promoted addition of thiols. The conformations of these derivatives were shown to be switchable between α-helical and disordered states in aqueous media using thioether alkylation or oxidation reactions. Incorporation of GHA segments into block copolymers with poly(l-methionine), M, segments provided a means to orthogonally modify thioether side-chains different ways in separate copolypeptide domains. This approach allows preparation of functional polypeptides containing discrete domains of oxidized and alkylated thioether containing residues, where chain conformation and functionality of each domain can be independently modified.

  18. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier.

    Directory of Open Access Journals (Sweden)

    Pei-Chun Chen

    Full Text Available Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss or (ds double stranded molecules. The affinities of the protein for ss- vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of ∼3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more

  19. Design and Generation of Humanized Single-chain Fv Derived from Mouse Hybridoma for Potential Targeting Application.

    Science.gov (United States)

    Khantasup, Kannika; Chantima, Warangkana; Sangma, Chak; Poomputsa, Kanokwan; Dharakul, Tararaj

    2015-12-01

    Single-chain variable antibody fragments (scFvs) are attractive candidates for targeted immunotherapy in several human diseases. In this study, a concise humanization strategy combined with an optimized production method for humanizing scFvs was successfully employed. Two antibody clones, one directed against the hemagglutinin of H5N1 influenza virus, the other against EpCAM, a cancer biomarker, were used to demonstrate the validity of the method. Heavy chain (VH) and light chain (VL) variable regions of immunoglobulin genes from mouse hybridoma cells were sequenced and subjected to the construction of mouse scFv 3-D structure. Based on in silico modeling, the humanized version of the scFv was designed via complementarity-determining region (CDR) grafting with the retention of mouse framework region (FR) residues identified by primary sequence analysis. Root-mean-square deviation (RMSD) value between mouse and humanized scFv structures was calculated to evaluate the preservation of CDR conformation. Mouse and humanized scFv genes were then constructed and expressed in Escherichia coli. Using this method, we successfully generated humanized scFvs that retained the targeting activity of their respective mouse scFv counterparts. In addition, the humanized scFvs were engineered with a C-terminal cysteine residue (hscFv-C) for site-directed conjugation for use in future targeting applications. The hscFv-C expression was extensively optimized to improve protein production yield. The protocol yielded a 20-fold increase in production of hscFv-Cs in E. coli periplasm. The strategy described in this study may be applicable in the humanization of other antibodies derived from mouse hybridoma.

  20. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect the......-probe sonication method had a micelle structure with fenofibrate incorporated into a lipid monolayer. This study provides an insight into the systematic development of novel amphiphilic lipids for solid lipid-based drug delivery system.......HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect...... using the lipolysis model. The structure and drug distribution of the nanocarriers were studied using AFM and TEM. FINDINGS: Both the polar head group of the molecules and the preparation methods affect the particle size and size distribution. Nanocarriers prepared with sorbitol mono-behenates showed...

  1. Single-chain magnet features in 1D [MnR{sub 4}TPP][TCNE] compounds

    Energy Technology Data Exchange (ETDEWEB)

    Balanda, Maria [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Tomkowicz, Zbigniew; Rams, Michal [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Haase, Wolfgang, E-mail: Maria.Balanda@ifj.edu.pl [Institute of Physical Chemistry, Darmstadt University of Technology, 64287 Darmstadt (Germany)

    2011-07-06

    Molecular chains of antiferrimagnetically coupled Mn{sup III}-ion (S = 2) and TCNE (tetracyanoethylene) radical moments (s = 1/2 ) show different behaviour depending on group R substituted to TPP (tetraphenylporphyrin) and on the substitution site. The compound with R = F in Ortho position is a Single-Chain Magnet (SCM) with blocking temperature T{sub b} = 6.6K, while that with R = F in Meta position shows both blocking (T{sub b} = 5.4 K) and magnetic ordering transition (T{sub c} = 10 K). For bulky groups R = OC{sub n}H{sub 2n+1}, the magnetically ordered phase is observed (T{sub c} {approx} 22 K), which does not however prevent slow relaxation at T <8 K. Magnetic hysteresis with coercive field H{sub c} of 2 T at 2.3 K is like that of SCM. The frequency dependent AC susceptibility in the superimposed DC field reveals common features of all systems. The energy of intrachain ferromagnetic coupling between effective spin units 3/2, relevant at low temperatures, is determined for all compounds and the interchain dipolar coupling is estimated. It is concluded that slow relaxation is inherent for all quasi one-dimensional compounds and for the magnetically ordered ones shows up in the high enough magnetic field.

  2. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment

    International Nuclear Information System (INIS)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-01-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies

  3. Anti-Human Endoglin (hCD105 Immunotoxin—Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1

    Directory of Open Access Journals (Sweden)

    Begoña Barriuso

    2016-06-01

    Full Text Available Endoglin (CD105 is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT—containing recombinant musarmin 1 (single chain ribosome-inactivating proteins linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio propionate (SPDP. The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10−10 to 10−9 M.

  4. Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy

    Science.gov (United States)

    Lange, Florian; Ejima, Satoshi; Fehske, Holger

    2018-02-01

    Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .

  5. Anti-Human Endoglin (hCD105) Immunotoxin-Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1.

    Science.gov (United States)

    Barriuso, Begoña; Antolín, Pilar; Arias, F Javier; Girotti, Alessandra; Jiménez, Pilar; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Girbés, Tomás

    2016-06-10

    Endoglin (CD105) is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT)-containing recombinant musarmin 1 (single chain ribosome-inactivating proteins) linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10(-10) to 10(-9) M.

  6. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  7. CDNA encoding a polypeptide including a hevein sequence

    Science.gov (United States)

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  8. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  9. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    Science.gov (United States)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  10. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  11. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  12. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  13. The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity

    DEFF Research Database (Denmark)

    Juul, L; Hougs, L; Andersen, V

    1997-01-01

    The expressed human kappa light chain gene repertoire utilized by healthy individuals was studied by two different single-sided specific PCR techniques to avoid bias for certain V genes. A total of 103 rearranged kappa sequences from peripheral blood mononuclear cells from healthy individuals were...

  14. Safety, efficacy and pharmacokinetics of rVIII-SingleChain in children with severe hemophilia A: results of a multicenter clinical trial.

    Science.gov (United States)

    Stasyshyn, O; Djambas Khayat, C; Iosava, G; Ong, J; Abdul Karim, F; Fischer, K; Veldman, A; Blackman, N; St Ledger, K; Pabinger, I

    2017-04-01

    Essentials rVIII-SingleChain is a novel recombinant factor VIII with covalently bonded heavy and light chains. Efficacy, safety and pharmacokinetics were studied in pediatric patients with severe hemophilia A. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00. rVIII-SingleChain showed excellent hemostatic efficacy and a favorable safety profile. Background rVIII-SingleChain is a novel B-domain truncated recombinant factor VIII (rFVIII) comprised of covalently bonded FVIII heavy and light chains, demonstrating a high binding affinity to von Willebrand factor. Objectives This phase III study investigated the safety, efficacy and pharmacokinetics of rVIII-SingleChain in previously treated pediatric patients hemophilia A. Patients/Methods Patients could be assigned to prophylaxis or on-demand therapy by the investigator. For patients assigned to prophylaxis, the treatment regimen and dose were based on the bleeding phenotype. For patients receiving on-demand therapy, dosing was guided by World Federation of Hemophilia recommendations. The primary endpoint was treatment success, defined as a rating of 'excellent' or 'good' on the investigator's clinical assessment of hemostatic efficacy for all treated bleeding events. Results The study enrolled 84 patients (0 to 50 EDs. In the 347 bleeds treated and evaluated by the investigator, hemostatic efficacy was rated as excellent or good in 96.3%. The median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.00, 2.20), and the median annualized bleeding rate was 3.69 (Q1, Q3: 0.00, 7.20) across all prophylaxis regimens. No participant developed an inhibitor. Conclusions rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy and a favorable safety profile in a clinical study in children hemophilia A. © 2017 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and

  15. A single-supply, high rate, small size and cheap electronic chain for 3He neutron counters

    International Nuclear Information System (INIS)

    Boffa, A.; Fazzi, A.; Pirovano, C.; Varoli, V.

    1996-01-01

    The paper describes a complete counting chain (charge preamplifier, shaping amplifier and threshold discriminator) devoted to 3 He neutron detectors. Since it is characterized by single supply operation, high counting rate, small size and low cost, it is well suited for high efficiency neutron well detectors where a large number (10 - 100) of counting tubes are used. Such detectors are commonly used for verification of Plutonium stocks. The preamplifier adopts an innovative circuit with the gate of the input JFET floating and a DC feedback loop that stabilizes the output voltage acting on the input cascode second transistor. Static and dynamic analysis, including the effects of the detector bias network, is reported. The shaping amplifier transfer function is a fifth order approximation of the gaussian response. All the complex pole pairs are realized with a single fourth order Voltage Controlled Voltage Source cell thus minimizing component count. Experimental signals and spectra, obtained with shaping time constants in the 1 μs - 100 ns range, are reported and discussed

  16. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.

    Science.gov (United States)

    Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E

    2008-09-01

    Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.

  17. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    Science.gov (United States)

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  18. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11.

    Science.gov (United States)

    van der Steen, Sophieke C H A; van Tilborg, Angela A G; Vallen, Myrtille J E; Bulten, Johan; van Kuppevelt, Toin H; Massuger, Leon F A G

    2016-03-01

    The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstrated to play a role in cancer development and progression. In this study we investigate the potential of highly sulfated CS as a biomarker in ovarian cancer using the single chain antibody GD3A11 selected by the phage display technology. The specificity of the antibody was determined by an indirect ELISA. GD3A11 epitope expression was assessed by immunohistochemistry in healthy organs, benign and malignant ovarian tumors (N=359) and correlated to clinical parameters. The CHST15 gene, responsible for the biosynthesis of highly sulfated CS was evaluated for mutation and methylation status. The GD3A11 epitope was minimally expressed in normal organs. Intense expression was observed in the ECM of different ovarian cancer subtypes, in contrast to benign ovarian tumors. Expression was independent of tumor grade, FIGO stage, and the use chemotherapy. For the aggressive ovarian cancer phenotype, intense expression was identified as an independent predictor for poor prognosis. CHST15 gene analysis showed no mutations nor an altered methylation status. Specific highly sulfated CS motifs expressed in the tumoral ECM hold biomarker potential in ovarian cancer patients. These matrix motifs constitute a novel class of biomarkers with prognostic significance and may be instrumental for innovative diagnostic and therapeutic applications (e.g. targeted therapy) in management of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth.

    Science.gov (United States)

    Gho, Francesca; Peña-Neira, Alvaro; López-Solís, Remigio O

    2007-02-01

    Isoproterenol-induced salivary polypeptides (IISP), a group of proline-rich proteins synthesized by mouse parotids, have been considered as markers for isoproterenol-induced parotid hypertrophy. Rodents fed diets containing high-tannin cereals (sorghum), also develop parotid hypertrophy. To test whether tannins are directly involved in provoking sialotrophic growth, we studied the effect of intraperitoneal and topical oral administrations of tannic acid (TA) on the induction of IISP polypeptides in endogamic mice (A/Snell). TA was characterized by HPLC chromatography and spectral analysis and shown to be composed solely of gallotannins, a complex family of glucose and gallic acid esters. IISP polypeptides were monitored in saliva by SDS-polyacrylamide gel electrophoresis during 36 h after ending TA stimulation. Single daily intraperitoneal administrations of TA for 3 consecutive days (0.033 mg/g bw/day), at variance of parallel administrations of isoproterenol (0.042 mg/g bw/day) failed to induce IISP polypeptides. However, repeated topical applications of TA into the mouse mouths (1.21 mg/g bw divided into three equal doses given at 4-h intervals within a single day) resulted in unequivocal induction of IISP polypeptides. That response was clearly intensified by increasing the stimulation frequency to eight equivalent doses given at 1.5-h intervals within a single day (corresponding to 3.23 mg/g bw) and even further by repeating this protocol for 3 days. Under these productive schemes of stimulations by TA, electrophoretic fractionation of parotid homogenates showed new polypeptide bands migrating in parallel to salivary IISP. These results suggest that topically administered gallotannins are effective inducers of trophic growth in mouse parotids.

  20. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  1. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  2. Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A

    Science.gov (United States)

    Mahlangu, Johnny; Kuliczkowski, Kazimierz; Karim, Faraizah Abdul; Stasyshyn, Oleksandra; Kosinova, Marina V.; Lepatan, Lynda Mae; Skotnicki, Aleksander; Boggio, Lisa N.; Klamroth, Robert; Oldenburg, Johannes; Hellmann, Andrzej; Santagostino, Elena; Baker, Ross I.; Fischer, Kathelijn; Gill, Joan C.; P’Ng, Stephanie; Chowdary, Pratima; Escobar, Miguel A.; Khayat, Claudia Djambas; Rusen, Luminita; Bensen-Kennedy, Debra; Blackman, Nicole; Limsakun, Tharin; Veldman, Alex; St. Ledger, Katie

    2016-01-01

    Recombinant VIII (rVIII)-SingleChain is a novel B-domain–truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927. PMID:27330001

  3. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Timo Heidt

    Full Text Available BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111Indium ((111In via bifunctional DTPA ( = (111In-LIBS/(111In-control. Autoradiography after incubation with (111In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2, 4010 ± 630 DLU/mm(2 and 4520 ± 293 DLU/mm(2 produced a significantly higher ligand uptake compared to (111In-control (2101 ± 76 DLU/mm(2, 1181 ± 96 DLU/mm(2 and 1866 ± 246 DLU/mm(2 indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2 vs. 17390 ± 7470 DLU/mm(2; P<0.05. These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01. CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of

  4. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody

    Directory of Open Access Journals (Sweden)

    Yang J

    2014-05-01

    Full Text Available Jingjing Yang,1,3,* Xiaoping Huang,1,3,* Fanghong Luo,1 Xiaofeng Cheng,3 Lianna Cheng,3 Bin Liu,4 Lihong Chen,2 Ruyi Hu,1,3 Chunyan Shi,1,3 Guohong Zhuang,1,3 Ping Yin2 1Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China, 2The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China, 3Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China, 4Jilin Vocational College of Industry and Technology, Jilin, People's Republic of China  *These authors contributed equally to this work Objective: To prepare hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody, and study their characteristics, functions, and mechanisms of action. Materials and methods: The anti-human death receptor 5 single-chain antibody was constructed and expressed. Protein-loaded hydroxyethyl chitosan nanoparticles were prepared, and their size, morphology, particle-size distribution and surface zeta potential were measured by scanning electron microscopy and laser particle-size analysis. Mouse H22 hepatocellular carcinoma cells were cultured, and growth inhibition was examined using the CellTiter-Blue cell-viability assay. Flow cytometry and Hoechst 33342 were employed to measure cell apoptosis. Kunming mice with H22 tumor models were treated with protein-loaded hydroxyethyl chitosan nanoparticles, and their body weight and tumor size were measured, while hematoxylin and eosin staining was used to detect antitumor effects in vivo and side effects from tumors. Results: The protein-loaded hydroxyethyl chitosan nanoparticles had good stability; the zeta potential was -24.2±0.205, and the dispersion index was 0.203. The inhibition of the protein-loaded hydroxyethyl chitosan nanoparticles on H22 growth was both time- and dose-dependent. Increased expressions of active caspase 8, active caspase 3, and BAX were detected

  5. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  6. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    2017-06-20

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  7. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Science.gov (United States)

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polynucleotides encoding polypeptides having beta-glucosidase activity

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  11. Polypeptide of a human calicivirus

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, H; Chiba, S; Sakuma, Y; Kogasaka, R; Nakata, S; Minami, R; Horino, K; Nakao, T

    1983-11-01

    Viral particles morphologically resembling animals caliciviruses in the faeces of a patient with acute gastroenteritis were purified, radiolabeled with (/sup 125/I), and analyzed by SDS-PAGE. A single major structural protein with a mol. mass 62,000 daltons was identified by immunoprecipitation technique. The finding is consistent with human calicivirus-like particles associated with gastroenteritis being a member of the family Caliciviridae.

  12. Optimal Decisions in a Single-Period Supply Chain with Price-Sensitive Random Demand under a Buy-Back Contract

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-01-01

    Full Text Available This paper studies a single-period supply chain with a buy-back contract under a Stackelberg game model, in which the supplier (leader decides on the wholesale price, and the retailer (follower responds to determine the retail price and the order quantity. We analytically investigate the decentralized retailer’s optimal decision. Our results demonstrate that the retailer has a unique optimal simultaneous decision on the retail price and the order quantity, under a mild restriction on the demand distribution. Moreover, as it can be shown that the decentralized supply chain facing price-sensitive random demand cannot be coordinated with buy-back contract, we propose a scheme for the system to achieve Pareto-improvement. Theoretical analysis suggests that there exists a unique Pareto-equilibrium for the supply chain. In particular, when the Pareto-equilibrium is reached, the supply chain is coordinated. Numerical experiments confirm our results.

  13. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    Directory of Open Access Journals (Sweden)

    Xiaoming Sun

    Full Text Available T-cell receptor (TCR α/β chains are expressed on the surface of CD8(+ T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+ subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1 chimeric rearrangements of TCRδ-α, (2 control of TCRα/β transcription with multiple transcriptional initiation sites, (3 altered utilization of TCRα/β chains in CD8(+ subsets, and (4 strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+ T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  14. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    Science.gov (United States)

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8(+) T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+) subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8(+) subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+) T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  15. Identification of tumor associated single-chain Fv by panning and screening antibody phage library using tumor cells

    Science.gov (United States)

    Nie, Yong-Zhan; He, Feng-Tian; Li, Zhi-Kui; Wu, Kai-Chun; Cao, Yun-Xin; Chen, Bao-Jun; Fan, Dai-Ming

    2002-01-01

    AIM: To study the feasibility of panning and screening phage-displaying recombinant single-chain variable fragment (ScFv) of anti-tumor monoclonal antibodies for fixed whole cells as the carriers of mAb-binding antigens. METHODS: The recombinant phage displaying libraries for anti-colorectal tumor mAb MC3Ab, MC5Ab and anti-gastric tumor mAb MGD1 was constructed. Panning and screening were carried out by means of modified fixation of colorectal and gastric tumor cells expressed the mAb-binding antigens. Concordance of binding specificity to tumor cells between phage clones and parent antibodies was analyzed. The phage of positive clones was identified with competitive ELISA, and infected by E. coli HB2151 to express soluble ScFv. RESULTS: The ratio of positive clones to MC3-ScF-MC5-ScFv and MGD1-ScFv were 60%, 24% and 30%. MC3-ScFv had Mr 32000 confirmed by Western blot. The specificity to antigen had no difference between 4 positive recombinant phage antibodies and MC3Ab. CONCLUSION: The modified process of fixing whole tumor cells is efficient, convenient and feasible to pan and screen the phage-displaying ScFv of anti-tumor monoclonal antibodies. PMID:12174367

  16. Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA

    Directory of Open Access Journals (Sweden)

    Bogen Bjarne

    2010-02-01

    Full Text Available Abstract Background Efficient expression systems exist for antibody (Ab molecules, which allow for characterization of large numbers of individual Ab variants. In contrast, such expression systems have been lacking for soluble T cell receptors (TCRs. Attempts to generate bacterial systems have generally resulted in low yields and material which is prone to aggregation and proteolysis. Here we present an optimized periplasmic bacterial expression system for soluble single chain (sc TCRs. Results The effect of 1 over-expression of the periplasmic chaperon FkpA, 2 culture conditions and 3 molecular design was investigated. Elevated levels of FkpA allowed periplasmic soluble scTCR expression, presumably by preventing premature aggregation and inclusion body formation. Periplasmic expression enables disulphide bond formation, which is a prerequisite for the scTCR to reach its correct fold. It also enables quick and easy recovery of correctly folded protein without the need for time-consuming downstream processing. Expression without IPTG induction further improved the periplasmic expression yield, while addition of sucrose to the growth medium showed little effect. Shaker flask yield of mg levels of active purified material was obtained. The Vαβ domain orientation was far superior to the Vβα domain orientation regarding monomeric yield of functionally folded molecules. Conclusion The general expression regime presented here allows for rapid production of soluble scTCRs and is applicable for 1 high yield recovery sufficient for biophysical characterization and 2 high throughput screening of such molecules following molecular engineering.

  17. Arg9 facilitates the translocation and downstream signal inhibition of an anti-HER2 single chain antibody

    Directory of Open Access Journals (Sweden)

    Hu Yi

    2012-07-01

    Full Text Available Abstract Background HER2 plays a critical role in the pathogenesis of many cancers and is linked to poor prognosis or cancer metastases. Monoclonal antibodies, such as Herceptin against HER2-overexpressing cancers, have showed satisfactory clinical therapeutic effect. However, they have difficulty to surmount obstacles to enter cells or blood–brain barrier. Results In this study, a cell-penetrating peptide Arg9 was linked to the C-terminus of anti-HER2 single chain antibody (MIL5scFv. Flow cytometry, confocal microscopy and electron microscopy analysis all revealed that Arg9 peptide facilitated the penetration of MIL5scFv into HER2-negative cell line NIH3T3 and orientate in mitochondria. More interestingly, Western blot assay showed the potential enhanced bioactivity of MIL5scFv-Arg9 in HER2+ cell line SKOV3, indicating that Arg9 could help large molecules (e.g. antibody to penetrate into cells and therefore enhance its anti-neoplastic function. Conclusions Our work represented an attractive by preliminary strategy to enhance the therapeutic effect of existing antibodies by entering cells easier, or more desirable, surmounting the physical barriers, especially in hard-to-reach cancers such as brain metastases cases.

  18. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.

    Science.gov (United States)

    Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan

    2016-03-03

    By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.

  19. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library.

    Directory of Open Access Journals (Sweden)

    Yanan Sun

    Full Text Available Single chain variable fragments (scFvs against diethylstilbestrol (DES were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3 for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR analysis was used to determine binding kinetics of one clone (30-1. The measured K(D was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies.

  1. A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging

    Science.gov (United States)

    Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463

  2. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  3. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    Science.gov (United States)

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  4. Molecular cloning and protein structure of a human blood group Rh polypeptide

    International Nuclear Information System (INIS)

    Cherif-Zahar, B.; Bloy, C.; Le Van Kim, C.; Blanchard, D.; Bailly, P.; Hermand, P.; Salmon, C.; Cartron, J.P.; Colin, Y.

    1990-01-01

    cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential N-glycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO 4 /polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO 4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters

  5. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    Science.gov (United States)

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  6. Ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with competing single-ion anisotropies

    International Nuclear Information System (INIS)

    Tonegawa, T; Okamoto, K; Sakai, T; Kaburagi, M

    2009-01-01

    Employing various numerical methods, we determine the ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with antiferromagnetic nearest-neighboring exchange interactions and uniaxial single-ion anisotropies. The resulting phase diagram consists of eight kinds of phases including two phases which accompany the spontaneous breaking of the translational symmetry and a ferrimagnetic phase in which the ground-state magnetization varies continuously with the uniaxial single-ion anisotropy constants for the S=1 and S =2 spins. The appearance of these three phases is attributed to the competition between the uniaxial single-ion anisotropies of both spins.

  7. First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains

    International Nuclear Information System (INIS)

    Hayes, Kayla E.; Lee, Hee-Seung

    2012-01-01

    Highlights: ► Electronic and magnetic properties of (5, 5)-SWNT doped with Pt clusters and chains. ► Pt-doping can change metallic (5, 5)-SWNT to semiconducting CNT. ► Oxygen adsorption on Pt-doped (5, 5)-SWNT is barrierless process. ► Pt-doping reduces the activation barrier of oxygen dissociation reaction. ► Adsorbed oxygen has 2 O 2 - – character. - Abstract: We report the results of density functional theory calculations on the electronic structures, geometrical parameters, and magnetic properties of a wide variety of Pt clusters/chains adsorbed on metallic (5,5) single-walled carbon nanotube (SWNT). It was found that the electronic band structures of Pt/CNT systems are very sensitive to the small changes in the geometries of Pt clusters and chains. In some cases, metallic (5, 5)-SWNT becomes a small-gap semiconducting nanotube with adsorbed Pt clusters and chains. We also investigated the dissociation of molecular oxygen on the (5, 5)-SWNT doped with a single Pt atom via the nudged elastic band (NEB) method. The NEB results showed that the activation barrier is lowered even with a single Pt atom compared to that of pristine SWNT. It was found that the electronic structure of molecular oxygen adsorbed on Pt-doped CNT resembles that of 2 O 2 - , which should facilitate the dissociation process.

  8. Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses

    DEFF Research Database (Denmark)

    Jensen, Ida Græsted; Münster, Marie; Pisinger, David

    2017-01-01

    plants. In this paper, a mixed integer programming (MIP) model for finding the optimal production and investment plan for a biogas supply chain is presented to ensure better economy for the full chain hopefully stimulating future investments in biogas. The model makes use of step-wise linear functions...... to represent capital and operational expenditures at the biogas plant; considers the chain from the farmer to the end market; and includes changes of mass and energy content along the chain by modeling the losses and gains for all processes in the chain. Biomass inputs are scheduled on a weekly basis whereas...... energy outputs are scheduled on an hourly basis to better capture the changes of energy prices and potentially take advantage of these changes. The model is tested on a case study with co-digestion of straw, sugar beet and manure, considering natural gas, heat, and electricity as end products. The model...

  9. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    International Nuclear Information System (INIS)

    Bolle, C.A.; Gammel, P.L.; Grier, D.G.; Murray, C.A.; Bishop, D.J.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields

  10. Nanostructured complexes of polyelectrolytes and charged polypeptides

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Ouyang, W.; Bohatá, Karolína; Kessler, B.

    2010-01-01

    Roč. 12, Sp. Iss. 9 (2010), B519-B528 ISSN 1438-1656. [Sino-German Symposium on Advanced Biomedical Nanostructures /1./. Jena, 26.10.2009-30.10.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : situ ATR-FTIR * alpha-helical polypeptides * multilayer films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.746, year: 2010

  11. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease.

    Science.gov (United States)

    Ta, H T; Prabhu, S; Leitner, E; Jia, F; von Elverfeldt, D; Jackson, Katherine E; Heidt, T; Nair, A K N; Pearce, H; von Zur Muhlen, C; Wang, X; Peter, K; Hagemeyer, C E

    2011-08-05

    Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.

  12. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity.

    Science.gov (United States)

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A; Motamedi-Shad, Neda; Irving, James A; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J; Miranda, Elena; Lomas, David A

    2015-06-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin. © FASEB.

  13. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  14. Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein

    International Nuclear Information System (INIS)

    Yazaki, Paul J.; Kassa, Thewodros; Cheung, Chia-wei; Crow, Desiree M.; Sherman, Mark A.; Bading, James R.; Anderson, Anne-Line J.; Colcher, David; Raubitschek, Andrew

    2008-01-01

    Albumin fusion proteins have demonstrated the ability to prolong the in vivo half-life of small therapeutic proteins/peptides in the circulation and thereby potentially increase their therapeutic efficacy. To evaluate if this format can be employed for antibody-based imaging, an anticarcinoembryonic antigen (CEA) single-chain antibody(scFv)-albumin fusion protein was designed, expressed and radiolabeled for biodistribution and imaging studies in athymic mice bearing human colorectal carcinoma LS-174T xenografts. The [ 125 I]-T84.66 fusion protein demonstrated rapid tumor uptake of 12.3% injected dose per gram (ID/g) at 4 h that reached a plateau of 22.7% ID/g by 18 h. This was a dramatic increase in tumor uptake compared to 4.9% ID/g for the scFv alone. The radiometal [ 111 In]-labeled version resulted in higher tumor uptake, 37.2% ID/g at 18 h, which persisted at the tumor site with tumor: blood ratios reaching 18:1 and with normal tissues showing limited uptake. Based on these favorable imaging properties, a pilot [ 64 Cu]-positron emission tomography imaging study was performed with promising results. The anti-CEA T84.66 scFv-albumin fusion protein demonstrates highly specific tumor uptake that is comparable to cognate recombinant antibody fragments. The radiometal-labeled version, which shows lower normal tissue accumulation than these recombinant antibodies, provides a promising and novel platform for antibody-based imaging agents

  15. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuli [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Nanjing Affiliated First Hospital, Nanjing Medical University, Nanjing (China); Zhao, Guangfeng; Xie, Hao; Huang, Yahong [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Hou, Yayi [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing (China)

    2012-01-27

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex){sub 1.3}(DOX){sub 20}. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers.

  16. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    Science.gov (United States)

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  17. [Construction of a phage antibody library and screening of anti-epidermal growth factor receptor variant III single chain antibody].

    Science.gov (United States)

    Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao

    2010-01-01

    To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.

  18. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    International Nuclear Information System (INIS)

    Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi

    2012-01-01

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex) 1.3 (DOX) 20 . In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers

  19. Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis.

    Science.gov (United States)

    Shigemori, Suguru; Ihara, Masaki; Sato, Takashi; Yamamoto, Yoshinari; Nigar, Shireen; Ogita, Tasuku; Shimosato, Takeshi

    2017-01-01

    Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.

  20. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    Science.gov (United States)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  1. Introduction of a point mutation into an HLA class I single-chain trimer induces enhancement of CTL priming and antitumor immunity

    Directory of Open Access Journals (Sweden)

    Masanori Matsui

    2014-01-01

    Full Text Available We previously discovered one particular HLA-A*02:01 mutant that enhanced peptide-specific cytotoxic T lymphocyte (CTL recognition in vitro compared to wild-type HLA-A*02:01. This mutant contains a single amino acid substitution from histidine to leucine at position 74 (H74L that is located in the peptide-binding groove. To investigate the effect of the H74L mutation on the in vivo CTL priming, we took advantage of the technology of the HLA class I single-chain trimer (SCT in which three components involving a peptide, β2 microglobulin and the HLA class I heavy chain are joined together via flexible linkers. We generated recombinant adenovirus expressing SCT comprised influenza A matrix protein (FMP-derived peptide, β2 microglobulin and the H74L heavy chain. HLA-A*02:01 transgenic mice were immunized with the adenovirus, and the induction of peptide-specific CTLs and antitumor immunity was investigated. It was clearly shown that the H74L mutation enabled the HLA-A*02:01 SCT molecule to dramatically enhance both in vivo priming of FMP-specific CTLs and protection against a lethal challenge of tumor cells expressing FMP. These data present the first evidence that a simple point mutation in the HLA class I heavy chain of SCT is beneficial for improving CTL-based immunotherapy and prophylaxis to control tumors.

  2. Conformation of single block copolymer chain in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-05-21

    The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.

  3. Human α2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript

    International Nuclear Information System (INIS)

    Lee, C.C.; Bowman, B.H.; Yang, F.

    1987-01-01

    The α 2 -HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encoded by a single mRNA transcript. The cDNA sequence predicts an 18-amino-acid signal peptide, followed by the A-chain sequence of AHSG. A heretofore unseen connecting sequence of 40 amino acids was deduced between the A- and B-chain sequences. The connecting sequence demonstrates the unique amino acid doublets and collagen triplets found in the A and B chains; it is not homologous with other reported amino acid sequences. The connecting sequence may be cleaved in a posttranslational step by limited proteolysis before mature AHSG is released into the circulation or may vary in its presence because of alternative processing. The AHSG cDNA was utilized for mapping the AHSG gene to the 3q21→qter region of human chromosome 3. The availability of the AHSG cDNA clone will facilitate the analysis of its genetic control and gene expression during development and bone formation

  4. Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.

    Science.gov (United States)

    Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K

    2016-04-20

    Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded

  5. Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid

    Science.gov (United States)

    Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.

    2016-01-01

    Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for

  6. Construction of a Single Chain Variable Fragment Antibody (scFv) against Carbaryl and Its Interaction with Carbaryl.

    Science.gov (United States)

    Xiuyuan, Zhang; Zhihong, Huang; Lixia, Wang; Xiaonan, Liu

    2015-05-01

    Carbaryl is a low molecular weight insecticide that inhibits cholinesterase. Residues of carbaryl in food and the environment have damaged human health. A high-specificity scFv that can identify carbaryl is still lacking. In the present study, an anti-carbaryl scFv gene was prepared by cloning VL and VH genes from hybridoma cells secreting monoclonal antibody, then VH and VL were fused together using splicing by overlap extension (SOE) PCR with a flexible polypeptide linker connector (Gly4Ser)3, and then the scFv-pET-26b recombinant plasmid was constructed and transformed into E. coli BL21 for expression using IPTG as an inducer. The expressed recombinant protein was identified by SDS-PAGE and ELISA. The three-dimensional structure of the anti-carbaryl scFv was constructed by computer modeling, and carbaryl was docked to the scFv model to obtain the structure of the binding complex. The binding site was composed of Ala51, Ser52, Ile51, Gly54, Ser56, Arg98, and Gly100. This helps to understand the mechanism of interaction between anti-carbaryl antibody and antigen. Furthermore, it provides guidance for in vitro affinity maturation of anti-carbaryl antibody.

  7. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)

    1994-01-01

    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  8. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    Science.gov (United States)

    Colaco, Martin Francis

    The creation of useful composite materials requires precise control of the interface between the components in order to tune the overall shape and material properties. Despite the current research into nanotechnology, our ability to create materials with nanoscale precision is nascent. However, nature has a paradigm for the creation of finely structured composites under mild conditions called biomineralization. Through control of protein template assembly, solution conditions, and physical confinement, organisms are able to create useful optical and structural materials, such as bones, teeth, and mollusk shells. The objective of this thesis is to elucidate the importance of these various controls in synthetic systems to further our ability to create nanostructured materials. We begin by examining the formation of self-assembled monolayers (SAMs) of organosilanes on silica oxides. The formation of functionalized surfaces can help control the mineralization of amorphous or crystalline calcium carbonate. Long-chained organosilanes organize on surfaces to form dense, solid-like films, with the terminal groups determining the hydrophobicity and stereochemistry of the film. Our work has shown that uniform hydrophobic and hydrophilic films can be formed by using cleaned silica over glass or mica and through a vapor phase reaction over a liquid one. Additionally, we showed that mixed SAMs with phase-separated domains could be created through the selection of organosilanes and reaction conditions. We have built on these functionalized surfaces through the use of microfabrication and a gas permeable polymer to create three-dimensionally confined microcrystallizers. Other researchers have shown that one-dimensional confinement with a multi-functional surface (patterned with a small nucleating ordered region in a disordered SAM) can stabilize the creation of an amorphous calcium carbonate film before a single, large, micropatterned crystal is grown. Our work has determined

  9. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  10. A single-chain fusion molecule consisting of peptide, major histocompatibility gene complex class I heavy chain and beta2-microglobulin can fold partially correctly, but binds peptide inefficiently

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Buus, S

    1999-01-01

    of a recombinant murine MHC-I molecule, which could be produced in large amounts in bacteria. The recombinant MHC-I protein was expressed as a single molecule (PepSc) consisting of the antigenic peptide linked to the MHC-I heavy chain and further linked to human beta2-microglobulin (hbeta2m). The PepSc molecule...... electrophoresis (SDS-PAGE). Serological analysis revealed the presence of some, but not all, MHC-I-specific epitopes. Biochemically, PepSc could bind peptide, however, rather ineffectively. We suggest that a partially correctly refolded MHC-I has been obtained....

  11. Development of coordination system model on single-supplier multi-buyer for multi-item supply chain with probabilistic demand

    Science.gov (United States)

    Olivia, G.; Santoso, A.; Prayogo, D. N.

    2017-11-01

    Nowadays, the level of competition between supply chains is getting tighter and a good coordination system between supply chains members is very crucial in solving the issue. This paper focused on a model development of coordination system between single supplier and buyers in a supply chain as a solution. Proposed optimization model was designed to determine the optimal number of deliveries from a supplier to buyers in order to minimize the total cost over a planning horizon. Components of the total supply chain cost consist of transportation costs, handling costs of supplier and buyers and also stock out costs. In the proposed optimization model, the supplier can supply various types of items to retailers whose item demand patterns are probabilistic. Sensitivity analysis of the proposed model was conducted to test the effect of changes in transport costs, handling costs and production capacities of the supplier. The results of the sensitivity analysis showed a significant influence on the changes in the transportation cost, handling costs and production capacity to the decisions of the optimal numbers of product delivery for each item to the buyers.

  12. A uranium-based UO{sub 2}{sup +}-Mn{sup 2+} single-chain magnet assembled trough cation-cation interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella [CEA-Grenoble (France). Lab. de Reconnaissance Ionique et Chimie de Coordination; Caciuffo, Roberto; Colineau, Eric [European Commission, Karlsruhe (Germany). Inst. for Transuranium Elements; Tuna, Floriana [Manchester Univ. (United Kingdom). School of Chemistry; Magnani, Nicola [KIT Karlsruhe (Germany). Inst. of Nanotechnology; Geyer, Arnaud de [CEA-Grenoble (France). Service General des Rayons X

    2014-01-13

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]{sub n}, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO{sub 2}(salen)py][Cp{sup *}{sub 2}Co] (Cp{sup *}=pentamethylcyclopentadienyl) with Cd(NO{sub 3}){sub 2} or Mn(NO{sub 3}){sub 2} in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm{sup -1}), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.

  13. A uranium-based UO{sub 2}{sup +}-Mn{sup 2+} single-chain magnet assembled trough cation-cation interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble (France); Caciuffo, Roberto; Colineau, Eric [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Tuna, Floriana [EPSRC UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester (United Kingdom); Magnani, Nicola [Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Geyer, Arnaud de [Service General des Rayons X, SP2M, INAC, CEA-Grenoble (France)

    2014-01-13

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]{sub n}, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO{sub 2}(salen)py][Cp*{sub 2}Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO{sub 3}){sub 2} or Mn(NO{sub 3}){sub 2} in pyridine. The infinite UMn chain displays a high relaxation barrier of 134 ±0.8 K (93 ±0.5 cm{sup -1}), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T <6 K, with an impressive coercive field of 3.4 T at 2 K. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  15. Caffeine-water-polypeptide interaction in aqueous solution

    Science.gov (United States)

    Ghabi, Habib; Dhahbi, Mahmoud

    1999-04-01

    The interaction of caffeine monomer with the synthetic polypeptides polyasparagine (pAg) and polyaspartic acid (pAsp) was studied by UV spectrophotometry. The results show that different types of interactions are possible depending on the nature of polypeptide. The form of the complex was discussed.

  16. IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST.

    Science.gov (United States)

    Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule

    2017-06-26

    IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino

  17. DEVELOPMENT OF A SPREADSHEET BASED VENDOR MANAGED INVENTORY MODEL FOR A SINGLE ECHELON SUPPLY CHAIN: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Karanam Prahlada Rao

    2010-11-01

    Full Text Available Vendor managed inventory (VMI is a supply chain initiative where the supplier assumes the responsibility for managing inventories using advanced communication means such as online messaging and data retrieval system. A well collaborated vendor manage inventory system can improve supply chain performance by decreasing the inventory level and increasing the fill rate. This paper investigates the implementation of vendor managed inventory systems in a consumer goods industry. We consider (r, Q policy for replenishing its inventory. The objective of work is to minimize the inventory across the supply chain and maximize the service level. The major contribution of this work is to develop a spreadsheet model for VMI system, Evaluation of Total inventory cost by using spreadsheet based method and Analytical method, Quantifying inventory reduction, Estimating service efficiency level, and validating the VMI spread sheet model with randomly generated demand. In the application, VMI as an inventory control system is able to reduce the inventory cost without sacrificing the service level. The results further more show that the inventory reduction obtained from analytical method is closer to the spread sheet based approach, which reveals the VMI success. However the VMI success is impacted by the quality of buyersupplier relationships, the quality of the IT system and the intensity of information sharing, but not by the quality of information shared.

  18. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  19. Conformational energy calculations on polypeptides and proteins: use of a statistical mechanical procedure for evaluating structure and properties.

    Science.gov (United States)

    Scheraga, H A; Paine, G H

    1986-01-01

    We are using a variety of theoretical and computational techniques to study protein structure, protein folding, and higher-order structures. Our earlier work involved treatments of liquid water and aqueous solutions of nonpolar and polar solutes, computations of the stabilities of the fundamental structures of proteins and their packing arrangements, conformations of small cyclic and open-chain peptides, structures of fibrous proteins (collagen), structures of homologous globular proteins, introduction of special procedures as constraints during energy minimization of globular proteins, and structures of enzyme-substrate complexes. Recently, we presented a new methodology for predicting polypeptide structure (described here); the method is based on the calculation of the probable and average conformation of a polypeptide chain by the application of equilibrium statistical mechanics in conjunction with an adaptive, importance sampling Monte Carlo algorithm. As a test, it was applied to Met-enkephalin.

  20. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2006-01-01

    This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.

  1. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  2. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis......, and 36 had no CNS involvement. The concentration of TPpA, which is a nonspecific marker for cell proliferation, was significantly higher in patients with CNS metastases than in those without it (P less than .0001; Mann-Whitney test). A tentative cutoff value for CNS metastases was set at 95 U/L TPp...... metastases, no correlation was found between TPpA activity in corresponding CSF and blood samples (correlation coefficient, Spearman's rho = .4; P greater than .1). In three patients treated for leptomeningeal carcinomatosis, the measurements of CSF TPpA showed correlation between the presence of tumor cells...

  3. Smart systems related to polypeptide sequences

    Directory of Open Access Journals (Sweden)

    Lourdes Franco

    2016-03-01

    Full Text Available Increasing interest for the application of polypeptide-based smart systems in the biomedical field has developed due to the advantages given by the peptidic sequence. This is due to characteristics of these systems, which include: biocompatibility, potential control of degradation, capability to provide a rich repertoire of biologically specific interactions, feasibility to self-assemble, possibility to combine different functionalities, and capability to give an environmentally responsive behavior. Recently, applications concerning the development of these systems are receiving greater attention since a targeted and programmable release of drugs (e.g. anti-cancer agents can be achieved. Block copolymers are discussed due to their capability to render differently assembled architectures. Hybrid systems based on silica nanoparticles are also discussed. In both cases, the selected systems must be able to undergo fast changes in properties like solubility, shape, and dissociation or swelling capabilities. This review is structured in different chapters which explain the most recent advances on smart systems depending on the stimuli to which they are sensitive. Amphiphilic block copolymers based on polyanionic or polycationic peptides are, for example, typically employed for obtaining pH-responsive systems. Elastin-like polypeptides are usually used as thermoresponsive polymers, but performance can be increased by using techniques which utilize layer-by-layer electrostatic self-assembly. This approach offers a great potential to create multilayered systems, including nanocapsules, with different functionality. Recent strategies developed to get redox-, magnetic-, ultrasound-, enzyme-, light- and electric-responsive systems are extensively discussed. Finally, some indications concerning the possibilities of multi-responsive systems are discussed.

  4. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  5. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    Science.gov (United States)

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  7. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun; Calo, Victor M.

    2013-01-01

    models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational

  8. Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9 (France)

    2017-06-15

    Highlights: • Magnetic properties of Fe atom chain wrapped in armchair carbon nanotubes have been studied. • Transition temperature of iron and carbon have been calculated using Monte Carlo simulations. • The multiples magnetic hysteresis have been found. - Abstract: The magnetic properties have been investigated of FeCu{sub x}C{sub 1−x} for a Fe atom chain wrapped in armchair (N,N) carbon nanotubes (N = 4,6,8,10,12) diluted by Cu{sup 2+} ions using Monte Carlo simulations. The thermal total magnetization and magnetic susceptibility are found. The reduced transition temperatures of iron and carbon have been calculated for different N and the exchange interactions. The total magnetization is obtained for different exchange interactions and crystal field. The Magnetic hysteresis cycles are obtained for different N, the reduced temperatures and exchange interactions. The multiple magnetic hysteresis is found. This system shows it can be used as magnetic nanostructure possessing potential current and future applications in permanent magnetism, magnetic recording and spintronics.

  9. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    Peptides and polypeptides are emerging as a new class of biomaterials due to their unique structural, physiochemical, mechanical, and biological properties. The development of peptide and protein-based biomaterials is driven by the convergence of convenient techniques for peptide/protein engineering and its importance in applications as smart biomaterials. The thesis is divided in two parts; the first part highlights the importance of incorporation of non-natural amino acids into peptides and proteins. In particular, incorporation on p-bromophenylalanine in short alpha-helical peptide templates to control the association of chromophores is discussed. In the second part, design of a multi-component, biocompatible polypeptide with superior elasticity is discussed. Part 1. Novel peptide templates to control association of chromophores. Tailor made peptide and protein materials have many versatile applications, as both conformation and functional group position can be controlled. Such control may have intriguing applications in the development of hybrid materials for electroactive applications. A critical need in fabricating devices from organic semiconducting materials is to achieve control over the conformation and distance between two conjugated chains. Controlling chromophore spacing and orientation with required precision over nanometer length scale poses a greater challenge. Here we propose a peptide based template to control the alignment of the methylstilbene and Oxa-PPV chromophores with desired orientations and spacing. The hybrid peptides were characterized via CD, exciton coupled CD, 1H NMR and photoluminescence experiments. It is observed that slight change in the orientation of molecules has pronounced effect on the photo-physical behavior of the molecules. Characterization of the hybrid peptides via circular dichroism (CD) confirmed the helical character of the designed peptides and indicated that inclusion of non-natural amino acids has significant

  11. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  12. Direct observation of the discrete energy spectrum of two lanthanide-based single-chain magnets by far-infrared spectroscopy

    Science.gov (United States)

    Haas, Sabrina; Heintze, Eric; Zapf, Sina; Gorshunov, Boris; Dressel, Martin; Bogani, Lapo

    2014-05-01

    The far-infrared optical transmission has been studied for two lanthanide-based single-chain magnets DyPhOPh and TbPhOPh in the frequency range between 3 and 80 cm-1. The spectra were acquired at temperatures between 2 and 80 K and magnetic fields up to 6 T. Based on their magnetic field dependence in DyPhOPh two of the observed absorption lines are identified as transitions inside the crystal field split Dy3+ ground multiplet 6H15/2, coupled to the neighboring spins. In TbPhOPh one transition was observed inside the crystal-field-split Tb3+ ground multiplet 7F6. The results allow a spectroscopic investigation of the role of single-ion anisotropy and exchange in Glauber dynamics.

  13. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells.

    Science.gov (United States)

    Pierce, Kenneth E; Wangh, Lawrence J

    2007-01-01

    Accurate detection of gene sequences in single cells is the ultimate challenge to polymerase chain reaction (PCR) sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of linear-after-the-exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at different concentrations, but with novel design criteria to ensure high efficiency and specificity. Compared with conventional PCR, LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATE-PCR signals provides a means for improving the accuracy of single cell genetic diagnosis.

  14. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites.

    Science.gov (United States)

    Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M

    2016-05-24

    The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.

  15. Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts.

    Science.gov (United States)

    Boehm, M K; Corper, A L; Wan, T; Sohi, M K; Sutton, B J; Thornton, J D; Keep, P A; Chester, K A; Begent, R H; Perkins, S J

    2000-03-01

    MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.

  16. A discrete particle swarm optimization algorithm with local search for a production-based two-echelon single-vendor multiple-buyer supply chain

    Science.gov (United States)

    Seifbarghy, Mehdi; Kalani, Masoud Mirzaei; Hemmati, Mojtaba

    2016-03-01

    This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational parameters of each buyer are sales quantity, sales price and production rate. Channel profit of the supply chain and contract price between the producer and each buyer is determined based on the values of the operational parameters. Since the model belongs to nonlinear integer programs, we use a discrete particle swarm optimization algorithm (DPSO) to solve the addressed problem; however, the performance of the DPSO is compared utilizing two well-known heuristics, namely genetic algorithm and simulated annealing. A number of examples are provided to verify the model and assess the performance of the proposed heuristics. Experimental results indicate that DPSO outperforms the rival heuristics, with respect to some comparison metrics.

  17. Phase transitions and Heisenberg limited metrology in an Ising chain interacting with a single-mode cavity field

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2011-01-01

    We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail...... to determine the complete phase diagram of the system. The analysis reveals both first- and second-order Dicke phase transitions into a super-radiant state, and the cavity mean field in this regime acts as an effective magnetic field, which restricts the Ising chain dynamics to parameter ranges away from...... the Ising phase transition. Physical systems with first-order phase transitions are natural candidates for metrology and calibration purposes, and we apply filter theory to show that the sensitivity of the physical system to temperature and external fields reaches the 1/N Heisenberg limit....

  18. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. Published by Elsevier B.V.

  19. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  20. An Immunofluorescence-assisted Microfluidic Single Cell Quantitative Reverse Transcription Polymerase Chain Reaction Analysis of Tumour Cells Separated from Blood

    Directory of Open Access Journals (Sweden)

    Kazunori Hoshino

    2015-11-01

    matched the results from a few thousand cells. Some markers (e.g., ER, HER2 that are commonly used for cancer identification showed relatively large deviations in expres‐ sion levels. However, others (e.g., GRB7 showed devia‐ tions that are small enough to supplement single cell disease profiling.

  1. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    Science.gov (United States)

    Beck, P; Nicholas, H

    1975-03-01

    little as 450 ng of polypeptide hormone-antibody protein. An additional advantage of the method is that a single iodination of the readily available antibodies to immunoglobulin G allows the establishemnt of several polypeptide hormone assays

  2. Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds.

    Science.gov (United States)

    Glassman, Matthew J; Avery, Reginald K; Khademhosseini, Ali; Olsen, Bradley D

    2016-02-08

    Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff, biocontinuous, nanostructured networks, but these gels are limited in applications by their relatively brittle nature. Here, a gel-forming ELP is chain-extended by telechelic oxidative coupling, forming extensible, tough hydrogels. Small angle scattering indicates that the chain-extended polypeptides form a fractal network of nanoscale aggregates over a broad concentration range, accessing moduli ranging from 5 kPa to over 1 MPa over a concentration range of 5-30 wt %. These networks exhibited excellent erosion resistance and allowed for the diffusion and release of encapsulated particles consistent with a bicontinuous, porous structure with a broad distribution of pore sizes. Biofunctionalized, toughened networks were found to maintain the viability of human mesenchymal stem cells (hMSCs) in 2D, demonstrating signs of osteogenesis even in cell media without osteogenic molecules. Furthermore, chondrocytes could be readily mixed into these gels via thermoresponsive assembly and remained viable in extended culture. These studies demonstrate the ability to engineer ELP-based arrested physical networks on the molecular level to form reinforced, cytocompatible hydrogel matrices, supporting the promise of these new materials as candidates for the engineering and regeneration of stiff tissues.

  3. UDP-[14C]glucose-labelable polypeptides from pea: Possible components of glucan synthase I activity

    International Nuclear Information System (INIS)

    Ray, P.M.; Dhugga, K.S.; Gallaghar, S.R.

    1989-01-01

    A membrane-bound polypeptide doublet of about 40 kD can be rapidly labeled with UDP-[ 14 C]glucose under the assay conditions for glucan synthase I (GS-I). Label seems covalently bound, and chases when unlabeled UDPG is added; it might represent a covalent intermediate in polysaccharide synthesis. Labeling and GS-I activity show several common features: they co-sediment with Golgi membranes in sucrose gradients; they depend similarly on Mg 2+ or Mn 2+ (not Ca 2+ ); they decrease dramatically from stem apex to base, and are higher in epidermis than internal tissue; they show similar sensitivities to several inhibitors. But the doublet still labels after polysaccharide-synthesizing activity has been destroyed by Triton X-100. The doublet polypeptides might be glucosyl tranferases whose ability to transfer glucose units to a glucan chain is detergent-sensitive, but to accept glucose from UDPG is not; or they might be detergent-insensitive primary glucose acceptors, from which a distinct, detergent-sensitive transferase(s) move(s) these units to glucan chains

  4. Target organs for avian pancreatic polypeptide

    International Nuclear Information System (INIS)

    Kimmel, J.R.; Pollock, H.G.

    1981-01-01

    The problem of the physiological function of pancreatic polypeptide (PP) has been approached by attempting to identify target organs. Avian PP (aPP) labeled with 125I at either the C-terminus (aPP-C) or the N-terminus (aPP-N) was injected into fasted chickens and allowed to circulate for 3-120 min. At the end of the equilibration period, the anesthetized bird was perfused first with saline, then with Buoin's solution. Samples of fixed tissue from various organs were collected, weighed, and counted. Control experiments consisted of coinjection of unlabeled aPP to compete for receptors. The rate of disappearance of aPP-N from plasma was greater than that of aPP-C. Binding of aPP-N by spleen, duodenum, ileum, pancreas, and bone marrow was markedly reduced by coinjection of unlabeled aPP. A similar but less marked reduction in binding was found in liver and proventriculus. aPP-C gave less conclusive results. The maximal competitive effect of unlabeled PP could be achieved in most cases with 30 microgram unlabeled aPP. It is concluded that pancreas, duodenum, ileum, spleen, and bone marrow, and probably liver and proventriculus, are target organs for aPP in the chicken and that the C-terminal region of aPP is involved in receptor binding

  5. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  6. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  7. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.

    Science.gov (United States)

    Seifert, P; Spitznas, M

    1999-06-01

    This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.

  8. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  9. Acute cardiotoxicity with concurrent trastuzumab and radiotherapy including internal mammary chain nodes: A retrospective single-institution study

    International Nuclear Information System (INIS)

    Shaffer, Richard; Tyldesley, Scott; Rolles, Martin; Chia, Stephen; Mohamed, Islam

    2009-01-01

    Purpose: To examine the acute cardiotoxicity of internal mammary chain (IMC) irradiation with concurrent trastuzumab. Materials and Methods: Clinical and cardiac function data were collected on 59 patients with early breast cancer who were treated with adjuvant trastuzumab and chemotherapy with or without radiotherapy (often including IMC) at BC Cancer Agency in 2005. Results: Forty-four of fifty-nine patients received adjuvant radiotherapy (RT). Thirteen had left-sided IMC RT. For left-sided RT, IMC inclusion increased the mean percentage dose to 5% of the heart, but the mean doses to 50% and 90% of the heart were similar. Median baseline left ventricular ejection fraction (LVEF) was 62% and similar in all groups. Median absolute decrease in LVEF after RT was 4%, which was not significantly different according to side or inclusion of IMCs. Trastuzumab was stopped in 11 of 59 patients (18.6%) due to decrease in LVEF. After median follow up of 15 months, three patients developed clinical congestive heart failure, none of whom received left-sided IMC RT. Conclusions: There was no excess acute cardiotoxicity observed with the combination of left-sided IMC irradiation and concurrent trastuzumab

  10. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel.

    Science.gov (United States)

    Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong

    2016-08-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.

  11. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    Science.gov (United States)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  12. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    Science.gov (United States)

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. Copyright © 2015. Published by Elsevier Ltd.

  13. The use of a cocktail of single chain Fv antibody fragments to improve the in vitro and in vivo targeting of melanoma

    International Nuclear Information System (INIS)

    Pacifico, M.D.; Pearl, R.A.; Kupsch, J.M.

    2006-01-01

    Radio scintigraphy using single chain antibody fragments (scFvs) offers a potenti al means of early detection of melanoma metastases. However, previous studies have shown suboptimal levels of tumour localization and nonspecific background accumulation which may be due to antigen heterogeneity. We aimed to improve tumour localization by using a cocktail of different scFvs targeting different epitopes on melanoma cells. We have previously developed three scFvs against distinct and highly tumour-specific melanoma cell-surface antigens by chain shuffling and antibody phage selection on melanoma cells. Three scFvs, RAFT3, B3 and B4 were labeled with 1 25I odine and tested both individually and as a cocktail in a nude mouse xenograft model far human melanoma. Results demonstrated improved tumour localization in vivo when compared to the individual scFvs. Tumour uptake of the cocktail at l hour was 24.220% ID/g (injected dose/gram) compared with 2.854%, 2.263% and 1.355% far B4, RAFT3 and B3, respectively, when injected individually. In addition, the cocktail exhibited significantly superior tumour to normal tissue ratios far muscle and spleen (p<0.05). A combination or cocktail of scFv clones may have an advantage aver individual scFvs far melanoma targeting in patients because of heterogeneity in the expression of different epitopes of antigens on melanoma cells

  14. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    Science.gov (United States)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  15. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  16. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo.

    Science.gov (United States)

    Kapli, P; Lutteropp, S; Zhang, J; Kobert, K; Pavlidis, P; Stamatakis, A; Flouri, T

    2017-06-01

    In recent years, molecular species delimitation has become a routine approach for quantifying and classifying biodiversity. Barcoding methods are of particular importance in large-scale surveys as they promote fast species discovery and biodiversity estimates. Among those, distance-based methods are the most common choice as they scale well with large datasets; however, they are sensitive to similarity threshold parameters and they ignore evolutionary relationships. The recently introduced "Poisson Tree Processes" (PTP) method is a phylogeny-aware approach that does not rely on such thresholds. Yet, two weaknesses of PTP impact its accuracy and practicality when applied to large datasets; it does not account for divergent intraspecific variation and is slow for a large number of sequences. We introduce the multi-rate PTP (mPTP), an improved method that alleviates the theoretical and technical shortcomings of PTP. It incorporates different levels of intraspecific genetic diversity deriving from differences in either the evolutionary history or sampling of each species. Results on empirical data suggest that mPTP is superior to PTP and popular distance-based methods as it, consistently yields more accurate delimitations with respect to the taxonomy (i.e., identifies more taxonomic species, infers species numbers closer to the taxonomy). Moreover, mPTP does not require any similarity threshold as input. The novel dynamic programming algorithm attains a speedup of at least five orders of magnitude compared to PTP, allowing it to delimit species in large (meta-) barcoding data. In addition, Markov Chain Monte Carlo sampling provides a comprehensive evaluation of the inferred delimitation in just a few seconds for millions of steps, independently of tree size. mPTP is implemented in C and is available for download at http://github.com/Pas-Kapli/mptp under the GNU Affero 3 license. A web-service is available at http://mptp.h-its.org . : paschalia.kapli@h-its.org or

  17. Structural and Functional Characterization of a Single-chain Peptide-MHC Molecule that Modulates both Naive and Activated CD8plus T Cells

    Energy Technology Data Exchange (ETDEWEB)

    D Samanta; G Mukherjee; U Ramagopal; R Chaparro; S Nathenson; T DiLorenzo; S Almo

    2011-12-31

    Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8{sup +} T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8{sup +} T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK{sup d}.IGRP) by using the class I MHC molecule H-2K{sup d} and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP{sub 206-214}), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK{sup d}.IGRP tetramers bound specifically to cognate CD8{sup +} T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-{gamma} response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8{sup +} T cells makes them a potential intervention strategy in early and late stages of disease.

  18. Three Cyanide-Bridged One-Dimensional Single Chain Co"I"I"I-Mn"I"I Complexes: Rational Design, Synthesis, Crystal Structures and Magnetic Properties

    International Nuclear Information System (INIS)

    Zhang, Daopeng; Zhao, Zengdian; Wang, Ping; Chen, Xia

    2012-01-01

    Two pyridinecarboxamide dicyanidecobalt(III) building blocks and two mononuclear seven-coordinated macrocycle manganese(II) compounds have been rationally selected to assemble cyanide-bridged heterobimetallic complexes, resulting in three cyanide-bridged Co"I"I"I-Mn"I"I complexes. Single X-ray diffraction analysis show that these complexes {[Mn(L"1)][Co(bpb)]}ClO_4·CH_3OH·0.5H_2O (1), {[Mn(L"2)][Co(bpb)]}ClO_4·0.5CH_3OH (2) and {[Mn(L"1)][Cobpmb]}ClO_4·H_2O (3) (L"1 = 3,6-diazaoctane-1,8-diamine, L"2 = 3,6-dioxaoctano-1,8- diamine: bpb"2"- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb"2"- = 1,2-bis(pyridine-2-carboxamido)-4- methyl-benzenate) all present predictable one-dimensional single chain structures. The molecular structures of these one-dimensional complexes consists of alternating units of [Mn(L)]"2"+ (L = L"1 or L"2) and [Co(L')(CN)_2]"- (L' = bpb"2"-, or bpmb"2"-), forming a cyanide-bridged cationic polymeric chain with free ClO_4"- as the balance anion. The coordination geometry of manganese(II) ion in the three one-dimensional complexes is a slightly distorted pentagonal-bipyrimidal with two cyanide nitrogen atoms at the trans positions and N_5 or N_3O_2 coordinating mode at the equatorial plane from ligand L"1 or L"2. Investigation over magnetic properties of these complexes reveals that the very weak magnetic coupling between neighboring Mn(II) ions connected by the diamagnetic dicyanidecobalt(III) building block. A best-fit to the magnetic susceptibility of complex 1 leads to the magnetic coupling constants J = .0.084(3) cm"-"1

  19. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    Science.gov (United States)

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  20. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  1. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain

    KAUST Repository

    Coluccio, M. L.

    2015-09-04

    Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10−12 M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

  2. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain

    KAUST Repository

    Coluccio, M. L.; Gentile, F.; Das, Gobind; Nicastri, A.; Perri, A. M.; Candeloro, P.; Perozziello, G.; Proietti Zaccaria, R.; Gongora, J. S. Totero; Alrasheed, Salma; Fratalocchi, Andrea; Limongi, Tania; Cuda, G.; Di Fabrizio, Enzo M.

    2015-01-01

    Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10−12 M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

  3. Genetic polymorphism of toll-like receptors 4 gene by polymerase chain reaction-restriction fragment length polymorphisms, polymerase chain reaction-single-strand conformational polymorphism to correlate with mastitic cows

    Directory of Open Access Journals (Sweden)

    Pooja H. Gupta

    2015-05-01

    Full Text Available Aim: An attempt has been made to study the toll-like receptors 4 (TLR4 gene polymorphism from cattle DNA to correlate with mastitis cows. Materials and Methods: In present investigation, two fragments of TLR4 gene named T4CRBR1 and T4CRBR2 of a 316 bp and 382 bp were amplified by polymerase chain reaction (PCR, respectively from Kankrej (22 and Triple cross (24 cattle. The genetic polymorphisms in the two populations were detected by a single-strand conformational polymorphism in the first locus and by digesting the fragments with restriction endonuclease Alu I in the second one. Results: Results showed that both alleles (A and B of two loci were found in all the two populations and the value of polymorphism information content indicated that these were highly polymorphic. Statistical results of χ2 test indicated that two polymorphism sites in the two populations fit with Hardy–Weinberg equilibrium (p˂0.05. Meanwhile, the effect of polymorphism of TLR4 gene on the somatic cell score (SCS indicated the cattle with allele a in T4CRBR1 showed lower SCS than that of allele B (p<0.05. Thus, the allele A might play an important role in mastitis resistance in cows. Conclusion: The relationship between the bovine mastitis trait and the polymorphism of TLR4 gene indicated that the bovine TLR4 gene may play an important role in mastitis resistance.

  4. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  5. Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement

    International Nuclear Information System (INIS)

    Grennan, Kathleen; Strachan, Gillian; Porter, Andrew J.; Killard, Anthony J.; Smyth, Malcolm R.

    2003-01-01

    This work describes the development of an electrochemical immunosensor for the analysis of atrazine using recombinant single-chain antibody (scAb) fragments. The sensors are based on carbon paste screen-printed electrodes incorporating the conducting polymer polyaniline (PANI)/poly(vinylsulphonic acid) (PVSA), which enables direct mediatorless coupling to take place between the redox centres of antigen-labelled horseradish peroxidase (HRP) and the electrode surface. Competitive immunoassays can be performed in real-time using this separation-free system. Analytical measurements based on the pseudo-linear relationship between the slope of a real-time amperometric signal and the concentration of analyte, yield a novel immunosensor set-up capable of regenerationless amperometric analysis. Multiple, sequential measurements of standards and samples can be performed on a single scAb-modified surface in a matter of minutes. No separation of bound and unbound species was necessary prior to detection. The system is capable of measuring atrazine to a detection limit of 0.1 ppb (0.1 μg l -1 ). This system offers the potential for rapid, cost-effective immunosensing for the analysis of samples of environmental, medical and pharmaceutical significance

  6. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons.

    Science.gov (United States)

    Papadopoulou, Evanthia; Goodchild, Sarah A; Cleary, David W; Weller, Simon A; Gale, Nittaya; Stubberfield, Michael R; Brown, Tom; Bartlett, Philip N

    2015-02-03

    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples.

  7. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library.

    Science.gov (United States)

    Dong, Sa; Bo, Zongyi; Zhang, Cunzheng; Feng, Jianguo; Liu, Xianjin

    2018-04-01

    Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 10 7  CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL -1 , respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.

  8. Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork

    Energy Technology Data Exchange (ETDEWEB)

    Dong Jiexian; Li Zhenfeng; Lei Hongtao; Sun Yuanming [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China); Ducancel, Frederic [CEA, iBiTec-S, Service de Pharmacologie et d' Immnoanalyse (SPI), CEA Saclay, F-91191 Gif sur Yvette (France); Xu Zhenlin [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China); Boulain, Jean-Claude [CEA, iBiTec-S, Service de Pharmacologie et d' Immnoanalyse (SPI), CEA Saclay, F-91191 Gif sur Yvette (France); Yang Jinyi; Shen Yudong [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China); Wang Hong, E-mail: gzwhongd@63.com [Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642 (China)

    2012-07-29

    Graphical abstract: Detection model of dc-CLEIA based on anti-RAC scFv-AP fusion protein. Highlights: Black-Right-Pointing-Pointer The scFv-AP fusion protein against ractopamine (RAC) was produced. Black-Right-Pointing-Pointer A dc-CLEIA for RAC was developed based on the purified scFv-AP fusion protein. Black-Right-Pointing-Pointer The sensitivity of dc-CLEIA was 10 times as sensitive as dc-ELISA for RAC. Black-Right-Pointing-Pointer Recovery tests from pork samples were studied. Black-Right-Pointing-Pointer Good accuracy was obtained. - Abstract: A rapid, sensitive chemiluminescent enzyme immunoassay (CLEIA) for ractopamine (RAC) based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein was developed. The scFv gene was prepared by cloning the heavy- and light-chain variable region genes (V{sub H} and V{sub L}) from hybridoma cell line AC2, which secretes antibodies against RAC, and assembling V{sub H} and V{sub L} genes with a linker by means of splicing overlap extension polymerase chain reaction. The resulting scFv gene was inserted into the expression vector pLIP6/GN containing AP to produce the fusion protein in Escherichia coli strain BL21. The purified scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) protocol for detection of RAC. The average concentration required for 50% inhibition of binding and the limit of detection of the assay were 0.25 {+-} 0.03 and 0.02 {+-} 0.004 ng mL{sup -1}, respectively, and the linear response range extended from 0.05 to 1.45 ng mL{sup -1}. The assay was 10 times as sensitive as the corresponding enzyme-linked immunosorbent assay based on the same fusion protein. Cross-reactivity studies showed that the fusion protein did not cross react with RAC analogs. DcCLEIA was used to analyze RAC spiked pork samples, and the validation was confirmed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). The results showed a good correlation between

  9. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells

    Science.gov (United States)

    Knies, Diana; Klobuch, Sebastian; Xue, Shao-An; Birtel, Matthias; Echchannaoui, Hakim; Yildiz, Oezlem; Omokoko, Tana; Guillaume, Philippe; Romero, Pedro; Stauss, Hans; Sahin, Ugur; Herr, Wolfgang; Theobald, Matthias; Thomas, Simone; Voss, Ralf-Holger

    2016-01-01

    Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells. PMID:27028870

  10. Analysis of Urine Composition in Type II Diabetic Mice after Intervention Therapy Using Holothurian Polypeptides

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2017-07-01

    Full Text Available Hydrolysates and peptide fractions (PF obtained from sea cucumber with commercial enzyme were studied on the hyperglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase, and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR, and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides (HPP fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of HPP treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  11. cDNA encoding a polypeptide including a hev ein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  12. Polypeptide profiles of human oocytes and preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  13. Bolus dose response characteristics of single chain urokinase plasminogen activator and tissue plasminogen activator in a dog model of arterial thrombosis.

    Science.gov (United States)

    Badylak, S F; Voytik, S; Klabunde, R E; Henkin, J; Leski, M

    1988-11-15

    Tissue plasminogen activator (t-PA) and single chain urokinase-plasminogen activator (scu-PA) are relatively "fibrin-specific" thrombolytic drugs with short plasma half lives of 6-8 minutes. Most treatment regimens with these agents utilize a bolus injection followed by continuous drug infusion, usually combined with anticoagulant therapy. The purpose of this study was to establish the dose-response characteristics for scu-PA and t-PA, when given as a single intravenous bolus injection, in a dog model of arterial thrombosis. Eight groups of 6 dogs each were given one of the following doses of scu-PA (mg/kg): 0.20, 0.50, 1.00, 2.00; or t-PA: 0.05, 0.10, 0.20; or an equivalent amount of saline (control group). All doses were given as a single bolus injection 60 minutes after formation of a totally occlusive femoral artery thrombus. Thrombolysis was measured by monitoring the continuous decrement of 125I activity from a radiolabelled thrombus. Ninety minutes after drug injection, all scu-PA treated dogs showed greater thrombolysis (30%, 45%, 56%, and 67%, respectively) than the control group (15%, p less than 0.01). The 0.10 and 0.20 mg/kg t-PA treated dogs showed greater thrombolysis (35% and 49%, respectively) than the control group (15%, p less than 0.01). Both scu-PA and t-PA caused a partial and dose-dependent decrease in alpha 2-antiplasmin activity but scu-PA caused a greater depletion (72% vs. 18%, respectively, p less than 0.05) at 60 minutes after the highest dose of drug administration. Both drugs showed a longer than expected thrombolytic effect based upon the known half lives. Neither drug caused significant changes in the prothrombin time, activated partial thromboplastin time, thrombin time, hematocrit, platelet count, or fibrin degradation product concentration. Single bolus injections of scu-PA and t-PA produce safe and effective thrombolysis in this dog model of arterial thrombosis.

  14. Detection of rifampin resistance patterns in Mycobacterium tuberculosis strains isolated in Iran by polymerase chain reaction-single-strand conformation polymorphism and direct sequencing methods

    Directory of Open Access Journals (Sweden)

    Bahram Nasr Isfahani

    2006-09-01

    Full Text Available Mutations in the rpoB locus confer conformational changes leading to defective binding of rifampin (RIF to rpoB and consequently resistance in Mycobacterium tuberculosis. Polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP was established as a rapid screening test for the detection of mutations in the rpoB gene, and direct sequencing has been unambiguously applied to characterize mutations. A total of 37 of Iranian isolates of M. tuberculosis, 16 sensitive and 21 resistant to RIF, were used in this study. A 193-bp region of the rpoB gene was amplified and PCR-SSCP patterns were determined by electrophoresis in 10% acrylamide gel and silver staining. Also, 21 samples of 193-bp rpoB amplicons with different PCR-SSCP patterns from RIFr and 10 from RIFs were sequenced. Seven distinguishable PCR-SSCP patterns were recognized in the 21 Iranian RIFr strains, while 15 out of 16 RIFs isolates demonstrated PCR-SSCP banding patterns similar to that of sensitive standard strain H37Rv. However one of the sensitive isolates demonstrated a different pattern. There were seen six different mutations in the amplified region of rpoB gene: codon 516(GAC/GTC, 523(GGG/GGT, 526(CAC/TAC, 531(TCG/TTG, 511(CTG/TTG, and 512(AGC/TCG. This study demonstrated the high specificity (93.8% and sensitivity (95.2% of PCR-SSCP method for detection of mutation in rpoB gene; 85.7% of RIFr strains showed a single mutation and 14.3% had no mutations. Three strains showed mutations caused polymorphism. Our data support the common notion that rifampin resistance genotypes are generally present mutations in codons 531 and 526, most frequently found in M. tuberculosis populations regardless of geographic origin.

  15. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Glycocholic Acid Based on Chicken Single-Chain Variable Fragment Antibodies.

    Science.gov (United States)

    Cui, Xiping; Vasylieva, Natalia; Wu, Panpan; Barnych, Bogdan; Yang, Jun; Shen, Ding; He, Qiyi; Gee, Shirley J; Zhao, Suqing; Hammock, Bruce D

    2017-10-17

    Glycocholic acid (GCA) is an important metabolite of bile acids, whose urine levels are expected to be a specific diagnostic biomarker for hepatocellular carcinoma (HCC). A high-throughput immunoassay for determination of GCA would be of significant advantage and useful for primary diagnosis, surveillance, and early detection of HCC. Single-chain variable fragment (scFv) antibodies have several desirable characteristics and are an attractive alternative to traditional antibodies for the immunoassay. Because chicken antibodies possess single heavy and light variable functional domains, they are an ideal framework for simplified generation of recombinant antibodies for GCA detection. However, chicken scFvs have rarely been used to detect GCA. In this study, a scFv library was generated from chickens immunized with a GCA hapten coupled to bovine serum albumin (BSA), and anti-GCA scFvs were isolated by a phage-displayed method. Compared to the homologous coating antigen, use of a heterologous coating antigen resulted in about an 85-fold improvement in sensitivity of the immunoassay. This assay, under optimized conditions, had a linear range of 0.02-0.18 μg/mL, with an IC 50 of 0.06 μg/mL. The assay showed negligible cross-reactivity with various related bile acids, except for taurocholic acid. The detection of GCA from spiked human urine samples ranged from 86.7% to 123.3%. These results, combined with the advantages of scFv antibodies, indicated that a chicken scFv-based enzyme-linked immunosorbent assay is a suitable method for high-throughput screening of GCA in human urine.

  16. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    Science.gov (United States)

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  18. ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo.

    Science.gov (United States)

    Spencer, Brian; Emadi, Sharareh; Desplats, Paula; Eleuteri, Simona; Michael, Sarah; Kosberg, Kori; Shen, Jay; Rockenstein, Edward; Patrick, Christina; Adame, Anthony; Gonzalez, Tania; Sierks, Michael; Masliah, Eliezer

    2014-10-01

    Parkinson's disease and dementia with Lewy bodies are neurodegenerative disorders characterized by accumulation of α-synuclein (α-syn). Recently, single-chain fragment variables (scFVs) have been developed against individual conformational species of α-syn. Unlike more traditional monoclonal antibodies, these scFVs will not activate or be endocytosed by Fc receptors. For this study, we investigated an scFV directed against oligomeric α-syn fused to the LDL receptor-binding domain from apolipoprotein B (apoB). The modified scFV showed enhanced brain penetration and was imported into neuronal cells through the endosomal sorting complex required for transport (ESCRT) pathway, leading to lysosomal degradation of α-syn aggregates. Further analysis showed that the scFV was effective at ameliorating neurodegenerative pathology and behavioral deficits observed in the mouse model of dementia with Lewy bodies/Parkinson's disease. Thus, the apoB modification had the effect of both increasing accumulation of the scFV in the brain and directing scFV/α-syn complexes for degradation through the ESCRT pathway, leading to improved therapeutic potential of immunotherapy.

  19. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.

    Science.gov (United States)

    Jiang, Lisha; Zhu, Chang; Fu, Yujie; Yang, Gang

    2017-04-06

    Functionalization of single-walled carbon nanotubes (SWCNTs) is necessitated in a number of conditions such as drug delivery, and here amino acid functionalization of SWCNTs is conducted within the framework of density functional theory. Functionalization efficiencies of Gly are largely determined by dopants, as a combined effect of atomic radius, electronic configuration, and distortion to SWCNTs. Different functionalization sites in Gly have divergent interaction strengths with M/SWCNTs that decline as O b > N > O a , and this trend seems almost independent of the identity of metallic dopants. B/SWCNT behaves distinctly and prefers to the N site. Dopants affect principally interaction strengths, while amino acids regulate significantly both functionalization configurations and interaction energies. Then focus is given to stabilization of zwitterionic amino acids due to enhanced interactions with the widely used zwitterionic drugs. All metallic dopants render zwitterionic Gly to be the most stable, and side chains in amino acids rather than dopants in M/SWCNTs cause more pronounced effects to zwitterionic stabilizations. Charge transfers between amino acids and M/SWCNTs are closely associated with zwitterionic stabilization effects, and different charge transfer mechanisms between M/SWCNTs and metal ions are interpreted. Thus, this work provides a comprehensive understanding of amino acid functionalization of M/SWCNTs.

  20. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli.

    Directory of Open Access Journals (Sweden)

    Christiane Y Ozaki

    Full Text Available Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv that were produced in E. coli against enterotoxins of ETEC strains.Recombinant scFv were developed against ETEC heat-labile toxin (LT and heat-stable toxin (ST, from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains.The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis.

  1. Characterization of a single-chain variable fragment recognizing a linear epitope of aβ: a biotechnical tool for studies on Alzheimer's disease?

    Directory of Open Access Journals (Sweden)

    Silke Dornieden

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disorder with devastating effects. Currently, therapeutic options are limited to symptomatic treatment. For more than a decade, research focused on immunotherapy for the causal treatment of AD. However, clinical trials with active immunization using Aβ encountered severe complications, for example meningoencephalitis. Consequently, attention focused on passive immunization using antibodies. As an alternative to large immunoglobulins (IgGs, Aβ binding single-chain variable fragments (scFvs were used for diagnostic and therapeutic research approaches. scFvs can be expressed in E. coli and may provide improved pharmacokinetic properties like increased blood-brain barrier permeability or reduced side-effects in vivo. In this study, we constructed an scFv from an Aβ binding IgG, designated IC16, which binds the N-terminal region of Aβ (Aβ(1-8. scFv-IC16 was expressed in E. coli, purified and characterized with respect to its interaction with different Aβ species and its influence on Aβ fibril formation. We were able to show that scFv-IC16 strongly influenced the aggregation behavior of Aβ and could be applied as an Aβ detection probe for plaque staining in the brains of transgenic AD model mice. The results indicate potential for therapy and diagnosis of AD.

  2. The biodistribution and pretargeting radioimmunoimaging of the fusion protein of anti-CEA single-chain antibody and core-streptavidin in human rectocolonic tumor bearing nude mice

    International Nuclear Information System (INIS)

    Yang Weidong; Li Biao; Zhu Chengmo; Jiang Xufeng; Feng Guowei; Wu Xiangpu

    2002-01-01

    Objective: To investigate the biodistribution and two-step pretargeting radioimmunoimaging of the fusion protein of anti-carcinoembryonic antigen (CEA) single-chain antibody (ScFv) and core-streptavidin in human rectocolonic tumor bearing nude mice. Methods: Before the injection of 153 Sm-biotin, the fusion protein of ScFv-core-streptavidin was pretargeted for 24 h (200 μg every nude mouse), 24 h later 153 Sm-biotin was injected. The uptake of radioactivity in tumor and normal tissues in 20 nude mice was measured at 1, 4, 8 and 24 h and the other 3 nude mice was scanned at 8 and 24 h after peritoneal injection of 153 Sm-biotin. Results: The tumor to blood ratio (tumor/blood) reached 0.49 , 1.21, 1.56 and 3.09 at 1, 4, 8 and 24 h respectively. Radioactivity concentration peaked at 8 h in tumor site and demonstrated a 'hot' area, with significant decreasing its background at 24 h. Conclusion: The fusion protein can elevate the tumor/blood ratio, shorten pretargeting and imaging process and also improve image quality

  3. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    Science.gov (United States)

    Nogrette, F.; Heurteau, D.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Sellem, R.; Clément, D.

    2015-11-01

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 106 s-1 and three-dimensional reconstruction of the coordinates up to 3.2 × 106 particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 105 particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  4. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  7. Design of a Software for Calculating Isoelectric Point of a Polypeptide According to Their Net Charge Using the Graphical Programming Language LabVIEW

    Science.gov (United States)

    Tovar, Glomen

    2018-01-01

    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel…

  8. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    Vasoactive intestinal polypeptide, a neuropeptide with wide distribution in the central and peripheral nervous system, has a broad spectrum of biologic actions. The demonstration of vasoactive intestinal polypeptide containing nerve fibers within the female and male genital tract 17 years ago...... indicated a putative role for this peptide in the local nervous control of reproductive functions. The genes encoding the preprovasoactive intestinal polypeptide precursor molecule and the vasoactive intestinal polypeptide receptor have been identified. The gene expression has been studied by the use...... in the genital tracts (i.e., blood flow and nonvascular smooth muscle relaxation). In the ovary vasoactive intestinal polypeptide seems to play an important role as regulator and/or modulator of folliculogenesis and steroidogenesis. In the male genital tract vasoactive intestinal polypeptide seems to participate...

  10. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    Science.gov (United States)

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley

  11. Antiproliferative and apoptotic effects of a specific anti-insulin-like growth factor I receptor single chain antibody on breast cancer cells.

    Science.gov (United States)

    Motallebnezhad, Morteza; Younesi, Vahid; Aghebati-Maleki, Leili; Nickho, Hamid; Safarzadeh, Elham; Ahmadi, Majid; Movassaghpour, Ali Akbar; Hosseini, Ahmad; Yousefi, Mehdi

    2016-11-01

    Insulin-like growth factor I receptor (IGF-IR) is expressed on breast cancer cells and involves in metastasis, survival, and proliferation. Currently, application of IGF-IR-targeting monoclonal antibodies (mAbs), alone or in combination with other drugs, is a promising strategy for breast cancer therapy. Single-chain fragment variable (scFv) antibodies have been introduced as appropriate tools for tumor-targeting purposes because of their advantages over whole antibodies. In the present study, we employed a naïve phage library and isolated scFvs against a specific epitope from extracellular domain of IGF-IR by panning process. The selected scFvs were further characterized using polyclonal and monoclonal phage ELISA, soluble monoclonal ELISA, and colony PCR and sequencing. Antiproliferative and apoptotic effects of selected scFv antibodies on breast cancer cell lines were also evaluated by MTT and Annexin V/PI assays. The results of ELISA indicated specific reactions of the isolated scFvs against the IGF-IR peptide, and analyses of PCR product and sequencing confirmed the presence of full length V H and Vκ inserts. Treatment of MCF7 and SKBR3 cells with anti-IGF-IR scFv led to a significant growth inhibition. The results also showed that scFv treatment significantly augmented trastuzumab growth inhibitory effects on SKBR3 cells. The percentage of the apoptotic MCF7 and SKBR3 cells after 24-h treatment with scFv was 39 and 30.70 %, respectively. Twenty-four-hour treatment with scFv in combination with trastuzumab resulted in 44.75 % apoptosis of SKBR3 cells. Taken together, our results demonstrate that the targeting of IGF-IR by scFv can be an effective strategy in the treatment of breast cancer and provide further evidence for effectiveness of dual targeting of HER2 and IGF-IR in breast cancer therapy.

  12. Generation of Novel Single-Chain Antibodies by Phage-Display Technology to Direct Imaging Agents Highly Selective to Pancreatic β- or α-Cells In Vivo

    Science.gov (United States)

    Ueberberg, Sandra; Meier, Juris J.; Waengler, Carmen; Schechinger, Wolfgang; Dietrich, Johannes W.; Tannapfel, Andrea; Schmitz, Inge; Schirrmacher, Ralf; Köller, Manfred; Klein, Harald H.; Schneider, Stephan

    2009-01-01

    OBJECTIVE Noninvasive determination of pancreatic β-cell mass in vivo has been hampered by the lack of suitable β-cell–specific imaging agents. This report outlines an approach for the development of novel ligands homing selectively to islet cells in vivo. RESEARCH DESIGN AND METHODS To generate agents specifically binding to pancreatic islets, a phage library was screened for single-chain antibodies (SCAs) on rat islets using two different approaches. 1) The library was injected into rats in vivo, and islets were isolated after a circulation time of 5 min. 2) Pancreatic islets were directly isolated, and the library was panned in the islets in vitro. Subsequently, the identified SCAs were extensively characterized in vitro and in vivo. RESULTS We report the generation of SCAs that bind highly selective to either β- or α-cells. These SCAs are internalized by target cells, disappear rapidly from the vasculature, and exert no toxicity in vivo. Specific binding to β- or α-cells was detected in cell lines in vitro, in rats in vivo, and in human tissue in situ. Electron microscopy demonstrated binding of SCAs to the endoplasmatic reticulum and the secretory granules. Finally, in a biodistribution study the labeling intensity derived from [125I]-labeled SCAs after intravenous administration in rats strongly predicted the β-cell mass and was inversely related to the glucose excursions during an intraperitoneal glucose tolerance test. CONCLUSIONS Our data provide strong evidence that the presented SCAs are highly specific for pancreatic β-cells and enable imaging and quantification in vivo. PMID:19592622

  13. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    Science.gov (United States)

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  14. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    Science.gov (United States)

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Enhancement of antitumor activity by using a fully human gene encoding a single-chain fragmented antibody specific for carcinoembryonic antigen

    Directory of Open Access Journals (Sweden)

    Shibaguchi H

    2017-08-01

    Full Text Available Hirotomo Shibaguchi,1,* Naixiang Luo,1,* Naoto Shirasu,1,* Motomu Kuroki,2 Masahide Kuroki1 1Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; 2School of Nursing, Faculty of Medicine, Fukuoka University, Fukuoka, Japan *These authors equally contributed to this work Abstract: Human leukocyte antigen and/or costimulatory molecules are frequently lacking in metastatic tumor cells, and thus tumor cells are able to escape from the immune system. Although lymphocytes with a chimeric antigen receptor (CAR is a promising approach for overcoming this challenge in cancer immunotherapy, administration of modified T cells alone often demonstrates little efficacy in patients. Therefore, in order to enhance the antitumor activity of immune cells in the cancer microenvironment, we used lymphocytes expressing CAR in combination with a fusion protein of IL-2 that contained the single-chain fragmented antibody (scFv specific for the carcinoembryonic antigen. Among a series of CAR constructs, with or without a spacer and the intracellular domain of CD28, the CAR construct containing CD8α, CD28, and CD3ζ most effectively activated and expressed INF-γ in CAR-bearing T cells. Furthermore, in comparison with free IL-2, the combination of peripheral blood mononuclear cells expressing CAR and the fusion protein containing IL-2 significantly enhanced the antitumor activity against MKN-45 cells, a human gastric cancer cell line. In conclusion, this novel combination therapy of CAR and a fusion protein consisting of a functional cytokine and a fully human scFv may be a promising approach for adoptive cancer immunotherapy. Keywords: chimeric antigen receptor, fusion protein, human scFv, CEA, combination therapy

  16. Generation of a Highly Reactive Chicken-Derived Single-Chain Variable Fragment against Fusarium verticillioides by Phage Display

    Directory of Open Access Journals (Sweden)

    Zu-Quan Hu

    2012-06-01

    Full Text Available Fusarium verticillioides is the primary causal agent of Fusarium ear and kernel rot in maize, producing fumonisin mycotoxins that are toxic to humans and domestic animals. Rapid detection and monitoring of fumonisin-producing fungi are pivotally important for the prevention of mycotoxins from entering into food/feed products. Chicken-derived single-chain variable fragments (scFvs against cell wall-bound proteins from F. verticillioides were isolated from an immunocompetent phage display library. Comparative phage enzyme-linked immunosorbant assays (ELISAs and sequencing analyses identified four different scFv antibodies with high sensitivity. Soluble antibody ELISAs identified two highly sensitive scFv antibodies, FvCA3 and FvCA4, with the latter being slightly more sensitive. Three-dimensional modeling revealed that the FvCA4 may hold a better overall structure with CDRH3, CDRL1 and CDRL3 centered in the core region of antibody surface compared with that of other scFvs. Immunofluorescence labeling revealed that the binding of FvCA4 antibody was localized to the cell walls of conidiospores and hyphae of F. verticillioides, confirming the specificity of this antibody for a surface target. This scFv antibody was able to detect the fungal mycelium as low as 10−2 μg/mL and contaminating mycelium at a quantity of 10−2 mg/g maize. This is the first report that scFv antibodies derived from phage display have a wide application for rapid and accurate detection and monitoring of fumonisin-producing pathogens in agricultural samples.

  17. Magneto-structural correlations in a family of Fe(II)Re(IV)(CN)2 single-chain magnets: density functional theory and ab initio calculations.

    Science.gov (United States)

    Zhang, Yi-Quan; Luo, Cheng-Lin; Wu, Xin-Bao; Wang, Bing-Wu; Gao, Song

    2014-04-07

    Until now, the expressions of the anisotropic energy barriers Δξ and ΔA, using the uniaxial magnetic anisotropy D, the intrachain coupling strength J, and the high-spin ground state S for single-chain magnets (SCMs) in the intermediate region between the Ising and the Heisenberg limits, were unknown. To explore this relationship, we used density functional theory and ab initio methods to obtain expressions of Δξ and ΔA in terms of D, J, and S of six R4Fe(II)-Re(IV)Cl4(CN)2 (R = diethylformamide (1), dibutylformamide (2), dimethylformamide (3), dimethylbutyramide (4), dimethylpropionamide (5), and diethylacetamide (6)) SCMs in the intermediate region. The ΔA value for compounds 1-3 was very similar to the magnetic anisotropic energy of a single Fe(II), while the value of Δξ was predicted using the exchange interaction of Fe(II) with the neighboring Re(IV), which could be expressed as 2JSReSFe. Similar to compounds 1-3, the anisotropy energy barrier ΔA of compounds 4 and 5 was also equal to (Di - Ei)SFe(2), but the correlation energy Δξ was closely equal to 2JSReSFe(cos 98.4 - cos 180) due to the reversal of the spins on the opposite Fe(II). For compound 6, one unit cell of Re(IV)Fe(II) was regarded as a domain wall since it had two different Re(IV)-Fe(II) couplings. Thus, the Δξ of compound 6 was expressed as 4J″SRe1Fe1SRe2Fe2, where J″ was the coupling constant of the neighboring unit cells of Re1Fe1 and Re2Fe2, and ΔA was equal to the anisotropic energy barrier of one domain wall given by DRe1Fe1(S(2)Re1Fe1 - 1/4).

  18. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope.

    Directory of Open Access Journals (Sweden)

    Merima Bublin

    Full Text Available Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1, carp (Cyp c 1 and rainbow trout (Onc m 1 parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.

  19. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope.

    Science.gov (United States)

    Bublin, Merima; Kostadinova, Maria; Fuchs, Julian E; Ackerbauer, Daniela; Moraes, Adolfo H; Almeida, Fabio C L; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.

  20. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    Science.gov (United States)

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  2. Crystallization and preliminary crystallographic studies of the single-chain variable fragment of antibody chA21 in complex with an N-terminal fragment of ErbB2

    International Nuclear Information System (INIS)

    Liu, Yang; Zhou, Huihao; Zhu, Juanjuan; Gao, Yongxiang; Niu, Liwen; Liu, Jing; Teng, Maikun

    2009-01-01

    An antibody–antigen complex consisting of a single-chain variable fragment of the potential therapeutic antibody chA21 and an N-terminal fragment (residues 1–192) of the human ErbB2 extracellular domain was expressed, purified and crystallized. X-ray diffraction data were collected to 2.45 Å resolution. ErbB2 is a transmembrane tyrosine kinase, the overexpression of which causes abnormality and disorder in cell signalling and leads to cell transformation. Previously, an anti-ErbB2 single-chain chimeric antibody chA21 that specifically inhibits the growth of ErbB2-overexpressing cancer cells in vitro and in vivo was developed. Here, an antibody–antigen complex consisting of the single-chain variable fragment (scFv) of chA21 and an N-terminal fragment (residues 1–192, named EP I) of the ErbB2 extracellular domain was crystallized using the sitting-drop vapour-diffusion method. An X-ray diffraction data set was collected to 2.45 Å resolution from a single flash-cooled crystal; the crystal belonged to space group P2 1 2 1 2 1

  3. Falling chains

    OpenAIRE

    Wong, Chun Wa; Yasui, Kosuke

    2005-01-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  4. Characterization of the B-chain of human plasma α2HS-glycoprotein. The complete amino acid sequence and primary structure of its heteroglycan

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Gejyo, F.; Chang, J.-L.; Bürgi, W.; Schmid, K.; Offner, G.D.; Troxler, R.F.; Halbeek, H. van

    1983-01-01

    α2HS-Glycoprotein, a normal human plasma protein, was recently shown to consist of two polypeptide chains. In the present study, we have separated these two chains from one another and have elucidated the complete primary structure of the B-chain. Employing automated Edman degradation, the

  5. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics

    OpenAIRE

    Walker, Aisha L.; Lancaster, Cynthia S.; Finkelstein, David; Ware, Russell E.; Sparreboom, Alex

    2013-01-01

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assess...

  6. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  7. An Investigation of the Polypeptide, Poly - L - Glutamic Acid, Using Neutron Inelastic Scattering

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1968-01-01

    The polypeptides are synthetic polymers of amino acids with many similarities to natural proteins. In a large number of cases, one of the conformations for both the synthetic and natural proteins is the α - helix. The simplest of the synthetic polymers with no side chains is polyglycine and the simplest of the synthetic polymers with a small side chain (methyl group) is polyalanine. Dispersion curves have been computed by Gupta for both of these polymers. Polyglutamic acid is similar to polyalanine in that the composition of the basic residue and radius of helix is the same. Polyglutamic acid has a more complicated side chain which will contribute a number of additional natural frequencies that are expected to be essentially independent of conformation. On the other hand, the dispersion curves already derived for polyalanine in the α -helix form should be correct in many specific details for polyglutamic acid. An experimental study has been undertaken for polyglutamic acid at room temperature using the techniques of inelastic neutron scattering. In the first measurements, 'cold' neutrons from a reactor were used to investigate the energy level structure up to ≃ 3 kT for both conformations of the polymer. In addition, the scattering of monoenergetic high-energy neutrons ( > 0.15 eV) provided- by an electron Linac was used to study energy levels above 3 kT. These latter measurements permit comparisons to be made between the calculated and measured results for a much larger range of frequencies (and hence permit a check for a larger number of dispersion curves). This extension of the experimental results to higher frequencies has made it possible to check on the earlier assumption that only the lower frequencies are altered when the conformation is changed. This assumption underlies the evaluation of changes in internal energy with conformation from only the 'cold' neutron data, as is done with the present data. An experiment was performed to evaluate the

  8. An Investigation of the Polypeptide, Poly - L - Glutamic Acid, Using Neutron Inelastic Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W. L. [Gulf General Atomic Incorporated, San Diego, CA (United States)

    1968-09-15

    The polypeptides are synthetic polymers of amino acids with many similarities to natural proteins. In a large number of cases, one of the conformations for both the synthetic and natural proteins is the {alpha} - helix. The simplest of the synthetic polymers with no side chains is polyglycine and the simplest of the synthetic polymers with a small side chain (methyl group) is polyalanine. Dispersion curves have been computed by Gupta for both of these polymers. Polyglutamic acid is similar to polyalanine in that the composition of the basic residue and radius of helix is the same. Polyglutamic acid has a more complicated side chain which will contribute a number of additional natural frequencies that are expected to be essentially independent of conformation. On the other hand, the dispersion curves already derived for polyalanine in the {alpha} -helix form should be correct in many specific details for polyglutamic acid. An experimental study has been undertaken for polyglutamic acid at room temperature using the techniques of inelastic neutron scattering. In the first measurements, 'cold' neutrons from a reactor were used to investigate the energy level structure up to Asymptotically-Equal-To 3 kT for both conformations of the polymer. In addition, the scattering of monoenergetic high-energy neutrons ( > 0.15 eV) provided- by an electron Linac was used to study energy levels above 3 kT. These latter measurements permit comparisons to be made between the calculated and measured results for a much larger range of frequencies (and hence permit a check for a larger number of dispersion curves). This extension of the experimental results to higher frequencies has made it possible to check on the earlier assumption that only the lower frequencies are altered when the conformation is changed. This assumption underlies the evaluation of changes in internal energy with conformation from only the 'cold' neutron data, as is done with the present data. An experiment was

  9. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains

    International Nuclear Information System (INIS)

    Hu, Zu-Quan; Li, He-Ping; Zhang, Jing-Bo; Huang, Tao; Liu, Jin-Long; Xue, Sheng; Wu, Ai-Bo; Liao, Yu-Cai

    2013-01-01

    Graphical abstract: A phage-displayed chicken scFv antibody, FvSG7, binds on the surface antigen of conidiospores and the mycelia of F. verticillioides. Its fusion with alkaline phosphatase (AP) through a 218 linker displayed a 4-fold higher affinity compared with the parent scFv antibody and efficiently detected toxigenic Fusarium pathogens in cereal grains. Highlights: ► Generation of a highly reactive scFv antibody against F. verticillioides. ► Localization of the antibody binding to the surface target of F. verticillioides. ► Expression of the antibody–alkaline phosphatase (AP) fusion linked by a 218 linker. ► The antibody–AP fusion has a higher affinity than the parental antibody. ► The antibody–AP fusion detects toxigenic Fusarium pathogens in cereal grains. -- Abstract: Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv–AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding capacity to

  10. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zu-Quan [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); Li, He-Ping [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zhang, Jing-Bo [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Huang, Tao [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Liu, Jin-Long; Xue, Sheng [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); Wu, Ai-Bo [Institute for Agri-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403 (China); Liao, Yu-Cai, E-mail: ycliao06@yahoo.com.cn [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); National Center of Plant Gene Research, Wuhan 430070 (China)

    2013-02-18

    Graphical abstract: A phage-displayed chicken scFv antibody, FvSG7, binds on the surface antigen of conidiospores and the mycelia of F. verticillioides. Its fusion with alkaline phosphatase (AP) through a 218 linker displayed a 4-fold higher affinity compared with the parent scFv antibody and efficiently detected toxigenic Fusarium pathogens in cereal grains. Highlights: ► Generation of a highly reactive scFv antibody against F. verticillioides. ► Localization of the antibody binding to the surface target of F. verticillioides. ► Expression of the antibody–alkaline phosphatase (AP) fusion linked by a 218 linker. ► The antibody–AP fusion has a higher affinity than the parental antibody. ► The antibody–AP fusion detects toxigenic Fusarium pathogens in cereal grains. -- Abstract: Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv–AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding

  11. Recombinant DNA specifying the human amyloid. beta. precursor protein (ABPP) encodes a 95-kDa polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Mita, S; Sadlock, J; Herbert, J; Schon, E A

    1988-10-11

    Although the ABPP gene give rise to multiple mRNAs, the primary translation product of this gene is unknown. The longest published cDNA sequences predict a 770-aa polypeptide of 87 kDa. However, in immunoblots, ABPP migrated as a single species of >92 kDa in rat brain, and in human, as a species of 95-100 kDa in non-membrane bound form, as multiple species of 110-135 kDa in membrane-associated form and as a 130-kDa species in fibroblasts. The sizes of these larger species relative to the MW of ABPP predicted from the cDNA sequences have been attributed to postranslational modification. However, the authors have isolated a cDNA (lambdaHAP2) from a human fetal muscle lambdagt11 cDNA library encoding an 843-aa polypeptide with a deduced MW of 94,642. This cDNA contains both exons encoding an 843-aa polypeptide with a deduced MW of 94.642. This cDNA contains both exons encoding the protease inhibitor domains. Primer extension analysis indicates that the 5' terminus of this cDNA is 14 nt from a transcriptional start site. This cDNA, encoding the longest ABPP described to date, may explain some of the observations on the sizes of tissue-derived ABPP.

  12. Towards single-molecule observation of protein synthesis

    International Nuclear Information System (INIS)

    Dulin, David; Le Gall, Antoine; Bouyer, Philippe; Perronet, Karen; Westbrook, Nathalie; Soler, Nicolas; Fourmy, Dominique; Yoshizawa, Satoko

    2009-01-01

    The ribosome is the molecular motor responsible for the protein synthesis within all cells. Ribosome motions along the messenger RNA (mRNA) to read the genetic code are asynchronous and occur along multiple kinetic paths. Consequently, a study at the single macromolecule level is desirable to unravel the complex dynamics involved. In this communication, we present the development of an advanced surface chemistry to attach an active ribosome to the microscope coverslip and follow the amino-acid incorporation by fluorescence microscopy. The ribosome is labeled with a quantum dot (QD) in order to localize it on the surface while a specific amino acid (lysine) is marked with Bodipy-FL. This fluorescent dye is small enough to enter the ribosomal channel thus leaving intact ribosomal activity. It should then be possible to observe the protein synthesis in real time as the labeled amino acids are incorporated into the polypeptide chain. (Author)

  13. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs

    International Nuclear Information System (INIS)

    Hanecak, R.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1982-01-01

    Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH 2 -coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins in vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X

  14. On the fragmentation of biomolecules: fragmentation of alanine dipeptide along the polypeptide chain

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander; Solov'yov, Andrey

    2006-01-01

    The interaction potential between amino acids in alanine dipeptide has been studied for the first time taking into account exact molecular geometry. Ab initio calculation has been performed in the framework of density functional theory taking into account all electrons in the system. The fragment...

  15. A mathematical model for optimum single-commodity distribution in the network of chain stores: a case study of food industry

    Directory of Open Access Journals (Sweden)

    Mohsen Cheshmberah

    2011-10-01

    Full Text Available Distribution refers to the steps taken to move and store a product from the suppliers to a customers in the supply chain and is a key driver of the overall profitability of a firm and overall supply chain. In this paper, a problem regarding managing of the move and store of goods are articulated and a mathematical model is presented to solve the model. The objective function is the total costs of distribution network, including transportation, storage rental, general warehousing, goods damages due to the transportation and storage, procurement, packing, and finally loading and unloading costs. The cost components described are defined based on the assumptions for a real distribution network of a chain stores firm. The aim of developing such a model is to find the optimum pattern to move and store goods based on the minimum cost of the distribution network.

  16. Site-specific antibodies distinguish single amino acid substitutions in position 57 in HLA-DQ beta-chain alleles associated with insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Atar, D; Dyrberg, T; Michelsen, Birgitte

    1989-01-01

    The HLA-DQ beta-chain gene shows a close association with susceptibility or resistance to autoimmune insulin-dependent diabetes mellitus (IDDM) and it has been suggested that the amino acid in position 57 may be of pathogenetic importance. To study the expression of the IDDM associated HLA-DQ beta......-chain alleles, we immunized rabbits with 12 to 13 amino acid long peptides representing HLA-DQw7 and -DQw8 allelic sequences, differing only by one amino acid in position 57 being aspartic acid (Asp) and alanine (Ala), respectively. Immunoblot analysis of lymphoblastoid cells showed that several antisera...

  17. Basal serum pancreatic polypeptide is dependent on age and gender in an adult population

    DEFF Research Database (Denmark)

    Brimnes Damholt, M; Rasmussen, B K; Hilsted, L

    1997-01-01

    This study is the first epidemiologically based study of basal levels of serum pancreatic polypeptide (s-PP). The basal level of serum PP has become a field of interest mainly due to the role of PP as an endocrine tumour marker, and as a marker of pancreatic neuroendocrine function after pancreas...... a monospecific radioimmunoassay. Fasting serum pancreatic polypeptide depended on age and gender. The results demonstrated that fasting pancreatic polypeptide levels increase exponentially with age. Fitted separately for each sex, basal serum pancreatic polypeptide was found to increase by approximately 3% per...... reports on the fasting levels of serum pancreatic polypeptide are most likely due to lack of adjustment for age and gender. Thus, variation due to age and gender should be considered in evaluating fasting levels of serum pancreatic polypeptide. Whether similar considerations are important when evaluating...

  18. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    International Nuclear Information System (INIS)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-01-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the β-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded [ 32 P]labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting

  19. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate.

    Science.gov (United States)

    Kumada, Yoichi; Ishikawa, Yasuyuki; Fujiwara, Yusuke; Takeda, Rui; Miyamoto, Ryosuke; Niwa, Daisuke; Momose, Shun; Kang, Bongmun; Kishimoto, Michimasa

    2014-09-01

    In this study, we investigated the efficient refolding and site-specific immobilization of single-chain variable fragments (scFvs) genetically fused with a poly(methylmethacrylate)-binding peptide (PMMA-tag). According to the results of an aggregation test of a scFv-PM in the presence of 0.5 M urea, aggregation was hardly detectable at a weak-alkaline pH (8.5) with lower concentrations of NaCl. Consequently, more than 93% recovery of the anti-RNase scFv-PM model was attained, when it was refolded by dialysis against 50 mM TAPS (pH8.5). These results suggested that the apparent isoelectric point (pI) of a target scFv was decreased to a great extent by the genetic fusion of a PMMA-tag containing 5 acidic amino acids, and, thus, the solubility of the scFv-PM in its semi-denatured form was considerably improved. We also designed alternative peptide-tags composed of plural aspartic acid residues (D5, D10 and D15-tags) to decrease the apparent pI value of the fusion protein. As a consequence, scFv-D5, scFv-D10 and scFv-D15 were also efficiently refolded with yields of more than 95%. It is noteworthy that even scFv-PS-D15, which had both a positively charged polystyrene-binding peptide (PS-tag) and a negatively charged D15-tag, was serially connected at the C-terminal region of scFvs, and also refolded with a yield of 96.1%. These results clearly indicate that controlling the apparent pI value of scFvs by the fusion of oligo-peptides composed of acidic amino acids at the C-terminus resulted in a high degree of recovery via dialysis refolding. According to the results of a sandwich ELISA using scFv-PMs, scFv-D15 and scFv-PS-D15 as ligands, high antigen-binding signals were detected from both the PMMA and phi-PS plates immobilized with scFv-PMs. Furthermore, the high antigen-binding activity of scFv-PMs was maintained in an adsorption state when it was immobilized on the surface of not only PMMA, but also hydrophilic PS (phi-PS) and polycarbonate (PC). These results

  20. Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT

    Directory of Open Access Journals (Sweden)

    Wu Anna M

    2009-12-01

    Full Text Available Abstract Background Antibody Directed Enzyme Prodrug Therapy (ADEPT can be used to generate cytotoxic agents at the tumor site. To date non-human enzymes have mainly been utilized in ADEPT. However, these non-human enzymes are immunogenic limiting the number of times that ADEPT can be administered. To overcome the problem of immunogenicity, a fully human enzyme, capable of converting a non-toxic prodrug to cytotoxic drug was developed and joined to a human tumor specific scFv yielding a fully human targeting agent. Methods A double mutant of human purine nucleoside phosphorylase (hDM was developed which unlike the human enzyme can cleave adenosine-based prodrugs. For tumor-specific targeting, hDM was fused to the human anti-HER2/neu single chain Fv (scFv, C6 MH3B1. Enzymatic activity of hDM with its natural substrates and prodrugs was determined using spectrophotomeric approaches. A cell proliferation assay was used to assess the cytotoxicity generated following conversion of prodrug to drug as a result of enzymatic activity of hDM. Affinity of the targeting scFv, C6 MH3B1 fused to hDM to Her2/neu was confirmed using affinity chromatography, surface plasmon resonance, and flow-cytometry. Results In vitro hDM-C6 MH3B1 binds specifically to HER2/neu expressing tumor cells and localizes hDM to tumor cells, where the enzymatic activity of hDM-C6 MH3B1, but not the wild type enzyme, results in phosphorolysis of the prodrug, 2-fluoro-2'-deoxyadenosine to the cytotoxic drug 2-fluoroadenine (F-Ade causing inhibition of tumor cell proliferation. Significantly, the toxic small drug diffuses through the cell membrane of HER2/neu expressing cells as well as cells that lack the expression of HER2/neu, causing a bystander effect. F-Ade is toxic to cells irrespective of their growth rate; therefore, both the slowly dividing tumor cells and the non-dividing neighboring stromal cells that support tumor growth should be killed. Analysis of potential novel MHCII

  1. Biochemical map of polypeptides specified by foot-and-mouth disease virus.

    OpenAIRE

    Grubman, M J; Robertson, B H; Morgan, D O; Moore, D M; Dowbenko, D

    1984-01-01

    Pulse-chase labeling of foot-and-mouth disease virus-infected bovine kidney cells revealed stable and unstable viral-specific polypeptides. To identify precursor-product relationships among these polypeptides, antisera against a number of structural and nonstructural viral-specific polypeptides were used. Cell-free translations programmed with foot-and-mouth disease virion RNA or foot-and-mouth disease virus-infected bovine kidney cell lysates, which were shown to contain almost identical pol...

  2. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Yu-Sheng [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai (India); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Sadhasivam, S. [Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Lin, Feng-Huei, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Shieh, Ming-Jium [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China)

    2014-05-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration.

  3. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Hsueh, Yu-Sheng; Savitha, S.; Sadhasivam, S.; Lin, Feng-Huei; Shieh, Ming-Jium

    2014-01-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration

  4. Primary structure, gene organization and polypeptide expression of poliovirus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N. (State Univ. of New York, Stony Brook); Semler, B.L.; Rothberg, P.G.

    1981-06-18

    The primary structure of the poliovirus genome has been determined. The RNA molecule is 7433 nucleotides long, polyadenylated at the 3' terminus, and covalently linked to a small protein (VPg) at the 5' terminus. An open reading frame of 2207 consecutive triplets spans over 89% of the nucleotide sequence and codes for the viral polyprotein NCVPOO. Twelve viral polypeptides have been mapped by amino acid sequence analysis and were found to be proteolytic cleavage products of the polyprotein, cleavages occurring predominantly at Gln-Gly pairs.

  5. NMR study of the cooperative behavior of thermotropic model polypeptides

    Czech Academy of Sciences Publication Activity Database

    Kurková, Dana; Kříž, Jaroslav; Rodríguez-Cabello, J. C.; Arias, F. J.

    2007-01-01

    Roč. 56, č. 2 (2007), s. 186-194 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500604 Grant - others:Spanish Ministry of Science and Culture(ES) A002/02; MAT2000-1764-C02; MAT2001-1853-C02-01; MAT2003- Institutional research plan: CEZ:AV0Z40500505 Keywords : thermotropic polymers * cooperativity * synthetic polypeptides Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.557, year: 2007

  6. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei

    2016-03-18

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  7. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei; Gnanou, Yves; Hadjichristidis, Nikolaos

    2016-01-01

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  8. Heavy chain only antibodies

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen...

  9. Chain formation of metal atoms

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Jacobsen, Karsten Wedel

    2001-01-01

    The possibility of formation of single-atomic chains by manipulation of nanocontacts is studied for a selection of metals (Ni, Pd, Pt, Cu, Ag, Au). Molecular dynamics simulations show that the tendency for chain formation is strongest for Au and Pt. Density functional theory calculations indicate...... that the metals which form chains exhibit pronounced many-atom interactions with strong bonding in low coordinated systems....

  10. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome.

    Science.gov (United States)

    Pech, Markus; Spreter, Thomas; Beckmann, Roland; Beatrix, Birgitta

    2010-06-18

    Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.

  11. The singular behavior of a β-type semi-synthetic two branched polypeptide: three-dimensional structure and mode of action.

    Science.gov (United States)

    Manzo, Giorgia; Serra, Ilaria; Pira, Alessandro; Pintus, Manuela; Ceccarelli, Matteo; Casu, Mariano; Rinaldi, Andrea C; Scorciapino, Mariano Andrea

    2016-11-16

    Dendrimeric peptides make a versatile group of bioactive peptidomimetics and a potential new class of antimicrobial agents to tackle the pressing threat of multi-drug resistant pathogens. These are branched supramolecular assemblies where multiple copies of the bioactive unit are linked to a central core. Beyond their antimicrobial activity, dendrimeric peptides could also be designed to functionalize the surface of nanoparticles or materials for other medical uses. Despite these properties, however, little is known about the structure-function relationship of such compounds, which is key to unveil the fundamental physico-chemical parameters and design analogues with desired attributes. To close this gap, we focused on a semi-synthetic, two-branched peptide, SB056, endowed with remarkable activity against both Gram-positive and Gram-negative bacteria and limited cytotoxicity. SB056 can be considered the smallest prototypical dendrimeric peptide, with the core restricted to a single lysine residue and only two copies of the same highly cationic 10-mer polypeptide; an octanamide tail is present at the C-terminus. Combining NMR and Molecular Dynamics simulations, we have determined the 3D structure of two analogues. Fluorescence spectroscopy was applied to investigate the water-bilayer partition in the presence of vesicles of variable charge. Vesicle leakage assays were also performed and the experimental data were analyzed by applying an iterative Monte Carlo scheme to estimate the minimum number of bound peptides needed to achieve the release. We unveiled a singular beta hairpin-type structure determined by the peptide chains only, with the octanamide tail available for further functionalization to add new potential properties without affecting the structure.

  12. Realities of Supply Chain Collaboration

    NARCIS (Netherlands)

    Kampstra, R.P.; Ashayeri, J.; Gattorna, J.

    2006-01-01

    Successful supply chain collaboration (SCC) practices are rather exceptional, yet collaboration is believed to be the single most pressing need in supply chain management.In this paper we discuss the realities of SCC, present prerequisites for the collaboration process, indicate where the process

  13. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum dihydrofolate reductase (dhfr), and dihydropteroate synthetase (dhps), and chloroquine resistance transporter (Pfcrt) genes are used as molecular markers of P. falciparum resistance to sulfadoxine/pyrimethamine and chloroquine....... However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA...

  14. β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor

    Science.gov (United States)

    Mirecka, Ewa A.; Feuerstein, Sophie; Gremer, Lothar; Schröder, Gunnar F.; Stoldt, Matthias; Willbold, Dieter; Hoyer, Wolfgang

    2016-01-01

    In type 2 diabetes, the formation of islet amyloid consisting of islet amyloid polypeptide (IAPP) is associated with reduction in β-cell mass and contributes to the failure of islet cell transplantation. Rational design of inhibitors of IAPP amyloid formation has therapeutic potential, but is hampered by the lack of structural information on inhibitor complexes of the conformationally flexible, aggregation-prone IAPP. Here we characterize a β-hairpin conformation of IAPP in complex with the engineered binding protein β-wrapin HI18. The β-strands correspond to two amyloidogenic motifs, 12-LANFLVH-18 and 22-NFGAILS-28, which are connected by a turn established around Ser-20. Besides backbone hydrogen bonding, the IAPP:HI18 interaction surface is dominated by non-polar contacts involving hydrophobic side chains of the IAPP β-strands. Apart from monomers, HI18 binds oligomers and fibrils and inhibits IAPP aggregation and toxicity at low substoichiometric concentrations. The IAPP β-hairpin can serve as a molecular recognition motif enabling control of IAPP aggregation. PMID:27641459

  15. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

    Science.gov (United States)

    Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh

    2018-05-01

    Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

  16. Pop nädal : Popuudised. Edetabel The Billboard 200 Top 20. Plaadiarvustus : The Jesus and Mary Chain - 21 Singles / Aivar Meos

    Index Scriptorium Estoniae

    Meos, Aivar

    2002-01-01

    8. okt. saabub müügile ansambli Jurassic 5 uus album "Power In Numbers", millel laulab ka Nelly Furtado. Šokk-rokkar Marilyn Manson avaldab peatselt uue kontsert-video/DVD "Guns, God and Government". Intellektuaalset industriaalmuusikat viljelev ansambel Einstürzende Neubauten annab oma Interneti aadressi: http://www.neubauten.org., teatades, et 23. sünnipäeva tähistamiseks peaks 2003. aasta kevadeks valmima bändil uus album. Christina Aguilera uuest singlist "Let's Get Dirty". Ansamblist The Jesus and Mary Chain

  17. Polypeptide synthesis in alphavirus-infected aedes albopictus cells during the establishment of persistent infection

    International Nuclear Information System (INIS)

    Richardson, M.A.; Boulton, R.W.; Raghow, R.S.; Dalgarno, L.

    1980-01-01

    Polypeptide synthesis was examined in mosquito cells during the establishment of a persistent infection with two alphaviruses, Ross River virus (RRV) and Semliki Forest virus (SFV), and in vertebrate cells cytopathically-infected with the same viruses. In Aedes albopictus cells, RRV reached peak titres at 34-48 hours p.i. At 12 hours 85 per cent of cells assayed as infected by infective centre assay; by 48 hours when persistence was established, virus production was reduced and <5 per cent of cells assayed as infected. There was not shutdown of host polypeptide synthesis during infection. Viral polypeptide synthesis was maximal between 10 and 24 hours p.i. The major viral polypeptides labelled were nucleocapsid protein and envelope protein(s).The precursor polypeptide p95 which was prominent in infected BHK cells was not detected in mosquito cells. Similar results were obtained on SFV infection. During the establishment of persistence there was a coordinate decline in the synthesis of RRV polypeptides, reaching undetectable levels by 72 hours p.i. Subculturing persistently-infected cells led to a small increase in viral polypeptide synthesis and virus titre. In contrast, during RRV growth in BHK cells host protein synthesis was severely inhibited and by 9-11 hours p.i. virus-specific polypeptide synthesis represented more than 90 per cent of total protein synthetic activity. (author)

  18. Experiments and strategies for the assignment of fully13 C/15N-labelled polypeptides by solid state NMR

    International Nuclear Information System (INIS)

    Straus, Suzana K.; Bremi, Tobias; Ernst, Richard R.

    1998-01-01

    High-resolution heteronuclear NMR correlation experiments and strategies are proposed for the assignment of fully 13 C/ 15 N-labelled polypeptides in the solid state. By the combination of intra-residue and inter-residue 13 C- 15 N correlation experiments with 13 C- 13 C spin-diffusion studies, it becomes feasible to partially assign backbone and side-chain resonances in solid proteins. The performance of sequences using 15 N instead of 13 C detection is evaluated regarding sensitivity and resolution for a labelled dipeptide (L-Val-L-Phe). The techniques are used for a partial assignment of the 15 N and 13 C resonances in human ubiquitin

  19. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  20. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin.

    Science.gov (United States)

    Keeley, Fred W; Bellingham, Catherine M; Woodhouse, Kimberley A

    2002-02-28

    Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.

  1. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ...

  2. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  3. J chain in the nurse shark: implications for function in a lower vertebrate.

    Science.gov (United States)

    Hohman, Valerie S; Stewart, Sue E; Rumfelt, Lynn L; Greenberg, Andrew S; Avila, David W; Flajnik, Martin F; Steiner, Lisa A

    2003-06-15

    J chain is a small polypeptide covalently attached to polymeric IgA and IgM. In humans and mice, it plays a role in binding Ig to the polymeric Ig receptor for transport into secretions. The putative orthologue of mammalian J chain has been identified in the nurse shark by sequence analysis of cDNA and the polypeptide isolated from IgM. Conservation with J chains from other species is relatively poor, especially in the carboxyl-terminal portion, and, unlike other J chains, the shark protein is not acidic. The only highly conserved segment in all known J chains is a block of residues surrounding an N-linked glycosylation site. Of the eight half-cystine residues that are conserved in mammalian J chains, three are lacking in the nurse shark, including two in the carboxyl-terminal segment that have been reported to be required for binding of human J chain-containing IgA to secretory component. Taken together with these data, the relative abundance of J chain transcripts in the spleen and their absence in the spiral valve (intestine) suggest that J chain in nurse sharks may not have a role in Ig secretion. Analysis of J chain sequences in diverse species is in agreement with accepted phylogenetic relationships, with the exception of the earthworm, suggesting that the reported presence of J chain in invertebrates should be reassessed.

  4. NMR and rotational angles in solution conformation of polypeptides

    Science.gov (United States)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  5. A radioimmunoassay of gastric inhibitory polypeptide in human plasma

    International Nuclear Information System (INIS)

    Sarson, D.L.; Bryant, M.G.; Bloom, S.R.

    1980-01-01

    A sensitive radioimmunoassay for the measurement of human gastric inhibitory polypeptide (GIP), using pure porcine GIP, has been developed. Cross-reactivity of the antiserum with all available mammalian gut peptide preparations was negligible with the exception of glucagon when it was approximately 1%. Two major molecular forms of GIP were detectable in plasma and tissue extracts, one of large molecular size and the other corresponding to the elution coefficient of pure porcine standard. Concentrations of GIP in plasma from 50 normal subjects after overnight fasting were 9+-1.0(S.E.M.) pmol/1 rising to a peak of 34+-2.8 pmol/1 following the ingestion of a small mixed test meal. Ingestion of glucose or fat resulted in a similar rise of plasma GIP, whereas no change was observed after the ingestion of protein. (author)

  6. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Goetze, Oliver; Anstipp, Jens

    2004-01-01

    ) = 0.15, P = 0.15 for intact GIP; r(2) = 0.21, P = 0.086 for total GIP). We conclude that gastric emptying does not appear to be influenced by GIP. The secretion of GIP after meal ingestion is not suppressed by its exogenous administration. The lack of effect of GIP on gastric emptying underlines......The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass....... Gastric emptying was calculated from the (13)CO(2) exhalation rates in breath samples collected over 360 min. Venous blood was drawn in 30-min intervals for the determination of glucose, insulin, C-peptide, and GIP (total and intact). Statistical calculations were made by use of repeated-measures ANOVA...

  7. Vasoactive intestinal polypeptide (VIP) in the pig pancreas

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion...... of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas...... with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas....

  8. Biosynthesis of human sialophorins and analysis of the polypeptide core

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Kenney, D.; Rosen, F.S.

    1987-01-01

    Biosynthesis was examined of sialophorin (formerly called gpL115) which is altered in the inherited immunodeficiency Wiskott-Aldrich syndrome. Sialophorin is greater than 50% carbohydrate, primarily O-linked units of sialic acid, galactose, and galactosamine. Pulse-labeling with [ 35 S]methionine and chase incubation established that sialophorin is synthesized in CEM lymphoblastoid cells as an Mr 62,000 precursor which is converted within 45 min to mature glycosylated sialophorin, a long-lived molecule. Experiments with tunicamycin and endoglycosidase H demonstrated that sialophorin contains N-linked carbohydrate (approximately two units per molecule) and is therefore an N,O-glycoprotein. Pulse-labeling of tunicamycin-treated CEM cells together with immunoprecipitation provided the means to isolate the [ 35 S]-methionine-labeled polypeptide core of sialophorin and determine its molecular weight (58,000). This datum allowed us to express the previously established composition on a per molecule basis and determine that sialophorin molecules contain approximately 520 amino acid residues and greater than or equal to 100 O-linked carbohydrate units. A recent study showed that various blood cells express sialophorin and that there are two molecular forms: lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin. Biosynthesis of the two forms was compared by using sialophorin of CEM cells and sialophorin of MOLT-4 cells (another lymphoblastoid line) as models for lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin, respectively. The time course of biosynthesis and the content of N units were found to be identical for the two sialophorin species. [ 35 S]Methionine-labeled polypeptide cores of CEM sialophorin and MOLT sialophorin were isolated and compared by electrophoresis, isoelectrofocusing, and a newly developed peptide mapping technique

  9. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  10. "Weariness" and "unpleasantness" reduce adherence to branched-chain amino acid granules among Japanese patients with liver cirrhosis: results of a single-center cross-sectional survey.

    Science.gov (United States)

    Eguchi, Yuichiro; Furukawa, Naoko; Furukawa, Takeshi; Egashira, Yoshimitsu; Hotokezaka, Hiroshi; Oeda, Satoshi; Iwane, Shinji; Anzai, Keizo

    2017-03-01

    Branched-chain amino acids (BCAA) are valuable in the treatment of liver cirrhosis because they increase serum albumin levels. Poor adherence to BCAA may adversely affect prognosis, but little is known about factors predicting adherence. We undertook a survey of patients prescribed BCAA for the treatment of cirrhosis. Pharmacists carried out face-to-face interviews with patients (or their representatives) prescribed any of nine BCAA formulations. Question categories included patient characteristics, prescription of BCAA granules, and perceptions of BCAA administration, including adherence and possible factors that might impact adherence. "Poor adherence" was defined as "not taking the medication appropriately" or "forgetting to take the medication". Overall, 253 patients (or representatives) completed the survey, of whom 135 were men, 114 were women, and 148 were ≥70 years old. Most patients (163) were prescribed BCAA for ≥2 years and were using three packs per day. Thirty-two patients did not take their medication appropriately and 69 sometimes forgot to administer it. Weariness of taking the medication (P BCAA in clinical practice. Poor adherence was associated with weariness with taking medication, and the unpleasantness of the medication itself. Patient education from general practitioners and hepatologists combined with adherence counseling from pharmacists may help improve adherence. © 2016 The Authors. Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology.

  11. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    Science.gov (United States)

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  12. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    Science.gov (United States)

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characterization of an amidated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius).

    Science.gov (United States)

    Conlon, J M; Schmidt, W E; Gallwitz, B; Falkmer, S; Thim, L

    1986-12-30

    The primary structure of pancreatic polypeptide from the teleostean fish, Cottus scorpius (daddy sculpin) was established as: YPPQPESPGGNASPEDWAKYHAAVRHYVNLITRQRYNH2 The presence of a COOH-terminally alpha-amidated amino acid was established using an HPLC method of general applicability. Although the peptide shows strong homology towards anglerfish pancreatic polypeptide (86%), homology towards porcine peptide YY (PYY) (61%) and porcine neuropeptide Y (NPY) (61%) was greater than towards porcine pancreatic polypeptide (PP) (47%). This result supports suggestions that the gene duplication events which led to PP, NPY and PYY formation took place after the time of divergence of fish and mammals.

  14. The Research on the Impact of Maca Polypeptide on Sport Fatigue.

    Science.gov (United States)

    Miao, Hua

    2015-01-01

    In order to study the effect of maca polypeptide on sport fatigue, this paper selected 40 male mice, and they were randomly divided into group A, B, C and D. group A, B and C were fed food with different concentrations of maca polypeptide, and group D was control group. After two weeks of feeding, measured physiological indexes of mice, including blood glucose, urea nitrogen and creatinine. At last gived the experimental results, as well as the analysis. Experimental results show that maca polypeptide can improve the ability of anti-fatigue mice, and in a certain concentration range, the higher the concentration, the better the resistance to fatigue.

  15. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  16. The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes.

    Science.gov (United States)

    Waldron, Mark; Whelan, Kieran; Jeffries, Owen; Burt, Dean; Howe, Louis; Patterson, Stephen David

    2017-06-01

    This study investigated the effects of acute branched-chain amino acid (BCAA) supplementation on recovery from exercise-induced muscle damage among experienced resistance-trained athletes. In a double-blind matched-pairs design, 16 resistance-trained participants, routinely performing hypertrophy training, were randomly assigned to a BCAA (n = 8) or placebo (n = 8) group. The BCAAs were administered at a dosage of 0.087 g/kg body mass, with a 2:1:1 ratio of leucine, isoleucine, and valine. The participants performed 6 sets of 10 full-squats at 70% 1-repetition maximum to induce muscle damage. All participants were diet-controlled across the study. Creatine kinase, peak isometric knee-extensor force, perceived muscle soreness, and countermovement jump (CMJ) height were measured immediately before (baseline) and at 1 h, 24 h, and 48 h postexercise. There were large to very large time effects for all measurements between baseline and 24-48 h. Between-group comparisons, expressed as a percentage of baseline, revealed differences in isometric strength at 24-h (placebo ∼87% vs. BCAA ∼92%; moderate, likely), CMJ at 24 h (placebo ∼93% vs. BCAA ∼96%; small, likely), and muscle soreness at both 24 h (placebo ∼685% vs. BCAA ∼531%; small, likely) and 48 h (placebo ∼468% vs. BCAA ∼350%; small, likely). Acute supplementation of BCAAs (0.087 g/kg) increased the rate of recovery in isometric strength, CMJ height, and perceived muscle soreness compared with placebo after a hypertrophy-based training session among diet-controlled, resistance-trained athletes. These findings question the need for longer BCAA loading phases and highlight the importance of dietary control in studies of this type.

  17. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    Science.gov (United States)

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  18. Cancer Nano technology Using Elastin-Like Polypeptides

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2014-01-01

    Despite progress in understanding cancer biology, this knowledge has not translated into comparable advances in the clinic. Two fundamental problems currently stalling the efficient treatment of cancer have been detecting cancer early enough for successful treatment and avoiding excessive toxicity to normal tissues. In view of this, cancer still remains one of the leading causes of mortality worldwide, affecting over 10 million new patients every year. Clearly the development of novel approaches for early detection and treatment of cancer is urgently needed to increase patient survival. Recently, nano technology-based systems have emerged as novel therapeutic modalities for cancer treatment. Tiny man made nanoparticles, much smaller than a virus, are being developed to package, transport, and deliver imaging and therapeutic agents. Co-inclusion of these agents, into nano carriers might be advantageous because they increase solubility of hydrophobic drugs, enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce side effects. Initial findings have been promising and nanoparticles have been shown to deliver therapeutic agents to target cells and effect tumor growth. To this end our lab is investigating a class of biodegradable and biocompatible polymers known as elastin-like polypeptides (ELP). Elastin like polypeptide is a bio polymer derived from the structural motif found in mammalian elastin protein and has a sequence dependent transition temperature that can be used as nano carriers to treat diseases. ELPs are characterized by the pentameric repeat VPGXG, where X can be any amino acid. All functional ELPs undergo inverse phase transition whereby below its transition temperature, they exist in a solubilized form while above its transition temperature they undergo phase separation which leads to their aggregation in solution. This process is reversible. Phase transition can also be triggered by other

  19. Utility of a multiplex reverse transcriptasepolymerase chain reaction assay (HemaVision in the evaluation of genetic abnormalities in Korean children with acute leukemia: a single institution study

    Directory of Open Access Journals (Sweden)

    Hye-Jin kim

    2013-06-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; In children with acute leukemia, bone marrow genetic abnormalities (GA have prognostic significance, and may be the basis for minimal residual disease monitoring. Since April 2007, we have used a multiplex reverse transcriptase-polymerase chain reaction tool (HemaVision to detect of GA. &lt;b&gt;Methods:&lt;/b&gt; In this study, we reviewed the results of HemaVision screening in 270 children with acute leukemia, newly diagnosed at The Catholic University of Korea from April 2007 to December 2011, and compared the results with those of fluorescence in situ hybridization (FISH, and G-band karyotyping. &lt;b&gt;Results:&lt;/b&gt; Among the 270 children (153 males, 117 females, 187 acute lymphoblastic leukemia and 74 acute myeloid leukemia patients were identified. Overall, GA was detected in 230 patients (85.2%. HemaVision, FISH, and G-band karyotyping identified GA in 125 (46.3%, 126 (46.7%, and 215 patients (79.6%, respectively. TEL-AML1 (20.9%, 39/187 and AML1-ETO (27%, 20/74 were the most common GA in ALL and AML, respectively. Overall sensitivity of HemaVision was 98.4%, with false-negative results in 2 instances: 1 each for TEL-AML1 and MLL-AF4 . An aggregate of diseasesspecific FISH showed 100% sensitivity in detection of GA covered by HemaVision for actual probes utilized. G-band karyotype revealed GA other than those covered by HemaVison screening in 133 patients (49.3%. Except for hyperdiplody and hypodiploidy, recurrent GA as defined by the World Health Organizationthat were not screened by HemaVision, were absent in the karyotype. &lt;b&gt;Conclusion:&lt;/b&gt; HemaVision, supported by an aggregate of FISH tests for important translocations, may allow for accurate diagnosis of GA in Korean children with acute leukemia.

  20. Molecular Dynamics Simulation of Cholera Toxin A-1 Polypeptide

    Directory of Open Access Journals (Sweden)

    Badshah Syed Lal

    2016-01-01

    Full Text Available A molecular dynamics (MD simulation study of the enzymatic portion of cholera toxin; cholera toxin A-1 polypeptide (CTA1 was performed at 283, 310 and 323 K. From total energy analysis it was observed that this toxin is stable thermodynamically and these outcomes were likewise confirmed by root mean square deviations (RMSD investigations. The Cα root mean square fluctuation (RMSF examinations revealed that there are a number of residues inside CTA1, which can be used as target for designing and synthesizing inhibitory drugs, in order to inactivate cholera toxin inside the human body. The fluctuations in the radius of gyration and hydrogen bonding in CTA1 proved that protein unfolding and refolding were normal routine phenomena in its structure at all temperatures. Solvent accessible surface area study identified the hydrophilic nature of the CTA1, and due to this property it can be a potential biological weapon. The structural identification (STRIDE algorithm for proteins was successfully used to determine the partially disordered secondary structure of CTA1. On account of this partially disordered secondary structure, it can easily deceive the proteolytic enzymes of the endoplasmic reticulum of host cells.

  1. Aspects of structural landscape of human islet amyloid polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianfeng, E-mail: hjf@bit.edu.cn; Dai, Jin, E-mail: daijing491@gmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jing, E-mail: jinglichina@139.com [Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206 (China); Peng, Xubiao, E-mail: xubiaopeng@gmail.com [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2015-01-28

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  2. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  3. Intestinal mucosa is a target tissue for pancreatic polypeptide

    International Nuclear Information System (INIS)

    Gilbert, W.R.; Kramer, J.L.; Frank, B.H.; Gingerich, R.L.

    1986-01-01

    Studies were carried out to identify mammalian tissues capable of specifically binding mammalian pancreatic polypeptide (PP). Bovine PP (bPP) radiolabeled with 125 I was purified by HPLC to yield [ 125 I]iodo-(Tyr-27) bPP. The label was injected into three pairs of fasted littermate dogs and allowed to circulate for 5 min. One of the dogs was a control which received an excess of unlabeled porcine PP to provide competition for receptor binding. Unbound bPP was removed by perfusion with Krebs-Ringer bicarbonate and the tissue fixed in situ with Karnovsky's fixative. Tissue samples from various organs were removed, weighed, and counted. The entire gastrointestinal tract demonstrated high levels of 125 I after injection of the labeled peptide. The duodenum, jejunum, ileum, and colon were the only tissues to exhibit specific binding of bPP. These tissues (mucosal and muscle layers) from experimental animals exhibited 31-76% higher binding than the corresponding tissues from the control animals. Sections of the gastrointestinal tract were scraped to separate the mucosal layer from the underlying muscle layer. The mucosal layer of the duodenum, jejunum, and ileum exhibited 145-162% increases in binding compared to the control animals. The muscle layer of these tissues demonstrated no significant increase. These findings demonstrate that mucosal layer of the small intestine is a target tissue for mammalian PP

  4. Primitive chain network simulations of probe rheology.

    Science.gov (United States)

    Masubuchi, Yuichi; Amamoto, Yoshifumi; Pandey, Ankita; Liu, Cheng-Yang

    2017-09-27

    Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories. In this study, the viscoelastic and dielectric relaxations of probe chains were calculated by primitive chain network simulations. The simulations semi-quantitatively reproduced the dielectric relaxation, which reflects the effect of constraint release on the end-to-end relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. However, the viscoelastic relaxation intensity was underestimated, possibly due to some flaws in the model for the inter-chain cross-correlations between probe and matrix chains.

  5. Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture

    International Nuclear Information System (INIS)

    Sbrana, F; Vassalli, M; Fotia, C; Baldini, N; Ciapetti, G; Bracalello, A; Bochicchio, B; Marletta, G

    2012-01-01

    Mesenchymal stem cells have attracted great interest in the field of tissue engineering and regenerative medicine because of their multipotentiality and relative ease of isolation from adult tissues. The medical application of this cellular system requires the inclusion in a growth and delivery scaffold that is crucial for the clinical effectiveness of the therapy. In particular, the ideal scaffolding material should have the needed porosity and mechanical strength to allow a good integration with the surrounding tissues, but it should also assure high biocompatibility and full resorbability. For such a purpose, protein-inspired biomaterials and, in particular, elastomeric-derived polypeptides are playing a major role, in which they are expected to fulfil many of the biological and mechanical requirements. A specific chimeric protein, designed starting from elastin, resilin and collagen sequences, was characterized over different length scales. Single-molecule mechanics, aggregation properties and compatibility with human mesenchymal stem cells were tested, showing that the engineered compound is a good candidate as a stem cell scaffold to be used in tissue engineering applications. (paper)

  6. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X

    International Nuclear Information System (INIS)

    Selmer, B.L.; Hanecak, R.; Anderson, C.W.; Wimmer, E.

    1981-01-01

    Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, is produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein

  7. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Yu-Wen Yu

    2018-04-01

    Full Text Available In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA hemi-parkinsonian (PD rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c. using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB. The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.

  8. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  9. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    Science.gov (United States)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  10. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics.

    Science.gov (United States)

    Byrne, Mark; Murphy, Robert; Kapetanakis, Antonios; Ramsey, Joanne; Cryan, Sally-Ann; Heise, Andreas

    2015-09-17

    Significant advances in the synthesis of polypeptides by N-carboxyanhydride (NCA) polymerisation over the last decade have enabled the design of advanced polypeptide architectures such as star-shaped polypeptides. These materials combine the functionality offered by amino acids with the flexibility of creating stable nanoparticles with adjustable cargo space for therapeutic delivery. This review highlights recent advances in the synthesis of star polypeptides by NCA polymerisation followed by a critical review of the applications of this class of polymer in the delivery of therapeutic agents. This includes examples of traditional small-molecule drugs as well as the emerging class of biologics such as genetic therapeutics (gene delivery). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  12. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a...

  13. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice.

    Science.gov (United States)

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg-1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo.

  14. Controlling the Size and Shape of the Elastin-Like Polypeptide based Micelles

    Science.gov (United States)

    Streletzky, Kiril; Shuman, Hannah; Maraschky, Adam; Holland, Nolan

    Elastin-like polypeptide (ELP) trimer constructs make reliable environmentally responsive micellar systems because they exhibit a controllable transition from being water-soluble at low temperatures to aggregating at high temperatures. It has been shown that depending on the specific details of the ELP design (length of the ELP chain, pH and salt concentration) micelles can vary in size and shape between spherical micelles with diameter 30-100 nm to elongated particles with an aspect ratio of about 10. This makes ELP trimers a convenient platform for developing potential drug delivery and bio-sensing applications as well as for understanding micelle formation in ELP systems. Since at a given salt concentration, the headgroup area for each foldon should be constant, the size of the micelles is expected to be proportional to the volume of the linear ELP available per foldon headgroup. Therefore, adding linear ELPs to a system of ELP-foldon should result in changes of the micelle volume allowing to control micelle size and possibly shape. The effects of addition of linear ELPs on size, shape, and molecular weight of micelles at different salt concentrations were studied by a combination of Dynamic Light Scattering and Static Light Scattering. The initial results on 50 µM ELP-foldon samples (at low salt) show that Rh of mixed micelles increases more than 5-fold as the amount of linear ELP raised from 0 to 50 µM. It was also found that a given mixture of linear and trimer constructs has two temperature-based transitions and therefore displays three predominant size regimes.

  15. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions

    Directory of Open Access Journals (Sweden)

    Joensuu Jussi J

    2009-08-01

    Full Text Available Abstract Background Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. Results The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. Conclusion An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach

  16. [Detection of Echinococcus granulosus and Echinococcus multilocularis in cyst samples using a novel single tube multiplex real-time polymerase chain reaction].

    Science.gov (United States)

    Can, Hüseyin; İnceboz, Tonay; Caner, Ayşe; Atalay Şahar, Esra; Karakavuk, Muhammet; Döşkaya, Mert; Çelebi, Fehmi; Değirmenci Döşkaya, Aysu; Gülçe İz, Sultan; Gürüz, Yüksel; Korkmaz, Metin

    2016-04-01

    Cystic echinococcosis (CE) and alveolar echinococcosis (AE) caused by Echinococcus granulosus and Echinococcus multilocularis, respectively, are important helminthic diseases worldwide as well as in our country. Epidemiological studies conducted in Turkey showed that the prevalence of CE is 291-585/100.000. It has also been showed that the seroprevalence of AE is 3.5%. For the diagnosis of CE and AE, radiological (ultrasonography, computed tomography, magnetic resonance) and serological methods, in addition to clinical findings, are being used. The definitive diagnosis relies on pathological examination When the hydatid cysts are sterile or does not contain protoscolex, problems may occur during pathological discrimination of E.granulosus and E.multilocularis species. In this study, we aimed to develop a novel multiplex real-time polymerase chain reaction (M-RT-PCR) targeting mitochondrial 12S rRNA gene of E.granulosus and E.multilocularis using Echi S (5'-TTTATGAATATTGTGACCCTGAGAT-3') and Echi A (5'-GGTCTTAACTCAACTCATGGAG-3') primers and three different probes; Anchor Ech (5'-GTTTGCCACCTCGATGTTGACTTAG-fluoroscein-3'), Granulosus (5'-LC640-CTAAGGTTTTGGTGTAGTAATTGATATTTT-phosphate-3') and Multilocularis (5'-LC705-CTGTGATCTTGGTGTAGTAGTTGAGATT-phosphate-3') that will enable the diagnosis of CE and AE in same assay. During M-RTR-PCR, plasmids containing E.granulosus (GenBank: AF297617.1) and E.multilocularis (GenBank: NC_000928.2) mitochondrial 12S rRNA regions were used as positive controls. Cysts samples of patients which were pathologically confirmed to be CE (n: 10) and AE (n: 15) and healthy human DNA samples (n: 25) as negative control as well as DNA samples of 12 different parasites (Taenia saginata, Hymenolepis nana, Trichuris trichiura, Fasciola hepatica, Enterobius vermicularis, Toxoplasma gondii, Pneumocystis jirovecii, Trichomonas vaginalis, Cryptosporidium hominis, Strongyloides stercoralis, Plasmodium falciparum, Plasmodium vivax) were used to develop M

  17. Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene

    Science.gov (United States)

    Barbeito, Ana G.; Garringer, Holly J.; Baraibar, Martin A.; Gao, Xiaoying; Arredondo, Miguel; Núñez, Marco T.; Smith, Mark A.; Ghetti, Bernardino; Vidal, Ruben

    2009-01-01

    Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain. PMID:19519778

  18. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    Science.gov (United States)

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  19. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide

    International Nuclear Information System (INIS)

    Arai, H.; Berne, M.; Forgac, M.

    1987-01-01

    N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits 100% of proton transport and 80-85% of (Mg2+)-ATPase activity in clathrin-coated vesicles. Half-maximum inhibition of proton transport is observed at 10 microM DCCD after 30 min. Although treatment of the coated vesicle (H+)-ATPase with DCCD has no effect on ATP hydrolysis in the detergent-solubilized state, sensitivity of proton transport and ATPase activity to DCCD is restored following reconstitution into phospholipid vesicles. In addition, treatment of the detergent-solubilized enzyme with DCCD followed by reconstitution gives a preparation that is blocked in both proton transport and ATP hydrolysis. These results suggest that although the coated vesicle (H+)-ATPase can react with DCCD in either a membrane-bound or detergent-solubilized state, inhibition of ATPase activity is only manifested when the pump is present in sealed membrane vesicles. To identify the subunit responsible for inhibition of the coated vesicle (H+)-ATPase by DCCD, we have labeled the partially purified enzyme with [ 14 C]DCCD. A single polypeptide of molecular weight 17,000 is labeled. The extremely hydrophobic nature of this polypeptide is indicated by its extraction with chloroform:methanol. The 17,000-dalton protein can be labeled to a maximum stoichiometry of 0.99 mol of DCCD/mol of protein with 100% inhibition of proton transport occurring at a stoichiometry of 0.15-0.20 mol of DCCD/mol of protein. Amino acid analysis of the chloroform:methanol extracted 17,000-dalton polypeptide reveals a high percentage of nonpolar amino acids. The similarity in properties of this protein and the DCCD-binding subunit of the coupling factor (H+)-ATPases suggests that the 17,000-dalton polypeptide may function as part of a proton channel in the coated vesicle proton pump

  20. Supply Chain Management in Albania: An Empirical Study

    OpenAIRE

    Alma Spaho, Thoma Mitre

    2012-01-01

    Supply chain management in Albania has received little attention in the recent literature. Many companies now realize that actions taken by one member of the chain can influence the profitability of all others in the chain. Companies are increasingly thinking in terms of competing as part of a supply chain against other supply chains, rather than as a single firm against other individual firms. The aim of the paper is to investigate the current situation of supply chain management in Albania ...

  1. Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis.

    Science.gov (United States)

    Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2015-03-01

    A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate. © 2015 The Author(s).

  2. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics.

    Science.gov (United States)

    Walker, Aisha L; Lancaster, Cynthia S; Finkelstein, David; Ware, Russell E; Sparreboom, Alex

    2013-12-15

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b(-/-)) mice, hydroxyurea PK was analyzed in vivo by measuring [(14)C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled (14)CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b(-/-) mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h(-1)·ml(-1), respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b(-/-) mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b(-/-) mice, respectively) correlating with a decrease in exhaled (14)CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK.

  3. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  4. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  5. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.

  6. Development of a multiplex polymerase chain reaction-sequence-specific primer method for NKG2D and NKG2F single-nucleotide polymorphism typing using isothermal multiple displacement amplification products.

    Science.gov (United States)

    Kaewmanee, M; Phoksawat, W; Romphruk, A; Romphruk, A V; Jumnainsong, A; Leelayuwat, C

    2013-06-01

    Natural killer group 2 member D (NKG2D) on immune effector cells recognizes multiple stress-inducible ligands. NKG2D single-nucleotide polymorphism (SNP) haplotypes were related to the levels of cytotoxic activity of peripheral blood mononuclear cells. Indeed, these polymorphisms were also located in NKG2F. Isothermal multiple displacement amplification (IMDA) is used for whole genome amplification (WGA) that can amplify very small genomic DNA templates into microgram with whole genome coverage. This is particularly useful in the cases of limited amount of valuable DNA samples requiring multi-locus genotyping. In this study, we evaluated the quality and applicability of IMDA to genetic studies in terms of sensitivity, efficiency of IMDA re-amplification and stability of IMDA products. The smallest amount of DNA to be effectively amplified by IMDA was 200 pg yielding final DNA of approximately 16 µg within 1.5 h. IMDA could be re-amplified only once (second round of amplification), and could be kept for 5 months at 4°C and more than a year at -20°C without loosing genome coverage. The amplified products were used successfully to setup a multiplex polymerase chain reaction-sequence-specific primer for SNP typing of the NKG2D/F genes. The NKG2D/F multiplex polymerase chain reaction (PCR) contained six PCR mixtures for detecting 10 selected SNPs, including 8 NKG2D/F SNP haplotypes and 2 additional NKG2D coding SNPs. This typing procedure will be applicable in both clinical and research laboratories. Thus, our data provide useful information and limitations for utilization of genome-wide amplification using IMDA and its application for multiplex NKG2D/F typing. © 2013 John Wiley & Sons Ltd.

  7. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    Science.gov (United States)

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific singlechain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  8. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  9. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    Science.gov (United States)

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Automated main-chain model building by template matching and iterative fragment extension

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.

    2003-01-01

    A method for automated macromolecular main-chain model building is described. An algorithm for the automated macromolecular model building of polypeptide backbones is described. The procedure is hierarchical. In the initial stages, many overlapping polypeptide fragments are built. In subsequent stages, the fragments are extended and then connected. Identification of the locations of helical and β-strand regions is carried out by FFT-based template matching. Fragment libraries of helices and β-strands from refined protein structures are then positioned at the potential locations of helices and strands and the longest segments that fit the electron-density map are chosen. The helices and strands are then extended using fragment libraries consisting of sequences three amino acids long derived from refined protein structures. The resulting segments of polypeptide chain are then connected by choosing those which overlap at two or more C α positions. The fully automated procedure has been implemented in RESOLVE and is capable of model building at resolutions as low as 3.5 Å. The algorithm is useful for building a preliminary main-chain model that can serve as a basis for refinement and side-chain addition

  11. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  12. Human beta 2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas

    DEFF Research Database (Denmark)

    Wewer, U M; Gerecke, D R; Durkin, M E

    1994-01-01

    or other known laminin genes. Immunostaining showed that the beta 2 chain is localized to the smooth muscle basement membranes of the arteries, while the homologous beta 1 chain is confined to the subendothelial basement membranes. The beta 2 chain was found in the basement membranes of ovarian carcinomas......Overlapping cDNA clones that encode the full-length human laminin beta 2 chain, formerly called the S chain, were isolated. The cDNA of 5680 nt contains a 5391-nt open reading frame encoding 1797 amino acids. At the amino terminus is a 32-amino-acid signal peptide that is followed by the mature...... beta 2 chain polypeptide of 1765 amino acids with a calculated molecular mass of 192,389 Da. The human beta 2 chain is predicted to have all of the seven structural domains typical of the beta chains of laminin, including the short cysteine-rich alpha region. The amino acid sequence of human beta 2...

  13. Multimodal switching of conformation and solubility in homocysteine derived polypeptides

    OpenAIRE

    Kramer, JR; Deming, TJ

    2014-01-01

    We report the design and synthesis of poly(S-alkyl-l-homocysteine)s, which were found to be a new class of readily prepared, multiresponsive polymers that possess the unprecedented ability to respond in different ways to different stimuli, either through a change in chain conformation or in water solubility. The responsive properties of these materials are also effected under mild conditions and are completely reversible for all pathways. The key components of these polymers are the incorpora...

  14. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  15. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    DEFF Research Database (Denmark)

    Durkin, M E; Wewer, U M; Chung, A E

    1995-01-01

    of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF......Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from lambda genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization...

  16. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    Science.gov (United States)

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  17. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  18. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  19. Ultrastructural and biochemical detection of biotin and biotinylated polypeptides in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Santos P.R.P.

    1997-01-01

    Full Text Available Biotinylation is proposed for the identification of surface proteins in Schistosoma mansoni using the streptavidin-HRP conjugate for the detection of labeled polypeptides. However, control samples also showed several endogenous biotinylated polypeptides. In an attempt to determine the possibility of nonspecific binding between the streptavidin-HRP conjugate and polypeptides from S. mansoni, the conjugate was blocked with biotinamidecaproate-N-hydroxysuccinimide ester (BcapNHS before biotin-streptavidin blotting. No bands were detected on the nitrocellulose sheet, demonstrating the specific recognition of biotin by the streptavidin present in the conjugate. Whole cercariae and cercarial bodies and tails showed several endogenous biotinylated polypeptides. The biotin concentration was 13 µg/190,000 cercariae. Adult worms presented less endogenous biotinylated polypeptides than cercariae. These results may be due to changes in the environment from aerobic to anaerobic conditions when cercarial bodies (schistosomula are transformed into adult worms and a decrease in CO2 production may occur. Cercariae, cercarial bodies and adult male worms were examined by transmission electron microscopy employing an avidin-colloidal gold conjugate for the detection of endogenous biotin. Gold particles were distributed mainly on the muscle fibers, but dispersed granules were observed in the tegument, mitochondria and cytosol. The discovery of endogenous biotin in S. mansoni should be investigated in order to clarify the function of this vitamin in the parasite

  20. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  1. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    Science.gov (United States)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  2. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC.

    Science.gov (United States)

    Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V

    2015-07-07

    The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.

  3. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Eiichi [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Hosokawa, Masaya [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Faculty of Human Sciences, Tezukayama Gakuin University, Osaka (Japan); Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Tsukiyama, Katsushi; Yamada, Yuichiro [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Department of Internal Medicine, Division of Endocrinology, Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita (Japan); Seino, Yutaka [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Kansai Electric Power Hospital, Osaka (Japan); Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); CREST of Japan Science and Technology Cooperation (JST), Kyoto (Japan)

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin

  4. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    International Nuclear Information System (INIS)

    Ogawa, Eiichi; Hosokawa, Masaya; Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito; Tsukiyama, Katsushi; Yamada, Yuichiro; Seino, Yutaka; Inagaki, Nobuya

    2011-01-01

    Research highlights: → Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. → Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. → The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [ 14 C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [ 14 C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather

  5. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Englander, S.W.; Wand, A.J.

    1987-01-01

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub α/H-C/sub β/H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step

  6. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    Science.gov (United States)

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  7. The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the spliced-leader intergenic region

    Directory of Open Access Journals (Sweden)

    Lina Marcela Villa

    2013-11-01

    Full Text Available A single polymerase chain reaction (PCR reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.

  8. Design of a software for calculating isoelectric point of a polypeptide according to their net charge using the graphical programming language LabVIEW.

    Science.gov (United States)

    Tovar, Glomen

    2018-01-01

    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the polypeptide chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel (-xls) type file is generated. In this work, the experimental values of the pIs (pI) of different proteins are compared with the values of the pIs (pI) calculated graphically, achieving a correlation coefficient (R) of 0.934746 which represents a good reliability for a p program can constitute an instrument applicable in the laboratory, facilitating the calculation to graduate students and junior researchers. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):39-46, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  9. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    Science.gov (United States)

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  10. Effect of oxygen on morphogenesis and polypeptide expression by Mucor racemosus

    International Nuclear Information System (INIS)

    Phillips, G.J.; Borgia, P.T.

    1985-01-01

    The morphology of Mucor racemosus in cultures continuously sparged with nitrogen gas was investigated. When appropriate precautions were taken to prevent oxygen from entering the cultures, the morphology of the cells was uniformly yeastlike irrespective of the N 2 flow rate. When small amounts of oxygen entered the cultures the resulting microaerobic conditions evoked mycelial development. Polypeptides synthesized by aerobic mycelia, microaerobic mycelia, anaerobic yeasts, and yeasts grown in a CO 2 atmosphere were compared by two-dimensional gel electrophoresis. The results indicated that a large number of differences in polypeptide expression exist when microaerobic mycelia or anaerobic yeasts are compared with aerobic mycelia and that these alterations correlate with a change from an oxidative to a fermentative metabolic mode. The authors hypothesize that oxygen regulates the expression of polypeptides involved in both the metabolic mode and in morphogenesis

  11. Synthetic profiles of polypeptides of human oocytes and normal and abnormal preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1999-09-01

    There is considerable variation in the rate of development in vitro of individual preimplantation human embryos. The relationship between the rate of development and patterns of polypeptide synthesis in individual embryos was examined using SDS-PAGE and autoradiography. After incubation in [35S]methionine, 19 polypeptide bands were identified that change between fertilization and the morula stage. Although changes in two of the bands occurred in embryos that were developing normally and in ageing oocytes, and are thus independent of fertilization, the changes identified in the remaining 17 bands occurred only after fertilization. In embryos that were developing abnormally, as assessed by delayed cleavage, cleavage arrest or extensive fragmentation, the alteration in polypeptide synthetic profiles increased with increasing abnormality.

  12. Investigation of Gelatin Polypeptides of Jellyfish (Rhopilema esculentum for Their Antioxidant Activity in vitro

    Directory of Open Access Journals (Sweden)

    Yong-Liang Zhuang

    2010-01-01

    Full Text Available Jellyfish gelatin was hydrolyzed by different proteases to obtain antioxidative polypeptides. The gelatin hydrolysate obtained by progressive hydrolysis using trypsin and Properase E exhibited the highest hydrolysis degree and antioxidant activity. Three series of gelatin polypeptides (SCP1, SCP2 and SCP3 were obtained by ultrafiltrating the gelatin hydrolysate through molecular mass cut-off membranes of 10, 6 and 2 kDa, respectively. Amino acid composition analysis showed that SCP3 had the highest total hydrophobic amino acid content. The in vitro antioxidant tests demonstrated that SCP2 had the strongest hydroxyl radical and hydrogen peroxide scavenging activities and metal chelating ability, while SCP3 showed the highest reducing power, antioxidant activity in linoleic acid emulsion system and superoxide anion radical scavenging activity. The results support the feasibility of jellyfish gelatin as a natural antioxidant polypeptide provider, and enzymatic hydrolysis and ultrafiltration could be potent future processing technologies to utilize the abundant jellyfish resource.

  13. GAWK, a novel human pituitary polypeptide: isolation, immunocytochemical localization and complete amino acid sequence.

    Science.gov (United States)

    Benjannet, S; Leduc, R; Lazure, C; Seidah, N G; Marcinkiewicz, M; Chrétien, M

    1985-01-16

    During the course of reverse-phase high pressure liquid chromatography (RP-HPLC) purification of a postulated big ACTH (1) from human pituitary gland extracts, a highly purified peptide bearing no resemblance to any known polypeptide was isolated. The complete sequence of this 74 amino acid polypeptide, called GAWK, has been determined. Search on a computer data bank on the possible homology to any known protein or fragment, using a mutation data matrix, failed to reveal any homology greater than 30%. An antibody produced against a synthetic fragment allowed us to detect several immunoreactive forms. The antisera also enabled us to localize the polypeptide, by immunocytochemistry, in the anterior lobe of the pituitary gland.

  14. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  15. Phase transition in polypeptides: a step towards the understanding of protein folding

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    We present a formalism which turns out to be very successful in the description of the polypeptide folding. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely on fundamental physical principles. It describes...... essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated within ab initio density functional theory and parameterized by two dihedral angles. This problem is viewed...

  16. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils

    International Nuclear Information System (INIS)

    Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.; Thomas, Michael R.; Nguyen, Andy I.

    2017-01-01

    Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.

  17. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    Science.gov (United States)

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  18. Cooperation and profit allocation in distribution chains

    NARCIS (Netherlands)

    Guardiola, L.A.; Meca, A.; Timmer, Judith B.

    2005-01-01

    We study the coordination of actions and the allocation of profit in distribution chains under decentralized control. We consider distribution chains in which a single supplier supplies goods for replenishment of stocks of several retailers who, in turn, sell these goods to their own separate

  19. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    DEFF Research Database (Denmark)

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  20. Tuning the conformation of synthetic co-polypeptides of serine and glutamic acid through control over polymer composition

    NARCIS (Netherlands)

    Canning, A.; Pasquazi, A.; Fijten, M.; Rajput, S.; Buttery, L.; Aylott, J.W.; Zelzer, M.

    2016-01-01

    Ring opening polymerization (ROP) of N-carboxy anhydride (NCA) amino acids presents a rapid way to synthesize high molecular weight polypeptides with different amino acid compositions. The compositional and functional versatility of polypeptides make these materials an attractive choice for