WorldWideScience

Sample records for single photomultiplier tube

  1. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  2. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  3. photomultiplier tube

    CERN Multimedia

    A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  4. photomultiplier tube

    CERN Multimedia

    Philips. 150AVP. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  5. Model independent approach to the single photoelectron calibration of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, R.; Grandi, L.; Guardincerri, Y.; Wester, T.

    2017-08-01

    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions about the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

  6. Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, J. S., E-mail: james.milnes@photek.co.uk; Conneely, T. M. [Photek Ltd., 26 Castleham Road, St Leonards on Sea, East Sussex TN38 9NS (United Kingdom); Horsfield, C. J. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)

    2016-11-15

    Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 10{sup 3} to 10{sup 4} for the single and 10{sup 4} to 10{sup 6} for the double. We have shown that the saturation level of ∼1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.

  7. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  8. Photomultiplier tube having a plurality of sensing areas

    International Nuclear Information System (INIS)

    1976-01-01

    A single photomultiplier tube having four sensing areas each of which produces its own independent electrical signal that is related to the quantity of sensed matter that impinges on its area is described

  9. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  10. Photomultiplier tubes for Low Level Cerenkov Detectors

    International Nuclear Information System (INIS)

    Strindehag, O.

    1965-03-01

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a β-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10 -12 input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10 -12 to 10 -9 input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses

  11. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  12. An anti-Cherenkov photomultiplier tube

    International Nuclear Information System (INIS)

    Selove, W.; Cormell, L.R.; Dris, M.; Kononenko, W.; Robinson, B.; Yost, B.T.

    1982-01-01

    We have designed a special photomultiplier tube (PMT), with very much reduced sensitivity to Cherenkov light produced in the end window. These PMTs have been produced for us by EMI, and have been used in a modular calorimeter array. The design eliminates a 'hot-spot' problem which was of intolerable magnitude in our application. (orig.)

  13. Performance of the hybrid photomultiplier tube (HPMT)

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, R.J. [B.V. Delft Electronische Producten, Roden (Netherlands)

    1995-12-31

    The HPMT, which may be an alternative for PhotoMultiplier Tubes (PMT`s) in many applications, is a vacuum tube in which the latest technologies of photocathodes and photodiodes are combined. Photo-electrons are accelerated and bombarding a reversely biased PIN diode, where they create many electron-hole-pairs. The resulting charge pulse can be amplified and further processed. The HPMT shows many superior characteristics compared to regular PMT`s, because it does not suffer the statistical fluctuations common for electron multiplication processes. An energy resolution of up to 14 photo-electrons will be presented, together with striking figures for dynamic range and timing behavior.

  14. Externally mounted radioactivity detector for MWD employing radial inline scintillator and photomultiplier tube

    International Nuclear Information System (INIS)

    Meisner, J.E.; Mumby, E.S.; Groeschel, V.E.

    1991-01-01

    Improved radioactivity well logging may be achieved by mounting a scintillator and photomultiplier tube in a single case interfacing with a hole extending through a drill collar at the lower end of a drill string so that measurements can be made while drilling. Radioactive sources (when required for well logging) are mounted in cavities which open to the exterior of the drill collar. Light from the scintillator is coupled directly to the aligned photomultiplier tube both of which are mounted in a case extending radially within the drill collar and sealingly engaging an electronics housing within the drill collar and the drill collar wall surrounding the hole. The scintillator is of greater diameter than the photomultiplier tube. A frustoconical light pipe connects the scintillator and the photomultiplier tube, channeling scintillation in the crystal to the photomultiplier to provide an amplified detection capability over that for a scintillator having the same diameter as the photomultiplier tube. (author)

  15. Substitution of photomultiplier tubes by photodiodes

    International Nuclear Information System (INIS)

    Teixeira, D.L.

    1990-04-01

    The application of Si semiconductors, either of the conventional or the avalanche type, as light amplifiers in radiation detection, has been studied aiming the substitution of photomultiplier (PM) tubes by photodiodes. The objective of this work is to compare the response of photodiodes and PM tubes when coupled to scintillation crystals. A Hamamatsu Si photodiode, model S 1337-66 B Q, was coupled to a Harshaw NaI (TI) scintillation crystal of window diameter equal to 25,4 mm. Its performance was evaluated by specially designed associated electronics, compatible with the photodiode characteristics. X-ray beams from 30 to 111 KeV were used to determine the response and the repeatability of the scintillator-photodiode and the scintillator-PM tube systems. The repeatability was found to be within 0,27% for the photodiode and 0,57% for the PM tube. This work confirmed that photodiodes can be used as light amplifiers, provided their characteristics, such as light spectrum response, are considered. It also shows that further studies are necessary in order to identify the applications in radiation detection where PM tubes might be replaced by photodiodes. (author)

  16. Linearity measurement of the XP 1210 fast photomultiplier tube

    International Nuclear Information System (INIS)

    Breuze, G.; Sawine, P.

    1969-01-01

    A new X Y method of photomultipliers linearity measurement has been tested which is more suitable for fast photomultiplier tubes. The XP 1210 gives a linearity limit of 70 mA for the gain 10, i.e. 3.5 V for a 50 Ω charge impedance

  17. Light Production in the Double Chooz Photomultiplier Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, E.; Cerrada, M.; Crespo, J. I.; Gil-Botella, I.; Jimenez, S.; Lopez, M.; Novella, P.; Palomares, C.; Santorelli, R.; Verdugo, A.

    2012-09-13

    In this document we present a study of the phenomenon of light emission (called glowing) in the bases of the Hamamatsu R7081MOD-ASSY photomultiplier tubes (PMTs) used in the Double Chooz experiment. The tests have been carried out at the CIEMAT laboratories over a photomultiplier tube of the same model. We have studied the phenomenon making first a characterization of it, and then focusing on the dependence of the rate and the amount of emitted light versus voltage and temperature. In addition, we have looked for the possible existence of an ultraviolet component in the light which would be harmful for the experiment because it could be able to excite the scintillator liquid. Finally, we propose and test a method to reduce the light emission using a cover on the base of the photomultiplier tube.. (Author)

  18. Characterization of the Hamamatsu 8" R5912-MOD Photomultiplier tube

    Science.gov (United States)

    Kaptanoglu, Tanner

    2018-05-01

    Current and future neutrino and direct detection dark matter experiments hope to take advantage of improving technologies in photon detection. Many of these detectors are large, monolithic optical detectors that use relatively low-cost, large-area, and efficient photomultiplier tubes (PMTs). A candidate PMT for future experiments is a newly developed prototype Hamamatsu PMT, the R5912-MOD. In this paper we describe measurements made of the single photoelectron time and charge response of the R5912-MOD, as well as detail some direct comparisons to similar PMTs. Most of these measurements were performed on three R5912-MOD PMTs operating at gains close to 1 × 107. The transit time spread (σ) and the charge peak-to-valley were measured to be on average 680ps and 4.2 respectively. The results of this paper show the R5912-MOD is an excellent candidate for future experiments in several regards, particularly due to its narrow spread in timing.

  19. Blocking of photomultiplier tubes; Blocage de tubes photomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Andrivet, J [Commissariat a l' Energie Atomique, Limeil-Brevannes (France). Centre d' Etudes

    1968-07-01

    Development of a very simple apparatus having a single transistor. The gain is reduced by a factor of 1.5 to 3 x 10{sup 2} for the photomultipliers XP 1002, and of 10{sup 3} to 10{sup 4} for the photomultipliers 56-AVP and TVP. Blocking can be achieved in 40 ns if necessary (using a TRS-350 transistor), and the time required to return to the initial gain can be no longer than 40 ns with a TRS-200, for the blocking of several micro-seconds for example. 1000 {mu}s and above can be obtained with switching times which are longer but which can be less than 150 ns if needs be. An outside insulated supply can be avoided if the recurrence is low. A standard pulse generator is used for triggering. There is no other electronic equipment, and the device can be fitted easily into the space of the voltage divider. (author) [French] Etude et realisation d'un montage tres simple utilisant un seul transistor. Le gain est reduit d'un facteur 1.5 a 3.10{sup 2} sur des photomultiplicateurs XP 1002, et 10{sup 3} a 10{sup 4} sur les photomultiplicateurs 56 AVP et TVP. Le blocage peut etre atteint en 40 ns si necessaire (avec un transistor TRS-350), et le temps de retour au gain initial peut ne pas depasser 40 ns avec un TRS-200, pour des blocages de plusieurs micro-secondes, par exemple. On peut obtenir plus de 1000 {mu}s avec des temps de commutation plus importants, mais qui peuvent si besoin est ne pas etre superieurs a 150 ns. L'alimentation exterieure isolee peut etre evitee si la recurrence est faible. Pour le declenchement on utilise un generateur d'impulsions standard. Il n'y a aucune autre electronique, et le montage s'integre aisement dans l'encombrement du pont d'alimentation. (auteur)

  20. A superconducting supercollider calorimeter photomultiplier tube preamplifier circuit

    Energy Technology Data Exchange (ETDEWEB)

    Panescu, D; Lackey, J; Robl, P; Smith, W H [Wisconsin Univ., Madison, WI (United States). Physics Dept.

    1992-07-15

    This study presents the design of the front end amplifier for a scintillator calorimeter with photomultiplier tube (PMT) readout. The design is based on analytical computations and SPICE simulations, and is checked against tests performed on a prototyped circuit. We were looking to achieve (1) a very low droop within the 4 ns after the integration of the photomultiplier tube (PMT) signal was completed, (2) a very low noise figure for the whole amplifier in a 100 MHz bandwidth, (3) an input impedance optimized for the PMT which is actually used, (4) baseline restoration as quick as possible at the output of the clip amps, (5) no loss of information due to the saturation at intermediary stages (e.g. integrator), and (6) an output driving 100 {Omega} twisted pair cables, or 50 {Omega} coaxial cables, in order to transmit the signal to switched capacitor arrays for analog storage. (orig.).

  1. Actively-stabilized photomultiplier tube base for vacuum operation

    International Nuclear Information System (INIS)

    Bryan, M.A; Morris, C.L.; Idzorek, G.C.

    1992-01-01

    An actively stabilized photomultiplier tube (PMT) base design for an Amperex XP-2262B PMT is described. Positive-negative-positive transistors are used as low-impedance current sources to maintain constant voltages on the last three dynodes. This technique results in a highly stable, low-power tube base ideal for use with low-duty-factor beams, such as those found at the Clinton P. Anderson Meson Physics Facility. Furthermore, because of the low power usage of this large design, these bases can be sealed in a heat-conductive, electrically insulating material and used in a vacuum

  2. Precise analysis of the metal package photomultiplier single photoelectron spectra

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.E.; Fedorko, I.; Sykora, I.; Tokar, S.; Menzione, A.

    2000-01-01

    A deconvolution method based on a sophisticated photomultiplier response function was used to analyse the compact metal package photomultiplier spectra taken in single photoelectron mode. The spectra taken by Hamamtsu R5600 and R5900 photomultipliers have been analysed. The detailed analysis shows that the method appropriately describes the process of charge multiplication in these photomultipliers in a wide range of working regimes and the deconvoluted parameters are established with about 1% accuracy. The method can be used for a detailed analysis of photomultiplier noise and for calibration purposes

  3. First characterization of the Hamamatsu R11265 multi-anode photomultiplier tube

    International Nuclear Information System (INIS)

    Calvi, M.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Matteuzzi, C.; Pessina, G.

    2014-01-01

    The characterization of the new Hamamatsu R11265-103-M64 multi-anode photomultiplier tube is presented. The sample available in our laboratory was tested and in particular the response to single photon was extensively studied. The gain, the anode uniformity and the dark current were measured. The tube behaviour in a longitudinal magnetic field up to 100 G was studied and the gain loss due to the ageing was quantified. The characteristics and performance of the photomultiplier tube make the R11265-103-M64 particularly tailored for an application in high energy physics experiments, such as in the LHCb Ring Imaging Cherenkov (RICH) detector at LHC. - Highlights: • We tested the new Hamamatsu R11265-103-M64 multi-anode photomultiplier tube. • We studied the response to single photon, the gain and the anode uniformity. • The tube behaviour in a longitudinal magnetic field up to 100 G was studied. • The gain loss due to the aging was quantified

  4. Modeling the low-light response of photomultiplier tubes

    Science.gov (United States)

    Maxwell, Patrick; Niculescu, Ioana

    2017-09-01

    A number of crucial experiments exploring the intricate tomography of protons and neutrons will be carried out in Hall A at Jefferson Lab using the SuperBigBite Spectrometer (SBS), a large acceptance magnetic spectrometer sporting 0.5% momentum and 0.5 mr angular resolution. As part of the standard SBS detector package the Gas Ring Imaging Cherenkov (GRINCH) detector will help identify particles produced in the experiments. To determine which photomultiplier (PMT) tubes would be used in GRINCH, more than 900 29 mm 9125B PMTs were tested. Two models, were used to fit test data. For the parameters relevant to this study, results from both models were found to be equivalent, and will be discussed here.

  5. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  6. A new hybrid photomultiplier tube as detector for scintillating crystals

    International Nuclear Information System (INIS)

    De Notaristefani, F.; Vittori, F.; Puertolas, D.

    2002-01-01

    In this work, we have attentively studied the performance of a new hybrid photomultiplier tube (HPMT) as detector for photons from scintillating crystals. The HPMT is equipped with a YAP window in order to improve light collection and increase measured light response from scintillating crystals. Several measurements have been performed on BGO, LSO, CsI(Tl) and NaI(Tl) planar crystals having three different surface treatments as well as on YAP : Ce and CsI(Tl) matrices. Such crystals have been coupled to two HPMTs, one equipped with a YAP window (Y-HPMT) and the other with a conventional quartz window (Q-HPMT). Measurements on crystals coupled to the Y-HPMT have shown a consistent improvement of the light response, thanks to the presence of the YAP window. Indeed, the light response measured with the Y-HPMT was on average equal to 1.5, 2.1 and 2.6 times that obtained with the Q-HPMT for planar crystals with white painted (diffusive), fine ground and polished rear surfaces, respectively. With regards to crystal matrices, we measured a light response increase of about 1.2 times

  7. Characterization of Multianode Photomultiplier Tubes for a Cherenkov Detector

    Science.gov (United States)

    Benninghoff, Morgen; Turisini, Matteo; Kim, Andrey; Benmokhtar, Fatiha; Kubarovsky, Valery; Duquesne University Collaboration; Jefferson Lab Collaboration

    2017-09-01

    In the Fall of 2017, Jefferson Lab's CLAS12 (CEBAF Large Acceptance Spectrometer) detector is expecting the addition of a RICH (ring imaging Cherenkov) detector which will allow enhanced particle identification in the momentum range of 3 to 8 GeV/c. RICH detectors measure the velocity of charged particles through the detection of produced Cherenkov radiation and the reconstruction of the angle of emission. The emitted Cherenkov photons are detected by a triangular-shaped grid of 391 multianode photomultiplier tubes (MAPMTs) made by Hamamatsu. The custom readout electronics consist of MAROC (multianode read out chip) boards controlled by FPGA (Field Programmable Gate Array) boards, and adapters used to connect the MAROC boards and MAPMTs. The focus of this project is the characterization of the MAPMTs with the new front end electronics. To perform these tests, a black box setup with a picosecond diode laser was constructed with low and high voltage supplies. A highly automated procedure was developed to acquire data at different combinations of high voltage values, light intensities and readout electronics settings. Future work involves using the collected data in calibration procedures and analyzing that data to resolve the best location for each MAPMT. SULI, NSF.

  8. Testing of Photomultiplier Tubes in a Magnetic Field

    Science.gov (United States)

    Waldron, Zachary; A1 Collaboration

    2016-09-01

    The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.

  9. Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1978-10-01

    Electrical, mechanical, thermal, and neutron response data indicate that microchannel plate photomultiplier tubes are viable candidates as miniature, ruggedized neutron detectors for flight test applications in future weapon systems

  10. Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Albert, A.; Ameli, F.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Denans, D.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Distefano, C.; Drogou, J.-F.; Druillole, F.; Engelen, J.; Ernenwein, J.-P.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Flaminio, V.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Graf, K.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kuch, S.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamare, P.; Languillat, J.-C.; Laschinsky, H.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Raia, G.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca-Blay, V.; Rolin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Salesa, F.; Salomon, K.; Saouter, S.; Sapienza, P.; Shanidze, R.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Valdy, P.; Valente, V.; Vallage, B.; Vernin, P.; Virieux, J.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zornoza, J. D.; Zúñiga, J.

    2005-12-01

    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a three-dimensional matrix of 900 large area photomultiplier tubes housed in pressure-resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the photomultiplier tube chosen for ANTARES.

  11. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  12. Characterization of the ETEL D784UKFLB 11 in. photomultiplier tube

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N.; Kaptanoglu, T. [University of Pennsylvania, Philadelphia, PA 19104 (United States); Kimelman, B. [Muhlenberg College, Allentown, PA 18104 (United States); Klein, J.R. [University of Pennsylvania, Philadelphia, PA 19104 (United States); Moore, E.; Nguyen, J. [University of California, Davis, Davis, CA 95616 (United States); Stavreva, K. [University of Pennsylvania, Philadelphia, PA 19104 (United States); Svoboda, R., E-mail: rsvoboda@physics.ucdavis.edu [University of California, Davis, Davis, CA 95616 (United States)

    2017-04-21

    Water Cherenkov and scintillator detectors are a critical tool for neutrino physics. Their large size, low threshold, and low operational cost make them excellent detectors for long baseline neutrino oscillations, proton decay, supernova and solar neutrinos, double beta decay, and ultra-high energy astrophysical neutrinos. Proposals for a new generation of large detectors rely on the availability of large format, fast, cost-effective photomultiplier tubes. The Electron Tubes Enterprises, Ltd (ETEL) D784KFLB 11 in. Photomultiplier Tube has been developed for large neutrino detectors. We have measured the timing characteristics, relative efficiency, and magnetic field sensitivity of the first fifteen prototypes.

  13. Report on the performance and operating characteristics of the Burle C83061E QUANTACON trademark photomultiplier tube

    International Nuclear Information System (INIS)

    Sandberg, V.D.; Thompson, T.N.; Helvy, F.A.

    1989-01-01

    The Burle C83061E QUANTACON trademark is a 10.4 inch diameter photomultiplier tube with improved photoelectron collection optics. We report here on the first tests of this newly developed tube. We find the single photoelectron charge resolution to be excellent, with a peak to (noise) valley ratio exceeding 3 and with a transit time spread of less than 2.3 ns (FWHM) for full photocathode illumination at the single photoelectron level. A design for a fast anode pulse base is also presented. 11 refs., 8 figs

  14. Characterization of the Hamamatsu R11265-103-M64 multi-anode photomultiplier tube

    International Nuclear Information System (INIS)

    Cadamuro, L; Calvi, M; Cassina, L; Giachero, A; Gotti, C; Khanji, B; Maino, M; Matteuzzi, C; Pessina, G

    2014-01-01

    The aim of this paper is to fully characterize the new multi-anode photomultiplier tube R11265-103-M64, produced by Hamamatsu. Its high effective active area (77%), its pixel size, the low dark signal rate and the capability to detect single photon signals make this tube suitable for an application in high energy physics, such as for RICH detectors. Four tubes and two different bias voltage dividers have been tested. The results of a standard characterization of the gain and the anode uniformity, the dark signal rate, the cross-talk and the device behaviour as a function of temperature have been studied. The behaviour of the tube is studied in a longitudinal magnetic field up to 100 Gauss. Shields made of a high permeability material are also investigated. The deterioration of the device performance due to long time operation at intense light exposure is studied. A quantitative analysis of the variation of the gain and the dark signals rate due to the aging is described

  15. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company

  16. An efficient high-voltage power supply for a photomultiplier tube

    NARCIS (Netherlands)

    Ainutdinov, VM; Vonsovskii, NN; Kompaniets, KG; Kozyr, AI; Mikhailov, YV

    2003-01-01

    An adjustable power supply for a photomultiplier tube operating in the pulsed spectrometric mode with a wide range of linearity is described. The power consumed by the source is 50 mW. The output voltage is varied from 800 to 2000 V. The maximum ripple amplitude is 2.5 mV.

  17. A simple method to improve the spatial uniformity of venetian-blind photomultiplier tubes

    International Nuclear Information System (INIS)

    Santos, J.M.F. dos; Veloso, J.F.C.A.; Morgado, R.E.

    1996-01-01

    An improvement in the uniformity of venetian-blind photomultiplier tubes has been achieved by reducing the voltage difference between the first and second dynodes. The method has been applied to a gas proportional scintillation counter (GPSC) instrumented with a venetian-blind photomultiplier (PMT). When exposed to a 20-mm collimated 5.9-keV x-ray beam, an overall improvement in energy resolution for the GPSC/PMT combination from 20% to 11.5% was achieved. An alternative method that reduces the photocathode-to-first-dynode voltage was less effective and resulted in a severe degradation of detector energy resolution

  18. Recent measurements on the Hamamatsu 13 in., R8055, PhotoMultiplier Tubes

    International Nuclear Information System (INIS)

    Tsagli, S.; Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Ludvig, J.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris, T.; Tsagli, V.; Zhukov, V.A.

    2006-01-01

    The key component of NESTOR, the deep-sea Cherenkov neutrino telescope, built in the Mediterranean, NW of Greece, is the optical module. The NESTOR Optical Module employs a PhotoMultiplier Tube (PMT) in a transparent glass pressure housing. The Hamamatsu PMT R8055-01, 13 in. photomultiplier was selected for NESTOR to replace the old 15'' Hamamatsu PMTs (R2018-03). Extensive tests have been made on the sensitivity, uniformity, time resolution and noise rates of 162 R8055-01 13 in. PMTs

  19. Time fluctuations in the response of photomultiplier tubes Dario 56 AVP, XP 1021, XP 1210

    International Nuclear Information System (INIS)

    Breuze, G.; Sawine, P.

    1969-01-01

    The authors have studied experimentally the intrinsic time resolving power of 3 photomultiplier tubes, Dario 56 AVP, XP 1021, XP 1210 at various excitation levels produced by a source of short light pulses. They show, in agreement with present theories, that there exists an optimal resolving power for a certain trigger threshold, and they check the law governing the variations of this resolving power with the average number of photo-electrons emitted by light pulse, up to the limiting case of a single photo-electron. The results obtained show the progress which has been made by the constructor between the 56 AVP and the XP 1210 models: for 100 photo-electrons per pulse, for example, the times of resolution are 260 x 10 -12 s and 75 x 10 -12 s respectively; whereas the rise time for the anode pulses decreases from 2,3 to 1,2 x 10 -9 s. The intermediate tube XP 1021 has also a particularly good performance with respect to the 56 AVP, which it resembles very much both in its price and by its outer aspect. The authors stress finally the difficulties encountered in measuring with accuracy the time characteristics of PM as fast as the XP 1210, and in particular the limitation imposed by the light source. (author) [fr

  20. Characterization of 900 four-anode photomultiplier tubes for use in 2013 hadronic forward calorimeter upgrade.

    CERN Document Server

    AUTHOR|(CDS)2081071

    The first 900 four-anode Photomultiplier Tubes (PMTs) have been evaluated for use in the 2013 Hadronic Forward (HF) calorimeter upgrade. HF is a part of the Compact Muon Solenoid (CMS), which is one of the two large general-purpose particle detectors of the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. HF requires 1728 PMTs. These small tubes are the sensitive light detectors that provide the output signals of HF. Before installing PMTs in HF, their quality control demands need to be satisfied. These tests, done at the University of Iowa, are designed in three categories to test seventeen different parameters for each PMT. The three most basic and most important groups of parameters are: dark current, gain (anode and cathode), and timing. There are secondary tests which are performed on a smaller percentage of the PMTs such as surface uniformity, double pulse and single photo-electron resolution. The PMTs that meet the specifications of HF will be sent to CERN where they are expected to be in us...

  1. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Contreras, H.; Goetzke, L.W.; Fernandez, A.J.M.; Messina, M.; Plante, G.; Rizzo, A. [Columbia University, Physics Department, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Arazi, L.; Budnik, R.; Duchovni, E.; Gross, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Priel, N.; Vitells, O. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Arisaka, K.; Lyashenko, A.; Meng, Y.; Pantic, E.; Teymourian, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Arneodo, F.; Di Giovanni, A. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Auger, M.; Barrow, P.; Baudis, L.; Behrens, A.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F. [University of Zurich, Physik-Institut, Zurich (Switzerland); Balan, C.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos [University of Coimbra, Department of Physics, Coimbra (Portugal); Bauermeister, B.; Fattori, S.; Geis, C.; Grignon, C.; Oberlack, U.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Beltrame, P. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); University of Edinburgh, Edinburgh (United Kingdom); Brown, A.; Lang, R.F.; Macmullin, S.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Brown, E.; Levy, C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Bruenner, S.; Hampel, W.; Kaether, F.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Rauch, L.; Schreiner, J.; Simgen, H.; Weber, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Buetikofer, L.; Coderre, D.; Schumann, M. [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Cussonneau, J.P.; Le Calloch, M.; Masbou, J.; Lavina, L.S.; Thers, D. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Ferella, A.D.; Fulgione, W.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Miguez, B.; Molinario, A.; Trinchero, G. [INFN-Torino and Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P.; Wall, R. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Orrigo, S.E.A. [University of Coimbra, Department of Physics, Coimbra (Portugal); IFIC, CSIC-Universidad de Valencia, Valencia (Spain); Persiani, R. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (FR); Bologna Univ., Department of Physics and Astrophysics, Bologna (IT); INFN, Bologna (IT); Collaboration: XENON Collaboration

    2015-11-15

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. (orig.)

  2. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)]. E-mail: Popov@jlab.org; Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Welch, Benjamin L. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2006-11-01

    We have developed a new analog readout concept for multianode photomultiplier tubes with a pad matrix anode layout. This new readout technique is the result of a modification of a technique previously developed at the Detector Group of Jefferson Lab (V. Popov, US patent No: 6,747,263 B1) [V. Popov, S. Majewski, A.G. Weisenberger, Readout Electronics for Multianode Photomultiplier Tubes with Pad Matrix Anode Layout, Thomas Jefferson National Accelerator Facility, IEEE 2003 Medical Imaging Conference Record, November 2003]. The new analog readout circuit provides the same analog conversion of matrix 2-D output into X and Y projective output with a significant reduction of analog outputs. The old readout network consists of resistors' matrix and current collecting amplifiers, and it provides decoupling of each anode output into two directions (one to X and one to Y coordinates), but a decoupling function that is carried out independent of photomultiplier tube gains nonuniformity. A newly developed readout network (US patent pending) also consists of resistors' matrix and current collecting amplifiers, but the new matrix includes an additional dumping resistor that provides an excess current from anode pad grounding. As a result, we subtract an extra current of high-gain pads in order to move the pads gain to an absolute minimum value for a given photomultiplier tube. This gain equalization procedure reduces image distortion related to gain nonuniformity. The new readout technique was used in several new radiation imaging detectors designed in the Detector Group of Jefferson Lab. It shows a visible readout uniformity and linearity improvement. The test results of an initial evaluation of this readout that is applied for data readout of four H8500 Hamamtsu PSPMT are presented.

  3. Failure Investigation & Design Optimization of a Photo-Multiplier Tube Assembly Under Thermal Loading

    Science.gov (United States)

    Dahya, Kevin

    2004-01-01

    Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.

  4. Test of multi-anode photomultiplier tubes for the LHCb scintillator pad detector

    CERN Document Server

    Aguiló, Ernest; Comerma-Montells, A; Garrido, Lluis; Gascon, David; Graciani, Ricardo; Grauges, Eugeni; Vilasis Cardona, Xavier; Xirgu, Xavier; Bohner, Gerard; Bonnefoy, Romeo; Borras, David; Cornat, Remi; Crouau, Michel; Deschamps, Olivier; Jacquet, Philippe; Lecoq, Jacques; Monteil, Stephane; Perret, Pascal; Reinmuth, Guy

    2005-01-01

    The LHCb experiment (The LHCb Technical Proposal, CERN/LHCC 98-4) is designed to study B meson physics in the LHC proton-proton collider at CERN. The Scintillator Pad Detector (SPD) has been designed to complete the calorimeter information performing an e/gamma identification for the experiment level-0 trigger system. The detection technology consists in transmitting scintillation light by means of both Wavelength Shifting and clear fibers to fast multi- anode photomultiplier tubes. In this paper, it is described the instrumentation and setup used to characterize the baseline photomultiplier solution (Hamamatsu R5900-00-M64) together with the scintillators and optical fibers for the SPD at LHCb.

  5. Method and device for demounting in a radiation detector a photomultiplier tube

    International Nuclear Information System (INIS)

    Persyk, D.E.; Stoub, E.W.

    1986-01-01

    A device is described for demounting in a radiation detector a photomultiplier tube which is bonded with its scintillation crystal assembly by means of an elastic light transparent adhesive, comprising: (a) a music wire of about 0.01 to 0.03 inch diameter which forms a noose between its wire ends, the noose being provided for being placed aroung the bond; and (b) twisting means connected with both wire ends for twisting them such that the noose becomes smaller thereby sharing the bond

  6. Development of 2D-ACAR apparatus using position-sensitive photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Yasuyoshi; Saito, Haruo; Iwata, Tetsuya; Nagashima, Yasuyuki; Hyodo, Toshio [Tokyo Univ. (Japan). Coll. of Arts and Sciences; Uchida, Hiroshi; Omura, Tomohide

    1997-03-01

    A new two-dimensional angular correlation of annihilation radiation apparatus is described. Position-sensitive photomultiplier tubes coupled with two-dimensional arrays of small BGO scintillator blocks make simple and compact position-sensitive {gamma}-ray detectors. With a sample-detector distance of 5m, an angular resolution of 1.1 mrad FWHM and a coincidence count rate of {approx}2.4 c.p.s. per mCi are obtained. Its performance is demonstrated by the result of a test measurement for KI crystal in which non-localized positronium exists at low temperatures. (author)

  7. Test of digital neutron–gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.L., E-mail: luo.xiaoliang@physics.uu.se [Department of Instrument Science and Technology, College of Mechatronics and Automation, National University of Defense Technology, Changsha (China); Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Valiente-Dobón, J.J. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Nishada, Q. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Angelis, G. de [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Agramunt, J. [IFIC-CSIC, University of Valencia, Valencia (Spain); Egea, F.J. [IFIC-CSIC, University of Valencia, Valencia (Spain); Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul (Turkey); Erduran, M.N.; Ertürk, S. [Nigde Universitesi, Fen-Edebiyat Falkültesi, Fizik Bölümü, Nigde (Turkey); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 05 (France); Gadea, A. [IFIC-CSIC, University of Valencia, Valencia (Spain); González, V. [Department of Electronic Engineering, University of Valencia, E-46071 Valencia (Spain); Hüyük, T. [IFIC-CSIC, University of Valencia, Valencia (Spain); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa (Poland); Moszyński, M. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk (Poland); and others

    2014-12-11

    A comparative study of the neutron–γ discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in. photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out. Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and γ rays emitted by a {sup 252}Cf source. In both methods, the neutron–γ discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish γ rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron–γ discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron–γ discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.

  8. CLARO: an ASIC for high rate single photon counting with multi-anode photomultipliers

    Science.gov (United States)

    Baszczyk, M.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Dorosz, P.; Fiorini, M.; Gotti, C.; Kucewicz, W.; Malaguti, R.; Pessina, G.

    2017-08-01

    The CLARO is a radiation-hard 8-channel ASIC designed for single photon counting with multi-anode photomultiplier tubes. Each channel outputs a digital pulse when the input signal from the photomultiplier crosses a configurable threshold. The fast return to baseline, typically within 25 ns, and below 50 ns in all conditions, allows to count up to 107 hits/s on each channel, with a power consumption of about 1 mW per channel. The ASIC presented here is a much improved version of the first 4-channel prototype. The threshold can be precisely set in a wide range, between 30 ke- (5 fC) and 16 Me- (2.6 pC). The noise of the amplifier with a 10 pF input capacitance is 3.5 ke- (0.6 fC) RMS. All settings are stored in a 128-bit configuration and status register, protected against soft errors with triple modular redundancy. The paper describes the design of the ASIC at transistor-level, and demonstrates its performance on the test bench.

  9. Characterization of photomultiplier tubes with a realistic model through GPU-boosted simulation

    Science.gov (United States)

    Anthony, M.; Aprile, E.; Grandi, L.; Lin, Q.; Saldanha, R.

    2018-02-01

    The accurate characterization of a photomultiplier tube (PMT) is crucial in a wide-variety of applications. However, current methods do not give fully accurate representations of the response of a PMT, especially at very low light levels. In this work, we present a new and more realistic model of the response of a PMT, called the cascade model, and use it to characterize two different PMTs at various voltages and light levels. The cascade model is shown to outperform the more common Gaussian model in almost all circumstances and to agree well with a newly introduced model independent approach. The technical and computational challenges of this model are also presented along with the employed solution of developing a robust GPU-based analysis framework for this and other non-analytical models.

  10. Monte Carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Riles, J.K.

    1981-10-01

    The high density and atomic number of bismuth germanate (Bi 4 Ge 3 O 12 or BGO) make it a very useful detector for positron emission tomography. Modern tomograph designs use large numbers of small, closely-packed crystals for high spatial resolution and high sensitivity. However, the low light output, the high refractive index (n=2.15), and the need for accurate timing make it important to optimize the transfer of light to the photomultiplier tube (PMT). We describe the results of a Monte Carlo computer program developed to study the effect of crystal shape, reflector type, and the refractive index of the PMT window on coupling efficiency. The program simulates total internal, external, and Fresnel reflection as well as internal absorption and scattering by bubbles

  11. Characterization of photo-multiplier tube as ex-vessel radiation detector in tokamak

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Junghee; An, YoungHwa; Park, Seungil; Chung, Kyoung-Jae; Hwang, Y. S.

    2017-09-01

    Feasibility of using conventional photo-multiplier tubes (PMTs) without a scintillator as an ex-vessel radiation detector in a tokamak environment is studied. Basic irradiation tests using standard gamma ray sources and a d-d neutron generator showed that the PMT is responding both to gamma photons and neutrons, possibly due to the direct generation of secondary electrons inside the PMT by the impingement of high energy photons. Because of the selective sensitivity of the PMT to hard x-ray and neutrons in ohmic and neutral beam injected plasmas, respectively, it is shown that the PMT with certain configuration can be utilized either to monitor the fluctuation in the fusion neutron generation rate or to study the behavior of runaway electrons in tokamaks.

  12. Evaluation of candidate photomultiplier tubes for the upgrade of the CDF end plug calorimeter

    International Nuclear Information System (INIS)

    Koska, W.; Delchamps, S.W.; Freeman, J.; Kinney, W.; Lewis, D.; Limon, P.; Strait, J.; Fiori, I.; Gallinaro, M.; Shen, Q.

    1994-01-01

    The Collider Detector at Fermilab is upgrading its end plug calorimeter from a gas detector system to one using scintillating tiles and wavelength shifting fibers. This tile-fiber calorimeter will be read out through 1,824 photomultiplier tubes. The performance requirements of the calorimeter require that the PMTs have good response to light in the 500 nm region, provide adequate amplification for signals from minimum ionizing particles yet provide linear response for peak anode currents up to 25 mA at a gain of 50,000, and fit into the restricted space at the rear of the plugs. This paper will describe the evaluation process used to determine the adequacy of the commercially available PMTs which appeared to meet these performance requirements

  13. Low-temperature study of 35 photomultiplier tubes for the ZEPLIN III experiment

    International Nuclear Information System (INIS)

    Araujo, H.M.; Bewick, A.; Davidge, D.; Dawson, J.; Ferbel, T.; Howard, A.S.; Jones, W.G.; Joshi, M.; Lebedenko, V.; Liubarsky, I.; Quenby, J.J.; Sumner, T.J.; Neves, F.

    2004-01-01

    A set of 35 photomultiplier tubes (ETL D730/9829Q), intended for use in the ZEPLIN III Dark Matter detector, was tested from room temperature down to -100 deg. C, with the aim of confirming their suitability for detecting xenon scintillation light at 175 nm while immersed in the cryogenic liquid. A general improvement of both gain and quantum efficiency at the xenon scintillation wavelength was observed with cooling, the best combined effect being 40%, while little change was noted in the timing properties and dark current. Saturation of response due to accumulation of charge in the resistive bialkali photocathodes was seen at an average photocurrent of 10 8 photoelectrons/s for the device with best quantum efficiency, whereas an order of magnitude higher current was required to saturate the least sensitive one. Variations in photocathode thickness from tube to tube could account for this behaviour, as well as the fact that the quantum efficiency improves the most for devices with poorest efficiency at room temperature

  14. Low-temperature study of 35 photomultiplier tubes for the ZEPLIN III experiment

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, H.M. E-mail: h.araujo@imperial.ac.uk; Bewick, A.; Davidge, D.; Dawson, J.; Ferbel, T.; Howard, A.S.; Jones, W.G.; Joshi, M.; Lebedenko, V.; Liubarsky, I.; Quenby, J.J.; Sumner, T.J.; Neves, F

    2004-04-01

    A set of 35 photomultiplier tubes (ETL D730/9829Q), intended for use in the ZEPLIN III Dark Matter detector, was tested from room temperature down to -100 deg. C, with the aim of confirming their suitability for detecting xenon scintillation light at 175 nm while immersed in the cryogenic liquid. A general improvement of both gain and quantum efficiency at the xenon scintillation wavelength was observed with cooling, the best combined effect being 40%, while little change was noted in the timing properties and dark current. Saturation of response due to accumulation of charge in the resistive bialkali photocathodes was seen at an average photocurrent of 10{sup 8} photoelectrons/s for the device with best quantum efficiency, whereas an order of magnitude higher current was required to saturate the least sensitive one. Variations in photocathode thickness from tube to tube could account for this behaviour, as well as the fact that the quantum efficiency improves the most for devices with poorest efficiency at room temperature.

  15. LHCb: Characterisation and magnetic field properties of Multianode Photomultiplier tubes for the use in LHCb Upgrade RICH detectors

    CERN Multimedia

    Eisenhardt, S; Morris, A; Needham, M; Neill, J

    2013-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is embedded in the tubes. Baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. Here we report about characterisation studies of the model Hamamatsu R11265 in the effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Two types of readout electronics are used. Most measurements to characterise the properties of the MaPMTs are taken with a VME based reference readout, using a x100 linear amplification and the CAEN V792 12-bit charge integrating digitiser. This allows to derive the signal properties from fits to the single photon spectra. In addition a prototype readout using the...

  16. Replacement of a photomultiplier tube in a 2-inch thallium-doped sodium iodide gamma spectrometer with silicon photomultipliers and a light guide

    Directory of Open Access Journals (Sweden)

    Chankyu Kim

    2015-06-01

    Full Text Available The thallium-doped sodium iodide [NaI(Tl] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs. It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl 2′ × 2′ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.

  17. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    International Nuclear Information System (INIS)

    Cha, Jae Won; Yew, Elijah Y. S.; Kim, Daekeun; Subramanian, Jaichandar; Nedivi, Elly; So, Peter T. C.

    2015-01-01

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice

  18. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Won; Yew, Elijah Y. S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kim, Daekeun [Department of Mechanical Engineering, Dankook University (Korea, Republic of); Subramanian, Jaichandar [Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nedivi, Elly [Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA (United States); Departments of Brain and Cognitive Sciences, and Biology, Massachusetts Institute of Technology, Cambridge, MA (United States); So, Peter T. C. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2015-08-15

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.

  19. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Hongkui, E-mail: lvhk@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong; He, Huihai; Liu, Jia [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Hou, Chao; Zhao, Jing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km{sup 2} array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10{sup 5} photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10{sup 5}, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  20. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Science.gov (United States)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as "two outputs" device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×105 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 105, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  1. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    International Nuclear Information System (INIS)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-01-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km 2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10 5 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10 5 , which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described

  2. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  3. The characterisation of the multianode photomultiplier tubes for the RICH-1 upgrade project at COMPASS

    Science.gov (United States)

    Abbon, P.; Alexeev, M.; Angerer, H.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Dafni, T.; Dalla Torre, S.; Delagnes, E.; Denisov, O.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Kolosov, V. N.; Königsmann, K.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Panzieri, D.; Paul, S.; Pesaro, G.; Pizzolotto, C.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schoenmeier, P.; Schroeder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Takekawa, S.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2008-09-01

    A major upgrade of the Cherenkov photon detection system of COMPASS RICH-1 has been performed and it has been in operation since the 2006 physics run. The inner part of the photon detector has been replaced by a different technology in order to measure Cherenkov photons at high photoelectron rates, up to several times 10 6 per second and per channel. Cherenkov photons from 200 to 750 nm are detected by 576 multianode photomultiplier tubes (MAPMTs) with 16 channels each, coupled to individual fused silica lens telescopes and fast, high sensitivity and high time resolution electronics read-out. To guarantee an optimal performance of the complete system, parameters like dark current, gain, uniformity, relative quantum efficiency have been measured for a totality of more than 600 MAPMTs (about 10 000 channels) in a fully automated test-stand, developed for this purpose. The ideal working point for each individual pixel could be ascertained by these measurements. In 2006 the newly equipped detector exhibited an excellent performance: about 56 detected photons per ring at saturation and a time resolution of better than 1 ns. We report about the MAPMT characterisation and the quality control set-up, protocol and results.

  4. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Qin, Hong [School of Computer Science and Technology, Xi' an University of Science and Technology, Xi' an 710054 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2017-04-11

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  5. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  6. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-01-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  7. Measurement of the ratio h / e with a photomultiplier tube and a set of LEDs

    International Nuclear Information System (INIS)

    Loparco, F; Malagoli, M S; Rainò, S; Spinelli, P

    2017-01-01

    We propose a laboratory experience aimed at undergraduate physics students to understand the main features of the photoelectric effect and to perform a measurement of the ratio h / e , where h is Planck’s constant and e is the electron charge. The experience is based on the method developed by Millikan for his measurements of the photoelectric effect in the years from 1912 to 1915. The experimental setup consists of a photomultiplier tube (PMT) equipped with a voltage divider properly modified to set variable retarding potentials between the photocathode and the first dynode, and a set of LEDs emitting at different wavelengths. The photocathode is illuminated with the various LEDs and, for each wavelength of the incident light, the output anode current is measured as a function of the retarding potential applied between the cathode and the first dynode. From each measurement, a value of the stopping potential for the anode current is derived. Finally, the stopping potentials are plotted as a function of the frequency of the incident light, and a linear fit is performed. The slope and the intercept of the line allow one to respectively evaluate the ratio h / e and the ratio W / e , where W is the work function of the photocathode. (paper)

  8. Performance of a C4F8O gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes

    International Nuclear Information System (INIS)

    Artuso, M.; Boulahouache, C.; Blusk, S.; Butt, J.; Dorjkhaidav, O.; Menaa, N.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J.C.; Zhang, K.

    2006-01-01

    We report on tests of a novel ring imaging Cherenkov (RICH) detection system consisting of a 3-m-long gaseous C 4 F 8 O radiator, a focusing mirror, and a photon detector array based on Hamamatsu multi-anode photomultiplier tubes. This system was developed to identify charged particles in the momentum range from 3 to 70GeV/c for the BTeV experiment

  9. Demonstration and evaluation of solid state photomultiplier tube for uranium exploration instrumentation. National uranium resources evaluation. Final report

    International Nuclear Information System (INIS)

    Polichar, R.M.

    1982-06-01

    The purpose of this program has been to evaluate the recently developed solid state photomultiplier tube (SSPMT) technology as a potential improvment to future uranium exploration instrumentation. To this end, six SSPMTs have been constructed and evaluated in a manner similar to that of conventional phototubes. Special regard has been placed on the measurement of pulse height resolution and the factors that affect it in tube design and manufacture. The tubes were subjected to a number of tests similar to those performed on conventional photomultiplier tubes. The results indicate that good, high-resolution spectra can be obtained from the tubes and that they behave generally in a predictable manner. They exhibited a linear gain increase with applied potential. They show only slight dependence of performance with applied potential. Their sensitivity is, for the most part, uniform and predictable. However, several characteristics were found that were not predictable. These include a general drop in measured quantum efficiency, a worsening resolution with operation, and a bump in the sensitivity curve corresponding to the shape of the projected dimension of the anode. The SSPMT remains an attractive new technology in gamma-ray spectroscopy, and promises to make significant improvements in the area of uranium exploration instrumentation. 16 figures, 5 tables

  10. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    International Nuclear Information System (INIS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerda, Joaquin; Sebastia, Angel; Benlloch, Jose M.

    2007-01-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme

  11. Analysis of single-photon time resolution of FBK silicon photomultipliers

    International Nuclear Information System (INIS)

    Acerbi, Fabio; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-01-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm 2 and 3×3 mm 2 SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution

  12. Analysis of single-photon time resolution of FBK silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Acerbi, Fabio, E-mail: acerbi@fbk.eu; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-07-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm{sup 2} and 3×3 mm{sup 2} SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution.

  13. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, V.; Allison, L.; Barber, C.; Cao, T.; Ilieva, Y.; Jin, K.; Kalicy, G.; Park, K.; Ton, N.; Zheng, X.

    2016-08-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ~100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  14. Design and testing of a magnetic shield for the Thomson scattering photomultiplier tubes in the stray fields of the ERASMUS tokamak

    International Nuclear Information System (INIS)

    Desoppere, E.; Van Oost, G.

    1983-01-01

    A multiple coaxial shield system has been designed for the photomultiplier tubes of the ERASMUS tokamak Thomson scattering diagnostic. A stray field of 75 x 10 -4 T was reduced to 0.01 x 10 -4 T for a field parallel to the tube axis, and to 0.03 x 10 -4 T for a perpendicular field

  15. Preparatory Study of Photomultiplier Tubes of 10-inch and 3-inch Diameter for KM3NeT Underwater Neutrino Telescope

    International Nuclear Information System (INIS)

    Aiello, S.; Giordano, V.; Leonora, E.

    2015-01-01

    Large area photomultipliers are widely used in neutrino and astro-particle detectors to measure Cherenkov light in media like water or ice. The key element of these detectors are the so-called 'optical module', which consists of a photodetector enclosed in a transparent pressure-resistant container to protect it and ensure good light transmission. KM3NeT collaboration aims to construct an underwater 'hybrid' neutrino telescope by using two models detection unit. The 'tower' detection unit will be composed of large area 10-inch photomultipliers tube enclosed into 13-inch glass vessel sphere. In the 'string' detection unit instead, the light detector will be the 'digital optical module' (DOM) a glass vessel of 17-inch with 31 photomultipliers of 3- inch diameter looking upwards and downwards. The choice of two different kinds of photomultipliers, obliges us to investigate their main characteristics. Noise pulses at the anode of each photomultiplier strongly affect the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, pre-pulses, delayed pulses, and after-pulses. The contribution to noise pulses due to the presence of the external glass vessels was also studied. Moreover the presence of the Earth's magnetic field should modify quantities like gain and transit time spread in photomultipliers and we will deeply investigate on this. (authors)

  16. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    International Nuclear Information System (INIS)

    Liu, Z.; Pizzichemi, M.; Ghezzi, A.; Paganoni, M.; Gundacker, S.; Auffray, E.; Lecoq, P.

    2016-01-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  17. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  18. New method for evaluating effective recovery time and single photoelectron response in silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Grodzicka, Martyna, E-mail: m.grodzicka@ncbj.gov.pl; Szczęśniak, Tomasz; Moszyński, Marek; Szawłowski, Marek; Grodzicki, Krystian

    2015-05-21

    The linearity of a silicon photomultiplier (SiPM) response depends on the number of APD cells and its effective recovery time and it is related to the intensity and duration of the detected light pulses. The aim of this study was to determine the effective recovery time on the basis of the measured SiPM response to light pulses of different durations. A closer analysis of the SiPM response to the light pulses shorter than the effective recovery time of APD cells led to a method for the evaluation of the single photoelectron response of the devices where the single photoelectron peak cannot be clearly measured. This is necessary in the evaluation of the number of fired APD cells (or the number of photoelectrons) in measurements with light pulses of various durations. Measurements were done with SiPMs manufactured by two companies: Hamamatsu and SensL.

  19. An exact formula to describe the amplification process in a photomultiplier tube

    International Nuclear Information System (INIS)

    Rademacker, Jonas

    2002-01-01

    An analytical function is derived that exactly describes the amplification process due to a series of discrete, Poisson-like amplifications like those in a photo multiplier tube (PMT). A numerical recipe is provided that implements this function as a computer program. It is shown how the program can be used as the core element of a faster, simplified routine to fit PMT spectra with high efficiency. The functionality of the method is demonstrated by fitting both, Monte Carlo generated and measured PMT spectra

  20. Silicon photomultiplier as a detector of Cherenkov photons

    International Nuclear Information System (INIS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Krizan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-01-01

    A novel photon detector-i.e. the silicon photomultiplier-whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency

  1. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes.

    Science.gov (United States)

    Lee, Chan Mi; Il Kwon, Sun; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Hong, Seong Jong; Lee, Jae Sung

    2012-01-07

    The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain nonuniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MAPMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.

  2. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinenghi, E., E-mail: edoardo.martinenghi@polimi.it; Di Sieno, L.; Contini, D.; Dalla Mora, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Sanzaro, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-07-15

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm{sup 2} together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  3. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    International Nuclear Information System (INIS)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Dalla Mora, A.; Sanzaro, M.; Pifferi, A.

    2016-01-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm"2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  4. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  5. The photomultiplier handbook

    CERN Document Server

    Wright, A G

    2017-01-01

    Photomultipliers are extremely sensitive light detectors that can detect single photons. In multiplying the charge produced by incident light by up to 100 million times, these devices are essential to a wide range of functions, from medical instrumentation to astronomical observations. This complete and authoritative guide will provide students, practitioners, and researchers with a deeper understanding of the operating principles of these devices. Authored by an experienced user and manufacturer of photomultipliers, this handbook gives the reader insights into photomultiplier behaviour as a means to optimize performance. Diffuse and low level light sources are best served with a photomultiplier for the detection of single photon emissions. Light detection and electron multiplication are statistical in nature and the mathematics of these processes is derived from first principles. The book covers other related topics such as scintillation counting, light guides, and large area detectors. The usually complicat...

  6. Plasma rotation measurement in small tokamaks using an optical spectrometer and a single photomultiplier as detector.

    Science.gov (United States)

    Severo, J H F; Nascimento, I C; Kuznetov, Yu K; Tsypin, V S; Galvão, R M O; Tendler, M

    2007-04-01

    The method for plasma rotation measurement in the tokamak TCABR is reported in this article. During a discharge, an optical spectrometer is used to scan sequentially spectral lines of plasma impurities and spectral lines of a calibration lamp. Knowing the scanning velocity of the diffraction grating of the spectrometer with adequate precision, the Doppler shifts of impurity lines are determined. The photomultiplier output voltage signals are recorded with adequate sampling rate. With this method the residual poloidal and toroidal plasma rotation velocities were determined, assuming that they are the same as those of the impurity ions. The results show reasonable agreement with the neoclassical theory and with results from similar tokamaks.

  7. A position sensitive detector using a NaI(Tl)/photomultiplier tube combination for the energy range 200 keV to 10 MeV

    International Nuclear Information System (INIS)

    Court, A.J.; Dean, A.J.; Yearworth, M.; Younis, F.; Chiappetti, L.; Perotti, F.; Villa, G.; Ubertini, P.; La Padula, C.

    1988-01-01

    The performance of the position sensitive detector for the ZEBRA low energy gamma-ray imaging telescope is described. The detector consists of 9 position sensitive NaI(Tl) elements each 5.8x5.0x56.0 cm viewed at either end of the long axis by 2 in. photomultiplier tubes. The total active area is 2470 cm 2 with an average positional resolution of 2.1 cm and energy resolution of 15% FWHM at 661.6 keV. The method of flight calibration is described together with the provision within the on-board electronics to correct for sources of error in the calculation of event energy loss and position. The results presented are obtained from the calibration phase of the ZEBRA telescope project. (orig.)

  8. A model for the Global Quantum Efficiency for a TPB-based wavelength-shifting system used with photomultiplier tubes in liquid argon in MicroBooNE

    Science.gov (United States)

    Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.

    2018-02-01

    We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.

  9. Geneva University - Silicon photomultiplier : features and applications

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 7 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 SILICON PHOTOMULTIPLIER : FEATURES AND APPLICATIONS Dr Giulio SARACINO   University of Naples, Federico II   Silicon photomultipliers were developed about ten years ago and their use, unlike traditional photomultiplier tubes, is increasing more and more. They are an evolution of the avalanche photodiode working in Geiger mode regime. Hundreds of such diodes are connected in parallel, allowing single photon response, high detection efficiency, high gain at low bias voltage and very good timing performance. In spite of their Geiger regime, they can be considered linear devices, until the number of photon...

  10. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  11. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  12. Timing coincidence studies with fast photomultipliers

    International Nuclear Information System (INIS)

    Raoof, M.A.; Raoof, S.A.

    1981-01-01

    The time response of RCA C70045D photomultipliers was studied using a subnanosecond light flasher. The tubes, which have an output rise time of approximately 0.5 ns, were used in coincidence to study the variations in the fwhm of the time spectrum over a certain dynamic range of pulse amplitudes for both leading edge and constant fraction discrimination. A comparison has also been made for the measured time resolutions with some of the other fast photomultipliers. (orig.)

  13. The dynamic single-tube concept; Le mono-tube dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivet, P. [Ste MC International (France)

    1997-12-31

    In the framework of greenhouse gas emission reduction and the utilization of cooling intermediate fluids with indirect refrigerating systems, a new concept of dynamical single-tube has been developed, which allows for the simultaneous cold distribution from a centralized plant towards various required temperature systems (as for example in a supermarket refrigerating system) with optimized efficiency, fluid flow and defrosting conditions; moreover, the dynamic single-tube concept is very well adapted to two-phase flows

  14. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  15. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  16. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  18. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier

    International Nuclear Information System (INIS)

    Lee, Min Sun; Lee, Jae Sung

    2015-01-01

    We present the first experimental evaluation of a depth-of-interaction (DOI) positron emission tomography (PET) detector using a digital silicon photomultiplier (dSiPM). To measure DOI information from a mono-layer array of scintillation crystals with a single-ended readout, our group has previously proposed and developed a new method based on light spread using triangular reflectors. Since this method relies on measurement of the light distribution, dSiPM, which has a fully digital interface, has several merits for our DOI measurement. The DOI PET detector comprised of a dSiPM sensor (DPC-3200-22-44) coupled with a 14   ×   14 array of 2 mm  ×  2 mm  ×  20 mm unpolished LGSO crystals. All crystals were covered with triangular reflectors. To obtain a good performance of the DOI PET detector, several parameters of detector were selected as a preliminary experiment. Detector performance was evaluated with the selected parameters and the optimal experimental setup, and a DOI measurement was conducted by irradiating the crystal block at five DOI positions spaced at intervals of 4 mm. Maximum-likelihood estimation was employed for DOI positioning and the optimal DOI estimation scheme was also investigated in this study. As a result, the DOI PET detector showed clear crystal identification. The energy resolution (full-width at half-maximum (FWHM)) averaged over all depths was 10.21%  ±  0.15% at 511 keV, and time resolution averaged over all depths was 1198.61   ±   39.70 ps FWHM. The average DOI positioning accuracy for all depths was 74.22%  ±  6.77%, which equates to DOI resolution of 4.67 mm. Energy and DOI resolutions were uniform over all crystal positions except for the back parts of the array. Furthermore, additional simulation studies were conducted to verify the results of our DOI measurement method that is combined with dSiPM technology. In conclusion, our continuous DOI PET detector

  19. Photomultiplier gain stabilisation

    International Nuclear Information System (INIS)

    Le Baud, P.; Sautiez, B.

    1958-07-01

    By the control and adjustment of magnetic deflection applied to the electron beam of a photomultiplier it has proved possible to flatten the gain curve, forming plateaux at levels dependent upon the voltage at intake. It should be possible to add this simple device to most photomultipliers on the market today. (author) [fr

  20. Characterization of New-Generation Silicon Photomultipliers for Nuclear Security Applications

    Directory of Open Access Journals (Sweden)

    Wonders Marc A.

    2018-01-01

    Full Text Available Silicon photomultipliers have received a great deal of interest recently for use in applications spanning a wide variety of fields, including nuclear safeguards and nonproliferation. For nuclear-related applications, the ability of silicon photomultipliers to discriminate neutrons from gamma rays using pulse shape discrimination when coupled with certain organic scintillators is a characteristic of utmost importance. This work reports on progress characterizing the performance of twenty different silicon photomultipliers from five manufacturers with an emphasis on pulse shape discrimination performance and timing. Results are presented on pulse shape discrimination performance as a function of overvoltage for 6-mm x 6-mm silicon photomultipliers, and the time response to stilbene is characterized for silicon photomultipliers of three different sizes. Finally, comparison with a photomultiplier tube shows that some new-generation silicon photomultipliers can perform as well as photomultiplier tubes in neutron-gamma ray discrimination.

  1. Characterization of New-Generation Silicon Photomultipliers for Nuclear Security Applications

    Science.gov (United States)

    Wonders, Marc A.; Chichester, David L.; Flaska, Marek

    2018-01-01

    Silicon photomultipliers have received a great deal of interest recently for use in applications spanning a wide variety of fields, including nuclear safeguards and nonproliferation. For nuclear-related applications, the ability of silicon photomultipliers to discriminate neutrons from gamma rays using pulse shape discrimination when coupled with certain organic scintillators is a characteristic of utmost importance. This work reports on progress characterizing the performance of twenty different silicon photomultipliers from five manufacturers with an emphasis on pulse shape discrimination performance and timing. Results are presented on pulse shape discrimination performance as a function of overvoltage for 6-mm x 6-mm silicon photomultipliers, and the time response to stilbene is characterized for silicon photomultipliers of three different sizes. Finally, comparison with a photomultiplier tube shows that some new-generation silicon photomultipliers can perform as well as photomultiplier tubes in neutron-gamma ray discrimination.

  2. The single chest tube versus double chest tube application after pulmonary lobectomy: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Xuefei Zhang

    2016-01-01

    Conclusion: Compared with the double chest tube, the single chest tube significantly decreases amount of drainage, duration of chest tube drainage, pain score, the number of patients who need thoracentesis, and cost. Although there is convincing evidence to confirm the results mentioned herein, they still need to be confirmed by large-sample, multicenter, randomized, controlled trials.

  3. Advances in gas avalanche photomultipliers

    CERN Document Server

    Breskin, Amos; Buzulutskov, A F; Chechik, R; Garty, E; Shefer, G; Singh, B K

    2000-01-01

    Gas avalanche detectors, combining solid photocathodes with fast electron multipliers, provide an attractive solution for photon localization over very large sensitive areas and under high illumination flux. They offer single-photon sensitivity and the possibility of operation under very intense magnetic fields. We discuss the principal factors governing the operation of gas avalanche photomultipliers. We summarize the recent progress made in alkali-halide and CVD-diamond UV-photocathodes, capable of operation under gas multiplication, and novel thin-film protected alkali-antimonide photocathodes, providing, for the first time, the possibility of operating gas photomultipliers in the visible range. Electron multipliers, adequate for these photon detectors, are proposed and some applications are briefly discussed.

  4. Practical acoustic thermometry with twin-tube and single-tube sensors

    Energy Technology Data Exchange (ETDEWEB)

    De Podesta, M.; Sutton, G.; Edwards, G.; Stanger, L.; Preece, H. [National Physical Laboratory, Teddington, (United Kingdom)

    2015-07-01

    Accurate measurement of high temperatures in a nuclear environment presents unique challenges. All secondary techniques inevitably drift because the thermometric materials in thermocouples and resistance sensors are sensitive not just to temperature, but also their own chemical and physical composition. The solution is to use primary methods that rely on fundamental links between measurable physical properties and temperature. In the nuclear field the best known technique is the measurement of Johnson Noise in a resistor (See Paper 80 at this conference). In this paper we describe the measurement of temperature in terms of the speed of sound in a gas confined in a tube - an acoustic waveguide. Acoustic thermometry is the most accurate technique of primary thermometry ever devised with the best uncertainty of measurement below 0.001 C. In contrast, the acoustic technique described in this work has a much larger uncertainty, approximately 1 deg. C. But the cost and ease of use are improved by several orders of magnitude, making implementation eminently practical. We first describe the basic construction and method of operation of thermometers using twin-tubes and single tubes. We then present results using a twin-tube design showing that showing long term stability (i.e. no detectable drift) at 700 deg. C over periods of several weeks. We then outline how the technique may be developed for different nuclear applications. (authors)

  5. A single-tube screen for Salmonella and Shigella.

    Science.gov (United States)

    Procop, Gary W; Wallace, Jacqueline D; Tuohy, Marion J; Lasalvia, Margret M; Addison, Rachel M; Reller, L Barth

    2008-08-01

    Salmonella and Shigella species are routinely sought in stool specimens submitted for culture. It is a common practice to screen lactose-negative colonies by using triple sugar iron agar, lysine iron agar, and Christensen urea agar to determine if further identification is necessary. We designed and evaluated a novel combination of media, which are layered in a single tube, for screening isolates suspected to possibly represent Salmonella or Shigella. We tested this media combination with 106 Salmonella, 56 Shigella, and 56 other gram-negative bacilli. All Salmonella and Shigella isolates tested were appropriately characterized as possible Salmonella or Shigella by using an algorithm developed for use with this media combination. Similarly, 53 (95%) of 56 other gram-negative bacilli were appropriately screened as non -Salmonella and non -Shigella isolates. This unique media combination provides the most important biochemical reactions needed to screen for Salmonella and Shigella in a single-tube format, which decreases labor by two thirds (ie, 1 tube is inoculated vs 3).

  6. Tests of crossed-wire position sensitive photomultipliers for scintillating fiber particle tracking

    International Nuclear Information System (INIS)

    Perdrisat, C.F.; Koechner, D.; Majewski, S.; Pourang, R.; Wilson, C.D.; Zorn, C.

    1995-01-01

    Several applications of two Hamamatsu position sensitive photomultiplier tubes to the detection of high energy particles with scintillating fibers are discussed. The PMTs are of the multiwire anode grid design, type R2486 and R4135. These tubes were tested with both single samples and arrays of 2 and 3 mm diameter scintillating fibers. Measurements of position resolution of the PMTs using either the charge digitization or the delay line readout techniques were made. The results indicate an intrinsic inability of the technique to reconstruct the actual position of a fiber on the photocathode when its location falls halfway between two grid wires. A way to overcome this limit is suggested. (orig.)

  7. Condensation heat transfer of steam on a single horizontal tube

    Science.gov (United States)

    Graber, K. A.

    1983-06-01

    An experimental apparatus was designed, constructed and instrumented in an effort to systematically and carefully study the condensation heat-transfer coefficient on a single, horizontal tube. A smooth, thick-walled copper tube of length 133.5 mm, with an outside diameter of 15.9 mm and an inside diameter of 12.7 mm was instrumented with six wall thermocouples. The temperature rise across the test section was measured accurately using quartz crystal thermometers. The inside heat-transfer coefficient was determined using the Sieder-Tate correlation with leading coefficient of 0.029. Initial steam side data were taken at atmospheric pressure to test the data acquisition/reduction computer programs.

  8. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  9. Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

    Science.gov (United States)

    Aspinall, Michael D.; Jones, Ashley R.

    2018-01-01

    Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

  10. First characterization of the SPADnet sensor: a digital silicon photomultiplier for PET applications

    Science.gov (United States)

    Gros-Daillon, E.; Maingault, L.; André, L.; Reboud, V.; Verger, L.; Charbon, E.; Bruschini, C.; Veerappan, C.; Stoppa, D.; Massari, N.; Perenzoni, M.; Braga, L. H. C.; Gasparini, L.; Henderson, R. K.; Walker, R.; East, S.; Grant, L.; Jatekos, B.; Lorincz, E.; Ujhelyi, F.; Erdei, G.; Major, P.; Papp, Z.; Nemeth, G.

    2013-12-01

    Silicon Photomultipliers have the ability to replace photomultiplier tubes when used as light sensors in scintillation gamma-ray detectors. Their timing properties, compactness, and magnetic field compatibility make them interesting for use in Time-of-Flight Magnetic Resonance Imaging compatible Positron Emission Tomography. In this paper, we present a new fully digital Single Photon Avalanche Diode (SPAD) based detector fabricated in CMOS image sensor technology. It contains 16x8 pixels with a pitch of 610x571.2 μm2. The Dark Count Rate and the Photon Detection Probability of each SPAD has been measured and the homogeneity of these parameters in the entire 92000 SPAD array is shown. The sensor has been optically coupled to a single LYSO needle and a LYSO array. The scintillator crystal was irradiated with several gamma sources and the resulting images and energy spectra are presented.

  11. Photomultiplier tube artifacts on 67Ga-citrate imaging caused by loss of correction floods due to an off-peak status of one head of a dual-head γ-camera.

    Science.gov (United States)

    Glaser, Joseph E; Song, Na; Jaini, Sridivya; Lorenzo, Ruth; Love, Charito

    2012-12-01

    γ-cameras use flood-field corrections to ensure image uniformity during clinical imaging. A loss or corruption of the correction data of one head of a dual-head camera can result in an off-peak artifactual appearance. We present our experience with the occurrence of such an incident on a (67)Ga scan. A patient was referred for a whole-body (67)Ga scan to evaluate for causes of neutropenic fever. Whole-body planar and static images of the head, chest, abdomen, pelvis, and lower extremities in multiple projections were obtained. Whole-body images showed decreased image quality on the anterior view obtained with detector 1 and an unremarkable posterior image obtained with detector 2. A problem with detector 2 was suspected, and additional static images were obtained after rotation of the detector heads. The posterior images taken with detector 1 showed photomultiplier tube outlines. The anterior images taken with detector 2 showed improved count and image quality. It was later found that the uniformity map for detector 2 had been lost and that this software malfunction led to the resulting imaging problem. When artifacts with an off-peak appearance are seen on scintigraphic images, evaluation of possible causes should include not only isotope window settings but also an incorrect or corrupted uniformity map.

  12. Future photomultiplier assemblies and associated electrons in large experiments

    International Nuclear Information System (INIS)

    Duteil, P.; Hammarstroem, R.; Innocenti, P.G.; Michelini, A.; Smith, B.; Soso, F.

    1977-01-01

    The results are presented of a working group study on reducing costs of proposed counter experiments in high-energy physics where several thousand photomultipliers are involved. Photomultiplier design is briefly discussed and new designs are presented for tube housings and high-voltage supplies. An outline presentation is given of a simplified electronics system, based on the Eurocard, for fast logic, data handling, and associated power supplies, suitable for photomultipliers or wire counters. Substantial savings in cost are shown to be possible without affecting performance but with some loss in convenience. (Auth.)

  13. Single-tube library preparation for degraded DNA

    DEFF Research Database (Denmark)

    Carøe, Christian; Gopalakrishnan, Shyam; Vinner, Lasse

    2018-01-01

    these obstacles and enable higher throughput are therefore of interest to researchers working with degraded DNA. 2.In this study, we compare four Illumina library preparation protocols, including two “single-tube” methods developed for this study with the explicit aim of improving data quality and reducing...... of chemically damaged and highly fragmented DNA molecules. In particular, the enzymatic reactions and DNA purification steps during library preparation can result in DNA template loss and sequencing biases, affecting downstream analyses. The development of library preparation methods that circumvent...... preparation time and expenses. The methods are tested on grey wolf (Canis lupus) museum specimens. 3.We found single-tube protocols increase library complexity, yield more reads that map uniquely to the reference genome, reduce processing time, and may decrease laboratory costs by 90%. 4.Given the advantages...

  14. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Bohner, G.; Cornat, R.; Deschamps, O.; Lecoq, J.; Monteil, S.; Perret, P.

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two-radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch-crossing frequency. A special Read Out electronics including perfect 40 MHz integrators able to shape fluctuating photomultiplier pulses has been designed, and successfully realized. The temporal shape of photomultiplier pulse and the upstream Read Out system for preshower are described in this document

  15. Charge reconstruction in large-area photomultipliers

    Science.gov (United States)

    Grassi, M.; Montuschi, M.; Baldoncini, M.; Mantovani, F.; Ricci, B.; Andronico, G.; Antonelli, V.; Bellato, M.; Bernieri, E.; Brigatti, A.; Brugnera, R.; Budano, A.; Buscemi, M.; Bussino, S.; Caruso, R.; Chiesa, D.; Corti, D.; Dal Corso, F.; Ding, X. F.; Dusini, S.; Fabbri, A.; Fiorentini, G.; Ford, R.; Formozov, A.; Galet, G.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Insolia, A.; Isocrate, R.; Lippi, I.; Longhitano, F.; Lo Presti, D.; Lombardi, P.; Marini, F.; Mari, S. M.; Martellini, C.; Meroni, E.; Mezzetto, M.; Miramonti, L.; Monforte, S.; Nastasi, M.; Ortica, F.; Paoloni, A.; Parmeggiano, S.; Pedretti, D.; Pelliccia, N.; Pompilio, R.; Previtali, E.; Ranucci, G.; Re, A. C.; Romani, A.; Saggese, P.; Salamanna, G.; Sawy, F. H.; Settanta, G.; Sisti, M.; Sirignano, C.; Spinetti, M.; Stanco, L.; Strati, V.; Verde, G.; Votano, L.

    2018-02-01

    Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction in the case of large PE pile-up, providing an unbiased charge estimator at the permille level up to 15 detected PEs. The method is based on a signal filtering technique (Wiener filter) which suppresses the noise due to both PMT and readout electronics, and on a Fourier-based deconvolution able to minimize the influence of signal distortions—such as an overshoot. The analysis of simulated PMT waveforms shows that the slope of a linear regression modeling the relation between reconstructed and true charge values improves from 0.769 ± 0.001 (without deconvolution) to 0.989 ± 0.001 (with deconvolution), where unitary slope implies perfect reconstruction. A C++ implementation of the charge reconstruction algorithm is available online at [1].

  16. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    CERN Document Server

    Ajaltouni, Ziad J; Cornat, R; Deschamps, O; Lecoq, J; Monteil, S; Perret, P

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two- radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch- crossing frequency. A special Read...

  17. Single chest tube drainage is superior to double chest tube drainage after lobectomy: a meta-analysis.

    Science.gov (United States)

    Zhou, Dong; Deng, Xu-Feng; Liu, Quan-Xing; Chen, Qian; Min, Jia-Xin; Dai, Ji-Gang

    2016-05-27

    In this meta-analysis, we conducted a pooled analysis of clinical studies comparing the efficacy of single chest tube versus double chest tube after a lobectomy. According to the recommendations of the Cochrane Collaboration, we established a rigorous study protocol. We performed a systematic electronic search of the PubMed, Embase, Cochrane Library and Web of Science databases to identify articles to include in our meta-analysis. A literature search was performed using relevant keywords. A meta-analysis was performed using RevMan© software. Five studies, published between 2003 and 2014, including 630 patients (314 patients with a single chest tube and 316 patients with a double chest tube), met the selection criteria. From the available data, the patients using a single tube demonstrated significantly decreased postoperative pain [weighted mean difference [WMD] -0.60; 95 % confidence intervals [CIs] -0.68-- 0.52; P tube after a pulmonary lobectomy. However, there were no significant differences in postoperative complications [OR 0.91; 95 % CIs 0.57-1.44; P = 0.67] and re-drainage rates [OR 0.81; 95 % CIs 0.42-1.58; P = 0.54]. Our results showed that a single-drain method is effective, reducing postoperative pain, hospitalization times and duration of drainage in patients who undergo a lobectomy. Moreover, the single-drain method does not increase the occurrence of postoperative complications and re-drainage rates.

  18. Light hydrogen isotopes in the single - walled carbon nano tube

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Sultanov, R.A.; Guster, D.

    2007-01-01

    Full text: Progress of our understanding of the molecular hydrogen behavior in the nano tube interior open an intriguing possibility for the applications of these knowledge's to the solution of the hydrogen storage problem and light isotopes gas selectivity. That can strongly change the situation at the energy production in the world and completely change our civil life. These investigations underline the influence of the quantum effects on the properties of molecular hydrogen in the nano tube interior and it leads to the pure quantum-mechanical reformulation of the problem for the hydrogen behavior inside carbon nano tube as a problem of molecular quantum system behavior in the external field induced by the regular nano tube surface. In the present paper the molecular hydrogen behavior in the carbon nano tube was considered in the simple quantum mechanical manner. The main attention was paid to the investigation of the quantum sieving selectivity in the dependence of nano tube composition, radius and symmetry properties. For the interaction potential between hydrogen and nano tube surface was taken some phenomenological LJ(12,6) - (Lennard - Jones) potential and the external field induced by the nano tube in its interior is considered as a simple sum over the all nano tube carbon atoms. Influence of the structure of rotation (vibration) spectrum of the energy levels of diatomic molecules, such as H 2 , HD and D 2 on the final results and finite size of the nano tube along the axis of symmetry, its boundary effects is discussed in details. Thermal oscillations of nano tube surface were considered separately in the dependence of the temperature gradient along of the axis of symmetry

  19. Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope

    NARCIS (Netherlands)

    Aiello, S.; Akrame, S.E.; Amélineau, F.; Anassontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi; Anton, G.; Ardid, M.; Aublin, J.; Avgitas, T.; Baars, M.; Bagatelas, C.; Barbarino, G.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Biagi, S.; Biagioni, A.; Biernoth, C.; Bormuth, R.; Boumaaza, J.; Bourret, S.; Bouwhuis, M.; Bozza, C.; Brânzas, H.; Briukhanova, N.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R,; Busto, J.; Calvo, D.; Capone, A.; Caramete, L.; Celli, S.; Chabab, M.; Cherubini, S.; Chiarella, V.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coelho, J.A.B.; Coleiro, A.; Molla, M.C.; Coniglione, R.; Coyle, P.; Creusot, A.; Cuttone, G.; D’Onofrio, A.; Dallier, R.; De Sio, C.; Di Palma, I.; Díaz, A.F.; Distefano, C.; Domi, A.; Donà, R.; Donzaud, C.; Dornic, D.; Dörr, M.; Durocher, M.; Eberl, T.; Van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Ferrara, G.; Fusco, L.A.; Gal, T.; Garufi, F.; Gauchery, S.; Geißelsöder, S.; Gialanella, L.; Giorgio, E.; Giuliante, A.; Gozzini, S.R.; Gracia-Ruiz, R.; Graf, K.; Grasso, D.; Grégoire, T.; Grella, G.; Hallmann, S.; van Haren, H.; Heid, T.; Heijboer, A.; Hekalo, A.; Hernandez-Rey, J.J.; Hofestädt, J.; Illuminati, G.; James, C.W.; Jongen, M.; Jongewaard, B.; de Jong, M.; de Jong, P.; Kadler, M.; Kalaczynski, P.; Kalekin, O.; Katz, U.F.; Khan Chowdhury, N.R.; Kieft, G.; Kießling, D.; Koffeman, E.N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Le Breton, A.; Leone, F.; Leonora, E.; Levi, G.; Lincetto, M.; Lonardo, A.; Longhitano, F.; Lotze, M.; Loucatos, S.; Maggi, G.; Manczak, J.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Markou, C.; Martin, L.; Martínez-Mora, J.A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K.W.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Mollo, C.M.; Morganti, M.; Moser, M.; Moussa, A.; Muller, R.; Musumeci, M.; Nauta, L.; Navas, S.; Nicolau, C.A.; Nielsen, C.; Organokov, M.; Orlando, A.; Panagopoulos, V.; Papalashvili, G.; Papaleo, R.; Pavalas, G.E.; Pellegrini, G.; Pellegrino, C.; Pérez Romero, J.; Perrin-Terrin, M.; Piattelli, P.; Pikounis, K.; Pisanti, O.; Poirè, C.; Polydefki, G.; Poma, G.E.; Popa, V.; Post, M.; Pradier, T.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Raffaelli, F.; Randazzo, N.; Razzaque, S.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Richer, M.; Rovelli, A.; Salvadori, I.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Schermer, B.; Sciacca, V.; Seneca, J.; Sgura, I.; Shanidze, R.; Sharma, A.; Simeone, F.; Sinopoulou, A.; Spisso, B.; Spurio, M.; Stavropoulos, D.; Steijger, J.; Stellacci, S.M.; Strandberg, B.; Stransky, D.; Stüven, T.; Taiuti, M.; Tatone, F.; Tayalati, Y.; Tenllado, E.; Thakore, T.; Timmer, P.; Trovato, A.; Tsagkli, S.; Tzamariudaki, E.; Tzanetatos, D.; Valieri, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Viola, S.; Vivolo, D.; Volkert, M.; de Waardt, L.; Wilms, J.; de Wolf, E.; Zaborov, D.; Zornoza, J.D.; Zúñiga, J.

    2018-01-01

    The Hamamatsu R12199-02 3-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley

  20. Fast photomultiplier ELUP 151

    International Nuclear Information System (INIS)

    Andreeva, L.I.; Belokon', V.A.; Krasin, E.V.

    1992-01-01

    High-velocity photomultiplier is described. The latter is recommended to be used in nuclear physics, plasma physics, nuclear medical diagnostics and at measurement of fast-occurring process parameters. Main specifications are as follows: range of spectral sensitivity - 0.2-0.7 μm; limit of dinamic characteristic linearity - up to 5A; dark current at +20 deg C ambient temperature - maximum 10-8A, time of anode pulse growth - maximum 8 ns; photocathode quantum yield in the maximum of spectral characteristic (λ max =380-420 nm) - 24-26%; supply voltage - 4-5 kV

  1. A new VME-based high voltage power supply for large photomultiplier systems

    International Nuclear Information System (INIS)

    Neumaier, S.; Hubbeling, T.; Kolb, B.W.; Purschke, M.L.; Ippolitov, M.; Blume, C.; Bohne, E.M.; Bucher, D.; Claussen, A.; Peitzmann, T.; Schepers, G.; Schlagheck, H.

    1995-01-01

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  2. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  3. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  4. A method to stabilise the performance of negatively fed KM3NeT photomultipliers

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Mariš, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Paolucci, A.; Papaikonomou, A.; Papaleo, R.; Păvălaš, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Töonnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.

    2016-12-01

    The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.

  5. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Wang Meng

    2011-01-01

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  6. Strength and Stability Analysis of a Single Walled Black Phosphorus Tube under Axial Compression

    OpenAIRE

    Cai, Kun; Wan, Jing; Wei, Ning; Qin, Qinghua

    2016-01-01

    Few-layered black phosphorus materials recently attract much attention due to its special electronic properties. As a Consequence, the nano-tube from a single-layer black phosphorus has been theoretically built. The corresponding electronic properties of such black phosphorus nano-tube were also evaluated numerically.

  7. Compact, single-tube scanning tunneling microscope with thermoelectric cooling.

    Science.gov (United States)

    Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex

    2013-10-01

    We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.

  8. A new detector concept for silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Ahmadov, F.; Ahmadov, G. [National Nuclear Research Center, Baku (Azerbaijan); Ariffin, A.; Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada); Madatov, R. [Institute of Radiation Problems, Baku (Azerbaijan)

    2016-07-11

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  9. Simulation of Silicon Photomultiplier Signals

    Science.gov (United States)

    Seifert, Stefan; van Dam, Herman T.; Huizenga, Jan; Vinke, Ruud; Dendooven, Peter; Lohner, Herbert; Schaart, Dennis R.

    2009-12-01

    In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The discharge of a single microcell is relatively well understood and electronic models exist to simulate this process. In this paper we introduce an extended model that is able to simulate the simultaneous discharge of multiple cells. This model is used to predict the SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier. The model predicts that the electronic signal is not proportional to the number of fired cells if the preamplifier input impedance is not zero. This effect becomes more important for SiPMs with lower parasitic capacitance (which otherwise is a favorable property). The model is validated by comparing its predictions to experimental data obtained with two different SiPMs (Hamamatsu S10362-11-25u and Hamamatsu S10362-33-25c) illuminated with ps laser pulses. The experimental results are in good agreement with the model predictions.

  10. Effects of Two Purification Pretreatments on Electroless Copper Coating over Single-Walled Carbon Nano tubes

    International Nuclear Information System (INIS)

    Zheng, Z.; Li, L.; Dong, Sh.; Li, Sh.; Xiao, A.; Sun, Sh.

    2014-01-01

    To achieve the reinforcement of copper matrix composite by single-walled carbon nano tubes, a three-step-refluxing purification of carbon nano tubes sample with HNO 3 -NaOH-HCl was proposed and demonstrated. A previously reported purification process using an electromagnetic stirring with H 2 O 2 /HCl mixture was also repeated. Then, the purified carbon nano tubes were coated with copper by the same electroless plating process. At the end, the effects of the method on carbon nano tubes themselves and on copper coating were determined by transmission electron microscope spectroscopy, scanning electron microscope spectroscopy, X-ray diffractometry, thermogravimetric analysis, Fourier transformed infrared spectroscopy, and energy dispersive spectrometry. It was clearly confirmed that both of the two processes could remove most of iron catalyst particles and carbonaceous impurities without significant damage to carbon nano tubes. The thermal stability of the sample purified by H 2 O 2 /HCl treatment was slightly higher than that purified by HNO 3 -NaOH-HCl treatment. Nevertheless, the purification by HNO 3 -NaOH-HCl treatment was more effective for carboxyl functionalization on nano tubes than that by H 2 O 2 /HCl treatment. The Cu-coating on carbon nano tubes purified by both purification processes was complete, homogenous, and continuous. However, the Cu-coating on carbon nano tubes purified by H 2 O 2 /HCl was oxidized more seriously than those on carbon nano tubes purified by HNO 3 -NaOH-HCl treatment.

  11. 2D modeling of moderator flow and temperature distribution around a single channel after pressure tube/calandria tube contact

    International Nuclear Information System (INIS)

    Behdadi, A.; Luxat, J.C.

    2009-01-01

    A 2D computational fluid dynamics (CFD) model has been developed to calculate the moderator velocity field and temperature distribution around a single channel inside the moderator of a CANDU reactor after a postulated ballooning deformation of the pressure tube (PT) into contact with the calandria tube (CT). Following contact between the hot PT and the relatively cold CT, there is a spike in heat flux to the moderator surrounding the CT which may lead to sustained CT dryout. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in thermal creep strain deformation. The present research is focused on establishing the limits for dryout occurrence on the CTs for the situation in which pressure tube-calandria tube contact occurs. In order to consider different location of the channels inside the calandria, both upward and downward flow directions have been analyzed. The standard κ - ε turbulence model associated with logarithmic wall function is applied to predict the effects of turbulence. The governing equations are solved by the finite element software package COMSOL. The buoyancy driven natural convection on the outer surface of a CT has been analyzed to predict the flow and temperature distribution around the single CT considering the local moderator subcooling, wall temperature and heat flux. The model also shows the effect of high CT temperature on the flow and subcooling around the CTs at higher/lower elevation depending on the flow direction in the domain. According to the flow pattern and temperature distribution, it is predicted that stable film boiling generates in the stagnation region on the cylinder. (author)

  12. Photomultiplier protector for a fluorometer

    International Nuclear Information System (INIS)

    Priarone, P.; St John, P.A.

    1982-01-01

    The photometer is adapted for sensing radiation emitted by a chemical sample held in a cuvette received in a first compartment and includes a highly sensitive photomultiplier in a second compartment adjacent the first compartment for detecting fluorescent radiation emitted by the chemical sample and passing through an opening between the compartments. A mechanical protector assembly is provided for protecting the photomultiplier from ambient light and includes a movable light shield movable between a first position blocking the opening and a second position not blocking the opening. A knob is provided for moving the light shield to the first position to protect the photomultiplier from light entering from the first compartment when the first compartment is opened for insertion or removal of a cuvette, and for moving the light shield to the second position not blocking the opening to permit radiation emitted by the chemical sample to impinge upon the photomultiplier in the second compartment. The photometer also includes a mechanical interlocking assembly for ensuring that the first compartment cannot be opened unless the light shield is in the first position to prevent ambient light from entering the second compartment from the first compartment and reaching the photomultiplier

  13. The effect of atomic hydrogen adsorption on single-walled carbon nano tubes properties

    International Nuclear Information System (INIS)

    Jalili, S.; Majidi, R.

    2007-01-01

    We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nano tubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nano tube, the energy gap will be appeared. This is due to the degree of the Sp 3 hybridization, and the hydrogen coverage can control the band gap of the carbon nano tube

  14. Hydrogen storage in single-wall carbon nano-tubes by means of laser excitation

    International Nuclear Information System (INIS)

    Oksengorn, B.

    2010-01-01

    A new mode for hydrogen adsorption and storage in single-wall carbon nano-tubes is used, on the basis of laser excitation. Remember that this method has been useful to obtain, in the case of the fullerene C 60 , many complex C 60 -atoms or C 60 -molecules, where atoms or molecular particles are trapped inside the C 60 -molecules. We think this method might be important to store many hydrogen molecules inside carbon nano-tubes. (author)

  15. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  16. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  17. Noise in the Measurement of Light with Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-05-15

    In order to be able to compare measurements derived from the anode current of a photomultiplier with measurement derived from photoelectron pulse counting, a systematic investigation of the properties of some photomultiplier tubes has been made. This has led to a correlation of the properties of a photomultiplier based on the quantum efficiency {eta}, the gain G, a photoelectron loss factor S and an effective dark rate D. In terms of these quantities the signal to noise ratio of an experimental measurement can be calculated, given the light flux and measurement technique. The fluctuations in a photomultiplier output are divided into two parts; Poisson fluctuations, and those due to excess noise. It is experimentally shown, from measurements on a 931A photomultiplier, that the excess noise exceeds the Poisson fluctuations only at very low frequencies, or long DC measurement times (> 10 s), for both pulse counting and anode current measurements. The Poisson fluctuations are found to be approximately the same for both pulse counting and anode current measurements, at both high light levels where the dark current, or dark pulses, are negligible, as well as at low light levels where the dark current is dominant. The excess noise is found to be somewhat greater in the case of anode current measurements. Thus both pulse counting and anode current measurement techniques have nearly identical noise properties, as far as the photomultiplier is concerned, and selection of either experimental technique depends primarily on the properties of the electronic equipment. By use of a synchronous detection technique, the variance of the pulse count was measured experimentally to an accuracy of {+-} 4 %, and was shown to be in agreement with that predicted by Poisson statistics.

  18. An amplifier for VUV photomultiplier operating in cryogenic environment

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; D'Inzeo, M.; Franchi, G.; Pazos Clemens, L.

    2016-01-01

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  19. An amplifier for VUV photomultiplier operating in cryogenic environment

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); D' Inzeo, M.; Franchi, G. [Age Scientific srl – Capezzano Pianore (Italy); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates)

    2016-07-11

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  20. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  1. Comparative study of new 130mm diameter fast photomultipliers for neutron detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Costa, G.J.; Guillaume, G.; Heusch, B.; Huck, A.; Mouatassim, S.

    1991-01-01

    The present paper is a summary of the test measurements carried out using new 130 mm diameter fast photomultiplier tubes manufactured by Philips (France), EMI (England) and Hamamatsu (Japan), along with a comparison to the results obtained with the well known XP 2041 Philips model. These tubes will be used in large size neutron detectors

  2. A new trend in photomultiplier techniques and its implications in future collider experiments

    International Nuclear Information System (INIS)

    Kuroda, K.

    1989-01-01

    A recent trend in photomultiplier techniques, characterized by immunity to magnetic fields and position sensitivity of modern photomultiplier tubes, would potentially have great importance in future collider experiments. This article presents a survey on the actual status of the art, and some implications of such new techniques in future high-energy experiments. As an example of applications, our recent project of constructing an ultrafast scintillating-fibre detector on the basis of upgraded position-sensitive PMTs is outlined. (orig.)

  3. Antimicrobial Activity of Single-Walled Carbon Nano tubes Suspended in Different Surfactants

    International Nuclear Information System (INIS)

    Dong, L.; Alex Henderson, A.; Field, Ch.

    2012-01-01

    We investigated the antibacterial activity of single-walled carbon nano tubes (SWCNTs) dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against Salmonella enterica, Escherichia coli, and Enterococcus faecium and thereby was used to disperse bundled SWCNTs in order to study nano tube antibiotic activity. SWCNTs exhibited antibacterial characteristics for both S. enterica and E. coli. With the increase of nano tube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5?min to 2 h. Our findings indicate that carbon nano tubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display

  4. Experimental research on single phase convection heat transfer in micro-fin tube

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Zhu Sheng

    2011-01-01

    An experimental investigation of heat transfer and flow resistance characteristics of single phase water in three micro-fin tubes with different fin height was conducted. At the same time, the efficiency of micro-fin tubes within the experimental scope was evaluated and the optimal working region was determined. Based on the experimental data in the optimal working region, correlations for predicting the heat transfer and flow resistance were also given by multiple regression method. The result indicates that the micro-fin tubes can greatly enhance the single-phase heat transfer in turbulent flow, and the increase of heat transfer coefficient is higher than the increase of flow resistance. The accuracy of the correlation is very high, of which the deviation from the experimental value is very small. (authors)

  5. Silicon Photomultiplier charaterization

    Science.gov (United States)

    Munoz, Leonel; Osornio, Leo; Para, Adam

    2014-03-01

    Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.

  6. Silicon Photomultipliers (SiPM) as novel photodetectors for PET

    International Nuclear Information System (INIS)

    Del Guerra, Alberto; Belcari, Nicola; Giuseppina Bisogni, Maria; Corsi, Francesco; Foresta, Maurizio; Guerra, Pedro; Marcatili, Sara; Santos, Andres; Sportelli, Giancarlo

    2011-01-01

    Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultipliers (SiPMs) is proposed for the construction of a 4D-PET module of 4.8x4.8 cm 2 aimed to replace the standard PMT based PET block detector. The module will be based on a LYSO continuous crystal read on two faces by Silicon Photomultipliers. A high granularity detection surface made by SiPM matrices of 1.5 mm pitch will be used for the x-y photon hit position determination with submillimetric accuracy, while a low granularity surface constituted by 16 mm 2 SiPM pixels will provide the fast timing information (t) that will be used to implement the Time of Flight technique (TOF). The spatial information collected by the two detector layers will be combined in order to measure the Depth of Interaction (DOI) of each event (z). The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Data Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities and to manage many channels. The paper describes the progress made on the development of the proof of principle module under construction at the University of Pisa.

  7. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  8. Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Hashimoto, K.; Kato, M.; Tokuda, M.

    2003-01-01

    Roč. 48, - (2003), s. 1153-1159 ISSN 1359-6462 R&D Projects: GA AV ČR IAA1048107 Institutional research plan: CEZ:AV0Z1010914 Keywords : shape memory alloys(SMAs) * martensitic phase transformation * single crystal tube * tension test * torsion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.633, year: 2003

  9. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Walia, M.; Wang, L.; Li, N.; Trindade, L.M.; Gronemeyer, H.

    2011-01-01

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts

  10. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  11. Experimental investigation of thermal-hydraulic performance of PCCS with horizontal tube heat exchangers: single U-tube test

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Anoda, Yoshinari; Arai, Kenji; Kurita, Tomohisa

    2000-01-01

    JAERI and JAPC started a cooperative study to verify performance of a PCCS (Passive Containment Cooling System) using horizontal heat exchanger for next-generation BWR in 1998. A test facility with a horizontal single U-tube was constructed in JAERI in 1999 to investigate fundamental condensation behavior under influences of non-condensable gas. Preliminary pre-test analyses were performed using RELAP5/ MOD3.2.1.2 code to expect the experimental outcomes by incorporating a correlation for condensation degradation because of non-condensable gas by Ueno et al. for better prediction. Preliminary results from both experiments (shakedown) and pre-test analyses indicated that the PCCS using horizontal U-tube heat exchanger is promising. Steam generated under assumed severe accident conditions; steam generation rate approx. = 1% core power, non-condensable gas concentration of 1% and simulated containment vessel pressure of 0.7 MPa, was totally condensed with a small differential pressure across inlet and outlet plenum. Experimental data will be accumulated to develop models and correlations for a better prediction of responses of the PCCS using horizontal heat exchanger during postulated severe accidents. (author)

  12. Investigations of single-electron avalanches in a proportional drift tube

    International Nuclear Information System (INIS)

    Anderson, W.S.; Armitage, J.C.; Chevreau, P.; Heinrich, J.G.; Lu, C.; McDonald, I.; McDonald, K.T.; Miller, B.; Secrest, D.; Weckel, J.

    1990-01-01

    Detailed information on single-electron drift and avalanche behavior has a basic interest in an investigation of gas-chamber performance. Its timing, avalanche distribution, attachment by the working gas mixtures, etc., provide various criteria for choosing the best suitable gas mixture under a specific experimental circumstance. Investigations of single-electron avalanches in a proportional drift tube have been carried out with a pulsed N 2 laser. The study consists of two aspects: timing properties, and fluctuations in the gas avalanche

  13. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Wook; No, Hee Cheon; Yun, Bong Yo; Jeon, Byong Guk [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  14. Experimental study of single taylor bubbles rising in stagnant liquid mixtures inside of vertical tubes

    International Nuclear Information System (INIS)

    Azevedo, Marcos B. de; Faccini, Jose L.H.; Su, Jian

    2015-01-01

    The present work reports an experimental study of single Taylor bubbles rising in vertical tubes filled with water-glycerin mixtures by using the pulse-echo ultrasonic technique. A 2m long acrylic tube with inner diameter of 24 mm was used in the experiments. Initially, the tube was sealed at the ends and filled partially with the liquid mixtures to leave an air pocket of length L 0 at the top end. A Taylor bubble was formed by the inversion of the tube. The rising bubbles were detected by ultrasonic transducers located at the upper part of the tube. The velocity, the length and the pro le of the bubbles and the thickness of the liquid lm around them were obtained from the ultrasonic signals processing. The liquid lm thickness in the vertical tube was also determined by a graphic method that relates the bubble length L b with the initial length of the air pocket L 0 . It was observed that the bubble velocity decreased with increasing viscosity, while the lm thickness increased. It was shown that the liquid lm thickness determined by the graphic method fitted well the higher viscosities data, but overestimated the lower viscosities data. Additionally, the results indicated that some correlations developed to estimate the thickness of liquid films falling down inside/outside of tubes and down a plane surface could be applied to estimate the thickness of liquid films falling around Taylor bubbles in an Inverse Viscosity Number (N f ) range different to those considered in the literature. (author)

  15. Stabilisation of photo-multiplying gain; Stabilisation du gain des pbotomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Tretiakoff, O; Bailly du Bois, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    The use of photomultiplier tubes in experimental physics is thwarted by their high responsiveness to changes in the feeding tension. Their use can be extended a great deal by a simple efficient stabilizing device which allows them to work in the same way as Geiger-Mueller tubes without losing the advantageous characteristics of photomultiplier tubes. (author) [French] L'utilisation des tubes photomultiplicateurs en physique experimentale se heurte a l'obstacle que constitue leur extreme sensibilite aux variations de la tension d'alimentation. Un systeme de stabilisation simple et efficace, permettant d'apparenter leurs caracteristiques a celles des compteurs Geiger-Muller tout en conservant les avantages propres aux tubes photomultiplicateurs, peut elargir considerablement leur domaine d'emploi. (auteur)

  16. Evaluation of single and double centrifugation tube methods for concentrating equine platelets.

    Science.gov (United States)

    Argüelles, D; Carmona, J U; Pastor, J; Iborra, A; Viñals, L; Martínez, P; Bach, E; Prades, M

    2006-10-01

    The aim of this study was to evaluate single and double centrifugation tube methods for concentrating equine platelets. Whole blood samples were collected from clinically normal horses and processed by use of single and double centrifugation tube methods to obtain four platelet concentrates (PCs): PC-A, PC-B, PC-C, and PC-D, which were analyzed using a flow cytometry hematology system for hemogram and additional platelet parameters (mean platelet volume, platelet distribution width, mean platelet component concentration, mean platelet component distribution width). Concentrations of transforming growth factor beta 1 (TGF-beta(1)) were determined in all the samples. Platelet concentrations for PC-A, PC-B, PC-C, and PC-D were 45%, 44%, 71%, and 21% higher, respectively, compared to the same values for citrated whole blood samples. TGF-beta(1) concentrations for PC-A, PC-B, PC-C, and PC-D were 38%, 44%, 44%, and 37% higher, respectively, compared to citrated whole blood sample values. In conclusion, the single and double centrifugation tube methods are reliable methods for concentrating equine platelets and for obtaining potentially therapeutic TGF-beta(1) levels.

  17. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  18. Measurement of the single and two phase flow using newly developed average bidirectional flow tube

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Euh, Dong Jin; Kang, Kyung Ho; Song, Chul Hwa; Baek, Won Pil

    2005-01-01

    A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the pitot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal dirft-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio and Malnes' momentum exchange model could predict the phasic mass flow rates within a 15% error. A new momentum exchange model was also proposed from the present data and its implementation provides a 5% improvement to the measured mass flow rate when compared to that with the Bosio and Malnes' model

  19. Single-tube tetradecaplex panel of highly polymorphic microsatellite markers hemophilia A.

    Science.gov (United States)

    Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S

    2017-07-01

    Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic

  20. Hodoscope module with miniature photomultipliers

    International Nuclear Information System (INIS)

    Bel'zer, L.I.; Gribushin, A.M.; Zhil'tsov, L.Ya.; Matveeva, E.N.; Philipenko, T.D.; Sinev, N.B.

    1987-01-01

    The experimental Scintillation Magnetic Spectrometer (SMS) installation, whose main element is an extended hodoscope system, is being built for the accelerator of the High Energy Laboratory of the Joint Institute for Nuclear Research. The authors describe the scintillation hodoscope of the SMS installation and present the applicable amplitude and time characteristics of several types of miniature photomultipliers (FEU-58, FEU-60, FEU-114-1, FEU-147-1, and R-1635 (Hamamatsu, Japan)), which were obtained with a 106 Ru radioactive source and standard plastic scintillators of two types, based on oxazoles in polystyrene and in polymethylmethacrylate

  1. YouTube and the single-rod contraceptive implant: a content analysis.

    Science.gov (United States)

    Paul, Jennifer; Boraas, Christy M; Duvet, Mildred; Chang, Judy C

    2017-07-01

    Since the internet has become an important source of contraceptive information with YouTube.com as the second most visited site, we analysed contraceptive implant YouTube videos for content and clinical accuracy. Using the terms 'contraceptive implant', 'Nexplanon' and 'Implanon', the top 20 results on YouTube by relevance and view count were identified. After excluding duplicates, single-rod implant videos in English were included. Videos were classified as providing a professional or patient perspective. Views, duration and comments were noted. Videos were rated for reliability, global quality scale and whether they were positive or negative about the implant. Inter-rater agreement was measured. A total of 120 videos were retrieved; 52 were eligible for review. Less than 23% were professional videos; the majority reported patient experience (46% testimonials, 27% real-time procedure videos, 4% other). Patient videos had been posted a significantly longer duration of time than professional videos (364 vs 188 days, p =0.02), were less reliable ( p ≤0.0001) and were of lower global quality ( p YouTube pertaining to contraceptive implants is accurate, is presented from the patient's perspective, and promotes the method's use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Silicon photomultipliers in AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Botti, Ana Martina [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Instituto de Tecnologias en Deteccion y Astroparticulas (ITeDA) (Argentina); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The project AMIGA (Auger Muons and Infill for the Ground Array) aims to extend the energy range at the Pierre Auger Observatory to observe cosmic rays of lower energies (down to ∝10{sup 17} eV) and to study the transition from extragalactic to galactic cosmic rays. AMIGA is compounded by an infill of surface detectors (employing Cherenkov radiation detection in water) and muon counters. The AMIGA muon counters consist of an array of buried modules composed of 64 scintillator bars, a multi-pixel Photo Multiplier Tube (PMT) and the corresponding electronic of acquisition which works along with the surface detector. Currently, ITeDA is evaluating the feasibility of replacing PMTs with silicon photomultipliers (SiPM) without performing any substantial modification in the digital readout nor in the mechanical design. I present calibration results of a prototype module associated to the surface detector Toune of the Pierre Auger Observatory using a SiPM Hamamatsu S1257-100C plugged to the standard AMIGA front-end electronics. In addition, a study concerning gain stability and temperature variation has also been performed and is reported. I finally discuss a comparison between traces measured by both photodetectors (PMT and SiPM) for modules associated to the surface detector Toune.

  3. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver

    International Nuclear Information System (INIS)

    Montes, María J.; Barbero, Rubén; Abbas, Rubén; Rovira, Antonio

    2016-01-01

    Highlights: • A thermal model for a single-tube Fresnel receiver has been developed. • A comparative analysis based on different design parameters, has been carried out. • A comparative analysis based on different working fluids, has been carried out. • The receiver thermal performance is characterized by energy and exergy efficiencies. - Abstract: Although most of recent commercial Solar Thermal Power Plants (STPP) installed worldwide are parabolic trough plants, it seems that Linear Fresnel Collectors (LFC) are becoming an attractive option to generate electricity from solar radiation. Contrary to parabolic trough collectors, the design of LFC receivers has many degrees of freedom, and two basic designs can be found in the literature: single-tube and multi-tube design. This article studies the single-tube design, for which a thermal model has been developed. This model has been thought to be accurate enough to characterize the heat transfer in a non-elementary geometry and flexible enough to support changes of the characteristic parameters in the receiver design. The thermal model proposed is based on a two-dimensional, steady-state energy balance, in the receiver cross section and along its length. One of the features of the model is the characterization of the convective and radiative heat transfer in the receiver cavity, as it is not an elementary geometry. Another feature is the possibility of studying the receiver performance with different working fluids, both single-phase or two-phase. At last, the receiver performance has been characterized by means of the energy and exergy efficiency. Both variables are important for a complete receiver thermal analysis, as will be shown in the paper. The model has been first applied to the comparative study of the thermal performance of LFC receivers based on the value of some parameters: selective coating emissivity in the tube and inlet fluid thermal properties, for the case of using water/steam. As a second

  4. A small animal PET prototype based on Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Marcatili, S; Belcari, N.; Bisogni, M.G.; Del Guerra, A.; Collazuol, G.; Pedreschi, E.; Spinella, F.; Sportelli, G.; Marzocca, C.

    2011-01-01

    Next generation PET scanners should full fill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (Si P M) matrices is proposed for the construction of a small animal PET system consisting of two detector heads based on Lyso continuos crystals. The use of large area multi-pixel Silicon Photomultiplier (Si P M) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities. At the University of Pisa and INFN Pisa we developed a DAQ board for the read-out of 2 64-pixel Si P M matrices in time coincidence for Positron Emission Tomography (PET) applications. The proof of principles is based on 64-pixel detectors, but the whole system has been conceived to be easily scalable to a higher number of channels. Here we describe the Group-V INFN DASi P M 2 (Development and Application of Si P M) project and related results.

  5. High efficiency 40 K single-stage Stirling-type pulse tube cryocooler

    Science.gov (United States)

    Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.

  6. Photomultiplier characteristics considerations for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-01-01

    The results of an investigation of the characteristics of photomultipliers for the Deep Underwater Muon and Neutrino Detection (DUMAND) System are discussed. The pulse-height resolution, the afterpulsing phenomena and the gain sensitivity to the ambient magnetic field have been determined for large photocathode area photomultipliers. Furthermore, the transient time difference, the single photoelectron time spread, and the collection and photocathode quantum efficiency uniformity as a function of the position of the photocathode sensing area have been reviewed. Finally, an attempt has been made to estimate the photomultiplier reliability and its lifetime

  7. Sensitivity of a multi-photomultiplier optical module for KM3NeT

    NARCIS (Netherlands)

    Löhner, H.; Mjos, A.

    2009-01-01

    For the KM3NeT neutrino telescope an optical module with a number of small photomultiplier tubes (multi-PMT optical module) will be advantageous for various reasons, e.g. reduced background rate, a larger number of coincidence hits, and sensitivity to ultra-high energy neutrinos. The properties of

  8. The recent development and study of silicon photomultiplier

    International Nuclear Information System (INIS)

    Saveliev, Valeri

    2004-01-01

    Recent developments and results from the study of a Silicon Solid State Photomultiplier (Si-PM) are presented. The basis of this new type of photodetector is a fine structure of microcells operating in the Geiger mode with an internal gain greater than 106. Common signal output allows for the detector to be operated in the proportional mode, and to reach a dynamic range of 1.5x103. Such photodetectors have shown single photon response at room temperature with a fast timing of ∼100ps. They are compact, robust and non-sensitive to magnetic fields. Results show the detection of low-intensity light in single photon mode and the detection of minimal ionizing particles using a scintillation tile for hadron calorimetry. The silicon photomultiplier is suitable for wide application in scintillation calorimetry, medical application, etc

  9. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  10. An Educational Kit Based On a Modular Silicon Photomultiplier System

    International Nuclear Information System (INIS)

    Caccia, Massimo; Chmill, Valery; Ebolese, Amedeo; Martemyanov, Alexander; Risigo, Fabio; Santoro, Romualdo; Locatelli, Marco; Pieracci, Maura; Tintori, Carlo

    2013-06-01

    Silicon Photo-Multipliers (SiPM) are state of the art light detectors with unprecedented single photon sensitivity and photon number resolving capability, representing a breakthrough in several fundamental and applied Science domains. An educational experiment based on a SiPM set-up is proposed in this article, guiding the student towards a comprehensive knowledge of this sensor technology while experiencing the quantum nature of light and exploring the statistical properties of the light pulses emitted by a LED. (authors)

  11. Silicon Photomultipliers: Dark Current and its Statistical Spread

    Directory of Open Access Journals (Sweden)

    Roberto PAGANO

    2012-03-01

    Full Text Available Aim of this paper is to investigate on a statistical basis at the wafer level the relationship existing among the dark currents of the single pixel compared to the whole Silicon Photomultiplier array. This is the first time to our knowledge that such a comparison is made, crucial to pass this new technology to the semiconductor manufacturing standards. In particular, emission microscopy measurements and current measurements allowed us to conclude that optical trenches strongly improve the device performances.

  12. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis.

    Science.gov (United States)

    Waterfall, C M; Cobb, B D

    2001-12-01

    Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a 'matrix-based' optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable.

  13. Prediction of effective friction factors for single-phase flow in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H S; Rose, J W [University of London (United Kingdom). Queen Mary, Department of Engineering

    2004-12-01

    An experimental database, covering a wide range of tube and fin geometric dimensions, Reynolds number and including data for water, R11, and ethylene glycol has been compiled for friction factor for single-phase flow in spirally grooved, horizontal microfin tubes. The tubes (21 in all) had inside diameter at the fin root between 6.46 and 24.13 mm, fin height between 0.13 and 0.47 mm, fin pitch between 0.32 and 1.15 mm, and helix angle between 17 and 45 degrees. The Reynolds number ranged from 2.0x10{sup 3} to 1.63x10{sup 5}. Six earlier friction factor correlations, each based on restricted data sets, have been compared with the database as a whole. None was found to be in good agreement with all of the data. The Jensen and Vlakancic correlation was found to be the best and represents the database within {+-}21%. (author)

  14. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  15. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A.; Gorini, G. [Dipartimento di Fisica ' ' G. Occhialini' ' and CNISM, Universita Degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E. [Dipartimento di Fisica and Centro NAST, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma (Italy); Grazzi, F. [Istituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche, Via Madonna del Piano n.10, I-50019 Sesto Fiorentino, Firenze (Italy); Schooneveld, E. M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  16. Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method

    International Nuclear Information System (INIS)

    Li Min; Lai, Alvin C.K.

    2013-01-01

    Highlights: ► A second-law-based analysis is performed for single U-tube ground heat exchangers. ► Two expressions for the optimal length and flow velocity are developed for GHEs. ► Empirical velocities of GHEs are large compared to thermodynamic optimum values. - Abstract: This paper investigates thermodynamic performance of borehole ground heat exchangers with a single U-tube by the entropy generation minimization method which requires information of heat transfer and fluid mechanics, in addition to thermodynamics analysis. This study first derives an expression for dimensionless entropy generation number, a function that consists of five dimensionless variables, including Reynolds number, dimensionless borehole length, scale factor of pressures, and two duty parameters of ground heat exchangers. The derivation combines a heat transfer model and a hydraulics model for borehole ground heat exchangers with the first law and the second law of thermodynamics. Next, the entropy generation number is minimized to produce two analytical expressions for the optimal length and the optimal flow velocity of ground heat exchangers. Then, this paper discusses and analyzes implications and applications of these optimization formulas with two case studies. An important finding from the case studies is that widely used empirical velocities of circulating fluid are too large to operate ground-coupled heat pump systems in a thermodynamic optimization way. This paper demonstrates that thermodynamic optimal parameters of ground heat exchangers can probably be determined by using the entropy generation minimization method.

  17. Experimental research on single-phase heat transfer characteristics in a vertical circular tube under marine conditions

    International Nuclear Information System (INIS)

    Du Sijia; Zhang Hong; Jia Baoshan

    2011-01-01

    Experiments have been conducted to study the heat transfer characteristics of single-phase forced circulation when the test tube was under different marine conditions. The experiments measured the wall temperature of test tube to calculate the heat transfer coefficients at different circumferential places. When the test tube was under inclined conditions, the heat transfer coefficient increased at downside and decreased at upside of test tube because of buoyancy effect. When the test tube was under rolling conditions, the heat transfer coefficients fluctuated with the rolling motions, and the Coriolis force dominated the heat transfer fluctuation during the rolling motion. CFD method was used to simulate the heat transfer phenomena under marine conditions, and the results were accord to the experimental phenomena. (authors)

  18. Hydrogen adsorption in microporous alkali-doped carbons (single-wall carbon nano-tubes and activated carbons)

    International Nuclear Information System (INIS)

    Laurent Duclaux; Szymon Los; Michel Letellier; Philippe Azais; Roland Pellenq; Thomas Roussel; Xavier Fuhr

    2006-01-01

    Doping of microporous carbon by Li or K leads to an increase in the energy of adsorption of H 2 or D 2 molecules. Thus, the room temperature sorption capacities (at P≤3 MPa) can be higher than the ones of the raw materials after slight doping. However, the maximum H 2 (or D 2 ) storage uptake measured at T≤ 77 K is lower than the one of pristine materials as the sites of adsorption are occupied by alkali ions inserted in the micropores. The microporous adsorption sites of doped single-walled carbon nano-tubes, identified by neutron diffraction, are both the interstitial voids (in electric-arc or HiPCO tubes) in between the tubes and the central canals of the tubes (only in HiPCO tubes). (authors)

  19. Experimental Investigation of a Multi-Cycle Single-Tube Pulse Detonation Rocket Engine with a Coaxial Rotary Valve

    Science.gov (United States)

    Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh

    We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.

  20. Modeling crosstalk in silicon photomultipliers

    International Nuclear Information System (INIS)

    Gallego, L; Rosado, J; Blanco, F; Arqueros, F

    2013-01-01

    Optical crosstalk seriously limits the photon-counting resolution of silicon photomultipliers. In this work, realistic analytical models to describe the crosstalk effects on the response of these photodetectors are presented and compared with experimental data. The proposed models are based on the hypothesis that each pixel of the array has a finite number of available neighboring pixels to excite via crosstalk. Dead-time effects and geometrical aspects of the propagation of crosstalk between neighbors are taken into account in the models for different neighborhood configurations. Simple expressions to account for crosstalk effects on the pulse-height spectrum as well as to evaluate the excess noise factor due to crosstalk are also given. Dedicated measurements were carried out under both dark-count conditions and pulsed illumination. Moreover, the influence of afterpulsing on the measured pulse-height spectrum was studied, and a measurement of the recovery time of pixels was reported. High-resolution pulse-height spectra were obtained by means of a detailed waveform analysis, and the results have been used to validate our crosstalk models.

  1. Single cells for forensic DNA analysis--from evidence material to test tube.

    Science.gov (United States)

    Brück, Simon; Evers, Heidrun; Heidorn, Frank; Müller, Ute; Kilper, Roland; Verhoff, Marcel A

    2011-01-01

    The purpose of this project was to develop a method that, while providing morphological quality control, allows single cells to be obtained from the surfaces of various evidence materials and be made available for DNA analysis in cases where only small amounts of cell material are present or where only mixed traces are found. With the SteREO Lumar.V12 stereomicroscope and UV unit from Zeiss, it was possible to detect and assess single epithelial cells on the surfaces of various objects (e.g., glass, plastic, metal). A digitally operated micromanipulator developed by aura optik was used to lift a single cell from the surface of evidence material and to transfer it to a conventional PCR tube or to an AmpliGrid(®) from Advalytix. The actual lifting of the cells was performed with microglobes that acted as carriers. The microglobes were held with microtweezers and were transferred to the DNA analysis receptacles along with the adhering cells. In a next step, the PCR can be carried out in this receptacle without removing the microglobe. Our method allows a single cell to be isolated directly from evidence material and be made available for forensic DNA analysis. © 2010 American Academy of Forensic Sciences.

  2. A deep-sea agglutinated foraminifer tube constructed with planktonic foraminifer shells of a single species

    Science.gov (United States)

    Pearson, Paul N.; Expedition 363 Shipboard Scientific Party, IODP

    2018-01-01

    Agglutinated foraminifera are marine protists that show apparently complex behaviour in constructing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously undescribed example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to Rhabdammina) from 1466 m water depth on the northwest Australian margin. The tube is constructed from well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory and decision-making system within the cell.

  3. Nonlinear free vibration of single walled Carbone NanoTubes conveying fluid

    Directory of Open Access Journals (Sweden)

    Azrar A.

    2014-04-01

    Full Text Available Nonlinear free vibration of single-walled carbon nanotubes (CNTs conveying fluid are modeled and numerically simulated based on von Kármán geometric nonlinearity and Eringen’s nonlocal elasticity theory. The CNTs are modelled as nanobeams where the effects of transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory. The governing equations and boundary conditions are derived using the Hamilton’s principle and the nonlinear equation of motion is solved by the Galerkin’s method. The small scale parameter and the fluid-tube interaction effects on the dynamic behaviours of the CNT-fluid system as well as the instabilities induced by the fluid-velocity can be investigated. The critical fluid-velocity and frequency-amplitude relationships as well as the flutter and divergence instability types and the associated time responses are obtained based on the presented methodological approach.

  4. TRitium Activity Measurements with a PhotomultipliEr in Liquids–The TRAMPEL experiment

    International Nuclear Information System (INIS)

    Priester, Florian; Klein, Manuel

    2016-01-01

    Highlights: • We have set up a new test device for measuring of tritiated water samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems is possible. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A common technique for the determination of the activity of tritiated water (HTO) is liquid scintillation counting (LSC). This implies sample taking, sample preparation and radioactive waste processing afterwards. When handling highly tritiated water special care has to be taken because of possible harmfulness of the sample. Furthermore, LSC devices are mostly large, heavy and expensive. The TRAMPEL experiment aims at measuring the activity of tritiated water in-line without sample taking. The device is intended to be easy to use and operate, quite inexpensive and compact. The measurement principle is based on electrons from β-decay which induce light in commercially available scintillation fibres. The light is detected by a small photomultiplier tube (PMT). A proof-of-principle was set up for static measurements using standard stainless steel parts. The complete device has a volume of less than 0.5 l.

  5. TRitium Activity Measurements with a PhotomultipliEr in Liquids–The TRAMPEL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Priester, Florian, E-mail: florian.priester@kit.edu; Klein, Manuel

    2016-11-01

    Highlights: • We have set up a new test device for measuring of tritiated water samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems is possible. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A common technique for the determination of the activity of tritiated water (HTO) is liquid scintillation counting (LSC). This implies sample taking, sample preparation and radioactive waste processing afterwards. When handling highly tritiated water special care has to be taken because of possible harmfulness of the sample. Furthermore, LSC devices are mostly large, heavy and expensive. The TRAMPEL experiment aims at measuring the activity of tritiated water in-line without sample taking. The device is intended to be easy to use and operate, quite inexpensive and compact. The measurement principle is based on electrons from β-decay which induce light in commercially available scintillation fibres. The light is detected by a small photomultiplier tube (PMT). A proof-of-principle was set up for static measurements using standard stainless steel parts. The complete device has a volume of less than 0.5 l.

  6. Camera Embedded Single Lumen Tube as a Rescue Device for Airway Handling during Lung Separation

    DEFF Research Database (Denmark)

    Højberg Holm, Jimmy; Andersen, Claus

    2016-01-01

    .Keywords: Thoracic anesthesia; Airway handling; VivaSight; Vivasight-SL; Lobectomy; Camera-embedded tube; Endotracheal; Lung isolation; Video tube Taking the small stature into account, use of a small conventional 35-Fr right sided DLT was planned for the procedure. As it turned out, this tube could not be passed...

  7. Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ

    International Nuclear Information System (INIS)

    Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.

    2016-01-01

    Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction

  8. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    Directory of Open Access Journals (Sweden)

    Ming Ren

    2017-11-01

    Full Text Available Optical detection is reliable in intrinsically characterizing partial discharges (PDs. Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT and a vacuum photomultiplier tube (PMT. Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  9. Optimization of Performance Parameters for Large Area Silicon Photomultipliers

    Science.gov (United States)

    Janzen, Kathryn

    2008-10-01

    The goal of the GlueX experiment is to search for exotic hybrid mesons as evidence of gluonic excitations in an effort to better understand confinement. A key component of the GlueX detector is the electromagnetic barrel calorimeter (BCAL) located immediately inside a superconducting solenoid of approximately 2.5T. Because of this arrangement, traditional vacuum photomultiplier tubes (PMTs) which are affected significantly by magnetic fields cannot be used on the BCAL. The use of Silicon photomultipliers (SiPMs) as front-end detectors has been proposed. While the largest SiPMs that have been previously employed by other experiments are 1x1 mm^2, GlueX proposes to use large area SiPMs each composed of 16 - 3x3 mm^2 cells in a 4x4 array. This puts the GlueX collaboration in the unique position of driving the technology for larger area sensors. In this talk I will discuss tests done in Regina regarding performance parameters of prototype SiPM arrays delivered by SensL, a photonics research and development company based in Ireland, as well as sample 1x1 mm^2 and 3x3 mm^2 SiPMs.

  10. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  11. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  12. Vibration tests on single heat exchanger tubes in air and static water

    International Nuclear Information System (INIS)

    Collinson, A.E.; Warneford, I.P.

    1978-07-01

    The vibrational characteristics of a 7 span straight tube and a 26 span U-tube have been investigated for the effects of fluid medium (air/water), tube-grid clearance, tube-grid contact force, vibration transmission and scale. Measured frequency response and mode shapes compared favourably with theoretical values, vibration with pin-pin tube support being most readily excited. The frequency reduction on immersion in water corresponded to an added mass equivalent to the liquid displaced mass. Dynamic magnifiers varied in the range 12 to 135 with mean values of 30 to 40 in water and 45 to 60 in air. Principal vibration modes and damping values were reproducible in a half-scale model of a U-tube. (author)

  13. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

    International Nuclear Information System (INIS)

    Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

    2005-01-01

    Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

  14. Performances of multi-channel ceramic photomultipliers

    International Nuclear Information System (INIS)

    Comby, G.; Karolak, M.; Piret, Y.; Mouly, J.P.

    1995-09-01

    Ceramic electron multipliers with real metal dynodes and independent channels ware constructed using multilayer ceramic technology. Tests of these prototypes show their capability to form sensitive detectors such as photomultipliers or light intensifiers. Here, we present results for the photocathode sensitivity, dynode activation, gain, linearity range and dynamic characteristics as well as the effect of 3-year aging of the main operational functions. The advantages provided by the ceramic components are discussed. These results motivate the development of a compact 256 pixel ceramic photomultiplier. (author)

  15. UNCONTROLLED PHOTOMULTIPLIER CURRENT IN PHOTOEMISSION ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. A. Viazava

    2016-01-01

    Full Text Available The dependence of photon energy from energy of photoelectron is base of photoemission radiation analysis. In such photoemission measurements except current of photocathode is always exist a reverse current from the collector of electrons to the photocathode in two-electrode sensors. There are various ways of reverse and uncontrolled current eliminating or reducing their influence. The constructive method is based on creating an electron-optical system of photoelectronic device, which would be a photoelectron energy analyzer. The second method – technological. However, it requires the manufacture of the photocathode and the dynode system in different vacuum chamber with subsequent connection to a single device in vacuum environment without exposure to the atmosphere. The purpose of this article is to determinate the effect of photoemission from photocathode chamber and the first dynode of photomultiplier on energy distribution of the photoelectrons from photocathode. To solve this problem authors obtained calibration curves for measuring pyrometer module ПИФ 4/2 with ФЭУ-114 as a sensor at supply voltage 1350 V and different decelerating voltages. The effect of illumination on the value of modulation coefficient on temperature k(T and wavelength k(λ is shown. In temperature measurements, this effect is evident in fact that at temperatures below 1400 K linear dependence ln k – T-1 is broken. Still this linear dependence is a necessary consequence of the fact that the measured temperature is color temperature. However, this calibration curve can be used to measure low temperature if the target measurements condition and calibration conditions are identical. In wavelength calibration, curve k(λ at λ > 760 nm is two-valued, that doesn’t allow to identify monochromatic radiation by this method and bring in errors in temperature measurements. 

  16. Copper hexacyanoferrate functionalized single-walled carbon nano-tubes for selective cesium extraction

    International Nuclear Information System (INIS)

    Draouil, H.; Alvarez, L.; Bantignies, J.L.; Causse, J.; Cambedouzou, J.; Flaud, V.; Zaibi, M.A.; Oueslati, M.

    2017-01-01

    Single-walled carbon nano-tubes (SWCNTs) are functionalized with copper hexacyanoferrate (CuHCF) nanoparticles to prepare solid substrates for sorption of cesium ions (Cs + ) from liquid outflows. The high mechanical resistance and large electrical conductivity of SWCNTs are associated with the ability of CuHCF nanoparticles to selectively complex Cs + ions in order to achieve membrane-like buckypapers presenting high loading capacity of cesium. The materials are thoroughly characterized using electron microscopy, Raman scattering, X-ray photoelectron spectroscopy and thermogravimetric analyses. Cs sorption isotherms are plotted after having measured the Cs + concentration by liquid phase ionic chromatography in the solution before and after exposure to the materials. It is found that the total sorption capacity of the material reaches 230 mg.g -1 , and that about one third of the sorbed Cs (80 mg.g -1 ) is selectively complexed in the CuHCF nanoparticles grafted on SWCNTs. The quantification of Cs + ions on different sorption sites is made for the first time, and the high sorption rates open interesting outlooks in the integration of such materials in devices for the controlled sorption and desorption of these ions. (authors)

  17. Single Tube Rupture at Cold Side of Steam Generator Simulation Test Report Using the ATLAS

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Park, Hyun Sik; Cho, Seok

    2010-12-01

    In this study, a postulated SGTR event of the APR1400 was experimentally investigated with the ATLAS. In order to simulate a double-ended rupture of a single U-tube in the APR1400, the SGTR-CL-01 test was performed with the ATLAS. The main objectives of this test were not only to provide a physical insight into the system response of the APR1400 during the SGTR but also to produce integral effect experimental data to validate the safety analysis code. In the present report, major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Following the reactor trip induced by high steam generator level (HSGL) signal, the primary system pressure decreased and the secondary system pressure increased until the MSSVs was opened. The MSSVs repeated on and off status depending on the secondary system pressure during the whole test period. Due to the break flow, the collapsed water level of the affected steam generator showed milder decrease than that of the intact steam generator. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code. Furthermore, this data can be utilized to identify any code deficiency for a SGTR simulation, especially for DVI-adapted plants

  18. Single-Phase Crossflow Mixing in a Vertical Tube Bundle Geometry : An Experimental Study

    NARCIS (Netherlands)

    Mahmood, A.

    2011-01-01

    The vertical rod/tube bundle geometry has a wide variety of industrial applications. Typical examples are the core of light water nuclear reactors (LWR) and vertical tube steam generators. In the core of a LWR, primarily coolant flows upward but their also exist a flow in lateral direction, called

  19. Development of a novel single tube nested PCR for enhanced detection of cytomegalovirus DNA from dried blood spots.

    Science.gov (United States)

    Atkinson, C; Emery, V C; Griffiths, P D

    2014-02-01

    Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Automatic test system of the photomultipliers

    International Nuclear Information System (INIS)

    Shiino, Kazuo; Kono, Koji; Ishii, Takanobu; Kasai, Seiji; Yamada, Sakue; Kitamura, Shoichi.

    1990-03-01

    A test system of R580 photomultipliers (PMTs) was constructed for the ZEUS experiment HERA. In this report, we will describe the general feature of the test system, each component of the setup, the procedure of the measurements, the data analyses and the results of the first 800 PMT measurements. (author)

  1. VUV-sensitive silicon-photomultipliers for the nEXO-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Gerrit; Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The nEXO (next Enriched Xenon Observatory) experiment will search for the neutrinoless double beta decay of Xe-136 with a liquid xenon TPC (Time ProjectionChamber). The sensitivity of the experiment is related to the energy resolution, which itself depends on the accuracies of the measurements of the amount of drifting electrons and the number of scintillation photons with their wavelength being in the vacuum ultraviolet band. Silicon Photomultipliers (SiPM) shall be used for the detection of the scintillation light, since they can be produced extremely radiopure. Commercially available SiPM do not fulfill all requirements of the nEXO experiment, thus a dedicated development is necessary. To characterize the silicon photomultipliers, we have built a test apparatus for xenon liquefaction, in which a VUV-sensitive photomultiplier tube can be operated together with the SiPM. In this contribution we present our apparatus for the SiPM characterization measurements and our latest results on the test of the silicon photomultipliers for the detection of xenon scintillation light.

  2. Stability of single-phase natural circulation with inverted U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.

    1988-08-01

    For natural circulation it is shown that parallel flow in the tubes of an inverted U-tube stream generator can be, at certain power levels, unstable. A mathematical model, based on one-dimensional Oberbeck-Boussinesq equations, shows that stability can be attained if in some tubes the water flows backward, opposite to the normal flow direction. The results are compared to measurements obtained from the natural circulation test A2-77A in the LOBI-MOD2 integral system test facility.

  3. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  4. Perspectives of Single-Wall Carbon Nano-tube Production in the Arc Discharge Process

    International Nuclear Information System (INIS)

    Krestinin, A.V.; Kiselev, N.A.; Raevskii, A.V; Ryabenko, A.G.; Zakharov, D.N.; Zvereva, G.I.

    2003-01-01

    Single-wall carbon nano tubes (SWNTs) promise wide applications in many technical fields. As a result purified SWNT material is sold now on the West market at more than 1000 dollars per 1 gram. Thus developing an effective technology for SWNTs production rises to a very important sintofene problem. The perspectives of three existing methods providing raw material in the technology of SWNT production have been analyzed. They are i) pulsed laser evaporation of graphite/metal composites, ii) evaporation of graphite electrodes with metal content in the are discharge process, and iii) catalytic decomposition of the mixture of CO and metal carbonyl catalyst precursor. The observed dynamites of SWNT market points to replacing the laser method of SWNTs production by the are process. The conclusion has been made that the technology based on the are process will be the major one for the fabrication of purified SWNTs at least for the next five years. A reliable estimation of a low price limit of SWNTs was derived from a comparison of two technologies based on the are discharge process: the first one is the production of SWNTs and the second one is the production of a fullerene mixture C 6 0 + C 7 0. The main conclusion was made that the price of purified SWNTs should always be more by 2-3 times the price of fullerene mixture. The parameters of a lab-scale technology for the production of purified SWNTs are listed. A large-scale application of the developed technology is expected to reduce the price of purified SWNTs by approximately ten times. The methods now employed for the characterization of products containing SWNTs are briefly observed. It is concluded that electron microscopy, thermogravimetric analysis, absorption and Raman spectroscopy, measurement of the specific surface aria, optical microscopy - each in separation is not enough for extensive characterization of a sample containing SWNTs, and all these methods should be used together. (author)

  5. Reduction of space charge effects and tests of larger samples of photomultipliers for the EDDA experiment

    Science.gov (United States)

    Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Diehl, O.; Dorner, G.; Drüke, V.; Engelhardt, H. J.; Eisenhardt, S.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; v. Przewoski, B.; Radtke, M.; Rohdjess, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1993-10-01

    For the EDDA experiment at COSY, the response of the small, linear focused photomultipliers Hamamatsu R 1450 and R 1355 has been studied with fast light pulses generating yields up to 2 × 10 3 photoelectrons/cm 2 or peak currents of 24 mA. Linearity was obtained with a tapered bleeder chain at a tolerable loss of gain. The serial test of altogether 140 photomultipliers revealed the close correlation between single electron and amplitude resolution. The influence of the photoelectron statistics on this correlation is discussed.

  6. Calculations following voltage breakdown in a single-ended Van de Graaff with an accelerator tube

    International Nuclear Information System (INIS)

    Staniforth, J.A.

    1979-01-01

    Calculation of voltages and voltage gradients in the terminal, along the insulating column and the accelerating tube are described for various breakdown positions. The method uses a number of inverted-L network sections to represent the machine assuming that the tube is coupled to the column. Various forms of coupling are examined. The calculations use an iterative computer program which calculates the voltages and currents in the networks at successive small time intervals. (author)

  7. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  8. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    OpenAIRE

    Parida Manmohan; Shrivastava Ambuj; Santhosh SR; Dash Paban; Saxena Parag; Rao PV

    2008-01-01

    Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Jap...

  9. Radiology responsibilities post NPSA guidelines for nasogastric tube insertion: A single centre review

    International Nuclear Information System (INIS)

    Snaith, Beverly; Flintham, Kevin

    2015-01-01

    Background: There are well-recognised complications associated with malposition of nasogastric (NG) tubes. In 2011 the UK National Patient Safety Agency (NPSA) published an alert regarding their insertion and position confirmation. This alert also identified the expected radiology standards for both image acquisition and reporting. Method: This was a retrospective review of referrals over a six-month period within a multi-site NHS Trust. A consecutive sampling approach was used and radiology reports where the text included the terms “NG tube”, “nasogastric” or “feeding” were included. Data were collected from the radiology information system and NG tube visibility and image quality were confirmed by two independent reviewers. Results: 1137 examinations demonstrated an NG tube, of which 68.3% were performed to check tube position. There was statistically significant correlation between lower radiation exposure and non-visualisation (Fishers exact test, p < 0.001). The number of examinations with higher exposure index (EI) in the NG check cohort suggests that the radiographer increased the exposure to improve visualization (x 2  = 2.846; 95% CI; p = 0.046), although the utility of this is unproven. Malplaced tubes were demonstrated either in the respiratory tract (1.8%) or proximal gastrointestinal tract (8.6%) as a result of insufficient length introduced. Conclusion: The prompt acquisition and reporting of radiographs is essential to reduce the risk of NG tube complications. Respiratory tract misplacement rates were in line with the published literature, but this study does raise concern regarding the number of tubes located in the proximal GI tract. Radiology's responsibility in accurate and effective reporting of medical interventions is significant

  10. Pulse shape discrimination based on fast signals from silicon photomultipliers

    Science.gov (United States)

    Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng

    2018-06-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.

  11. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  12. Optimization of the digital Silicon Photomultiplier for Cherenkov light detection

    International Nuclear Information System (INIS)

    Frach, T

    2012-01-01

    The Silicon Photomultiplier is a promising alternative to fast vacuum photodetectors. We developed a fully digital implementation of the Silicon Photomultiplier. The sensor is based on a single photon avalanche photodiode (SPAD) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. Photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic has the added benefit of low power consumption and possible integration of data post-processing in the sensor. In this paper, we discuss the sensor architecture together with its characteristics, and its possible optimizations for applications requiring the detection of Cherenkov light.

  13. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    Science.gov (United States)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  14. Analysis of photon statistics with Silicon Photomultiplier

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Saveliev, V.; Wang, L.; Xie, Q.

    2015-01-01

    The Silicon Photomultiplier (SiPM) is a novel silicon-based photodetector, which represents the modern perspective of low photon flux detection. The aim of this paper is to provide an introduction on the statistical analysis methods needed to understand and estimate in quantitative way the correct features and description of the response of the SiPM to a coherent source of light

  15. Modeling crosstalk and afterpulsing in silicon photomultipliers

    International Nuclear Information System (INIS)

    Rosado, J.; Aranda, V.M.; Blanco, F.; Arqueros, F.

    2015-01-01

    An experimental method to characterize the crosstalk and afterpulsing in silicon photomultipliers has been developed and applied to two detectors fabricated by Hamamatsu. An analytical model of optical crosstalk that we presented in a previous publication has been compared with new measurements, confirming our results. Progresses on a statistical model to describe afterpulsing and delayed crosstalk are also shown and compared with preliminary experimental data

  16. Modeling crosstalk and afterpulsing in silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, J., E-mail: jaime_ros@fis.ucm.es; Aranda, V.M.; Blanco, F.; Arqueros, F.

    2015-07-01

    An experimental method to characterize the crosstalk and afterpulsing in silicon photomultipliers has been developed and applied to two detectors fabricated by Hamamatsu. An analytical model of optical crosstalk that we presented in a previous publication has been compared with new measurements, confirming our results. Progresses on a statistical model to describe afterpulsing and delayed crosstalk are also shown and compared with preliminary experimental data.

  17. Single-photoelectron noise reduction in scintillation detectors

    International Nuclear Information System (INIS)

    Marvin, T.P.

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm 3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  18. Fast light pulse measurements and temporal fluctuations in photomultipliers

    International Nuclear Information System (INIS)

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  19. Silicon photomultiplier readout of a monolithic 270 x 5 x 5 cm{sup 3} plastic scintillator bar for time of flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Marko; Bemmerer, Daniel; Heidel, Klaus; Stach, Daniel; Wagner, Andreas; Weinberger, David [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Reinicke, Stefan [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [TU Dresden (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    The detection of 200-1000 MeV neutrons requires large amounts of detector material because of the long nuclear interaction length of these particles. In the example of the NeuLAND neutron time-of-flight detector at FAIR, this is accomplished by using 3000 scintillator bars of 270 x 5 x 5 cm{sup 3} size made of the fast plastic polyvinyltoluene. In the present work, we investigated whether silicon photomultiplier (SiPM) photosensors can replace fast timing photomultiplier tubes. The response of the system consisting of scintillator, SiPM, and preamplifier was studied using 30 MeV single electrons provided by the ELBE superconducting electron linac. The results were interpreted by a simple Monte Carlo simulation, and the time resolution was found to obey an inverse-square-root scaling law with the number of fired pixels. In the electron beam tests, a time resolution of σ{sub t}=136 ps was reached with a pure SiPM readout, well within the design parameters for NeuLAND.

  20. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    OpenAIRE

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical fiber. After passage through appropriate filters the light is measured using a photomultiplier tube. The optical fiber is mounted in one of the microscope outlets. Signals derived from the photomultipl...

  1. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  2. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field-tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  3. On the definition of dominant force regimes for flow boiling heat transfer by using single mini-tubes

    Science.gov (United States)

    Baba, Soumei; Sawada, Kenichiro; Kubota, Chisato; Kawanami, Osamu; Asano, Hitoshi; Inoue, Koichi; Ohta, Haruhiko

    Recent increase in the size of space platforms requires the management of larger amount of waste heat under high heat flux conditions and the transportation of it along a long distance to the radiator. Flow boiling applied to the thermal management system in space attracts much attention as promising means to realize high-performance heat transfer and transport because of large latent heat of vaporization. In microgravity two-phase flow phenomena are quite different from those under 1-g condition because buoyancy effects are significantly reduced and surface tension becomes dominant. By the similar reason, flow boiling characteristics in mini channels are not the same as those in channels of normal sizes. In the present stage, however, the boundary between the regimes of body force dominated and of surface tension dominated is not clear. The design of space thermal devices, operated under the conditions where no effect of gravity is expected, will improve the reliability of their ground tests, provided that the boundaries of dominant force regimes are clarified quantitatively in advance. In flow boiling in mini channels or in parallel channels, back flow could be occurred because of rapid growth of bubbles in a confined space, resulting flow rate fluctuation. Flow boiling heat transfer characteristics in mini channels can be changed considerably by the existence of inlet flow rate fluctuation. It is important to pay attention to experimental accuracy and to use a single circular mini-tube to compare heat transfer characteristics with those of normal size tubes. In the present paper, effects of tube orientations, i.e. vertical upward flow, vertical downward flow and horizontal flow, on flow boiling heat transfer characteristics is investigated for FC72 flowing in single mini-tubes with inner diameters of 0.13 and 0.51 mm to establish a reliable dominant force regime map. If the regime map is described by using dimensionless groups of Bond, Weber and Froude numbers

  4. Single port laparoscopic long-term tube gastrostomy in Göttingen minipigs

    DEFF Research Database (Denmark)

    Birck, Malene Muusfeldt; Vegge, Andreas; Moesgaard, S G

    2015-01-01

    it was evident that the catheter had entered the stomach in the fundus region in 11/12 of the animals. In one animal the catheter had entered the antrum region. None of the animals developed leakage or clinically detectable reactions to the gastrostomy tube. Histopathologically, only discrete changes were...

  5. Development of gamma spectrometer using silicon photomultiplier (SiPM)

    International Nuclear Information System (INIS)

    Kim, Chan Kyu

    2011-02-01

    Gamma spectroscopy is used to determine the identity and quantity of gamma-emitters in nuclear physics, geochemistry and astrophysics. The scintillation detectors are being used as a gamma spectrometer generally, because of their higher gamma-ray detection efficiency and cheaper price than germanium semi-conductor detectors. A typical scintillation detector is composed of a scintillator, a window, and a photodetector. The photomultiplier (PM) tube has been the most widely used as a photodetector because of its advantages like high sensitivity, high signal-to-noise ratio, and wide dynamic range. Recently, the Silicon Photomultiplier (SiPM) is being studied as a substitute of PM tube. The SiPM has almost same performance compared to PM tube but it has additional advantages; low operating voltage, small volume, and cheap production cost. In this research, the gamma spectrometer using SiPM instead of PM tube is developed. The use of SiPM as a photodetector makes the gamma spectrometer smaller, cheaper, easier to use. For photon transport and collection from the large area scintillator to the small area SiPM, a light guide is applied in this gamma spectrometer system. Before fabrication of light guide, DETECT simulation is performed to study and prospect characteristics of light guide structure. And actual light guides are fabricated on the basis of this simulation result. Poly(methyl methacrylate) (PMMA) is chosen as material of light guide, 5 sample light guides are fabricated in different lengths and coatings. As a scintillator crystal, same NaI(Tl) crystal is chosen. For measurement and analysis of gamma spectrometer system, 3 gamma spectrometer systems are composed: PM tube-based system, PM tube-based system with the light guide, SiPM-based system with the light guide. Through comparison between the results of each gamma spectrometer, the performances of gamma spectrometer system are analyzed by each component. Measurement results of the second system is well

  6. Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization

    International Nuclear Information System (INIS)

    Elsays, Mostafa A.; Naguib Aly, M; Badawi, Alya A.

    2010-01-01

    The Particle Swarm Optimization (PSO) algorithm is used to optimize the design of shell-and-tube heat exchangers and determine the optimal feasible solutions so as to eliminate trial-and-error during the design process. The design formulation takes into account the area and the total annual cost of heat exchangers as two objective functions together with operating as well as geometrical constraints. The Nonlinear Constrained Single Objective Particle Swarm Optimization (NCSOPSO) algorithm is used to minimize and find the optimal feasible solution for each of the nonlinear constrained objective functions alone, respectively. Then, a novel Nonlinear Constrained Mult-objective Particle Swarm Optimization (NCMOPSO) algorithm is used to minimize and find the Pareto optimal solutions for both of the nonlinear constrained objective functions together. The experimental results show that the two algorithms are very efficient, fast and can find the accurate optimal feasible solutions of the shell and tube heat exchangers design optimization problem. (orig.)

  7. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  8. An experimental study of heat transfer characteristics of single and two-phase flows in an annular tube with external vibrations

    International Nuclear Information System (INIS)

    Zaki, Adel M.; Abou El-Kassem, S.K.; Abdalla Hanafi

    2003-01-01

    An experimental study of the external vibration effect on the heat transfer characteristics of single and two-phase flows in an annular tube is carried out. An experimental set-up was constructed to study the heat transfer in a stationary, as well as, in oscillating annular tube. The annular tube was heated electrically through the inner surface, which is a stainless steel tube (St 304) 13 mm outer diameter, while the outer tube, of 3.7 cm inner diameter, made from a glass. The experimental set-up was equipped with a vibrating system to excite the annular tube in the frequency range of 0 up to 134 Hz. Several sensors for measuring wall and fluid temperatures, heat fluxes and volume flow rates of both phases were used. The obtained results show that the heat transfer coefficient can be significantly increased by vibration of the test section. (author)

  9. Silicon photomultiplier arrays for the LHCb scintillating fibre tracker

    CERN Multimedia

    Girard, Olivier Goran; Kuonen, Axel Kevin; Stramaglia, Maria Elena

    2017-01-01

    For the LHCb detector upgrade in 2019, a large scale scintillating fibre tracker read out with silicon photomultipliers is under construction. The harsh radiation environment (neutron and ionising radiation), the 40MHz read-out rate of the trigger less system and the large detector surface of 320m2 impose many challenges. We present the results from lab tests with 1MeV electrons and from the SPS test facility at CERN for the mulitchannel SiPM array that combines peak photo-detection efficiency of 48% and extremely low correlated noise. The measurements were performed with detectors irradiated with neutrons up to a fluence of 12*1011 neq/cm2 and single photon detection was maintained. First results of the characterization of the pre-series of 500 detectors delivered by Hamamatsu and irradiation studies on a large sample will be included.

  10. Analysis of transit time spread on FBK silicon photomultipliers

    International Nuclear Information System (INIS)

    Acerbi, F.; Gola, A.; Ferri, A.; Zorzi, N.; Paternoster, G.; Piemonte, C.

    2015-01-01

    In this paper we studied one of the aspects potentially limiting the single-photon time-resolution (SPTR) of the silicon photomultiplier (SiPM): the transit time spread (TTS). We illuminated the SiPM in different positions with a fast-pulsed laser collimated to a circular spot of 0.2 mm-diameter and acquired bi-dimensional maps of the avalanche-signal arrival time of RGB and RGB-HD SiPMs, produced at FBK. We studied the effect of both the number of bonding wires connecting the device to the package and the layout of the top-metal connection (on the device). We found that the TTS does not simply depend on the trace length between the cell and the bonding pad and it could vary in the range between tens of picoseconds (with 3 bonding connections) to more than one hundred of picoseconds (with one connection)

  11. Stabilization of the photomultiplier gain of a liquid scintillation counter

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kuznetsov, A.V.; Malkin, L.Z.; Petrov, B.F.; Sheremet'ev, A.K.; Shpakov, V.I.

    1987-01-01

    A stabilization system of photomultiplier gain, where light-emitting diode flashes have been used to obtain a reference signal, is described. The diode is placed just in the liquid scintilllator volume. The stabilization system contains several (according to the number of photomultipliers) identical channels, which of them consists of a colorimeter, a control trigger and an integrator with an operational amplifier. Increase of photomultiplier stability is reached by changing voltage of photomultiplier power according to the reference signal amplitude. The level of background and efficiency of neutron detection by a scintillation counter are unchanged when using the stabilization system for 10 days of measurements

  12. First results of systematic studies done with silicon photomultipliers

    International Nuclear Information System (INIS)

    Bosio, C.; Gentile, S.; Kuznetsova, E.; Meddi, F.

    2008-01-01

    Multicell avalanche photodiode structure operated in Geiger mode usually referred as silicon photomultiplier is a new intensively developing technology for photon detection. Insensitivity to magnetic fields, low operation voltage and small size make silicon photomultipliers very attractive for high-energy physics, astrophysics and medical applications. The presented results are obtained during the first steps taken in order to develop a setup and measurement procedures which allow to compare properties of diverse samples of silicon photomultipliers available on market. The response to low-intensity light was studied for silicon photomultipliers produced by CPTA (Russia), Hamamatsu (Japan), ITC-irst (Italy) and SensL (Ireland).

  13. General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes

    International Nuclear Information System (INIS)

    Ravigururajan, T.S.; Bergles, A.E.

    1985-01-01

    General correlations for friction factors and heat transfer coefficients for single-phase turbulent flow in internally ribbed tubes are presented. Data from previous investigations are gathered for a wide range of tube parameters with e/d: 0.01 to 0.2; p/d: 0.1 to 7.0; α/90: 0.3 to 1.0, and flow parameters Re: 5000 to 250,000 and Pr: 0.66 to 37.6. The data were applied to a linear model to get normalized correlations that were then modified to fit tubes with extremely small parametric values. A shape function was included in the friction correlation to account for different rib profiles. The friction correlation predicts 96% of the data base to within +. 50% and 77% of the data base to within +. 20%. Corresponding figures for the heat transfer correlation are 99% and 69%. The present correlations are superior, for this extensive data base, to those presented by other investigators

  14. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  15. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    International Nuclear Information System (INIS)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R.; Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E.

    2015-01-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  16. Improved SPICE electrical model of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Marano, D., E-mail: davide.marano@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Belluso, M.; Billotta, S.; Grillo, A.; Garozzo, S.; Romeo, G. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; La Rosa, G.; Sottile, G.; Impiombato, D.; Giarrusso, S. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2013-10-21

    The present work introduces an improved SPICE equivalent electrical model of silicon photomultiplier (SiPM) detectors, in order to simulate and predict their transient response to avalanche triggering events. In particular, the developed circuit model provides a careful investigation of the magnitude and timing of the read-out signals and can therefore be exploited to perform reliable circuit-level simulations. The adopted modeling approach is strictly related to the physics of each basic microcell constituting the SiPM device, and allows the avalanche timing as well as the photodiode current and voltage to be accurately simulated. Predictive capabilities of the proposed model are demonstrated by means of experimental measurements on a real SiPM detector. Simulated and measured pulses are found to be in good agreement with the expected results. -- Highlights: • An improved SPICE electrical model of silicon photomultipliers is proposed. • The developed model provides a truthful representation of the physics of the device. • An accurate charge collection as a function of the overvoltage is achieved. • The adopted electrical model allows reliable circuit-level simulations to be performed. • Predictive capabilities of the adopted model are experimentally demonstrated.

  17. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  18. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    Science.gov (United States)

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Silicon photomultipliers for positron emission tomography detectors with depth of interaction encoding capability

    International Nuclear Information System (INIS)

    Taghibakhsh, Farhad; Reznik, Alla; Rowlands, John A.

    2011-01-01

    Silicon photomultipliers (SiPMs) are receiving increasing attention in the field of positron emission tomography (PET) detectors. Compared to photomultiplier tubes, they offer novel detector configurations for the extraction of depth of interaction (DOI) information, or enable emerging medical imaging modalities such as simultaneous PET-magnetic resonant imaging (MRI). In this article, we used 2x2x20 mm 3 LYSO scintillator crystals coupled to SiPMs on both ends (dual-ended readout configuration) to evaluate the detector performance for DOI-PET applications. We investigated the effect of scintillator crystal surface finishing on sensitivity and resolution of DOI, as well as on energy and timing resolution. Measurements indicate DOI sensitivity and resolution of 7.1% mm -1 and 2.1±0.6 mm for saw-cut, and 1.3% mm -1 and 9.0±1.5 mm, for polished scintillator crystals, respectively. Energy resolution varies from 19% when DOI is in the center, to 15% with DOI at either end of the saw-cut crystal, while it remains constant at ∼14% for polished scintillators. Based on our results we conclude that 2x2x20 mm 3 saw-cut (without any special side wall polishing) LYSO crystals coupled to 2x2 mm 2 silicon photomultipliers are optimal for isotropic 2 mm resolution DOI-PET applications.

  20. Test on 2,000 photomultipliers for the CDF endplug calorimeter upgrade

    International Nuclear Information System (INIS)

    Fiori, I.

    1997-01-01

    A systematic test of various characteristics, such as gain, dark current, maximum peak current, stability and relative quantum efficiency, has been made to evaluate about 2,000 photomultiplier tubes for the upgraded CDF Endplug calorimeters. The phototubes are Hamamatsu R4125,19mm diameter with green-extended photocathode. In this report we discuss the distribution of the major characteristics measured and the failure mode. Comparisons between independent measurements made on some of the characteristics are used to evaluate the quality of the measurement itself

  1. Studies on the construction of a vertex detector of scintillation fibers and a multi-channel photomultiplier XP 4702

    International Nuclear Information System (INIS)

    Pfeiffer, G.

    1991-04-01

    In the last years recent attempts have been made in the development of scintillating fibers and multichannel photomultiplier tubes. A combination of these two components therefore becomes attractive in building a position sensitive detector. For this purpose some investigations were made to prove the capability of such a combination. It has been shown, that both components would be well suited for building a position sensitive detector. (orig.) [de

  2. Gain stabilization circuit of measuring devices with photomultipliers

    International Nuclear Information System (INIS)

    Seda, J.; Sabol, J.

    1974-01-01

    A circuit is designed for the stabilization of the gain of measuring devices with photomultipliers, suitable especially for the stabilization of scintillation detection systems, in which the correction signal is applied to the photomultiplier grid placed between the photocathode and the first dynode. (J.K.)

  3. SSC 50 MM collider dipole cryostat single tube support post conceptual design and analysis

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1992-01-01

    Superconducting Super Collider (SSC) dipole magnet cold masses are connected to the cryostat vacuum vessel at five places equally spaced along their length. Five supports limit sag of the cold assembly due to its own weight to a level consistent with the final magnet alignment specifications. The design essentially consists of two composite tubes nested within each other as a means of maximizing the thermal path length. In addition it provides an ideal way to utilize materials best suited for the temperature range over which they must operate. Filament wound S-glass is used between 300K and 80K. Filament wound graphite fiber is used between 80K and 20K and between 20K and 4.5K. S-glass is a better thermal performer above approximately 40K. Graphite composites are ideally suited for operation below 40K. The designs for the 50 mm reentrant supports are well documented in the literature. The current design of the reentrant support has two major drawbacks. First, it requires very tight dimensional control on all components; composite tubes and metal attachment parts. Second, it is expensive, with cost being driven by both the tolerance constraints and by a complex assembly procedure. It seems clear that production magnets will require a support structure which is considerably less expensive than that which is currently used. It seems clear that a design alternate for reentrant support posts will be required for production dipoles primarily due to their cost. It seems less clear that injection molded composite materials are the ideal choice. This report describes the conceptual design for a support post whose function is identical to that of the current reentrant design, which requires very few modifications to surrounding cryostat components, is thermally equivalent to the current 50 mm support post, and is nearly equivalent structurally

  4. Muon tracking system with Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D'Incecco, M.; Sablone, D.; Franchi, G.

    2015-01-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background

  5. Muon tracking system with Silicon Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Candela, A.; D' Incecco, M.; Sablone, D. [Gran Sasso National Laboratory of INFN, Assergi (Italy); Franchi, G. [AGE Scientific Srl, Capezzano Pianore (Italy)

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  6. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  7. Efficient Disinfection of Tap and Surface Water with Single High Power 285 nm LED and Square Quartz Tube

    Directory of Open Access Journals (Sweden)

    Martin Hessling

    2016-01-01

    Full Text Available A small water disinfection system based on the combination of a strong single 25 mW LED with a wavelength of 285 nm and a short quartz tube with an outer rectangular cross section is presented. For the disinfection tests clear tap water and slightly turbid and yellow pond water are contaminated with high concentrations of Escherichia coli bacteria. These water samples are exposed to the germicidal 285 nm LED radiation while they flow through the quartz tube. The portion of surviving germs is determined by membrane filtration for different water qualities and flow rates. For clear tap water the bacteria concentration can be reduced by at least three orders of magnitude up to flow rates of about 20 L/h. In pond water the maximum flow rate for such a reduction is less than 3 L/h. These high disinfection capabilities and the small size of this system, allow its integration in medical systems for point of use disinfection or even its application in the Third World for decentralized water disinfection powered by small solar cells, because this disinfection capacity should be sufficient for small groups or families.

  8. Syndromes and Disorders Associated with Omphalocele (III: Single Gene Disorders, Neural Tube Defects, Diaphragmatic Defects and Others

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-06-01

    Full Text Available Omphalocele can be associated with single gene disorders, neural tube defects, diaphragmatic defects, fetal valproate syndrome, and syndromes of unknown etiology. This article provides a comprehensive review of omphalocele-related disorders: otopalatodigital syndrome type II; Melnick–Needles syndrome; Rieger syndrome; neural tube defects; Meckel syndrome; Shprintzen–Goldberg omphalocele syndrome; lethal omphalocele-cleft palate syndrome; cerebro-costo-mandibular syndrome; fetal valproate syndrome; Marshall–Smith syndrome; fibrochondrogenesis; hydrolethalus syndrome; Fryns syndrome; omphalocele, diaphragmatic defects, radial anomalies and various internal malformations; diaphragmatic defects, limb deficiencies and ossification defects of skull; Donnai–Barrow syndrome; CHARGE syndrome; Goltz syndrome; Carpenter syndrome; Toriello–Carey syndrome; familial omphalocele; Cornelia de Lange syndrome; C syndrome; Elejalde syndrome; Malpuech syndrome; cervical ribs, Sprengel anomaly, anal atresia and urethral obstruction; hydrocephalus with associated malformations; Kennerknecht syndrome; lymphedema, atrial septal defect and facial changes; and craniosynostosis- mental retardation syndrome of Lin and Gettig. Perinatal identification of omphalocele should alert one to the possibility of omphalocele-related disorders and familial inheritance and prompt a thorough genetic counseling for these disorders.

  9. Effects of tube diameter and chirality on the stability of single-walled carbon nanotubes under ion irradiation

    International Nuclear Information System (INIS)

    Xu Zijian; Zhang Wei; Zhu Zhiyuan; Ren Cuilan; Li Yong; Huai Ping

    2009-01-01

    Using molecular dynamics method, we investigated the influence of tube diameter and chirality on the stability of single-walled carbon nanotubes (CNTs) under ion irradiation. We found that in the energy range below 1 keV, the dependence of CNT stability on the tube diameter is no longer monotonic under C ion irradiation, and the thinner (5, 5) CNT may be more stable than the thicker (7, 7) CNT, while under Ar irradiation, the CNT stability increases still monotonically with the CNT diameter. This stability behavior was further verified by the calculations of the threshold ion energies to produce displacement damage in CNTs. The abnormal stability of thin CNTs is related to their resistance to the instantaneous deformation in the wall induced by ion pushing, the high self-healing capacity, as well as the different interaction properties of C and Ar ions with CNT atoms. We also found that under ion irradiation the stability of a zigzag CNT is better than that of an armchair CNT with the same diameter. This is because of the bonding structure difference between the armchair and the zigzag CNTs with respect to the orientations of graphitic networks as well as the self-healing capacity difference.

  10. Single-Walled Carbon Nano tubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    International Nuclear Information System (INIS)

    Upadhyayula, V.K.K

    2008-01-01

    The possibility of using single-walled carbon nanotubes (SWCNTs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k) for S.aureus and E.coli determined from batch adsorption study was found to be 9 x108 and 2 x108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  11. Results from integral tests of single reformer tubes under simulated nuclear reactor conditions

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Fedders, H.; Harth, R.; Hoehlein, B.; Riensche, E.

    1980-01-01

    The possibility of supplying high temperature heat from a HTGR for process application is being investigated at some places in the world. In all programmes or projects existing with respect to this application, the endothermic steam reforming of methane is one main step in the transmission of heat produced by nuclear fission to different chemical processes. The KFA is involved in the two German projects PNP - Prototypanlage Nukleare Prozesswaerme (Prototype-plant Nuclear Process-heat), and NFE -Nukleare Fernenergie (Long Distance Energy Transport). In a HTGR, helium generally serves as reactor coolant. It transports the heat from the core to the different components which take over this heat for various purposes. In case of arranging a steam reformer in the helium circuit, it is necessary for economic reasons to reach very high temperatures. In the two German projects mentioned above, the helium temperature at HTGR core outlet is determined to 950 0 C. Thus the main design data for a steam reformer supplied by heat from a HTGR are maximum helium temperature 950 0 C, helium pressure 40 bar. By an extensive utilization of the available advanced conventional steam reforming technology, the helium heated steam reformer design is using normal steam reforming tubes arranged in compact bundles

  12. Stress in closed thin-walled tubes of single box subjected by shear forces and application to airfoils

    Directory of Open Access Journals (Sweden)

    Zebbiche Toufik

    2014-09-01

    Full Text Available The presented work is to develop a numerical computation program to determine the distribution of the shear stress to shear in closed tubes with asymmetric single thin wall section with a constant thickness and applications to airfoils and therefore determining the position and value of the maximum stress. In the literature, there are exact analytical solutions only for some sections of simple geometries such as circular section. Hence our interest is focused on the search of approximate numerical solutions for more complex sections used in aeronautics. In the second stage the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using the cubic spline interpolation since it is given in the form of tabulated points.

  13. Experimental study of single- and two-phase flow fields around PWR steam generator tube support plates

    International Nuclear Information System (INIS)

    Bates, J.M.; Stewart, C.W.

    1979-08-01

    Laser-Doppler anemometry (LDA) was used to measure local mean axial velocities and turbulence intnsities at selected locations within a study model dimensionally protypic of an existing PWR steam generator design. The model tube bundle with support plate was installed in a special flow housing that formed part of an isothermal recirculating water flow loop. Flow conditions for this experiment were intended to simulate only typical single-phase flow velocities and were not an attempt to completely model actual steam generator, boiling, two-phase flow conditions. The measurements were performed in water at approximately 85 0 F with test section average velocities of approximately 0.55 and 1.1 fps. These conditions corresponded to Reynolds numbers of approximately 7,000 and approximately 14,000, respectively. Normalized velocity and turbulence intensity ratios are graphically reported. Additional qualitative, photographic investigations of air-water two-phase flows in a PWR steam generator study model were also performed

  14. The Effect of DNA and Sodium Cholate Dispersed Single-Walled Carbon Nano tubes on the Green Algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Williams, R.M.; Cox, Z.; Dolash, B.D.; Sooter, L.J.; Williams, R.M.; Taylor, H.K.; Thomas, J.

    2014-01-01

    Increasing use of single-walled carbon nano tubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.

  15. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    Science.gov (United States)

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Sun-Duffey mass effluents calculation model applied to bottom reflooding tests of a single tube performed at the CDTN

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.; Rezende, H.C.

    1993-01-01

    A simple generalized model, developed by K.H. Sun and R.B. Duffey, is applied in this work to calculate the ratio of mass effluents during bottom reflooding of a single tube carried out at the CDTN/CNEN. The results of the benchmark experiments indicate that the accuracy on mass effluence ratio prediction can be within 15% by using the Sun-Duffey model. The reasonable agreement obtained between experimental data and model predictions suggest that it could be used for analysis of single tube reflood tests, in similar conditions. (author)

  17. Radiation Damage Studies of Silicon Photomultipliers

    CERN Document Server

    Bohn, P; Hazen, E.; Heering, A.; Rohlf, J.; Freeman, J.; Los, Sergey V.; Cascio, E.; Kuleshov, S.; Musienko, Y.; Piemonte, C.

    2008-01-01

    We report on the measurement of the radiation hardness of silicon photomultipliers (SiPMs) manufactured by Fondazione Bruno Kessler in Italy (1 mm$^2$ and 6.2 mm$^2$), Center of Perspective Technology and Apparatus in Russia (1 mm$^2$ and 4.4 mm$^2$), and Hamamatsu Corporation in Japan (1 mm$^2$). The SiPMs were irradiated using a beam of 212 MeV protons at Massachusetts General Hospital, receiving fluences of up to $3 \\times 10^{10}$ protons per cm$^2$ with the SiPMs at operating voltage. Leakage currents were read continuously during the irradiation. The delivery of the protons was paused periodically to record scope traces in response to calibrated light pulses to monitor the gains, photon detection efficiencies, and dark counts of the SiPMs. The leakage current and dark noise are found to increase with fluence. Te leakage current is found to be proportional to the mean square deviation of the noise distribution, indicating the dark counts are due to increased random individual pixel activation, while SiPM...

  18. A highly sensitive single-tube nested PCR assay for the detection of Pineapple mealybug wilt associated virus-2 (PMWaV-2)

    Science.gov (United States)

    An assay was developed for the detection of Pineapple mealybug wilt associated virus-2 (PMWaV-2), an important factor in the etiology of mealybug wilt of pineapple. The assay combines reverse transcription of RNA isolated from pineapple with a specific and very sensitive, single, closed-tube nested ...

  19. Evaluation of performance of silicon photomultipliers in lidar applications

    Science.gov (United States)

    Vinogradov, Sergey L.

    2017-05-01

    Silicon Photomultipliers (SiPMs) are a well-recognized new generation of photon number resolving avalanche photodetectors. Many advantages - a high gain with an ultra-low excess noise of multiplication, multi-pixel architecture, relatively low operating voltage - make SiPMs very competitive in a growing number of applications. Challenging demands of LIDAR applications for a receiver having high sensitivity starting from single photons, superior time-offlight resolution, robustness including surviving at bright light flashes, solid-state compactness and more, are expected to be feasible for the SiPMs. Despite some known drawbacks, namely crosstalk, afterpulsing, dark noise, limited dynamic range, SiPMs are already considered as promising substitutes for conventional APDs and PMTs in LIDAR applications. However, these initial considerations are based on a rather simplified representation of the SiPM as a generic LIDAR receiver described by generic expressions. This study is focused on a comprehensive evaluation of a SiPM potential considering essential features of this new technology, which could affect applicability and performance of SiPMs as LIDAR receivers. Namely, an excess noise due to correlated processes of crosstalk and afterpulsing, are included into account utilizing the well-established framework of analytical probabilistic models. The analysis of SiPM performance in terms of a photon number and time resolution clarifies their competitiveness over conventional APD and PMT and anticipates the development of next SiPM generations.

  20. Influence of incident light wavelength on time jitter of fast photomultipliers

    International Nuclear Information System (INIS)

    Moszynski, M.; Vacher, J.

    1977-01-01

    The study of the single photoelectron time resolution as a function of the wavelength of the incident light was performed for a 56 CVP photomultiplier having an S-1 photocathode. The light flash from the XP22 light emitting diode generator was passed through passband filters and illuminated the 5 mm diameter central part of the photocathode. A significant increase of the time resolution above 30% was observed when the wavelength of the incident light was changed from 790 nm to 580 nm. This gives experimental evidence that the time jitter resulting from the spread of the initial velocity of photoelectrons is proportional to the square root of the maximal initial energy of photoelectrons. Based on this conclusion the measured time jitter of C31024, RCA8850 and XP2020 photomultipliers with the use of the XP22 light emitting diode at 560 nm light wavelength was recalculated to estimate the time jitter at 400 nm near the maximum of the photocathode sensitivity. It shows an almost twice larger time spread at 400 nm for the C31024 and RCA8850 with a high gain first dynode and an about 1.5 times larger time spread for the XP2020 photomultiplier, than those measured at 560 nm. (Auth.)

  1. Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array

    Science.gov (United States)

    Kwon, Sun Il; Lee, Jae Sung

    2014-10-01

    The silicon photomultiplier (SiPM) is a promising photosensor for magnetic resonance (MR) compatible time-of-flight (TOF) positron emission tomography (PET) scanners. The compact size of the SiPM allows direct one-to-one coupling between the scintillation crystal and the photosensor, yielding better timing and energy resolutions than the light sharing methods that have to be used in photomultiplier tube (PMT) PET systems. However, the one-to-one coupling scheme requires a huge volume of readout and processing electronics if no electric signal multiplexing or encoding scheme is properly applied. In this paper, we develop an electric signal encoding scheme for SiPM array based TOF PET detector blocks with the aim of reducing the complexity and volume of the signal readout and processing electronics. In an M×N SiPM array, the output signal of each channel in the SiPM array is divided into two signal lines. These output lines are then tied together in row and column lines. The row and column signals are used to measure the energy and timing information (or vice versa) of each incident gamma-ray event, respectively. Each SiPM channel was directly coupled to a 3×3×20 mm3 LGSO crystal. The reference detector, which was used to measure timing, consisted of an R9800 PMT and a 4×4×10 mm3 LYSO crystal and had a single time resolution of ~200 ps (FWHM). Leading edge discriminators were used to determine coincident events. Dedicated front-end electronics were developed, and the timing and energy resolutions of SiPM arrays with different array sizes (4×4, 8×8, and 12×12) were compared. Breakdown voltage of each SiPM channel was measured using energy spectra within various bias voltages. Coincidence events were measured using a 22Na point source. The average coincidence time resolution of 4×4, 8×8, and 12×12 SiPM arrays were 316 ps, 320 ps, and 335 ps (FWHM), respectively. The energy resolution of 4×4, 8×8, and 12×12 SiPM arrays were 11.8%, 12.5%, and 12.8% (FWHM

  2. Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar.

    Science.gov (United States)

    Liang, Shih-Yu; Hsia, Kan-Tai; Chan, Yun-Hsien; Fan, Chia-Kwung; Jiang, Donald Dah-Shyong; Landt, Olfert; Ji, Dar-Der

    2010-08-01

    A single-tube multiprobe real-time PCR assay for simultaneous detection of Entamoeba histolytica and Entamoeba dispar was developed. One primer pair with 2 species-specific probes was designed based on new SSU RNA regions of the ribosomal DNA-containing episome. The sensitivity is 1 parasite per milliliter of feces and thus superior to the conventional nested PCR and comparable to other published real-time PCR protocols. The applicability for clinical diagnosis was validated with 218 stool specimens from patients. A total of 51 E. histolytica and 39 E. dispar positive samples was detected by the multiprobe real-time PCR compared to 39 and 22 by routine nested PCR diagnosis. The detection rate of Entamoeba species for the multiprobe real-time PCR assays was significantly higher than the nested PCR (40.8% vs. 28.0%, P Entamoeba moshkovskii, Giardia lamblia , Cryptosporidium sp., Escherichia coli , or other nonpathogenic enteric parasites. The multiprobe real-time PCR assay is simple and rapid and has high specificity and sensitivity. The assay could streamline the laboratory diagnosis procedure and facilitate epidemiological investigation.

  3. Development and validation of a single-tube multiple-locus variable number tandem repeat analysis for Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Antoinette A T P Brink

    Full Text Available Genotyping of Klebsiella pneumoniae is indispensable for management of nosocomial infections, monitoring of emerging strains--including extended-spectrum beta-lactamase (ESBL producers-, and general epidemiology. Such objectives require a high-resolution genotyping method with a fixed scheme that allows (1 long-term retrospective and prospective assessment, (2 objective result readout and (3 library storage for database development and exchangeable results. We have developed a multiple-locus variable number tandem repeat analysis (MLVA using a single-tube fluorescently primed multiplex PCR for 8 Variable Number Tandem Repeats (VNTRs and automated fragment size analysis. The type allocation scheme was optimized using 224 K. pneumoniae clinical isolates, which yielded 101 MLVA types. The method was compared to the gold standard multilocus sequence typing (MLST using a subset of these clinical isolates (n = 95 and found to be highly concordant, with at least as high a resolution but with considerably less hands-on time. Our results position this MLVA scheme as an appropriate, high-throughput and relatively low-cost tool for K. pneumoniae epidemiology.

  4. Determination of a cross-sectional void fraction in a tube bundle using a single beam gamma densitometer

    International Nuclear Information System (INIS)

    Guichard, J.; Mezoul, B.; Peturaud, P.; Thomas, B.

    1991-06-01

    In order to qualify 3-dimensional two-phase flow computer codes modelling average flows in tube bundles, cross-section average void fractions must be measured over sub-channels. On the VATICAN mockup, such void fractions(integrated on the mockup thickness) are determined using a single (narrow) beam gamma densitometer. But to avoid a refined exploration of each measurement mesh, for each test, empirical calibration curves have been developed in a regular mesh of the mockup, in axial flow conditions. These calibration curves, which evaluate the sought cross-sectional value as a function of a chordal void fraction (right in the inter-rod gap) depend only on heat flux density and pressure. The data are consistent with the ARMAND-MASSENA and LELLOUCHE-ZOLOTAR slip correlations, and they are fitted by 3rd degree polynomials, for each heat flux density investigated, with a good accuracy. Unfortunately, preliminary testing and analysis indicate that the use of these calibration curves in subcooled boiling and transverse mixing zones might result in significant uncertainties and errors

  5. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    Directory of Open Access Journals (Sweden)

    Parida Manmohan

    2008-01-01

    Full Text Available Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Japanese encephalitis, West Nile, Yellow fever and alphavirus (Chikungunya. The feasibility of M-RT-PCR assay for clinical diagnosis was validated with 620 acute phase dengue patient sera samples of recent epidemics in India. The comparative evaluation vis a vis conventional virus isolation revealed higher sensitivity. None of the forty healthy serum samples screened in the present study revealed any amplification, thereby establishing specificity of the reported assay for dengue virus only. Conclusion These findings clearly suggested that M-RT-PCR assay reported in the present study is the rapid and cost-effective method for simultaneous detection as well as typing of the dengue virus in acute phase patient serum samples. Thus, the M-RT-PCR assay developed in this study will serve as a very useful tool for rapid diagnosis and typing of dengue infections in endemic areas.

  6. A single-tube 27-plex SNP assay for estimating individual ancestry and admixture from three continents.

    Science.gov (United States)

    Wei, Yi-Liang; Wei, Li; Zhao, Lei; Sun, Qi-Fan; Jiang, Li; Zhang, Tao; Liu, Hai-Bo; Chen, Jian-Gang; Ye, Jian; Hu, Lan; Li, Cai-Xia

    2016-01-01

    A single-tube multiplex assay of a small set of ancestry-informative markers (AIMs) for effectively estimating individual ancestry and admixture is an ideal forensic tool to trace the population origin of an unknown DNA sample. We present a newly developed 27-plex single nucleotide polymorphism (SNP) panel with highly robust and balanced differential power to perfectly assign individuals to African, European, and East Asian ancestries. Evaluating 968 previously described intercontinental AIMs from three HapMap population genotyping datasets (Yoruban in Ibadan, Nigeria (YRI); Utah residents with Northern and Western European ancestry from the Centre de'Etude du Polymorphism Humain (CEPH) collection (CEU); and Han Chinese in Beijing, China (CHB)), the best set of markers was selected on the basis of Hardy-Weinberg equilibrium (p > 0.00001), population-specific allele frequency (two of three δ values >0.5), according to linkage disequilibrium (r (2) ancestry of the 11 populations in the HapMap project. Then, we tested the 27-plex SNP assay with 1164 individuals from 17 additional populations. The results demonstrated that the SNP panel was successful for ancestry inference of individuals with African, European, and East Asian ancestry. Furthermore, the system performed well when inferring the admixture of Eurasians (EUR/EAS) after analyzing admixed populations from Xinjiang (Central Asian) as follows: Tajik (68:27), Uyghur (49:46), Kirgiz (40:57), and Kazak (36:60). For individual analyses, we interpreted each sample with a three-ancestry component percentage and a population match probability sequence. This multiplex assay is a convenient and cost-effective tool to assist in criminal investigations, as well as to correct for the effects of population stratification for case-control studies.

  7. Fluoroscopic-guided primary single-step percutaneous gastrostomy. Initial results using the Freka {sup registered} GastroTube; Primaere einzeitige durchleuchtungsgesteuerte perkutane Gastrostomie (PG). Erste Ergebnisse mit dem Freka {sup registered} GastroTube

    Energy Technology Data Exchange (ETDEWEB)

    Hahne, J.D.; Schoennagel, B.P.; Arndt, C.; Bannas, P.; Koops, A.; Adam, G.; Habermann, C.R. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Zentrum fuer Radiologie; Herrmann, J. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Zentrum fuer Radiologie; Universitaetsklinikum Hamburg-Eppendorf (Germany). Abt. Paediatrische Radiologie

    2011-07-15

    Purpose: To determine the practicability and outcome of fluoroscopic-guided primary one-step treatment of percutaneous gastrostomy (PG) with the system Freka {sup registered} Gastro Tube (Fresenius Kabi, Germany). Materials and Methods: In 39 patients (mean age 62.7 {+-} 12.0 years), primary PG was performed based on clinical indication from August 2009 to April 2010. The intervention was performed by an experienced radiologist under aseptic conditions by direct puncture with Freka {sup registered} Gastro Tube under fluoroscopic guidance. The clinical data and outcome as well as any complications originated from the electronic archive of the University Medical Center Hamburg-Eppendorf. Results: The intervention was technically successful in all 39 patients. Within the mean follow-up time of 155.3 {+-} 73.6 days, 29 patients (74.4 %) did not experience complications. 10 patients (25.6 %) had to be revised. Complications manifested after a mean of 135.6 {+-} 61.2 days and mainly corresponded to accidental dislocation (50 %). One patient had to be surgically revised under suspicion of a malpositioned tube and suspected intestinal perforation. Clinically relevant wound infections were not detected. The total costs per patient were 553.17 Euro for our single-step treatment (OPS 5 - 431.x) vs. 963.69 Euro (OPS 5 - 431.x and OPS 8 - 123.0) for the recommended two-step treatment. Conclusion: Fluoroscopic-guided primary single-step treatment with Freka {sup registered} Gastro Tube system is feasible and not associated with an increased complication rate when compared to published literature applying a two-step treatment approach. Material costs as well as human and time resources could be significantly reduced using the single-step treatment. (orig.)

  8. Advances in CMOS solid-state photomultipliers for scintillation detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric [Radiation Monitoring Devices, 44 Hunt Street, Watertownm, MA 02472 (United States); Augustine, Frank L., E-mail: JChristian@RMDInc.co [Augustine Engineering, 2115 Park Dale Ln, Encinitas, CA 92024 (United States)

    2010-12-11

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance.

  9. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  10. Optimizing and accelerating the assignation of lineages in Mycobacterium tuberculosis using novel alternative single-tube assays.

    Directory of Open Access Journals (Sweden)

    María Carcelén

    Full Text Available The assignation of lineages in Mycobacterium tuberculosis (MTB provides valuable information for evolutionary and phylogeographic studies and makes for more accurate knowledge of the distribution of this pathogen worldwide. Differences in virulence have also been found for certain lineages. MTB isolates were initially assigned to lineages based on data obtained from genotyping techniques, such as spoligotyping or MIRU-VNTR analysis, some of which are more suitable for molecular epidemiology studies. However, since these methods are subject to a certain degree of homoplasy, other criteria have been chosen to assign lineages. These are based on targeting robust and specific SNPs for each lineage. Here, we propose two newly designed multiplex targeting methods-both of which are single-tube tests-to optimize the assignation of the six main lineages in MTB. The first method is based on ASO-PCR and offers an inexpensive and easy-to-implement assay for laboratories with limited resources. The other, which is based on SNaPshot, enables more refined standardized assignation of lineages for laboratories with better resources. Both methods performed well when assigning lineages from cultured isolates from a control panel, a test panel, and a problem panel from an unrelated population, Mexico, which included isolates in which standard genotyping was not able to classify lineages. Both tests were also able to assign lineages from stored isolates, without the need for subculture or purification of DNA, and even directly from clinical specimens with a medium-high bacilli burden. Our assays could broaden the contexts where information on lineages can be acquired, thus enabling us to quickly update data from retrospective collections and to merge data with those obtained at the time of diagnosis of a new TB case.

  11. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  12. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R. [Indian Institute of Technology Madras, Department of Chemical Engineering, Chennai, Tamil Nadu (India)

    2008-05-15

    The effect of oscillations on the heat transfer in a vertical tube has been studied experimentally. A vertical tube was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical oscillator to provide low frequency oscillations. A section of the tube in the middle is subjected to a constant heat flux. The effect of the oscillations on the heat transfer coefficient has been examined. It was found that the heat transfer coefficient increased with oscillations in the laminar regime. In turbulent flow regime (Re > 2,100) it is found that the effect of oscillations did not show any change. A correlation has been developed for enhancement of the local Nusselt number in terms of the effective acceleration and Reynolds number. Using this, an expression has been proposed to calculate the mean Nusselt number as a function of the tube length. (orig.)

  13. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-01-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  14. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4

    International Nuclear Information System (INIS)

    Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.

    1987-01-01

    Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)

  15. Effect of interelectrode potentials in the photomultiplier on formation of afterpulses

    International Nuclear Information System (INIS)

    Morozov, V.A.; Morozova, N.V.

    2001-01-01

    The effect of the interelectrode potential difference in the XP2020 photomultiplier on the intensity of formation of afterpulses caused by ion feedback is studied. It is shown that the photocathode - first dynode gap plays a decisive role in this process while the dynode system is of minor importance at pulse currents below a few tens of milliampers. It is also shown that the anomalous ratio between the afterpulse amplitudes and basic pulse amplitudes can be governed by the process of single ion detection. (author)

  16. Two types of photomultiplier voltage dividers for high and changing count rates

    International Nuclear Information System (INIS)

    Reiter, W.L.; Stengl, G.

    1980-01-01

    We report on the design of two types of voltage distribution circuits for high stability photomultiplier operation. 'Type A' voltage divider is an ohmic voltage divider with high bleeder current (up to 10 mA) and the resistor chain split at one of the last dynodes, usually the dynode where the analog signal is derived from. This simple constructive measure improves the stability of the dynode voltage by a factor of 5 compared with an unsplit conventional resistor chain. 'Type B' is a novel active voltage divider using cold cathode tubes ar regulating elements. This voltage divider exhibits excellent temperature stability (about 10 -4 / 0 C). With 'type B' an equal stability compared with conventional ohmic dividers can be achieved at a bleeder current smaller by one order of magnitude. Of course both concepts, 'type A' and 'type B', can be combined. (orig.)

  17. Performance of 8- and 12-dynode stage multianode photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Bibby, J.H. [University of Oxford, Oxford (United Kingdom); Buckley, A. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Chamonal, R.J.U. [University of Edinburgh, Edinburgh (United Kingdom)]. E-mail: chamonal@ph.ed.ac.uk; Easo, S. [CCLRC, Rutherford Aplleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Eisenhardt, S. [University of Edinburgh, Edinburgh (United Kingdom); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Harnew, N. [University of Oxford, Oxford (United Kingdom); Muheim, F. [University of Edinburgh, Edinburgh (United Kingdom); Howard, A. [Imperial College, London (United Kingdom); Lawrence, J. [University of Edinburgh, Edinburgh (United Kingdom); Pickford, A. [University of Glasgow, Glasgow (United Kingdom); Plackett, R. [Imperial College, London (United Kingdom); Price, D.R. [Imperial College, London (United Kingdom); Rademacker, J. [University of Oxford, Oxford (United Kingdom); Smale, N. [University of Oxford, Oxford (United Kingdom); Soler, F.J.P. [University of Glasgow, Glasgow (United Kingdom); CCLRC, Rutherford Aplleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Somerville, L. [University of Oxford, Oxford (United Kingdom); Storey, J. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Websdale, D. [Imperial College, London (United Kingdom); Wotton, S. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

    2006-11-01

    We report on studies of 64-channel Multianode Photo-Multiplier Tubes (MaPMTs) as photo-detectors for Ring Imaging CHerenkov (RICH) counters. The newly available 8-dynode stage MaPMT was tested in particle beams at CERN. The MaPMT signals were read out directly with the Beetle1.2 chip which was designed for the LHCb environment and operates at 40MHz. The photon yield and signal losses were determined for a cluster of 3x3 close-packed MaPMTs. The performance of the 8-dynode stage MaPMT was compared to that of the 12-dynode stage MaPMT which has a larger intrinsic gain.

  18. The performance of a high speed pipelined photomultiplier readout system in the Fermilab KTe V experiment

    International Nuclear Information System (INIS)

    Whitmore, J.

    1997-08-01

    The KTeV fixed target experiment at Fermilab is using an innovative scheme for reading out its 3100 channel CsI electromagnetic calorimeter. This pipelined readout system digitizes photomultiplier tube (PMT) signals over a 16-bit dynamic range with 8-bits of resolution at 53 MHz. The crucial element of the system is a custom Bi-CMOS integrated circuit which, in conjunction with an 8-bit Flash ADC, integrates and digitizes the PMT signal charge over each 18.9 nsec clock cycle (53 MHz) in a deadtimeless fashion.The digitizer circuit is local to the PMT base, and has an in-situ charge integration noise figure of 3 fC/sample. In this article, the readout system will be described and its performance including noise, cross-talk, linearity, stability, and reliability will be discussed

  19. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  20. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  1. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  2. Application of CMOS Technology to Silicon Photomultiplier Sensors

    Science.gov (United States)

    D’Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo

    2017-01-01

    We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments. PMID:28946675

  3. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments

    OpenAIRE

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel n...

  4. Counting efficiency formulae for two, three or four photomultiplier systems

    International Nuclear Information System (INIS)

    Grau Malonda, A.

    1993-01-01

    Counting efficiency formulae as a function of the non-detection probability and the electron distributions for systems with two, three or dour photomultipliers are obtained in this paper. It is assumed that the photocathode electron emission follows the Poisson distribution. The obtained formulae are basic to compute the counting efficiency in liquid scintillation spectrometers

  5. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  6. A Design of a PET Detector Using Micro-Channel Plate Photomultipliers with Transmission-Line Readout.

    Science.gov (United States)

    Kim, H; Frisch, H; Chen, C-T; Genat, J-F; Tang, F; Moses, W W; Choong, W S; Kao, C-M

    2010-01-01

    A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) read-out and waveform sampling. The detector unit consisted of a 24×24 array of pixelated LSO crystals, each of which was 4×4×25 mm(3) in size, and two 102×102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL. The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 keV gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of ~11% at 511 keV. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of ~323 ps FWHM and a coincidence detection efficiency of ~40% for normally-incident 511keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be ~2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator

  7. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    Science.gov (United States)

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  8. Outcomes with single agent LIPO-DOX in platinum-resistant ovarian and fallopian tube cancers and primary peritoneal adenocarcinoma - Chiang Mai University Hospital experience.

    Science.gov (United States)

    Suprasert, Prapaporn; Manopunya, Manatsawee; Cheewakriangkrai, Chalong

    2014-01-01

    Single pegylated liposomal doxorubicin (PLD) is commonly used as a salvage treatment in platinum-resistant ovarian cancer, fallopian tube cancer and primary peritoneal adenocarcinoma (PPA) with a satisfactory outcome. However, the data for second generation PLD administered in this setting are still limited. We conducted a retrospective study to evaluate the outcome of patients who received single-agent second generation PLD (LIPO-DOX) after the development of clinical platinum resistance. The study period was between March 2008 and March 2013. LIPO-DOX was administered intravenously 40 mg/m2 every 28 days until disease progression, but for not more than six cycles. The response rate was evaluated using the Gynecologic Cancer Intergroup (GCIG) criteria while the toxicity was evaluated according to WHO criteria. Twenty-nine patients met the inclusion criteria in the study period with an overall response rate of 13.8%. The median progression free survival and overall survival were three and eleven months, respectively. With the total of 96 cycles of chemotherapy, the patients developed grades 3 and 4 hematologic toxicity as follows: anemia, 0%, leukopenia, 9.6%, neutropenia, 32.3% and thrombocytopenia, 0%. In conclusion, the single agent second generation PLD demonstrated modest efficacy in patients with platinum-resistant ovarian cancer, fallopian tube cancer and PPA without serious toxicity.

  9. The development of a high-resolution scintillating fiber tracker with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    Roper Yearwood, Gregorio

    2013-01-01

    In this work I present the design and test results for a novel, modular tracking detector from scintillating fibers which are read out by silicon photomultiplier (SiPM) arrays. The detector modules consist of 0.25 mm thin scintillating fibers which are closely packed in five-layer ribbons. Two ribbons are fixed to both sides of a carbon-fiber composite structure. Custom made SiPM arrays with a photo-detection efficiency of about 50% read out the fibers. Several 860 mm long and 32 mm wide tracker modules were tested in a secondary 12 GeV/c beam at the PS facilities, CERN in November of 2009. During this test a spatial resolution better than 0.05 mm at an average light yield of about 20 photons for a minimum ionizing particle was determined. This work details the characterization of scintillating fibers and silicon photomultipliers of different make and model. It gives an overview of the production of scintillating fiber modules. The behavior of detector modules during the test-beam is analyzed in detail and different options for the front-end electronics are compared. Furthermore, the implementation of the proposed tracking detector from scintillating fibers within the scope of the PERDaix experiment is discussed. The PERDaix detector is a permanent magnet spectrometer with a weight of 40 kg. It consists of 8 tracking detector layers from scintillating fibers, a time-of-flight detector from plastic scintillator bars with silicon photomultiplier readout and a transition radiation detector from an irregular fleece radiator and Xe/CO 2 filled proportional counting tubes. The PERDaix detector was launched with a helium balloon within the scope of the ''Balloon-Experiments for University Students'' (BEXUS) program from Kiruna, Sweden in November 2010. For a few hours PERDaix reached an altitude of 33 km and measured cosmic rays. In May 2011, the PERDaix detector was characterized during a test-beam at the PS-facilities at CERN. This work introduces methods for event

  10. Photocopia-A Unibody Mono-material Compact and Scalable Photomultiplier

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory [Saxet Surface Science

    2014-12-01

    The Photocopia photomultiplier tube (PMT) takes advantage of two of the many unique properties of the hydrogenated amorphous silicon-germanium (a-SiGe) photoemitter material: its mechanical flexibility and mostly substrate-independent properties. The a-SiGe photoemitter has high secondary electron (SE) yield. It can be used both as the photocathode and as the gain medium. The active material can be grown on a flat, thin unibody substrate, formed and then “rolled up” ex situ. The completed structure would then be activated and sealed within a tube. The Ge component can be increased to enhance red-sensitivity. Compact sizes are possible, minimizing magnetic field effects. The Photocopia PMT will be a low cost alternative to MCPs for TOF detectors and provide better timing discrimination for Cherenkov detectors. Retention of the ability to activate to a normal photoyield state upon flexing (bending) the substrate of the a-SiGe material after growth, but prior to activation has been shown. The SE coefficient of the activated material has been characterized over the voltage range suitable for utilization as the gain material. The time response of the material is suited to PMT use.

  11. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sarah F., E-mail: s.f.jackson@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Monk, Stephen D., E-mail: s.monk@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Stanley, Steven J., E-mail: steven.j.stanley@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom); Lennox, Kathryn, E-mail: kathryn.lennox@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom)

    2014-07-01

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine{sup ®}’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine{sup ®} to a highly controlled dose rate (ranging from 0 Sv h{sup −1} to 320 Sv h{sup −1}), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site. - Highlights: • RadLine{sup ®} consists of a scintillating crystal coupled to a fibre optic cable and photon detector. • Here the dose monitoring system is trialled with SiPM and PMT type photon detectors. • A clinical linear accelerator (linac) is used as a test beam. • Sub-aquatic response is compared to Monte Carlo simulations and the NIST database.

  12. Progress in ultrafast CsI-photocathode gaseous imaging photomultipliers

    International Nuclear Information System (INIS)

    Dagendorf, V.; Breskin, A.; Chechick, R.; Schmidt-Boecking, H.

    1991-04-01

    A large area low-pressure gas-filled UV-imaging photomultiplier with CsI photocathode is presented. The double step electron photomultiplier with a 10 torr CH 4 gas-filling enables stable high gain operation. The detection efficiency of photon in the wavelength range λ ∼ 170 nm (Xe scintilation light) is about 10% for 200 to 2000 nm thick photocathodes. We investigate the influence of various substrate materials, the thickness of the CsI-layer, the gas pressure and the gas composition on the performance of the photocathode. Furthermore we studied the stability of the photocathode under different operating conditions and its sensitivity to air. Measurements of the timing characteristic of the device yielded an ultimate time resolution of 350 ps (fwhm). (author)

  13. Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2012-01-01

    Silicon Photomultipliers (SiPM), also called Solid State Photomultipliers (SSPM), are based on Geiger mode avalanche breakdown that is limited by a strong negative feedback. An SSPM can detect and resolve single photons due to the high gain and ultra-low excess noise of avalanche multiplication in this mode. Crosstalk and afterpulsing processes associated with the high gain introduce specific excess noise and deteriorate the photon number resolution of the SSPM. The probabilistic features of these processes are widely studied because of its significance for the SSPM design, characterization, optimization and application, but the process modeling is mostly based on Monte Carlo simulations and numerical methods. In this study, crosstalk is considered to be a branching Poisson process, and analytical models of probability distribution and excess noise factor (ENF) of SSPM signals based on the Borel distribution as an advance on the geometric distribution models are presented and discussed. The models are found to be in a good agreement with the experimental probability distributions for dark counts and a few photon spectrums in a wide range of fired pixels number as well as with observed super-linear behavior of crosstalk ENF.

  14. Dynamic range broadening for photomultipliers in kinetic spectrophotometry

    International Nuclear Information System (INIS)

    Rumas, V.K.

    1983-01-01

    The circuit of switching on a photomultiplier with prestage modulation developed for kinetic spectrophotometry purposes is described. Distinguishing features of the scheme are wide range of control pulse duration (40 nc - 2.5 mc) and direct transistor photostart by laser light pulse. In the case of PM prestage modulation for the second dynode modulation depth attains 400 while PM opening time constitutes 40 nc

  15. Characterization of a prototype matrix of Silicon PhotoMultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France)], E-mail: dinu@lal.in2p3.fr; Barrillon, P.; Bazin, C. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Belcari, N.; Bisogni, M.G. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Bondil-Blin, S. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Boscardin, M. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Chaumat, V. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Collazuol, G. [Scuola Normale Superiore (SNS), 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); De La Taille, C. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Del Guerra, A. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Llosa, G. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); Marcatili, S. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Melchiorri, M.; Piemonte, C. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Puill, V. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Tarolli, A. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Vagnucci, J.F. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Zorzi, N. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy)

    2009-10-21

    This work reports on the electrical as well as the optical characterizations of a prototype matrix of Silicon PhotoMultipliers (SiPM). The electrical test consists of the measurement of the static (breakdown voltage, quenching resistance, post-breakdown dark current) as well as the dynamic characteristics (gain, dark count rate). The optical test consists of the estimation of the photon detection efficiency as a function of wavelength as well as operation voltage.

  16. Characterization of a prototype matrix of Silicon PhotoMultipliers

    International Nuclear Information System (INIS)

    Dinu, N.; Barrillon, P.; Bazin, C.; Belcari, N.; Bisogni, M.G.; Bondil-Blin, S.; Boscardin, M.; Chaumat, V.; Collazuol, G.; De La Taille, C.; Del Guerra, A.; Llosa, G.; Marcatili, S.; Melchiorri, M.; Piemonte, C.; Puill, V.; Tarolli, A.; Vagnucci, J.F.; Zorzi, N.

    2009-01-01

    This work reports on the electrical as well as the optical characterizations of a prototype matrix of Silicon PhotoMultipliers (SiPM). The electrical test consists of the measurement of the static (breakdown voltage, quenching resistance, post-breakdown dark current) as well as the dynamic characteristics (gain, dark count rate). The optical test consists of the estimation of the photon detection efficiency as a function of wavelength as well as operation voltage.

  17. A digital silicon photomultiplier with multiple time-to-digital converters

    Energy Technology Data Exchange (ETDEWEB)

    Garutti, Erika [University Hamburg (Germany); Silenzi, Alessandro [DESY, Hamburg (Germany); Xu, Chen [DESY, Hamburg (Germany); University Hamburg (Germany)

    2013-07-01

    A silicon photomultiplier (SiPM) with pixel level signal digitization and column-wise connected time-to-digital converters (TDCs) has been developed for an endoscopic Positron Emission Tomography (PET) detector. A digital SiPM has pixels consist of a single photon avalanche diode (SPAD) and circuit elements to optimize overall dark counts and temporal response. Compared with conventional analog SiPM, digital SiPM's direct signal route from SPAD to TDC improves single photon time resolution. In addition, using multiple TDCs can perform the statistical estimation of the time-of-arrival in multiple photon detection case such as readout of scintillation crystals. Characterization measurements of the prototype digital SiPM and a Monte-Carlo simulation to predict the timing performance of the PET detector are shown.

  18. Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers

    International Nuclear Information System (INIS)

    Zappalà, G.; Regazzoni, V.; Acerbi, F.; Ferri, A.; Gola, A.; Paternoster, G.; Zorzi, N.; Piemonte, C.

    2016-01-01

    This work presents a study of the factors contributing to the Photo-Detection Efficiency of Silicon Photomultipliers (SiPMs): Quantum Efficiency, Triggering Probability and Fill Factor. Two different SiPM High-Density technologies are tested, NUV-HD, based on n-on-p junction, and RGB-HD, based on p-on-n junction, developed at FBK, Trento. The quantum efficiency was measured on photodiodes produced along with the SiPMs. The triggering probability, as a function of wavelength and bias voltage, was measured on circular Single Photon Avalanche Diodes (SPADs) with 100% fill factor. Square SPADs, having the same layout of single SiPM cells, were studied to measure the effective fill factor and compare it to the nominal value. The comparison of the circular and square SPADs allows to get the transition region size between the effective active area of the cell and the one defined by the layout.

  19. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    Science.gov (United States)

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  20. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam.

    Science.gov (United States)

    Amato, A; Luetkens, H; Sedlak, K; Stoykov, A; Scheuermann, R; Elender, M; Raselli, A; Graf, D

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  1. A Single-Stage LED Tube Lamp Driver with Power-Factor Corrections and Soft Switching for Energy-Saving Indoor Lighting Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-01-01

    Full Text Available This paper presents a single-stage alternating current (AC/direct current (DC light-emitting diode (LED tube lamp driver for energy-saving indoor lighting applications; this driver features power-factor corrections and soft switching, and also integrates a dual buck-boost converter with coupled inductors and a half-bridge series resonant converter cascaded with a bridge rectifier into a single-stage power-conversion topology. The features of the presented driver are high efficiency (>91%, satisfying power factor (PF > 0.96, low input-current total-harmonic distortion (THD < 10%, low output voltage ripple factor (<7.5%, low output current ripple factor (<8%, and zero-voltage switching (ZVS obtained on both power switches. Operational principles are described in detail, and experimental results obtained from an 18 W-rated LED tube lamp for T8/T10 fluorescent lamp replacements with input utility-line voltages ranging from 100 V to 120 V have demonstrated the functionality of the presented driver suitable for indoor lighting applications.

  2. Performance of a monolithic LaBr{sub 3}:Ce crystal coupled to an array of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ulyanov, Alexei, E-mail: alexey.uliyanov@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Morris, Oran [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Department of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Galway (Ireland); Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Nelms, Nick; Shortt, Brian [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Slavicek, Tomas; Granja, Carlos; Solar, Michael [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 12800 Prague 2 (Czech Republic)

    2016-02-21

    A gamma-ray detector composed of a single 28×28×20 mm{sup 3} LaBr{sub 3}:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  3. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  4. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)

    2009-12-15

    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  5. A fast position estimation method for a control rod guide tube inspection robot with a single camera

    International Nuclear Information System (INIS)

    Lee, Jae C.; Seop, Jun H.; Choi, Yu R.; Kim, Jae H.

    2004-01-01

    One of the problems in the inspection of control rod guide tubes using a mobile robot is accurate estimation of the robot's position. The problem is usually explained by the question 'Where am I?'. We can solve this question by a method called dead reckoning using odometers. But it has some inherent drawbacks such that the position error grows without bound unless an independent reference is used periodically to reduce the errors. In this paper, we presented one method to overcome this drawback by using a vision sensor. Our method is based on the classical Lucas Kanade algorithm for on image tracking. In this algorithm, an optical flow must be calculated at every image frame, thus it has intensive computing load. In order to handle large motions, it is preferable to use a large integration window. But a small integration window is more preferable to keep the details contained in the images. We used the robot's movement information obtained from the dead reckoning as an input parameter for the feature tracking algorithm in order to restrict the position of an integration window. By means of this method, we could reduce the size of an integration window without any loss of its ability to handle large motions and could avoid the trade off in the accuracy. And we could estimate the position of our robot relatively fast without on intensive computing time and the inherent drawbacks mentioned above. We studied this algorithm for applying it to the control rod guide tubes inspection robot and tried an inspection without on operator's intervention

  6. Characterization and optimization of Silicon Photomultipliers and small size scintillator tiles for future calorimeter applications

    CERN Document Server

    AUTHOR|(CDS)2095312; Horváth, Ákos

    For the active layers of highly granular sampling calorimeters, small scintillator tiles read out by Silicon Photomultipliers (SiPM) can be an interesting and cost effective alternative to silicon sensors. At CERN a test setup was realized for the development of new generations of calorimeters to characterize new types of Silicon Photomultipliers in terms of gain, noise, afterpulses and crosstalk and to study the impact of scintillator wrappings and the tile size on the measured light yield and uniformity. In this thesis work, the experimental setup is described and the steps for commissioning the equipment are discussed. Then, the temperature dependence of the Silicon Photomultiplier response will be investigated, including the dependence of bare Silicon Photomultipliers as well as Silicon Photomultipliers coupled to scintillator tiles. Finally, the tile-photomultiplier response for different tile sizes and coating options will be evaluated. The experimental setup will be extended to allow for the characteri...

  7. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  8. Study of a high gain microchannel plate photomultiplier having low statistical gain fluctuations

    International Nuclear Information System (INIS)

    Audier, M.

    1980-12-01

    A new photomultiplier configuration which synthesizes the performances of several models is proposed. The principles of microchannel plate photomultipliers are reviewed. The physical phenomena which limit the electron multiplication process in a microchannel and the detection efficiency of the microchannel plates are investigated. The operation of a herring-bone pattern device and of a system of two microchannel plate photomultipliers are described and characterized [fr

  9. A gas proportional scintillation counter for use in large area detector systems without photomultipliers

    International Nuclear Information System (INIS)

    Baruch, J.E.F.; Brooke, G.; Kellermann, E.W.; Bateman, J.E.; Connolly, J.F.

    1978-03-01

    The properties of a prototype gas proportional scintillation detector, for use in large numbers, are examined. The detector is designed to focus a light signal, which is proportional to ionisation loss, into a fibre optic lightguide. It is shown that a single charged particle traversing the detector produces enough light out of the lightguide to be seen by a TV camera. Problems of lifetime and large scale detector production are discussed. Properties of saturation, linearity, position sensitivity, and operating limits are examined. It is shown that an array of gas proportional scintillation detectors when used with fibre optic lightguides and TV camera readout could offer significant improvements in cost per area and reliability over a scintillator plus photomultiplier or a wire proportional chamber array. (author)

  10. Strategies for shortening the output pulse of silicon photomultipliers

    OpenAIRE

    Antoranz Canales, Pedro; Miranda Pantoja, José Miguel; Yebras Rivera, José Manuel

    2012-01-01

    In this work, three strategies for shortening the output pulse of a silicon photomultiplier (SiPM) are reported. The first strategy is passive filtering, where band-pass filtering removes the lowest frequency components in the signal, getting a noticeable reduction in pulse width (a compression ratio of 10: 1 was obtained). In the second place, a reflectometric scheme is proposed where the amplified signal coming from the SiPM is injected into a signal splitter with one of its stubs connected...

  11. Wide aperture scintillation hodoscope with FEU-143 photomultipliers

    International Nuclear Information System (INIS)

    Afanas'ev, L.G.; Ivanov, M.A.; Karpukhin, V.V.; Komarov, V.I.; Kulikov, A.V.; Yazkov, V.V.

    1993-01-01

    Scintillation hodoscopes with FEU-143 photomultipliers are described. Every of two hodoscopes consists of 8 elements each of length 1400 mm and cross section 56x56 mm. The time and amplitude characteristics were obtained in real conditions of the physical experiment at the Protvino U-70 accelerator. A resolution on time difference between hits of two hodoscopes is 224 ps. A separation of pions and protons by their ionization losses is also provided at momenta less than 1000 MeV/c. 5 refs.; 8 figs.; 1 tab

  12. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  13. A novel Silicon Photomultiplier with bulk integrated quench resistors: utilization in optical detection and tracking applications for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovics, Stefan, E-mail: stp@hll.mpg.de [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Andricek, Ladislav [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Diehl, Inge; Hansen, Karsten [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Jendrysik, Christian [Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg (Germany); Krueger, Katja [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lehmann, Raik; Ninkovic, Jelena [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Reckleben, Christian [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Richter, Rainer; Schaller, Gerhard; Schopper, Florian [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Sefkow, Felix [DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2017-02-11

    Silicon Photomultipliers (SiPMs) are a promising candidate for replacing conventional photomultiplier tubes (PMTs) in many applications, thanks to ongoing developments and advances in their technology. Conventional SiPMs are generally an array of avalanche photo diodes, operated in Geiger mode and read out in parallel, thus leading to the necessity of a high ohmic quenching resistor. This resistor enables passive quenching and is usually located on top of the array, limiting the fill factor of the device. In this paper, a novel detector concept with a bulk integrated quenching resistor will be recapped. In addition, due to other advantages of this novel detector design, a new concept, in which these devices will be utilized as tracking detectors for particle physics applications will be introduced, as well as first simulation studies and experimental measurements of this new approach. - Highlights: • A novel SiPM concept with bulk integrated quenching resistor is shown. • First prototypes of these SiPMs as tracking detectors are proposed. • Simulations of the Geiger efficiency suggest feasible operations at low overbias. • First measurements of the electron detection efficiency show promising results. • Measurements are in good agreement with the simulations.

  14. Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions

    Directory of Open Access Journals (Sweden)

    De Rosa Matteo

    2017-03-01

    Full Text Available In our previous research we have observed that the fluorescence emission from water solutions of Single-Walled Carbon Nano-Tubes (SWCNT, excited by a laser with a wavelength of 830nm, diminishes with the time. We have already proved that such a fading is a function of the storage time and the storage temperature. In order to study the emission of the SWCNT as a function of these two parameters we have designed and realized a special measurement compartment with a cuvette holder where the SWCNT solutions can be measured and stored at a fixed constant temperature for periods of time as long as several weeks. To maintain the measurement setup under a constant temperature we have designed special experimental setup based on two Peltier cells with electronic temperature control.

  15. Evaluation of a single-tube fluorogenic RT-PCR assay for detection of bovine respiratory syncytial virus in clinical samples

    DEFF Research Database (Denmark)

    Hakhverdyan, Mikhayil; Hägglund, Sara; Larsen, Lars Erik

    2005-01-01

    understanding of the virus. In this study, a BRSV fluorogenic reverse transcription PCR (fRT-PCR) assay, based on TaqMan principle, was developed and evaluated on a large number of clinical samples, representing various cases of natural and experimental BRSV infections. By using a single-step closed-tube format......, the turn-around time was shortened drastically and results were obtained with minimal risk for cross-contamination. According to comparative analyses, the detection limit of the fRT-PCR was on the same level as that of a nested PCR and the sensitivity relatively higher than that of a conventional PCR......, antigen ELISA (Ag-ELISA) and virus isolation (VI). Interspersed negative control samples, samples from healthy animals and eight symptomatically or genetically related viruses were all negative, confirming a high specificity of the assay. Taken together, the data indicated that the fRT-PCR assay can...

  16. Investigating the baselines of Bismuth, Optical Fiber and LED calibrated photomultiplier tubes

    CERN Document Server

    Evans, Hywel Turner

    2016-01-01

    LUCID is a detector that is the luminosity monitor for the ATLAS experiment, and its aim is to determine luminosity with an uncertainty of a few percent. The main purpose of this work is the study of the baseline stability of the LUCID readout channels during calibration runs. This study represents the first systematic approach of this problem performed by the LUCID group. By replacing the mean baseline with the minimum baseline of each event, an upper limit of 2.85% was placed upon possible improvement in determining the LED amplitude. It is therefore better to use a fixed baseline for LED, as pollution has been observed when calculating event by event. For Bismuth and Fiber, the improvement cannot be more than the gain stability of 1%, therefore the existing method is verified as optimal.

  17. Study of various photomultiplier tubes with muon beams and Cerenkov light produced in electron showers

    International Nuclear Information System (INIS)

    2010-01-01

    The PMTs of the CMS Hadron Forward calorimeter were found to generate a large size signal when their windows were traversed by energetic charged particles. This signal, which is due to Cerenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of four different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For the four anode PMT, a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to Cerenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superior performance of particular PMTs was observed.

  18. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1995-01-01

    A circuit has been designed for digitizing PMT signals over a wide dynamic range (17-18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Test results of a multirange device are presented for the first time. (orig.)

  19. A high speed digitizing photomultiplier tube base for the KTeV CsI calorimeter

    International Nuclear Information System (INIS)

    Whitmore, J.

    1994-11-01

    A circuit has been designed to digitize PMT signals over an 18-bit dynamic range with 8-bits of resolution. The crucial element of the circuit is the custom charge integrating and encoding (QIE) ASIC. This chip is designed to operate at rates up to 53 MHz, and, in conjunction with an 8-bit FADC, generates 12-bit floating point output. Bench tests of a 17-bit version of the digital base demonstrated excellent noise performance, linearity and pedestal and gain stability. Twenty-five channels of digitizing PMT bases have been built and used for readout of a CsI array in a test beam at CERN. Performance of these devices in a beam environment is discussed

  20. Imaging technique of whole-body scintigram in the event of breakdown of the photomultiplier tube

    International Nuclear Information System (INIS)

    Inagaki, Syoichi; Tonami, Syuichi; Yasui, Masakazu; Sugishita, Kouki; Nakamura, Mamoru; Kuranishi, Makoto

    1997-01-01

    When the PMT and preamplifier are out of order, it is impossible to make a correct diagnosis because of defects on the scintigram. However, repair of the equipment may take a long time. In order to perform emergent whole-body scintigrams in the event of such breakdowns, we have developed a new approach named the lead-shield method. The major principles of this method involve placing a lead shield on the gamma camera such that it corresponds to the area of the abnormal PMT and making use of the normal area of the detector. The lead shield, 2 mm thick and 1.5 times as wide as the defect on a planar image, was situated perpendicular to the scan plane of the whole-body scintigram. The results showed that whole-body scintigrams obtained by the lead-shield method had the same quality as those obtained by the conventional method, and the spatial resolution and uniformity showed nearly no change despite some disadvantages such as lower sensitivity and shorter scan length. The lead-shield method can be a useful tool for the performance of whole-body scintigrams in cases of emergency when the PMT and preamplifier are out of order. (author)

  1. Imaging technique of whole-body scintigram in the event of breakdown of the photomultiplier tube

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Syoichi; Tonami, Syuichi; Yasui, Masakazu; Sugishita, Kouki; Nakamura, Mamoru; Kuranishi, Makoto [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    1997-10-01

    When the PMT and preamplifier are out of order, it is impossible to make a correct diagnosis because of defects on the scintigram. However, repair of the equipment may take a long time. In order to perform emergent whole-body scintigrams in the event of such breakdowns, we have developed a new approach named the lead-shield method. The major principles of this method involve placing a lead shield on the gamma camera such that it corresponds to the area of the abnormal PMT and making use of the normal area of the detector. The lead shield, 2 mm thick and 1.5 times as wide as the defect on a planar image, was situated perpendicular to the scan plane of the whole-body scintigram. The results showed that whole-body scintigrams obtained by the lead-shield method had the same quality as those obtained by the conventional method, and the spatial resolution and uniformity showed nearly no change despite some disadvantages such as lower sensitivity and shorter scan length. The lead-shield method can be a useful tool for the performance of whole-body scintigrams in cases of emergency when the PMT and preamplifier are out of order. (author)

  2. Calibration and Process of Signal of Photomultiplier Tube in Rayleigh Scattering of Supersonic Jet Clusters

    International Nuclear Information System (INIS)

    Lu Jianfeng; Liu Meng; Han Jifeng; Li Jia; Luo Xiaobing; Miao Jingwei; Yang Chaowen

    2009-01-01

    In the experiments of Rayleigh scattering of gas-jet clusters, the signal amplitude of PMT is not only affected by duster itself, but also by the intensity of light source and work voltage of PMT. When the back pressure of cluster source varies from 10 atm to about 100atm, the signal amplitude of PMT may be from linear to nonlinear. In order to solve the problem, signal calibration of PMT under different intensifies of light and voltage of PMT has been done. The relationship between the amplitude of signal and intensities of light as well as voltage of PMT has been obtained. The function of scatter factor of Ar clusters with the back pressure of cluster source is gotten experimentally, and agrees with related experimental and theoretical results. (authors)

  3. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Adam Nepomuk, E-mail: otte@gatech.edu; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-21

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm{sup 2} at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  4. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-03-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98% efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (~2%), show a promising performance for this new system.

  5. LHCb : Behaviour of Multi-anode Photomultipliers in Magnetic Fields for the LHCb RICH Upgrde

    CERN Multimedia

    Gambetta, Silvia

    2015-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is inside the detector vacuum. The baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. The MaPMTs will be located in the fringe field of the LHCb dipole magnet with residual fields up to 25 G. Therefore, their behaviour in magnetic fields is critical. Here we report about studies of the Hamamatsu models R11265 and H12700 in a magnetic field in an effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Measurements of the collection efficiency and gain were performed for all three space directions as a function of the magnetic field strength. In addition to measurements with ba...

  6. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    International Nuclear Information System (INIS)

    Liao, Can; Yang, Haori

    2015-01-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial

  7. Development and characterisation of silicon photomultipliers with bulk-integrated quench resistors for future applications in particle and astroparticle physics

    International Nuclear Information System (INIS)

    Jendrysik, Christian

    2014-01-01

    This thesis deals with the development and characterisation of a novel silicon photomultiplier concept with bulk-integrated quench resistors. The approach allows the realisation of a free entrance window and high fill factors, which leads to an improvement of the detection efficiency. With first prototype productions a proof of concept was possible. A full characterisation provided promising results, in particular with respect to the photon detection efficiency. By customising the simulation tools, a reliable description of the devices was achieved. In addition, conceptual studies of the next device generation demonstrated the possibility of single cell readout, expanding the application range of those detectors to particle tracking.

  8. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M., E-mail: massimo.nocente@mib.infn.it; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Fazzi, A.; Lorenzoli, M.; Pirovano, C. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Cazzaniga, C.; Rebai, M. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Uboldi, C.; Varoli, V. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy)

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  9. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  10. A study on development of fast silicon photomultipliers for TOF-PET Application

    International Nuclear Information System (INIS)

    Lee, Chae Hun

    2011-02-01

    The PET technique is based on the fact that the radioisotopes introduced to the body as labels tracer molecules emitting positrons. To improve the image quality of PET, the Time-Of-Flight (TOF) technique was proposed, so it reduces the statistical noise by confining the Line-Of-Response using the information measuring the time difference between two opposite PET detectors. Nowadays, the components of PET detectors such as scintillation crystals, photo-sensors, and their readout electronics were well developed. Despite major improvement in imaging detector technologies, solid- state photo-sensors have not been replaced instead of the vacuum type PM tubes whose performance is still superior to others, even though they have some disadvantages such as mal-function in magnetic field, high operating bias, bulkiness, and high cost. One of the candidates for the photo-sensor in TOF-PET detectors to replace the PMTs is 'Silicon Photomultiplier (SiPM)' which has high gain comparable to PMTs, high photon detection efficiency, non-sensitive to MR, low operating bias about 30 V, and low cost. To apply the SiPM in TOF-PET, the timing characteristics should be improved more. In this study, SiPM was studied to improve the timing performance. In PET detectors, the timing resolution is directly related to the amplitude to the rise time ratio. As the ratio increases, the timing performance can be enhanced. PDE of SiPM was modeled to increase the amplitude of PET detectors based on SiPM with dynamic range consideration. The optimum micro-pixel size, consequently the number of micro-pixels for TOF-PET detectors were calculated from PDE modeling. To shorten the rise time of PET detector, the single photon pulse shape of SiPM is needed to modify. To do this, a quenching capacitor in a micro-pixel of SiPM was integrated. Circuit modeling was done in order to know how it affects the pulse shape. SiPM was fabricated at National NanoFab Center with the modeling results. A SiPM pixel has 1912

  11. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Science.gov (United States)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.

    2016-03-01

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  12. Scintillation hodoscope with working area of 50 x 50 cm based on hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Borog, V.V.; Vasil'chenko, V.G.; Demekhin, A.V.; Dronov, V.V.; Rykalin, V.I.

    1987-01-01

    The choice of optimum designs for the sensitive elements of large hodoscopes based on hodoscopic photomultipliers is examined. The results of numerical calculations are confirmed by measurement results. The measured space resolution of one of the scintillation-hodoscope designs (with two hodoscopic photomultipliers) with a sensitive volume of 50 x 50 x 2 mm is ≤ +3 mm

  13. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    Science.gov (United States)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  14. Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube

    Science.gov (United States)

    Swanson, L. W.; Davis, P. R.; Schwind, G. A.

    1984-01-01

    The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.

  15. Characterization of silicon photomultipliers and validation of the electrical model

    Science.gov (United States)

    Peng, Peng; Qiang, Yi; Ross, Steve; Burr, Kent

    2018-04-01

    This paper introduces a systematic way to measure most features of the silicon photomultipliers (SiPM). We implement an efficient two-laser procedure to measure the recovery time. Avalanche probability was found to play an important role in explaining the right behavior of the SiPM recovery process. Also, we demonstrate how equivalent circuit parameters measured by optical tests can be used in SPICE modeling to predict details of the time constants relevant to the pulse shape. The SiPM properties measured include breakdown voltage, gain, diode capacitor, quench resistor, quench capacitor, dark count rate, photodetection efficiency, cross-talk and after-pulsing probability, and recovery time. We apply these techniques on the SiPMs from two companies: Hamamatsu and SensL.

  16. A study of timing properties of Silicon Photomultipliers

    Science.gov (United States)

    Avella, Paola; De Santo, Antonella; Lohstroh, Annika; Sajjad, Muhammad T.; Sellin, Paul J.

    2012-12-01

    Silicon Photomultipliers (SiPMs) are solid-state pixelated photodetectors. Lately these sensors have been investigated for Time of Flight Positron Emission Tomography (ToF-PET) applications, where very good coincidence time resolution of the order of hundreds of picoseconds imply spatial resolution of the order of cm in the image reconstruction. The very fast rise time typical of the avalanche discharge improves the time resolution, but can be limited by the readout electronics and the technology used to construct the device. In this work the parameters of the equivalent circuit of the device that directly affect the pulse shape, namely the quenching resistance and capacitance and the diode and parasitic capacitances, were calculated. The mean rise time obtained with different preamplifiers was also measured.

  17. New method for determining avalanche breakdown voltage of silicon photomultipliers

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.

    2017-01-01

    The avalanche breakdown and Geiger mode of the silicon p-n junction is considered. A precise physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDE rel ) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the p-n junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1-2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDE rel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts. [ru

  18. Study of silicon photomultipliers fast amplifier and thermoregulation

    International Nuclear Information System (INIS)

    D'antone, I.; Fabbri, L.; Foschi, E.; Guandalini, C.; Laurenti, G.; Lax, I.; Levi, G.; Quadrani, L.; Sbarra, Ca.; Sbarra, Cr.; Villa, M.; Zoccoli, A.; Zuffa, M.

    2011-01-01

    The silicon photomultipliers (SiPM) are adopted in various physical applications, from medical physics to astrophysics, for their advantages in terms of cost and weight with respect to traditional photo detectors. Their low bias voltage supply (about 30 V), hardiness and resistance to magnetic field are ideal characteristics for space application. In the frame of INFN-Irst collaboration, some of them have been developed and produced at FBK (Trento-Italy), and have been characterized in the INFN laboratories of Bologna (DaSiPM2 collaboration). The SiPM can be used in conjunction with fibres and counters in high energy physics experiments. To exploit the SiPM time resolution, a fast amplifier has been studied. The SiPM gain depends critically on temperature and a thermal stabilization is also necessary. The use of a thermoelectric cooler module based on a Peltier cell has been investigated, and the results are shown.

  19. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    CERN Document Server

    Strobbe, N

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  20. The performance of silicon photomultipliers in Cherenkov TOF PET

    International Nuclear Information System (INIS)

    Dolenec, Rok; Korpar, Samo; Krizan, Peter; Pestotink, Rok

    2015-01-01

    In time-of-flight positron emission tomography (TOF PET) one of the main factors limiting the time resolution is the time evolution of the scintillation process. This can be avoided by using exclusively the Cherenkov light produced in a suitable material. Sub 100 ps FWHM timing has already been experimentally demonstrated but with a drawback of relatively low detection efficiency due to the photodetectors used. In this work silicon photomultipliers (SiPMs) are considered as a photodetector in Cherenkov TOF PET. The detection efficiency can be significantly improved by using SiPMs, however, at room temperature the SiPM dark counts introduce a significant source of fake coincidences. SiPM samples from different producers were tested in a simple back-to-back setup in combination with lead fluoride Cherenkov radiators. Results for coincidence timing, detection efficiency and effects of dark counts at different temperatures and SiPM overvoltages are presented.

  1. Measurement of amplitude fluctuations in a rapid response photomultiplier

    International Nuclear Information System (INIS)

    Raimbault, P.

    1961-01-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr

  2. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  3. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  4. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  5. Fluisd elastic instability and fretting-wear characteristics of steam generator helical tubes subjected to single-phase external flow and two-phase internal flow

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2004-01-01

    This study investigates the fluid elastic instability characteristics of steam generator (SG) helical type tubes and the safety assessment of the potential for fretting-wear damages caused by foreign object in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are on the effects of coil diameter and the number of turns on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of helical type tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the external pressure on the vibration and fretting wear characteristics of the tube

  6. A novel and highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus.

    Science.gov (United States)

    Shen, Xin-Xin; Qiu, Fang-Zhou; Zhao, Huai-Long; Yang, Meng-Jie; Hong, Liu; Xu, Song-Tao; Zhou, Shuai-Feng; Li, Gui-Xia; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-03-01

    The sensitivity of qRT-PCR assay is not adequate for the detection of the samples with lower viral load, particularly in the cerebrospinal fluid (CSF) of patients. Here, we present the development of a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of human enterovirus (HEV). The clinical performance of both RTN RT-PCR and qRT-PCR was also tested and compared using 140 CSF and fecal specimens. The sensitivities of RTN RT-PCR assay for EV71, Coxsackievirus A (CVA)16, CVA6 and CVA10 achieved 10 -8 dilution with a corresponding Ct value of 38.20, 36.45, 36.75, and 36.45, respectively, which is equal to traditional two-step nested RT-PCR assay and approximately 2-10-fold lower than that of qRT-PCR assay. The specificity of RTN RT-PCR assay was extensively analyzed insilico and subsequently verified using the reference isolates and clinical samples. Sixteen qRT-PCR-negative samples were detected by RTN RT-PCR and a variety of enterovirus serotypes was identified by sequencing of inner PCR products. We conclude RTN RT-PCR is more sensitive than qRT-PCR for the detection of HEV in clinical samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    Science.gov (United States)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  8. Effect of using a laryngeal tube on the no-flow time in a simulated, single-rescuer, basic life support setting with inexperienced users.

    Science.gov (United States)

    Meyer, O; Bucher, M; Schröder, J

    2016-03-01

    The laryngeal tube (LT) is a recommended alternative to endotracheal intubation during advanced life support (ALS). Its insertion is relatively simple; therefore, it may also serve as an alternative to bag mask ventilation (BMV) for untrained personnel performing basic life support (BLS). Data support the influence of LT on the no-flow time (NFT) compared with BMV during ALS in manikin studies. We performed a manikin study to investigate the effect of using the LT for ventilation instead of BMV on the NFT during BLS in a prospective, randomized, single-rescuer study. All 209 participants were trained in BMV, but were inexperienced in using LT; each participant performed BLS during a 4-min time period. No significant difference in total NFT (LT: mean 81.1 ± 22.7 s; BMV: mean 83.2 ± 13.1 s, p = 0.414) was found; however, significant differences in the later periods of the scenario were identified. While ventilating with the LT, the proportion of chest compressions increased significantly from 67.2 to 73.2%, whereas the proportion of chest compressions increased only marginally when performing BMV. The quality of the chest compressions and the associated ventilation rate did not differ significantly. The mean tidal volume and mean minute volume were significantly lower when performing BMV. The NFT was significantly shorter in the later periods in a single-rescuer, cardiac arrest scenario when using an LT without previous training compared with BMV with previous training. A possible explanation for this result may be the complexity and workload of alternating tasks (e.g., time loss when reclining the head and positioning the mask for each ventilation during BMV).

  9. A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Mik, L.; Kucewicz, W.; Reczynski, W.; Sapor, M.

    2018-05-01

    A readout circuit dedicated for the detection of the chemiluminescence phenomenon using a silicon photomultiplier (SiPM) is presented. During chemiluminescence, light is generated as a result of chemical reaction. Chemiluminescence is used in many applications within medicine, chemistry, biology and biotechnology, and is one of the most important sensing techniques in biomedical science and clinical medicine. The front-end electronics consist of a preamplifier and a fast shaper—this produces pulses, the peaking time which is 3.6 ns for a single photon and the FWHM is 3.8 ns. The system has been optimised to measure chemiluminescence—it is sensitive at the level of single photons, it generates a low number of overlapping pulses and is accurate. Two methods of signal detection are analysed and compared: the counting of events and amplitude detection. The relationship between the chemiluminescence light intensity and the concentration of the chemical compound (luminol) is linear in the range of the tested concentrations and has strong linearity parameters and low prediction intervals.

  10. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    International Nuclear Information System (INIS)

    La Rocca, P.; Billotta, S.; Blancato, A.A.; Bonanno, D.; Bonanno, G.; Fallica, G.; Garozzo, S.; Lo Presti, D.; Marano, D.; Pugliatti, C.; Riggi, F.; Romeo, G.; Santagati, G.; Valvo, G.

    2015-01-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers

  11. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    Energy Technology Data Exchange (ETDEWEB)

    La Rocca, P., E-mail: paola.larocca@ct.infn.it [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Billotta, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Blancato, A.A.; Bonanno, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Fallica, G. [STMicroelectronics - Catania (Italy); Garozzo, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Lo Presti, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Pugliatti, C.; Riggi, F. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Valvo, G. [STMicroelectronics - Catania (Italy)

    2015-07-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers.

  12. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

    Science.gov (United States)

    Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

    2018-04-01

    We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

  13. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Mohamad, E-mail: rizwan@nucl.kyushu-u.ac.jp; Uozumi, Yusuke; Matsuo, Kazuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov [Joint Institute for Nuclear Research, JINR, Joliot-Curie Str.6, Dubna (Russian Federation)

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  14. Two-coordinate scintillation hodoscope based on hodoscopical photomultipliers

    International Nuclear Information System (INIS)

    Vishnevskij, N.K.; Ronzhin, A.I.; Semenov, V.K.; Khachaturov, B.A.

    1982-01-01

    The results of investigations of scintillation hodoscope on the basis of hodoscopic photomultipliers (HPM) for simultaneous measuring two coordinates (x and y) of a particle. The hodoscope consists of scintillation electrodes bent at the angle of 135 deg C and made an angle of 90 deg with each other. For measuring X-coordinate the half part of the photocathode is used, the second part is used for measuring Y-coordinate. HPM provides for simultaneous measuring two coordinates of a particle in the working region of 90 mm at using the photocathode with 180 mm long working region along the photocathode. The discrete separation of neighbouring positions in relation to the photocathode is possible at the minimum size of scintillation electrode being equil to >= 2 mm. For suppression of multiparticle background at the information output from the hodoscope as well as for simultaneous observation at the amplitude analyser of spectra of reference signals or X and Y profiles a fast processor cicuit has been developed. High detecting efficiency (about 90%) and low background level have been observed at the processor operation where the presence only of one signal in each of X- or Y projections is required. The two-coordinate hodoscope based on HPM due to its compactness and mobility may be used for expedient and precision beam guidance onto a target, its position control, shape and dimensions directly in the region of a polarized target location

  15. Dark noise rates in irradiated silicon photomultiplier arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Sebastian; Comerma, Albert; Gerick, David; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Kecke, Matthieu; Leverington, Blake; Mazorra de Cos, Jose; Mitzel, Dominik; Neuner, Max; Uwer, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: LHCb-Collaboration

    2016-07-01

    The planned downstream tracking system - the Scintillating Fibre Tracker - for the LHCb upgrade uses silicon photomultiplier (SiPM) arrays of 128 channels to read out mats made of 250 μm diameter scintillating fibres. In the LHCb environment the neutron flux degrades the silicon detectors to the edge of an acceptable performance in terms of DCR. Studies have shown that the dark count rate (DCR) of the SiPMs increases linearly with the neutron flux. Towards the end of the designed lifetime of the experiment the DCR per SiPM channel operated at T = -40 C is expected to reach a few MHz after partial annealing. To reduce the impact of the DCR - while at the same time provide efficient hit reconstruction - a clustering algorithm is developed to separate signal from noise. A brief introduction into the custom designed read-out ASIC and the cluster algorithm are presented along with the studies of the dark count cluster rate dependency on the neutron flux, the DCR per channel and the effects of the applied signal thresholds for the clustering algorithm.

  16. Solid-State Photomultiplier with Integrated Front End Electronics

    Science.gov (United States)

    Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory

    2009-10-01

    The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.

  17. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    Science.gov (United States)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  18. Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2018-02-01

    Full Text Available The monitoring of water-soluble pollutants is receiving a growing interest from the scientific community. In this context, sulfide anion species S2− and HS− are particularly relevant since they can cause acute and chronic toxicity including neurological effects and at high concentrations, even death. In this study, a new strategy for fast and sensitive optical detection of sulfide species in water samples is described. The method uses an integrated silicon photomultiplier (SiPM device coupled with the appropriate analytical strategy applied in a plastic microchip with dried reagents on board. More specifically, all sulfide species (H2S, HS− and S2− in water samples are detected by the fluorescence signal emitted upon the reaction with N,N-dimethyl-phenylenediamine sulfate in the presence of Fe3+, leading to the formation of the fluorescent methylene blue (MB species. It has been proven that the system herein proposed is able to measure sulfide concentration in a linear range from 0–10 mg L−1 with a sensitivity value of about 6.7 µA mg−1 L and a detection limit of 0.5 mg L−1. A comparison with conventional UV-Vis detection method has been also carried out. Data show a very good linear correlation (R2 = 0.98093, proving the effectiveness of the method. Results pave the way toward the development of portable and low-cost device systems for water-soluble sulfide pollutants.

  19. Silicon photomultipliers. Properties and applications in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Feege, Nils

    2008-12-01

    Silicon Photomultipliers (SiPMs) are novel semiconductor-based photodetectors operated in Geiger mode. Their response is not linear, and both their gain and their photon detection efficiency depend on the applied bias voltage and on temperature. The CALICE collaboration investigates several technology options for highly granular calorimeters for the future ILC. The prototype of a scintillator-steel sampling calorimeter with analogue readout for hadrons constructed at DESY and successfully operated in testbeam experiments at DESY, CERN and FNAL by this collaboration is the first large scale application for 7608 SiPMs developed by MEPhI. This thesis deals with properties of the SiPMs used in the calorimeter prototype. The effective numer of pixels of the SiPMs, which influences their saturation behaviour, is extracted from in situ measurements and compared to results obtained for the bare SiPMs. In addition, the effects of temperature and voltage changes on the parameters necessary for the calibration of the SiPMs and the detector are determined. Methods which allow for correcting or compensating these effects are evaluated. An approach to improve the absolute calibration of the temperature sensors in the prototype is described and temperature profiles are studied. Finally, a procedure to adjust the light yield of the cells of the prototype is presented. The results of the application of this procedure during the commissioning of the detector at FNAL are discussed. (orig.)

  20. Silicon photomultipliers. Properties and applications in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2008-12-15

    Silicon Photomultipliers (SiPMs) are novel semiconductor-based photodetectors operated in Geiger mode. Their response is not linear, and both their gain and their photon detection efficiency depend on the applied bias voltage and on temperature. The CALICE collaboration investigates several technology options for highly granular calorimeters for the future ILC. The prototype of a scintillator-steel sampling calorimeter with analogue readout for hadrons constructed at DESY and successfully operated in testbeam experiments at DESY, CERN and FNAL by this collaboration is the first large scale application for 7608 SiPMs developed by MEPhI. This thesis deals with properties of the SiPMs used in the calorimeter prototype. The effective numer of pixels of the SiPMs, which influences their saturation behaviour, is extracted from in situ measurements and compared to results obtained for the bare SiPMs. In addition, the effects of temperature and voltage changes on the parameters necessary for the calibration of the SiPMs and the detector are determined. Methods which allow for correcting or compensating these effects are evaluated. An approach to improve the absolute calibration of the temperature sensors in the prototype is described and temperature profiles are studied. Finally, a procedure to adjust the light yield of the cells of the prototype is presented. The results of the application of this procedure during the commissioning of the detector at FNAL are discussed. (orig.)

  1. Study of the radiation damage of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, Michael; Chmill, Valery; Garutti, Erika; Klanner, Robert; Schwandt, Joern [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    Radiation damage significantly changes the performance of silicon photomultipliers (SiPM). In this work, we first have characterized KETEK SiPMs with a pixel size of 15 x 15 μm{sup 2} using I-V (current-voltage), C/G-V/f (capacitance/impedance-voltage/frequency) and Q-V (charge-voltage) measurements with and without illumination with blue light of 470 nm from an LED. The SiPM parameters determined are DCR (dark count rate), relative PDE (photon detection efficiency), G (Gain), XT (cross-talk), Geiger breakdown characteristics, C{sub pix} (pixel capacitance) and R{sub q} (quenching resistance). Following this first characterization, the SiPMs were irradiated using reactor neutrons with fluences of 10{sup 9}, 10{sup 10}, 10{sup 11}, 5 . 10{sup 11}, and 10{sup 12} n/cm{sup 2}. Afterwards, the same measurements were repeated, and the dependence of the SiPM parameters on neutron fluence was determined. The results are used to optimize the radiation tolerance of SiPMs.

  2. Computer-aided thermohydraulic design of TEMA type E shell and tube heat exchangers for use in low pressure, liquid-to-liquid, single phase applications

    Science.gov (United States)

    Kolar, N. J.

    1985-04-01

    Classification, nomenclature, utilization and cost estimating of shell and tube heat exchangers are presented along with an historical overview of various methods currently employed in their design. A procedure for providing preliminary estimates of shell and tube heat exchanger design is developed in detail. The author formulates a computer program which employs this sizing algorithm for low pressure liquid-to-liquid heat exchanger applications. Additionally, problems encountered in the design and manufacture of shell and tube heat exchangers are described along with present methods of solution for each.

  3. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  4. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  5. Gain compensation technique by bias correction in arrays of Silicon Photomultipliers using fully differential fast shaper

    Energy Technology Data Exchange (ETDEWEB)

    Baszczyk, M., E-mail: baszczyk@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Dorosz, P.; Glab, S.; Kucewicz, W. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Mik, L. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); State Higher Vocational School, Tarnow (Poland); Sapor, M. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland)

    2016-07-11

    Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.

  6. Gain compensation technique by bias correction in arrays of Silicon Photomultipliers using fully differential fast shaper

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-07-01

    Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.

  7. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    CERN Document Server

    Liu, Z.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation...

  8. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Heller, M. [DPNC-Universite de Geneve, Geneva (Switzerland); Schioppa, E. Jr; Porcelli, A.; Pujadas, I.T.; Della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Christov, A.; Rameez, M.; Miranda, L.D.M. [DPNC-Universite de Geneve, Geneva (Switzerland); Zietara, K.; Idzkowski, B.; Jamrozy, M.; Ostrowski, M.; Stawarz, L.; Zagdanski, A. [Jagellonian University, Astronomical Observatory, Krakow (Poland); Aguilar, J.A. [DPNC-Universite de Geneve, Geneva (Switzerland); Universite Libre Bruxelles, Faculte des Sciences, Brussels (Belgium); Prandini, E.; Lyard, E.; Neronov, A.; Walter, R. [Universite de Geneve, Department of Astronomy, Geneva (Switzerland); Rajda, P.; Bilnik, W.; Kasperek, J.; Lalik, K.; Wiecek, M. [AGH University of Science and Technology, Krakow (Poland); Blocki, J.; Mach, E.; Michalowski, J.; Niemiec, J.; Skowron, K.; Stodulski, M. [Instytut Fizyki Jadrowej im. H. Niewodniczanskiego Polskiej Akademii Nauk, Krakow (Poland); Bogacz, L. [Jagiellonian University, Department of Information Technologies, Krakow (Poland); Borkowski, J.; Frankowski, A.; Janiak, M.; Moderski, R. [Polish Academy of Science, Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Bulik, T.; Grudzinska, M. [University of Warsaw, Astronomical Observatory, Warsaw (Poland); Mandat, D.; Pech, M.; Schovanek, P. [Institute of Physics of the Czech Academy of Sciences, Prague (Czech Republic); Marszalek, A.; Stodulska, M. [Instytut Fizyki Jadrowej im. H. Niewodniczanskiego Polskiej Akademii Nauk, Krakow (Poland); Jagellonian University, Astronomical Observatory, Krakow (Poland); Pasko, P.; Seweryn, K. [Centrum Badan Kosmicznych Polskiej Akademii Nauk, Warsaw (Poland); Sliusar, V. [Universite de Geneve, Department of Astronomy, Geneva (Switzerland); Taras Shevchenko National University of Kyiv, Astronomical Observatory, Kyiv (Ukraine)

    2017-01-15

    The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented reflector dish and an innovative fully digital camera based on silicon photo-multipliers. Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build telescopes with excellent performance, but also to design them so that their components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to high moonlight background conditions. (orig.)

  9. A design of a valid signal selecting and position decoding ASIC for PET using silicon photomultipliers

    International Nuclear Information System (INIS)

    Cho, M.; Lim, K.-T.; Kim, J.; Lee, C.; Cho, G.; Kim, H.; Yeom, J.-Y.; Choi, H.

    2017-01-01

    In most cases, a PET system has numerous electrical components and channel circuits and thus it would rather be a bulky product. Also, most existing systems receive analog signals from detectors which make them vulnerable to signal distortions. For these reasons, channel reduction techniques are important. In this work, an ASIC for PET module is being proposed. An ASIC chip for 16 PET detector channels, VSSPDC, has been designed and simulated. The main function of the chip is 16-to-1 channel reduction, i.e., finding the position of only the valid signals, signal timing, and magnitudes in all 16 channels at every recorded event. The ASIC comprises four of 4-channel modules and a 2 nd 4-to-1 router. A single channel module comprises a transimpedance amplifier for the silicon photomultipliers, dual comparators with high and low level references, and a logic circuitry. While the high level reference was used to test the validity of the signal, the low level reference was used for the timing. The 1-channel module of the ASIC produced an energy pulse by time-over-threshold method and it also produced a time pulse with a fixed delayed time. Since the ASIC chip outputs only a few digital pulses and does not require an external clock, it has an advantage over noise properties. The cadence simulation showed the good performance of the chip as designed.

  10. Gain compensation technique by bias correction in arrays of Silicon Photomultipliers using fully differential fast shaper

    International Nuclear Information System (INIS)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-01-01

    Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.

  11. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  12. Performance evaluation of neuro-PET using silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong, E-mail: ychoi@sogang.ac.kr; Jung, Jin Ho, E-mail: jinho1115@gmail.com; Kim, Sangsu; Im, Ki Chun

    2016-05-21

    Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350–650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.

  13. 21 CFR 872.6570 - Impression tube.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6570 Impression tube. (a) Identification. An impression tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in...

  14. Advanced evacuated tube collectors

    Science.gov (United States)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  15. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  16. Single-tube multiplex PCR using type-specific E6/E7 primers and capillary electrophoresis genotypes 21 human papillomaviruses in neoplasia

    Directory of Open Access Journals (Sweden)

    Warenholt Janina

    2011-01-01

    Full Text Available Abstract Background Human papillomavirus (HPV E6/E7 type-specific oncogenes are required for cervical carcinogenesis. Current PCR protocols for genotyping high-risk HPV in cervical screening are not standardized and usually use consensus primers targeting HPV capsid genes, which are often deleted in neoplasia. PCR fragments are detected using specialized equipment and extra steps, including probe hybridization or primer extension. In published papers, analytical sensitivity is typically compared with a different protocol on the same sample set. A single-tube multiplex PCR containing type-specific primers was developed to target the E6/E7 genes of two low-risk and 19 high-risk genotypes (HPV6, 11 and 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73 and 82 and the resulting short fragments were directly genotyped by high-resolution fluorescence capillary electrophoresis. Results The method was validated using long oligonucleotide templates, plasmid clones and 207 clinical samples of DNA from liquid-based cytology, fresh and formalin-fixed specimens and FTA Microcards® imprinted with cut tumor surfaces, swabbed cervical cancers or ejected aspirates from nodal metastases of head and neck carcinomas. Between one and five long oligonucleotide targets per sample were detected without false calls. Each of the 21 genotypes was detected in the clinical sample set with up to five types simultaneously detected in individual specimens. All 101 significant cervical neoplasias (CIN 2 and above, except one adenocarcinoma, contained E6/E7 genes. The resulting genotype distribution accorded with the national pattern with HPV16 and 18 accounting for 69% of tumors. Rare HPV types 70 and 73 were present as the sole genotype in one carcinoma each. One cervical SCC contained DNA from HPV6 and 11 only. Six of twelve oropharyngeal cancer metastases and three neck metastases of unknown origin bore E6/E7 DNA; all but one were HPV16. One neck

  17. Performance studies of varian VPM-154D.6D VPM-154A/1.6L static crossed field photomultipliers

    International Nuclear Information System (INIS)

    Lo, C.C.; Leskovar, B.

    1977-01-01

    Characteristics have been measured for the Varian VPM-154D.6D and VPM-154A/1.6L Static Crossed Field Photomultipliers. Some typical photomultiplier characteristics such as: gain, dark current, quantum efficiency, and rise-time--are compared with data provided by the manufacturer. Photomultiplier characteristics generally not available from the manufacturer, such as: transit time, FWHM of the output pulse, peak output current measurement and multiphotoelectron time resolution were measured and are discussed

  18. B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model.

    Science.gov (United States)

    Shaver, Aaron C; Greig, Bruce W; Mosse, Claudio A; Seegmiller, Adam C

    2015-05-01

    Optimizing a clinical flow cytometry panel can be a subjective process dependent on experience. We develop a quantitative method to make this process more rigorous and apply it to B lymphoblastic leukemia/lymphoma (B-ALL) minimal residual disease (MRD) testing. We retrospectively analyzed our existing three-tube, seven-color B-ALL MRD panel and used our novel method to develop an optimized one-tube, eight-color panel, which was tested prospectively. The optimized one-tube, eight-color panel resulted in greater efficiency of time and resources with no loss in diagnostic power. Constructing a flow cytometry panel using a rigorous, objective, quantitative method permits optimization and avoids problems of interdependence and redundancy in a large, multiantigen panel. Copyright© by the American Society for Clinical Pathology.

  19. Extending the dynamic range of silicon photomultipliers without increasing pixel count

    International Nuclear Information System (INIS)

    Johnson, Kurtis F.

    2010-01-01

    A silicon photomultiplier, sometimes called 'multipixel photon counter', which we here refer to as a 'SiPM', is a photo-sensitive device built from an avalanche photodiode array of pixels on a common silicon substrate, such that it can detect single photon events. The dimensions of a pixel may vary from 20 to 100 μm and their density can be greater than 1000 per square millimeter. Each pixel in a SiPM operates in Geiger mode and is coupled to the output by a quenching resistor. Although each pixel operates in digital mode, the SiPM is an analog device because all the pixels are read in parallel, making it possible to generate signals within a dynamic range from a single photon to a large number of photons, ultimately limited by the number of pixels on the chip. In this note we describe a simple and general method of increasing the dynamic range of a SiPM beyond that one may naively assume from the shape of the cumulative distribution function of the SiPM response to the average number of photons per pixel. We show that by rendering the incoming flux of photons to be non-uniform in a prescribed manner, a significant increase in dynamic range is achievable. Such re-distribution of the incoming flux may be accomplished with simple, non-focusing lenses, prisms, interference films, mirrors or attenuating films. Almost any optically non-inert interceding device can increase the dynamic range of the SiPM.

  20. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  1. Cathode ray tube screens

    International Nuclear Information System (INIS)

    Cockayne, B.; Robbins, D.J.; Glasper, J.L.

    1982-01-01

    An improved cathode ray tube screen is described which consists of a single- or a poly-crystalline slice of a material such as yttrium aluminium garnet in which dopants such as Tb 3 + , Eu 3 + , Ce 3 + or Tm 3 + are ion implanted to different depths or in different areas of the screen. Annealing the screen removes lattice damage caused by the ion implanting and assists the diffusion of the dopant into the crystal. (U.K.)

  2. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    CERN Document Server

    Sótér, A.; Kobayashi, T.; Barna, D.; Horváth, D.; Hori, M.

    2014-01-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen a...

  3. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC

    International Nuclear Information System (INIS)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.

    2012-01-01

    KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.

  4. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC

    Science.gov (United States)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.; Representing the KM3NeT Consortium

    2012-12-01

    KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.

  5. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. The detector readout geometry will not be changed for the Phase II of the High Luminosity Large Hadron Collider (HL-LHC) operation. A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the HL-LHC program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done. The PMT response evoluti...

  6. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    International Nuclear Information System (INIS)

    Vladimir Popov

    2003-01-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1 mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400 ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented

  7. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  8. Characterization of 1600 Hamamatsu 16-anode photomultipliers for the MINOS Far detector

    International Nuclear Information System (INIS)

    Lang, K.; Day, J.; Eilerts, S.; Fuqua, S.; Guillen, A.; Kordosky, M.; Lang, M.; Liu, J.; Opaska, W.; Proga, M.; Vahle, P.; Winbow, A.; Drake, G.; Thomas, J.; Andreopoulos, C.; Saoulidou, N.; Stamoulis, P.; Tzanakos, G.; Zois, M.; Weber, A.; Michael, D.

    2005-01-01

    We are reporting results of the characterization of over 1600 multi-anode R5900-00-M16 photomultipliers manufactured by Hamamatsu Photonics K.K., and installed in the MINOS Far detector. We have conducted extensive tests of the uniformity of gain and collection efficiency of individual anodes, the cross-talk among all 16 channels, the dark noise, and the linearity of response. In our studies we used a blue light-emitting diode to illuminate phototubes through 1.2 mm diameter optical fibers. In this paper, we present summaries of the main characteristics of the tested photomultipliers

  9. Photomultipliers gain monitoring at the one percent level with a blue light pulser

    International Nuclear Information System (INIS)

    Berger, J.; Bermond, M.; Besson, P.; Favier, J.; Pessard, H.; Poulet, M.

    1988-07-01

    We describe a method and an experimental layout allowing the monitoring of photomultipliers gain. We use artificial blue light (Spark-gap with filter: 436 ± 20 nm) and three reference detectors. Short term and long term measurements are presented. The results indicate a precision better than 0.5% for the short term and 1.4% for the long term determinations. This gain monitoring system has been developed for a new neutrino oscillation reactor experiment (600 photomultipliers) starting at the Bugey nuclear plant

  10. Study of the Light Emission Process from the Double Chooz Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, E.; Cerrada, M.; Crespo, J. I.; Gil-Botella, I.; Jimenez, S.; Lopez, M.; Novella, P.; Palomares, C.; Santorelli, R.; Verdugo, A.

    2012-09-13

    In this document we present a study of the light emitted by the base of a Hamamatsu R7081MOD-ASSY photomultiplier (PMT) of the same type used in the Double Chooz experiment. Several characteristic features of the light signal have been found in terms of amplitude, length and pulse shape. Additional investigations on the properties of the epoxy used to cover the photomultiplier base have been carried out. A possible explanation of the light emission process is discussed at the end of the study. (Author) 1 ref.

  11. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  12. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    Science.gov (United States)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  13. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15–25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed...

  14. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Science.gov (United States)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than

  15. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; Bancroft, C.M.; Jablonski, L.F.; Wurtz, J.R.; Ertley, C.D.; McConnell, M.L.; Ryan, J.M.

    2014-01-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr 3 :Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr 3 :Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ∼1 MeV, however, the measured energy resolution is systematically

  16. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, P.F., E-mail: Peter.Bloser@unh.edu; Legere, J.S.; Bancroft, C.M.; Jablonski, L.F.; Wurtz, J.R.; Ertley, C.D.; McConnell, M.L.; Ryan, J.M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr{sub 3}:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr{sub 3}:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ∼1 MeV, however, the measured energy resolution is

  17. Fast tracking detector with fiber scintillators and a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Salomon, M.; Li, V.; Smith, G.; Wu, Y.S.

    1988-11-01

    We have studied the properties of a tracking detector composed of 32 fiber scintillators coupled to a multianode photomultiplier placed in a pion beam at TRIUMF. We measured the efficiency of the detector, as well as its tracking capabilities and double hit resolution

  18. A method to stabilise the performance of negatively fed KM3NeT photomultipliers

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; Berg, A. van den; Bertin, V.; Beurthey, S.; Beveren, V. van; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.J.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J.A.B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; Van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L.A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; Haren, H. van; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J.J.; Hevinga, M.; Hofestädt, J.; Hugon, C.M.F.; Illuminati, G.; James, C.W.; Jansweijer, P.; Jongen, M.; Jong, M. de; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E.N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M.L.; Liolios, A.; Alvarez, C.D.L.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Mariš, O.; Markou, C.; Martínez-Mora, J.A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K.W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C.M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Nicolau, C.A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Paolucci, A.; Papaikonomou, A.; Papaleo, R.; Pǎvǎlaš, G.E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G.E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S.M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Tönnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; Wolf, E. de; Zachariadou, K.; Zani, S.; Zornoza, J.D.; Zúñiga, J.

    2016-01-01

    The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier

  19. Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers

    International Nuclear Information System (INIS)

    Atac, M.; Streets, J.; Wilcer, N.

    1998-02-01

    This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution

  20. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Dorosz, P., E-mail: pdorosz@agh.edu.pl [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Baszczyk, M.; Glab, S. [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Kucewicz, W., E-mail: kucewicz@agh.edu.pl [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Mik, L.; Sapor, M. [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland)

    2013-08-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable.

  1. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    International Nuclear Information System (INIS)

    Dorosz, P.; Baszczyk, M.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2013-01-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable

  2. Characterization of the 10-stages R5900 Hamamatsu photomultipliers for the hadronic ATLAS calorimeter

    International Nuclear Information System (INIS)

    Montarou, G.; Bouhemaid, N.; Grenier, Ph.; Crouau, M.; Muanza, G.S.; Poirot, S.; Vazeille, F.; Gil Botella, I.; Hoz, S.G. de la

    1997-01-01

    The measurements carried out, at Clermont on the R5900 Hamamatsu photomultipliers for the ATLAS hadronic calorimeter are summarised. The TILECAL specifications are given. Amplification measurements, dark current measurements, linearity, magnetic sensitivity and the voltage divider optimisation are presented. (K.A.)

  3. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite.

    Science.gov (United States)

    Fu, Jiecai; Zhang, Junli; Peng, Yong; Zhao, Changhui; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Mellors, Nigel J; Xie, Erqing

    2013-12-21

    Wire-in-tube structures have previously been prepared using an electrospinning method by means of tuning hydrolysis/alcoholysis of a precursor solution. Nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanowire-in-nanotubes have been prepared as a demonstration. The detailed nanoscale characterization, formation process and magnetic properties of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes has been studied comprehensively. The average diameters of the outer tubes and inner wires of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes are around 120 nm and 42 nm, respectively. Each fully calcined individual nanowire-in-nanotube, either the outer-tube or the inner-wire, is composed of Ni0.5Zn0.5Fe2O4 monocrystallites stacked along the longitudinal direction with random orientation. The process of calcining electrospun polymer composite nanofibres can be viewed as a morphologically template nucleation and precursor diffusion process. This allows the nitrates precursor to diffuse toward the surface of the nanofibres while the oxides (decomposed from hydroxides and nitrates) products diffuse to the core region of the nanofibres; the amorphous nanofibres transforming thereby into crystalline nanowire-in-nanotubes. In addition, the magnetic properties of the Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes were also examined. It is believed that this nanowire-in-nanotube (sometimes called core-shell) structure, with its uniform size and well-controlled orientation of the long nanowire-in-nanotubes, is particularly attractive for use in the field of nano-fluidic devices and nano-energy harvesting devices.

  4. Characterization of large-area photomultipliers under low magnetic fields: Design and performance of the magnetic shielding for the Double Chooz neutrino experiment

    International Nuclear Information System (INIS)

    Calvo, E.; Cerrada, M.; Fernandez-Bedoya, C.; Gil-Botella, I.; Palomares, C.; Rodriguez, I.; Toral, F.; Verdugo, A.

    2010-01-01

    A precise quantitative measurement of the effect of low magnetic fields in Hamamatsu R7081 photomultipliers has been performed. These large-area photomultipliers will be used in the Double Chooz neutrino experiment. A magnetic shielding has been developed for these photomultipliers. Its design and performance is also reported in this paper.

  5. Approaches to single photon detection

    International Nuclear Information System (INIS)

    Thew, R.T.; Curtz, N.; Eraerds, P.; Walenta, N.; Gautier, J.-D.; Koller, E.; Zhang, J.; Gisin, N.; Zbinden, H.

    2009-01-01

    We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes (APDs); hybrid detection systems based on sum-frequency generation (SFG) and Si APDs-SFG-Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.

  6. A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection

    Science.gov (United States)

    Zhang, Zhiyong; Qi, Binbin; Liu, Chengming; Feng, Jianxin; Liu, Jianbei; Shao, Ming; Zhou, Yi; Hong, Daojin; Lv, You; Song, Guofeng; Wang, Xu; You, Wenhao

    2018-05-01

    Application of micro-pattern gaseous detectors to gaseous photomultiplier tubes has been widely investigated over the past two decades. In this paper, we present a double micro-mesh gaseous structure that has been designed and fabricated for this application. Tests with X-rays and UV laser light indicate that this structure exhibits an excellent gas gain of > 7 × 104 and good energy resolution of 19% (full width at half maximum) for 5.9 keV X-rays. The gas gain can reach up to 106 for single electrons while maintaining a very low ion-backflow ratio down to 0.0005. This structure has good potential for other applications requiring a very low level of ion backflow.

  7. An Optimized Design of Single-Channel Beta-Gamma Coincidence Phoswich Detector by Geant4 Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2011-01-01

    Full Text Available An optimized single-channel phoswich well detector design has been proposed and assessed in order to improve beta-gamma coincidence measurement sensitivity of xenon radioisotopes. This newly designed phoswich well detector consists of a plastic beta counting cell (BC404 embedded in a CsI(Tl crystal coupled to a photomultiplier tube. The BC404 is configured in a cylindrical pipe shape to minimise light collection deterioration. The CsI(Tl crystal consists of a rectangular part and a semicylindrical scintillation part as a light reflector to increase light gathering. Compared with a PhosWatch detector, the final optimized detector geometry showed 15% improvement in the energy resolution of a 131mXe 129.4 keV conversion electron peak. The predicted beta-gamma coincidence efficiencies of xenon radioisotopes have also been improved accordingly.

  8. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  9. Single-portal-phase low-tube-voltage dual-energy CT for short-term follow-up of acute pancreatitis: evaluation of CT severity index, interobserver agreement and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Universitaetsklinikum Frankfurt, Institut fuer Diagnostische und Interventionelle Radiologie, Frankfurt am Main (Germany); Majenka, Pawel; Beeres, Martin; Kromen, Wolfgang; Schulz, Boris; Bauer, Ralf W.; Kerl, J.M.; Gruber-Rouh, Tatjana; Hammerstingl, Renate; Vogl, Thomas J.; Lehnert, Thomas [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wesarg, Stefan [Fraunhofer IGD, Cognitive Computing and Medical Imaging, Darmstadt (Germany)

    2014-11-15

    To intra-individually compare single-portal-phase low-tube-voltage (100-kVp) computed tomography (CT) with 120-kVp images for short-term follow-up assessment of CT severity index (CTSI) of acute pancreatitis, interobserver agreement and radiation dose. We retrospectively analysed 66 patients with acute pancreatitis who underwent initial dual-contrast-phase CT (unenhanced, arterial, portal phase) at admission and short-term (mean interval 11.4 days) follow-up dual-contrast-phase dual-energy CT. The 100-kVp and linearly blended images representing 120-kVp acquisition follow-up CT images were independently evaluated by three radiologists using a modified CTSI assessing pancreatic inflammation, necrosis and extrapancreatic complications. Scores were compared with paired t test and interobserver agreement was evaluated using intraclass correlation coefficients (ICC). Mean CTSI scores on unenhanced, portal- and dual-contrast-phase images were 4.9, 6.1 and 6.2 (120 kVp) and 5.0, 6.0 and 6.1 (100 kVp), respectively. Contrast-enhanced series showed a higher CTSI compared to unenhanced images (P < 0.05) but no significant differences between single- and dual-contrast-phase series (P > 0.7). CTSI scores were comparable for 100-kVp and 120-kVp images (P > 0.05). Interobserver agreement was substantial for all evaluated series and subcategories (ICC 0.67-0.93). DLP of single-portal-phase 100-kVp images was reduced by 41 % compared to 120-kVp images (363.8 versus 615.9 mGy cm). Low-tube-voltage single-phase 100-kVp CT provides sufficient information for follow-up evaluation of acute pancreatitis and significantly reduces radiation exposure. (orig.)

  10. Vibrations of tube arrays in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Doyen, R.

    1981-08-01

    In this study the local forces per unit length acting in a tube in a single row and in bundle have been measured. Their modification by a given harmonic motion of the tube itself or of an adjacent tube has been particularly studied. Some complementary experiments have been performed to extend the whirling coefficient tabulation and also to precise the effect of the upstream velocity profile on the whirling critical velocities [fr

  11. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  12. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  13. Characterization of the Hamamatsu R11265-103-M64 multi-anode photomultiplier tube for the LHCb RICH Upgrade

    CERN Document Server

    Matteuzzi, C; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Khanji, B; Maino, M; Pessina, G

    2014-01-01

    The Hamamatsu R11265-103-M64 MaPMT is the baseline photon sensor to be used for the LHCb RICH Upgrade detector. This choice has been supported by a large number of tests of this device. This note summarizes the measurements performed by the INFN Milano Bicocca group to characterize the photon detector. A description is provided of the unpublished outcomes and particularly of the more recent developments about the aging of the R11265-103-M64 MaPMT and the test of a whole photon detector RICH Elementary Cell.

  14. Study of Various Photomultiplier Tubes for Window Events: Upgrade R\\&D for CMS Hadron Forward Calorimeters

    CERN Document Server

    Bilki, Burak

    2010-01-01

    The PMTs of the CMS Hadron Forward calorimeter were found to generate a large amount of signal when their windows were traversed by energetic charged particles. This signal, which is due to \\u{C}erenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For one specific type -the four anode PMT- a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to \\u{C}erenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superi...

  15. Energy resolution measurements of LaBr3:Ce scintillating crystals with an ultra-high quantum efficiency photomultiplier tube

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Scafe, R.; Pellegrini, R.; Vittorini, F.; Bennati, P.; Ridolfi, S.; Lo Meo, S.; Mattioli, M.; Baldazzi, G.; Pisacane, F.; Navarria, F.; Moschini, G.; Boccaccio, P.; Orsolini Cencelli, V.; Sacco, D.

    2009-01-01

    The performance of the new prototype of high quantum efficiency PMT (43% at 380 nm), Hamamatsu R7600U-200, was studied coupled to a LaBr 3 :Ce crystal with the size of o12.5 mmx12.5 mm. The energy resolution results were compared with ones from two PMTs, Hamamatsu R7600U and R6231MOD, with 22% and 30% quantum efficiency (QE), respectively. Moreover, the photodetectors were equipped with tapered and un-tapered voltage dividers to study the non-linearity effects on pulse height distribution, due to very high peak currents induced in the PMT by the fast and intense light pulse of LaBr 3 :Ce. The results show an energy resolution improvement with UBA PMT of about 20%, in the energy range of 80-662 keV, with respect to the BA one.

  16. Study of the silicon photomultipliers and their applications in positron emission tomography

    International Nuclear Information System (INIS)

    Xu, Chen

    2014-05-01

    This thesis deals with silicon photomultipliers (SiPM) used in scintillation detectors and their applications in positron emission tomography (PET). The study of the SiPM is mainly focused on the application to the proposed EndoTOFPET-US detector, which is a multi-modality PET detector facilitating the development of new biomarkers for pancreas and prostate cancers. A Monte Carlo simulation tool is developed for the optimization of the detector's single channel design. In order to obtain a 200 ps system coincidence time resolution and maximize the detector sensitivity, the requirements for the crystal geometry, light yield and SiPM photon detection efficiency are specified based on the simulation study. In addition, the nonlinear response of the SiPM can be corrected by the simulation tool and the energy resolution of the detector is extracted. A series of measurements are established to characterize SiPMs in a fast and reliable way with high precision. The static characterization measures the value of different components in the derived electrical model of the SiPM, whereas the dynamic characterization extracts parameters that is crucial for the operation of the SiPM. Several SiPM samples are tested and their characteristics are compared. The developed setup and the precision of the measurement fulfill the requirements of the quality assurance test for the commissioning of the EndoTOFPET-US detector. The test foresees large quantities of SiPMs to be characterized. In addition, the developed measuring procedure has contributed to the study of X-ray induced surface damage of a SiPM from Hamamatsu. Characteristics of the device are measured before and after irradiating the SiPM with different X-ray doses, the results are compared and discussed. A comparative study of a digital and an analog SiPM in gamma spectroscopy with the inorganic scintillator is presented. The characteristics of a prototype digital SiPM that is developed for the EndoTOFPETUS detector is

  17. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    International Nuclear Information System (INIS)

    Liu, Z.; Pizzichemi, M.; Paganoni, M.; Auffray, E.; Lecoq, P.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation correction. The best energy resolution full width half maximum (FWHM) obtained for the 2×2×5mm 3 , 2×2×10 mm 3 , 2×2×15mm 3 , 2×2×20mm 3 LYSO crystals was 10.7%, 11.6%, 12.1%, 12.5%, respectively. For crystals with different cross sections coupled to the digital SiPM, we found that the larger the cross section of coupling area, the more photons were detected and thus a better energy resolution was obtained. The CTR of crystals fully wrapped with Teflon or without wrapping was measured by positioning two identical crystals facing each other. A larger area of digital SiPM improves the CTR and the CTR reaches the plateau when the active area is larger than 2.2×2.2mm 2 with both two configurations of wrapping. The best CTR value for the 2×2×5mm 3 , 2×2×10mm 3 , 2×2×15mm 3 , 2×2×20mm 3 LYSO crystals was 128.9 ps, 148.4 ps, 171.6 ps, 177.9 ps, respectively. The measurements performed lead us to conclude that optimising the coupling between crystal

  18. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  19. Study of a photomultiplier for the measurement of low light flows by photon counting

    International Nuclear Information System (INIS)

    Haye, Kleber

    1964-01-01

    After a recall of the history of the discovery and use of the photoemission effect, a presentation of the main characteristics of photomultipliers, a discussion of performance and weaknesses of electron multiplier-based cells, this research thesis addresses the study of low light flows. The author tried to determine whether it was possible, at ambient temperature, to reduce the influence of the thermoelectric effect. In order to do so, he made a detailed study of the amplitude spectrum of pulses of photoelectric origin. In order to analyse the influence of temperature of photomultiplier characteristics, he studied, with respect to temperature, the variation of the counting rate corresponding to darkness, the variation of pulse amplitude spectrum, and relative variations of the quantum efficiency for various wavelengths. In parallel with the study by counting, a study has been performed by using the well known mean current measurement [fr

  20. The LED and fiber based calibration system for the photomultiplier array of SNO+

    Science.gov (United States)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  1. Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elton S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 x1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  2. System for high-voltage control detectors with large number photomultipliers

    International Nuclear Information System (INIS)

    Donskov, S.V.; Kachanov, V.A.; Mikhajlov, Yu.V.

    1985-01-01

    A simple and inexpensive on-line system for hihg-voltage control which is designed for detectors with a large number of photomultipliers is developed and manufactured. It has been developed for the GAMC type hodoscopic electromagnetic calorimeters, comprising up to 4 thousand photomultipliers. High voltage variation is performed by a high-speed potentiometer which is rotated by a microengine. Block-diagrams of computer control electronics are presented. The high-voltage control system has been used for five years in the IHEP and CERN accelerator experiments. The operation experience has shown that it is quite simple and convenient in operation. In case of about 6 thousand controlled channels in both experiments no potentiometer and microengines failures were observed

  3. Development of silicon photomultipliers and their applications to GlueX calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elton S., E-mail: elton@jlab.org [Jefferson Lab, Newport News, VA 23606 (United States)

    2016-07-07

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 × 1.2 cm{sup 2}) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  4. Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Borges, F I G; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Castel, J; Cebrián, S; Dafni, T; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and ''blob'' regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q ββ )

  5. Automated installation for several photomultiplier photocathode activation by means of one vacuum facility

    International Nuclear Information System (INIS)

    Beschastnov, P.M.; Peryshkin, A.I.; Pyata, E.Eh.; Usov, Yu.V.

    1989-01-01

    An automated installation for simultaneous activation of up to four photocathodes of several photomultipliers by means of one vacuum station with the common furnace is described. Production technology of producing multialkaline photocathode makes up the basis for creating automated technology. The installation is produced on the base of the R110B industrial station and the Electronica-60 microcomputer. Software written in FORTRAN providing for control over all process stages is developed. 6 refs.; 2 figs

  6. Silicon Photo-Multiplier Radiation Hardness Tests with a White Neutron Beam

    International Nuclear Information System (INIS)

    Montanari, A.; Tosi, N.; Pietropaolo, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Cotta Ramusino, A.; Malaguti, R.; Santoro, V.; Tellarini, G.; Tomassetti, L.; De Donato, C.; Reali, E.

    2013-06-01

    We report radiation hardness tests performed, with a white neutron beam, at the Geel Electron Linear Accelerator in Belgium on silicon Photo-Multipliers. These are semiconductor photon detectors made of a square matrix of Geiger-Mode Avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to about 6.2 x 10 9 1-MeV-equivalent neutrons per cm 2 . (authors)

  7. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Czech Academy of Sciences Publication Activity Database

    Heller, M.; Schioppa, E.jr.; Porcelli, A.; Pujadas, I.T.; Zietara, K.; della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J.A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Blocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandát, Dušan; Marszalek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, Miroslav; Schovánek, Petr; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Walter, R.; Wiecek, M.; Zagdanski, A.

    2017-01-01

    Roč. 77, č. 1 (2017), s. 1-31, č. článku 47. ISSN 1434-6044 R&D Projects: GA MŠk LE13012; GA MŠk LG14019 Institutional support: RVO:68378271 Keywords : silicon photomultiplier * digitizing camera * gamma-ray astronomy Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  8. Thomson scattering measuring device using high sensitivity photomultipliers: 16% up to 860nm

    International Nuclear Information System (INIS)

    Hesse, M.

    1976-03-01

    Photomultipliers with high quantum efficiency were used to observe the entire rubis laser light spectrum scattered by a plasma. The optical and electronic acquisition device used to study this spectrum is described. The spectra obtained revealed a dissymmetry larger than that expected from relativistic theory. These results could not be interpreted. The diagnostic sensitivity allows the measurement of low electron densities (2.10 12 ecm -3 ) [fr

  9. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  10. Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer.

    Science.gov (United States)

    Wollman, Adam J M; Miller, Helen; Zhou, Zhaokun; Leake, Mark C

    2015-04-01

    DNA-interacting proteins have roles in multiple processes, many operating as molecular machines which undergo dynamic meta-stable transitions to bring about their biological function. To fully understand this molecular heterogeneity, DNA and the proteins that bind to it must ideally be interrogated at a single molecule level in their native in vivo environments, in a time-resolved manner, fast enough to sample the molecular transitions across the free-energy landscape. Progress has been made over the past decade in utilizing cutting-edge tools of the physical sciences to address challenging biological questions concerning the function and modes of action of several different proteins which bind to DNA. These physiologically relevant assays are technically challenging but can be complemented by powerful and often more tractable in vitro experiments which confer advantages of the chemical environment with enhanced detection signal-to-noise of molecular signatures and transition events. In the present paper, we discuss a range of techniques we have developed to monitor DNA-protein interactions in vivo, in vitro and in silico. These include bespoke single-molecule fluorescence microscopy techniques to elucidate the architecture and dynamics of the bacterial replisome and the structural maintenance of bacterial chromosomes, as well as new computational tools to extract single-molecule molecular signatures from live cells to monitor stoichiometry, spatial localization and mobility in living cells. We also discuss recent developments from our laboratory made in vitro, complementing these in vivo studies, which combine optical and magnetic tweezers to manipulate and image single molecules of DNA, with and without bound protein, in a new super-resolution fluorescence microscope.

  11. STiC — a mixed mode silicon photomultiplier readout ASIC for time-of-flight applications

    International Nuclear Information System (INIS)

    Harion, T; Briggl, K; Chen, H; Gil, A; Kiworra, V; Schultz-Coulon, H-C; Shen, W; Stankova, V; Fischer, P; Ritzert, M

    2014-01-01

    STiC is an application specific integrated circuit (ASIC) for the readout of silicon photomultipliers. The chip has been designed to provide a very high timing resolution for time-of-flight applications in medical imaging and particle physics. It is dedicated in particular to the EndoToFPET-US project, which is developing an endoscopic PET detector combined with ultrasound imaging for early pancreas and prostate cancer detection. This PET system aims to provide a spatial resolution of 1 mm and a time-of-flight resolution of 200 ps FWHM. The analog frontend of STiC can use either a differential or single ended connection to the SiPM. The time and energy information of the detector signal is encoded into two time stamps. A special linearized time-over-threshold method is used to obtain a linear relation between the signal charge and the measured signal width, improving the energy resolution. The trigger signals are digitized by an integrated TDC module with a resolution of less than 20 ps. The TDC data is stored in an internal memory and transfered over a 160 MBit/s serial link using 8/10 bit encoding. First coincidence measurements using a 3.1 × 3.1 × 15 mm 3 LYSO crystal and a S10362-33-50 Hamamtsu MPPC show a coincidence time resolution of less than 285 ps. We present details on the chip design as well as first characterization measurements

  12. Method of signal detection from silicon photomultipliers using fully differential Charge to Time Converter and fast shaper

    International Nuclear Information System (INIS)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-01-01

    The paper presents an implementation of fully differential readout method for Silicon Photomultipliers (SiPM). Front-end electronics consists of a fast and slow path. The former creates the trigger signal while the latter produces a pulse of width proportional to the input charge. The fast shaper generates unipolar pulse and utilizes the pole-zero cancelation circuit. The peaking time for single photoelectron is equal to 3.6 ns and the FWHM is 3.8 ns. The pulse width of the Charge to Time Converter (QTC) depends on the number of photons entering the SiPM at the moment of measurement. The QTC response is nonlinear but it allows us to work with signals in a wide dynamic range. The proposed readout method is effective in measurements of random signals where frequent events tend to pile-up. Thermal generation and afterpulses have a strong influence on the width of pulses from QTC. The proposed method enables us to distinguish those overlapping signals and get the reliable information on the number of detected photons.

  13. Method of signal detection from silicon photomultipliers using fully differential Charge to Time Converter and fast shaper

    Energy Technology Data Exchange (ETDEWEB)

    Baszczyk, M., E-mail: baszczyk@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Dorosz, P.; Glab, S.; Kucewicz, W. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Mik, L. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); State Higher Vocational School, Tarnow (Poland); Sapor, M. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland)

    2016-07-11

    The paper presents an implementation of fully differential readout method for Silicon Photomultipliers (SiPM). Front-end electronics consists of a fast and slow path. The former creates the trigger signal while the latter produces a pulse of width proportional to the input charge. The fast shaper generates unipolar pulse and utilizes the pole-zero cancelation circuit. The peaking time for single photoelectron is equal to 3.6 ns and the FWHM is 3.8 ns. The pulse width of the Charge to Time Converter (QTC) depends on the number of photons entering the SiPM at the moment of measurement. The QTC response is nonlinear but it allows us to work with signals in a wide dynamic range. The proposed readout method is effective in measurements of random signals where frequent events tend to pile-up. Thermal generation and afterpulses have a strong influence on the width of pulses from QTC. The proposed method enables us to distinguish those overlapping signals and get the reliable information on the number of detected photons.

  14. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  15. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  16. Relative bioavailability of single doses of prolonged-release tacrolimus administered as a suspension, orally or via a nasogastric tube, compared with intact capsules: a phase 1 study in healthy participants.

    Science.gov (United States)

    Undre, Nasrullah; Dickinson, James

    2017-04-04

    Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10

  17. Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis.

    Science.gov (United States)

    Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2015-03-01

    A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate. © 2015 The Author(s).

  18. Development of a red TL detection system for a single grain of quartz

    International Nuclear Information System (INIS)

    Yawata, T.; Hashimoto, T.

    2007-01-01

    Red thermoluminescence (RTL) of natural quartz grains offers many desirable properties for quaternary chronology and archaeological dating, although RTL measurements suffer from high thermal background due to black-body radiation on heating. To reduce the thermal background to as low a level as possible, a silver sample disc covered with a biotite plate with a sample hole was used in combination with a light guide, cluster heater, optical filters, and photomultiplier tube cooling to -20 deg. C in the present system. As a result, the thermal background decreased from 2x10 4 to 1000 cps in the temperature range 350-380 deg. C, resulting in a detection limit of approximately 100 cps, corresponding to the RTL signal from a single quartz grain (250-500μm) irradiated with 4.0 Gy. In addition, application of lower heating rates retarded the thermal quenching effect, resulting in high RTL signals, which are preferable for young or insensitive quartz samples. Using RTL measurements with the single quartz grain method under optimal RTL conditions, comparison of equivalent doses from artificially irradiated single quartz grains to the known dose was within the 20% measurement error. Based on equivalent dose determinations for single quartz grains, large irregularities on non-etched quartz surfaces might be very detrimental to the TL detection process. This result confirms that surface etching treatment is required to achieve reliable dating with high counting efficiency

  19. A study of pile-up in integrated time-correlated single photon counting systems.

    Science.gov (United States)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  20. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    Directory of Open Access Journals (Sweden)

    Dong Chen

    Full Text Available Genotyping of thiopurine S-methyltransferase (TPMT is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR, termed competitive real-time fluorescent AS-PCR (CRAS-PCR was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques.

  1. A sampling ultra-high-speed streak camera based on the use of a unique photomultiplier

    International Nuclear Information System (INIS)

    Marode, Emmanuel

    An apparatus reproducing the ''streak'' mode of a high-speed camera is proposed for the case of a slit AB whose variations in luminosity are repetitive. A photomultiplier, analysing the object AB point by point, and a still camera, photographing a slit fixed on the oscilloscope screen parallel to the sweep direction are placed on a mobile platform P. The movement of P assures a time-resolved analysis of AB. The resolution is of the order of 2.10 -9 s, and can be improved [fr

  2. Silicon photo-multiplier radiation hardness tests with a beam controlled neutron source

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Faccini, R.; Pinci, D.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Cotta Ramusino, A.; Malaguti, R.; Pozzati, M.

    2010-01-01

    Radiation hardness tests were performed at the Frascati Neutron Generator on silicon Photo-Multipliers that were made of semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated, integrating up to 7x10 10 1-MeV-equivalent neutrons per cm 2 . Detector performance was recorded during the neutron irradiation, and a gradual deterioration of their properties began after an integrated fluence of the order of 10 8 1-MeV-equivalent neutrons per cm 2 was reached.

  3. Reconstruction of scintillations coordinates in cylindrical large detector with radial arrangement of photomultipliers

    CERN Document Server

    Alekseev, V M; Verbitskij, V S; Verbitskij, S S; Lapik, M A; Tselebrovskij, A N; Lapik, A M; Rusakov, A V; Savopulo, M L; Smirnov, V V; Chubarov, M N

    2002-01-01

    Paper describes algorithm to calculate scintillation coordinates elaborated for a coordinate-sensitive large detector based on liquid scintillator with radial arrangement of nine FEU-174 photomultipliers. Paper contains the simulation results of coordinate resolution dependence in detector centre on energy of gamma-quanta within 0.2-8 MeV range. Using this algorithm one processed the experimental data obtained with application of sup 6 sup 0 Co gamma-radiation source and the results of determination of scintillation coordinates for gamma-quanta beam. The accuracy of coordinate determination in detector centre when applying the descried algorithm constitutes approx 10 mm

  4. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    Science.gov (United States)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  5. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  6. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  7. Ultrafast readout of scintillating fibers using upgraded position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-01-01

    Experimental results obtained with commercially available position-sensitive photomultipliers (PSPM) coupled with 0.5 mm diameter scintillating fiber arrays show some promising performances such as space resolution better than 200 μm and time resolution ∼ 1.5 ns with a detection efficiency higher than 90%. Major progress has also been recently achieved with an upgrade of a PSPM based on new grid dynode structures. Two-track spatial resolution has been studied using the upgraded PSPM. Initial studies demonstrate that two tracks separated by a minimum distance of 3 mm are resolved

  8. Report on the lunar ranging at McDonald Observatory. [spark gap configuration and photomultiplier system

    Science.gov (United States)

    Silverberg, E. C.

    1977-01-01

    Range measurements to an accuracy of 5 cm were achieved following improvements in the laser oscillator configuration and the photomultiplier system. Modifications to the laser include a redesigned pockel cell mount to eliminate stressing of the cell crystal; an improved electrically triggered spark gap for sharpening the electrical pulse; the use of a brewster plate in the cavity to eliminate pre-pulsing; improved alignment for the oscillator system; and increased cavity lifetime through thin film polarizer technology. Laser calibration data are presented along with the lunar laser operations log for June to October 1977.

  9. GEM-based gaseous photomultipliers for UV and visible photon imaging

    International Nuclear Information System (INIS)

    Moermann, D.; Balcerzyk, M.; Breskin, A.; Chechik, R.; Singh, B.K.; Buzulutskov, A.

    2003-01-01

    We present the current status of our research on GEM-based gaseous photomultipliers. Detectors combining multi-GEM electron multipliers with semi-transparent and reflective photocathodes are discussed. We present recent progress in extending the sensitivity of these detectors into the visible range. We demonstrate the long-term stability of an argon-sealed bi-alkali photo-diode and provide preliminary results of a gas-sealed Kapton-GEM detector with a bi-alkali photocathode. The problem of ion-induced secondary electron emission is addressed

  10. The PhE4-49B photomultiplier spply providing the protection from the geomagnetic field

    International Nuclear Information System (INIS)

    Georgiev, V.V.; Gladyshev, V.A.

    1980-01-01

    To protect a scintillation detector from the effect of the geomagnetic field it is proposed to use an experimentally selected voltage divider in the FEhU-49B photomultiplier supplying circuit. Employment of such a divider makes it possible to increase the electrostatic field strength in the photomultiplier input chamber which ensures better collection of photoelectrons on the first dynode, to decrease effect of the magnetic field on electron focusing and to increase the first dynode secondary emission coefficient. Selection of photomultiplier supplying conditions is carried out experimentally on a scintillation counter with a plastic scintillator. The potentials of the focusing electrode and the first dynode are adjusted so that the relation between the counting rate at a photomultiplier orientation along the magnetic field lines of force and the counting rate at normal orientation to the lines of force is minimum. Usage of the experimentally selected voltage divider improves the scintillation counter time resolution and decreases the photomultiplier operating supply voltage by 100-150 V. The scintillation counter provided with a proposed divider requires no magnetic shields [ru

  11. [Prehospital airway management of laryngeal tubes. Should the laryngeal tube S with gastric drain tube be preferred in emergency medicine?].

    Science.gov (United States)

    Dengler, V; Wilde, P; Byhahn, C; Mack, M G; Schalk, R

    2011-02-01

    Laryngeal tubes (LT) are increasingly being used for emergency airway management. This article reports on two patients in whom out-of-hospital intubation with a single-lumen LT was associated with massive pulmonary aspiration in one patient and gastric overinflation in the other. In both cases peak inspiratory pressures exceeded the LT leak pressure of approximately 35 mbar. This resulted in gastric inflation and decreased pulmonary compliance and increased inspiratory pressure further, thereby creating a vicious circle. It is therefore recommended that laryngeal tube suction (LTS) should be used in all cases of emergency airway management and a gastric drain tube be inserted through the dedicated second lumen. Apart from gastric overinflation, incorrect LT/LTS placement must be detected and immediately corrected, e.g. in cases of difficult or impossible gastric tube placement, permanent drainage of air from the gastric tube, decreasing minute ventilation or an ascending capnography curve.

  12. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  13. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  14. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  15. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  16. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  17. Timing characteristics of Ce doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} single crystals in comparison with CsI(Tl) scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, M.; Singh, A.K.; Singh, S.G.; Sen, S.; Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Desai, V.V.; Nayak, B.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-10-15

    Single crystals of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce with B codopants were successfully grown using the Czochralski technique. The timing characteristics of the crystal was measured by coupling the crystal to photomultiplier tubes (PMT) or silicon photodiodes [Si(PIN)]. The two prompt γ-rays emitted in a cascade from {sup 60}Co or {sup 22}Na source were detected in coincidence using Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystal detectors and a BaF{sub 2} detector. The time resolution of these crystals are observed to be better than that measured for CsI:Tl crystal coupled to PMT or Si(PIN) in an identical measurement setup. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  19. Development of high performance readout ASICs for silicon photomultipliers (SiPMs)

    International Nuclear Information System (INIS)

    Shen, Wei

    2012-01-01

    Silicon Photomultipliers (SiPMs) are novel kind of solid state photon detectors with extremely high photon detection resolution. They are composed of hundreds or thousands of avalanche photon diode pixels connected in parallel. These avalanche photon diodes are operated in Geiger Mode. SiPMs have the same magnitude of multiplication gain compared to the conventional photomultipliers (PMTs). Moreover, they have a lot of advantages such as compactness, relatively low bias voltage and magnetic field immunity etc. Special readout electronics are required to preserve the high performance of the detector. KLauS and STiC are two CMOS ASIC chips designed in particular for SiPMs. KLauS is used for SiPM charge readout applications. Since SiPMs have a much larger detector capacitance compared to other solid state photon detectors such as PIN diodes and APDs, a few special techniques are used inside the chip to make sure a descent signal to noise ratio for pixel charge signal can be obtained. STiC is a chip dedicated to SiPM time-of-flight applications. High bandwidth and low jitter design schemes are mandatory for such applications where time jitter less than tens of picoseconds is required. Design schemes and error analysis as well as measurement results are presented in the thesis.

  20. The effect of tube rupture location on the consequences of multiple steam generator tube rupture event

    International Nuclear Information System (INIS)

    Jeong, Ji Hwan; Kweon, Young Chul

    2002-01-01

    A multiple steam generator tube rupture (MSGTR) event has never occurred in the commercial operation of nuclear reactors while single steam generator tube rupture (SGTR) events are reported to occur every 2 years. As there has been no occurrence of a MSGTR event, the understanding of transients and consequences of this event is very limited. In this study, a postulated MSGTR event in an advanced power reactor 1400 (APR 1400) is analyzed using the thermal-hydraulic system code, MARS1.4. The APR 1400 is a two-loop, 3893 MWt, PWR proposed to be built in 2010. The present study aims to understand the effects of rupture location in heat transfer tubes following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 allows the shortest time for operator action following a tube rupture in the vicinity of the hot-leg side tube sheet and allows the longest time following a tube rupture at the tube top. The MSSV lift time for rupture at the tube-top is evaluated as 24.5% larger than that for rupture at the hot-leg side tube sheet

  1. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  2. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay.

    Science.gov (United States)

    Rodríguez-Lee, Mariam; Kolatkar, Anand; McCormick, Madelyn; Dago, Angel D; Kendall, Jude; Carlsson, Nils Anders; Bethel, Kelly; Greenspan, Emily J; Hwang, Shelley E; Waitman, Kathryn R; Nieva, Jorge J; Hicks, James; Kuhn, Peter

    2018-02-01

    - As circulating tumor cell (CTC) assays gain clinical relevance, it is essential to address preanalytic variability and to develop standard operating procedures for sample handling in order to successfully implement genomically informed, precision health care. - To evaluate the effects of blood collection tube (BCT) type and time-to-assay (TTA) on the enumeration and high-content characterization of CTCs by using the high-definition single-cell assay (HD-SCA). - Blood samples of patients with early- and advanced-stage breast cancer were collected into cell-free DNA (CfDNA), EDTA, acid-citrate-dextrose solution, and heparin BCTs. Time-to-assay was evaluated at 24 and 72 hours, representing the fastest possible and more routine domestic shipping intervals, respectively. - We detected the highest CTC levels and the lowest levels of negative events in CfDNA BCT at 24 hours. At 72 hours in this BCT, all CTC subpopulations were decreased with the larger effect observed in high-definition CTCs and cytokeratin-positive cells smaller than white blood cells. Overall cell retention was also optimal in CfDNA BCT at 24 hours. Whole-genome copy number variation profiles were generated from single cells isolated from all BCT types and TTAs. Cells from CfDNA BCT at 24-hour TTA exhibited the least noise. - Circulating tumor cells can be identified and characterized under a variety of collection, handling, and processing conditions, but the highest quality can be achieved with optimized conditions. We quantified performance differences of the HD-SCA for specific preanalytic variables that may be used as a guide to develop best practices for implementation into patient care and/or research biorepository processes.

  3. Hardware solution for continuous time-resolved burst detection of single molecules in flow

    Science.gov (United States)

    Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen

    1998-04-01

    Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.

  4. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  5. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  6. Intercostal drainage tube or intracardiac drainage tube?

    Science.gov (United States)

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  7. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  8. Tube vibration in industrial size test heat exchanger

    International Nuclear Information System (INIS)

    Halle, H.; Wambsganss, M.W.

    1980-03-01

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  9. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  10. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  11. Statistics of multi-tube detecting systems

    International Nuclear Information System (INIS)

    Grau Carles, P.; Grau Malonda, A.

    1994-01-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sume. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application. way

  12. Statistics of multi-tube detecting systems

    International Nuclear Information System (INIS)

    Grau Carles, P.; Grau Malonda, A.

    1994-01-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sum. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application way. (Author) 6 refs

  13. Improvement of pump tubes for gas guns and shock tube drivers

    Science.gov (United States)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  14. Short and long range gain monitoring of photomultipliers by means of a light pulser and an optical fibers bunch

    International Nuclear Information System (INIS)

    Besson, P.

    1989-01-01

    The gain monitoring of 8 XP3462 photomultipliers has been studied during a period of 3 months with a spark gap as a light pulser, an optical fibres bunch and 3 reference detectors. One of the reference PM is monitored thanks to a cristal of NaI irradiated by an 241 Am radioactive source, whereas the photodiode and its associated electronic is monitored thanks to a 57 Co source directly coupled to the junction. Two experimental methods have been tested. First the short term method consists in estimating several means of charge distributions and supposes the stability of different optical parameters like quantum efficiency or photoelectrons collection efficiency. The long term method consists in estimating several variances of charge distributions and supposes the validity, at first order, of photomultipliers' equations. In spite of unpropitious experimental conditions (tension switch off, no climatisation..), our results indicate that the short term method provides a precision of about 0.5% for the relative gain value but only during a short period which has been of 20 days. The long term method provides a precision of about 1.5% but is remained available during the 3 months of our experiment. This study has been developed for the new Neutrino oscillation program taking place near the Bugey nuclear plant and using 600 photomultipliers. The conclusions mentioned above are nevertheless valid for any particle detectors using photomultipliers [fr

  15. Partially slotted crystals for a high-resolution γ-camera based on a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Giokaris, N.; Loudos, G.; Maintas, D.; Karabarbounis, A.; Lembesi, M.; Spanoudaki, V.; Stiliaris, E.; Boukis, S.; Gektin, A.; Pedash, V.; Gayshan, V.

    2005-01-01

    Partially slotted crystals have been designed and constructed and have been used to evaluate the performance with respect to the spatial resolution of a γ-camera based on a position-sensitive photomultiplier. It is shown that the resolution obtained with such a crystal is only slightly worse than the one obtained with a fully pixelized one whose cost, however, is much higher

  16. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  17. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube......’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  18. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  19. Is tube feeding futile in advanced dementia?

    Science.gov (United States)

    Lynch, Matthew C.

    2016-01-01

    It is controversial whether tube feeding in people with dementia improves nutritional status or prolongs survival. Guidelines published by several professional societies cite observational studies that have shown no benefit and conclude that tube feeding in patients with advanced dementia should be avoided. However, all studies on tube feeding in dementia have major methodological flaws that invalidate their findings. The present evidence is not sufficient to justify general guidelines. Patients with advanced dementia represent a very heterogeneous group, and evidence demonstrates that some patients with dementia benefit from tube feeding. However, presently available guidelines make a single recommendation against tube feeding for all patients. Clinicians, patients, and surrogates should be aware that the guidelines and prior commentary on this topic tend both to overestimate the strength of evidence for futility and to exaggerate the burdens of tube feeding. Shared decision making requires accurate information tailored to the individual patient's particular situation, not blanket guidelines based on flawed data. Lay Summary: Many doctors believe that tube feeding does not help people with advanced dementia. Scientific studies suggest that people with dementia who have feeding tubes do not live longer or gain weight compared with those who are carefully hand fed. However, these studies are not very helpful because of flaws in design, which are discussed in this article. Guidelines from professional societies make a blanket recommendation against feeding tubes for anyone with dementia, but an individual approach that takes each person's situation into account seems more appropriate. Patients and surrogates should be aware that the guidelines on this topic tend both to underestimate the benefit and exaggerate the burdens of tube feeding. PMID:27833208

  20. Ultrafast Readout of Scintillating Fibres Using Upgraded Position-Sensitive Photomultipliers

    CERN Multimedia

    2002-01-01

    % RD-17 \\\\ \\\\To design a high rate topological trigger device for the future DIRAC Experiment at CERN an extensive work is in progress on a scintillating-fibre detector using a position-sensitive photomultiplier. Several detector prototypes with different lengths ($<$~50~cm) of sensitive area have been tested at T7S~PS beam. \\\\ \\\\With 0.5~mm diameter fibres a spatial resolution of $\\sim$125~$\\mu$m was obtained with a detection efficiency higher than 95\\%. The time resolution is $\\sim$600~ps, and the track position is properly digitized in real time (about 10~ns) by multi-channel peak sensing circuit. Based on experimental data simulations were also performed a comparison of different types of front-end electronics for multi-channel readout.

  1. Characteristics of a prototype matrix of Silicon PhotoMultipliers (SiPM)

    International Nuclear Information System (INIS)

    Dinu, N; Barrillon, P; Bazin, C; Bondil-Blin, S; Chaumat, V; Taille, C De La; Puill, V; Vagnucci, J F; Belcari, N; Bisogni, M G; Guerra, A Del; Llosa, G; Marcatili, S; Boscardin, M; Melchiorri, M; Piemonte, C; Tarolli, A; Zorzi, N; Collazuol, G

    2009-01-01

    This work reports on the electrical (static and dynamic) as well as on the optical characteristics of a prototype matrix of Silicon Photomultipliers (SiPM). The prototype matrix consists of 4 x 4 SiPM's on the same substrat fabricated at FBK-irst (Trento, Italy). Each SiPM of the matrix has an area of 1 x 1mm 2 and it is composed of 625 microcells connected in parallel. Each microcell of the SiPM is a GM-APD (n + /p junction on P+ substrate) with an area of 40 x 40 μm 2 connected in series with its integrated polysilicon quenching resistance. The static characteristics as breakdown voltage, quenching resistance, post-breakdown dark current as well as the dynamic characteristics as gain and dark count rate have been analysed. The photon detection efficiency as a function of wavelength and operation voltage has been also estimated.

  2. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    Science.gov (United States)

    Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo

    2018-02-01

    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  3. Characteristics of a prototype matrix of Silicon PhotoMultipliers (SiPM)

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N; Barrillon, P; Bazin, C; Bondil-Blin, S; Chaumat, V; Taille, C De La; Puill, V; Vagnucci, J F [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Belcari, N; Bisogni, M G; Guerra, A Del; Llosa, G; Marcatili, S [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); Boscardin, M; Melchiorri, M; Piemonte, C; Tarolli, A; Zorzi, N [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Collazuol, G [Scuola Normale Superiore (SNS), 56127 Pisa (Italy)], E-mail: dinu@lal.in2p3.fr

    2009-03-15

    This work reports on the electrical (static and dynamic) as well as on the optical characteristics of a prototype matrix of Silicon Photomultipliers (SiPM). The prototype matrix consists of 4 x 4 SiPM's on the same substrat fabricated at FBK-irst (Trento, Italy). Each SiPM of the matrix has an area of 1 x 1mm{sup 2} and it is composed of 625 microcells connected in parallel. Each microcell of the SiPM is a GM-APD (n{sup +}/p junction on P+ substrate) with an area of 40 x 40 {mu}m{sup 2} connected in series with its integrated polysilicon quenching resistance. The static characteristics as breakdown voltage, quenching resistance, post-breakdown dark current as well as the dynamic characteristics as gain and dark count rate have been analysed. The photon detection efficiency as a function of wavelength and operation voltage has been also estimated.

  4. First results in the application of silicon photomultiplier matrices to small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, G. [University of Pisa, Department of Physics, Pisa (Italy)], E-mail: gabriela.llosa@pi.infn.it; Belcari, N.; Bisogni, M.G. [University of Pisa, Department of Physics, Pisa (Italy); INFN Pisa (Italy); Collazuol, G. [University of Pisa, Department of Physics, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy); Marcatili, S. [University of Pisa, Department of Physics, Pisa (Italy); INFN Pisa (Italy); Boscardin, M.; Melchiorri, M.; Tarolli, A.; Piemonte, C.; Zorzi, N. [FBK irst, Trento (Italy); Barrillon, P.; Bondil-Blin, S.; Chaumat, V.; La Taille, C. de; Dinu, N.; Puill, V.; Vagnucci, J-F. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS, Orsay (France); Del Guerra, A. [University of Pisa, Department of Physics, Pisa (Italy); INFN Pisa (Italy)

    2009-10-21

    A very high resolution small animal PET scanner that employs matrices of silicon photomultipliers as photodetectors is under development at the University of Pisa and INFN Pisa. The first SiPM matrices composed of 16 (4x4)1mmx1mm pixel elements on a common substrate have been produced at FBK-irst, and are being evaluated for this application. The MAROC2 ASIC developed at LAL-Orsay has been employed for the readout of the SiPM matrices. The devices have been tested with pixelated and continuous LYSO crystals. The results show the good performance of the matrices and lead to the fabrication of matrices with 64 SiPM elements.

  5. Development of large-area silicon photomultiplier detectors for PET applications at FBK

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Nicola, E-mail: zorzi@fbk.eu [Fondazione Bruno Kessler (FBK), Via Sommarive 18, I-38123 Trento Povo (Italy); Melchiorri, Mirko; Piazza, Alessandro; Piemonte, Claudio; Tarolli, Alessandro [Fondazione Bruno Kessler (FBK), Via Sommarive 18, I-38123 Trento Povo (Italy)

    2011-04-21

    This paper reports on the development of large-area silicon photomultiplier (SiPM) detectors specifically designed for positron emission tomography (PET) instruments. The sensors under study are monolithic arrays of two different types: a 2x2 array of {approx}4x4 mm{sup 2} elements and an 8x8 array of 1.5x1.5 mm{sup 2} pixels. These devices are characterized at wafer level by means of an automatic test procedure, consisting of current-voltage curves in forward and reverse bias. The tests allowed selection of functioning devices and evaluation of the uniformity of basic parameters. Results of the electrical characterization are reported showing that acceptable values of yield together with rather uniform distribution of parameters have been obtained. Reliability of produced SiPMs has been proved by long-term accelerated stress tests.

  6. First results in the application of silicon photomultiplier matrices to small animal PET

    International Nuclear Information System (INIS)

    Llosa, G.; Belcari, N.; Bisogni, M.G.; Collazuol, G.; Marcatili, S.; Boscardin, M.; Melchiorri, M.; Tarolli, A.; Piemonte, C.; Zorzi, N.; Barrillon, P.; Bondil-Blin, S.; Chaumat, V.; La Taille, C. de; Dinu, N.; Puill, V.; Vagnucci, J-F.; Del Guerra, A.

    2009-01-01

    A very high resolution small animal PET scanner that employs matrices of silicon photomultipliers as photodetectors is under development at the University of Pisa and INFN Pisa. The first SiPM matrices composed of 16 (4x4)1mmx1mm pixel elements on a common substrate have been produced at FBK-irst, and are being evaluated for this application. The MAROC2 ASIC developed at LAL-Orsay has been employed for the readout of the SiPM matrices. The devices have been tested with pixelated and continuous LYSO crystals. The results show the good performance of the matrices and lead to the fabrication of matrices with 64 SiPM elements.

  7. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    Directory of Open Access Journals (Sweden)

    Zahra Bisadi

    2018-02-01

    Full Text Available A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  8. Development of large-area silicon photomultiplier detectors for PET applications at FBK

    International Nuclear Information System (INIS)

    Zorzi, Nicola; Melchiorri, Mirko; Piazza, Alessandro; Piemonte, Claudio; Tarolli, Alessandro

    2011-01-01

    This paper reports on the development of large-area silicon photomultiplier (SiPM) detectors specifically designed for positron emission tomography (PET) instruments. The sensors under study are monolithic arrays of two different types: a 2x2 array of ∼4x4 mm 2 elements and an 8x8 array of 1.5x1.5 mm 2 pixels. These devices are characterized at wafer level by means of an automatic test procedure, consisting of current-voltage curves in forward and reverse bias. The tests allowed selection of functioning devices and evaluation of the uniformity of basic parameters. Results of the electrical characterization are reported showing that acceptable values of yield together with rather uniform distribution of parameters have been obtained. Reliability of produced SiPMs has been proved by long-term accelerated stress tests.

  9. The Strip Silicon Photo-Multiplier: An innovation for enhanced time and position measurement

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: Katayoun.Doroud@cern.ch [CERN, Geneva (Switzerland); Williams, M.C.S. [CERN, Geneva (Switzerland); INFN, Bologna (Italy); Yamamoto, K. [Solid State Division, Hamamatsu Photonics K.K., Hamamatsu (Japan)

    2017-05-01

    There is considerable R&D concerning precise time measurement from a variety of detectors, and in particular for the Silicon PhotoMultiplier (SiPM). In this paper we discuss a new geometry for the SiPM in the form of a strip. A strip can be read out at both end, with each end coupled to an individual TDC (time to digital converter). The time difference is related to the position of the firing SPAD along the length of the strip, while the average of the two times gives the time of the hit. Results from the testing of the first prototype Strip SiPMs are presented in this paper.

  10. Gain monitoring of telescope array photomultiplier cameras for the first 4 years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, B.K., E-mail: bkshin@hanyang.ac.kr [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Tokuno, H.; Tsunesada, Y. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, UT (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, UT (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, UT (United States); Cheon, B.G., E-mail: bgcheon@hanyang.ac.kr [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); and others

    2014-12-21

    The stability of the gain of the photomultiplier (PMT) camera for the Fluorescence Detector (FD) of the Telescope Array experiment was monitored using an {sup 241}Am loaded scintillator pulsers (YAP) and a diffused xenon flasher (TXF) for a selected set of 35 PMT-readout channels. From the monitoring of YAP pulses over four years of FD operation, we found slow monotonic drifts of PMT gains at a rate of −1.7∼+1.7%/year. An average of the PMT gains over the 35 channels stayed nearly constant with a rate of change measured at −0.01±0.31(stat)±0.21(sys)%/year. No systematic decrease of the PMT gain caused by the night sky background was observed. Monitoring by the TXF also tracked the PMT gain drift of the YAP at 0.88±0.14(stat)%/year.

  11. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  12. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  13. A one-step, triplex, real-time RT-PCR assay for the simultaneous detection of enterovirus 71, coxsackie A16 and pan-enterovirus in a single tube.

    Directory of Open Access Journals (Sweden)

    Shiyin Zhang

    Full Text Available The recent, ongoing epidemic of hand, foot, and mouth disease (HFMD, which is caused by enterovirus infection, has affected millions of children and resulted in thousands of deaths in China. Enterovirus 71 (EV71 and coxsackie A16 (CA16 are the two major distinct pathogens for HFMD. However, EV71 is more commonly associated with neurologic complications and even fatalities. Therefore, simultaneously detecting and differentiating EV71 and CA16 specifically from other enteroviruses for diagnosing HFMD is important. Here, we developed a one-step, triplex, real-time RT-PCR assay for the simultaneous detection of EV71, CA16, and pan-enterovirus (EVs in a single tube with an internal amplification control. The detection results for the serially diluted viruses indicate that the lower limit of detection for this assay is 0.001-0.04 TCID50/ml, 0.02 TCID50/ml, and 0.001 TCID50/ml for EVs, EV71, and CA16, respectively. After evaluating known HFMD virus stocks of 17 strains of 16 different serotypes, this assay showed a favorable detection spectrum and no obvious cross-reactivity. The results for 141 clinical throat swabs from HFMD-suspected patients demonstrated sensitivities of 98.4%, 98.7%, and 100% for EVs, EV71, and CA16, respectively, and 100% specificity for each virus. The application of this one-step, triplex, real-time RT-PCR assay in clinical units will contribute to HFMD surveillance and help to identify causative pathogen in patients with suspected HFMD.

  14. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    Science.gov (United States)

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  15. A one-step, triplex, real-time RT-PCR assay for the simultaneous detection of enterovirus 71, coxsackie A16 and pan-enterovirus in a single tube.

    Science.gov (United States)

    Zhang, Shiyin; Wang, Jin; Yan, Qiang; He, Shuizhen; Zhou, Wenbin; Ge, Shengxiang; Xia, Ningshao

    2014-01-01

    The recent, ongoing epidemic of hand, foot, and mouth disease (HFMD), which is caused by enterovirus infection, has affected millions of children and resulted in thousands of deaths in China. Enterovirus 71 (EV71) and coxsackie A16 (CA16) are the two major distinct pathogens for HFMD. However, EV71 is more commonly associated with neurologic complications and even fatalities. Therefore, simultaneously detecting and differentiating EV71 and CA16 specifically from other enteroviruses for diagnosing HFMD is important. Here, we developed a one-step, triplex, real-time RT-PCR assay for the simultaneous detection of EV71, CA16, and pan-enterovirus (EVs) in a single tube with an internal amplification control. The detection results for the serially diluted viruses indicate that the lower limit of detection for this assay is 0.001-0.04 TCID50/ml, 0.02 TCID50/ml, and 0.001 TCID50/ml for EVs, EV71, and CA16, respectively. After evaluating known HFMD virus stocks of 17 strains of 16 different serotypes, this assay showed a favorable detection spectrum and no obvious cross-reactivity. The results for 141 clinical throat swabs from HFMD-suspected patients demonstrated sensitivities of 98.4%, 98.7%, and 100% for EVs, EV71, and CA16, respectively, and 100% specificity for each virus. The application of this one-step, triplex, real-time RT-PCR assay in clinical units will contribute to HFMD surveillance and help to identify causative pathogen in patients with suspected HFMD.

  16. A single tube PCR assay for simultaneous amplification of HSV-1/-2, VZV, CMV, HHV-6A/-6B, and EBV DNAs in cerebrospinal fluid from patients with virus-related neurological diseases.

    Science.gov (United States)

    Yamamoto, T; Nakamura, Y

    2000-10-01

    Cerebrospinal fluid (CSF) specimens from 27 patients with encephalitis, meningitis, and other neurological diseases were studied for the presence of herpes simplex virus types 1 and 2 (HSV-1/-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), human herpesviruses 6A and 6B (HHV-6A/-6B) and Epstein-Barr virus (EBV) DNA using the polymerase chain reaction (PCR) method. The DNAs were amplified using two sets of consensus primer pairs in a single tube, bringing simultaneous amplification of the herpesviruses. The PCR products were analyzed by agarose gel electrophoresis, and Southern blot hybridization with virus-type specific probes, thus allowing discrimination between the different types of herpesviruses to be made. Each virus-specific probe was highly specific for identifying the PCR product. Thirty CSF specimens from 13 patients with encephalitis and 10 specimens from 10 patients with meningitis, respectively, were examined using this method. Eight patients with encephalitis and six with meningitis were positive for different herpesviruses, including patients with coinfections (HSV-1/-2 and VZV, VZV and CMV). Among four CSF specimens from four patients with other neurological disorders, dual amplification of CMV and EBV was present. Since identification of the types of herpesviruses in this system requires a very small amount of CSF, and is completed with one PCR, it is useful for routine diagnosis of herpesvirus infections in diagnostic laboratories. The viruses responsible for central nervous system infection are easily detected with various coinfection and serial patterns of herpesviruses, by this consensus primer-based PCR method. This may give an insight into the relationship between virus-related neurological diseases (VRNDS) and herpesvirus infections.

  17. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  18. The STiC ASIC. High precision timing with silicon photomultipliers

    International Nuclear Information System (INIS)

    Harion, Tobias

    2015-01-01

    In recent years, Silicon Photomultipliers are being increasingly used for Time of Flight measurements in particle detectors. To utilize the high intrinsic time resolution of these sensors in detector systems, the development of specialized, highly integrated readout electronics is required. In this thesis, a mixed-signal application specific integrated circuit, named STiC, has been developed, characterized and integrated in a detector system. STiC has been specifically designed for high precision timing measurements with SiPMs, and is in particular dedicated to the EndoTOFPET-US project, which aims to achieve a coincidence time resolution of 200 ps FWHM and an energy resolution of less than 20% in an endoscopic positron emission tomography system. The chip integrates 64 high precision readout channels for SiPMs together with a digital core logic to process, store and transfer the recorded events to a data acquisition system. The performance of the chip has been validated in coincidence measurements using detector modules consisting of 3.1 x 3.1 x 15 mm 3 LYSO crystals coupled to Silicon Photomultipliers from Hamamatsu. The measurements show an energy resolution of 15% FWHM for the detection of 511 keV photons. A coincidence time resolution of 213 ps FWHM has been measured, which is among the best resolution values achieved to date with this detector topology. STiC has been integrated in the EndoTOFPET-US detector system and has been chosen as the baseline design for the readout of SiPM sensors in the Mu3e experiment.

  19. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S.I.; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Medvedkov, A.M.; Pyshev, A.I.; Tyukov, V.E.; Vasilchenko, V.G.; Zymin, K.V.

    1995-01-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ=170μm, a two-track resolution of the same value and a hit density of n=1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200μm, the two-track resolution 600μm and the hit density n=1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking. (orig.)

  20. Categorising YouTube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...