WorldWideScience

Sample records for single phase superconducting

  1. Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals

    OpenAIRE

    Iwanaga, Masanobu

    2005-01-01

    Photoacoustic (PA) wave has been examined in a superconductor of the first kind, Pb single crystal. The PA wave is induced by optical excitation of electronic state and propagates from normal into superconductive phases below T$_{\\rm C}$. It is clearly shown by wavelet analysis that the measured PA wave includes two different components. The high-frequency component is MHz-ultrasonic and the relative low-frequency one is induced by thermal wave. The latter is observed in a similar manner irre...

  2. On the superconducting phase diagram of high Tc superconductors

    International Nuclear Information System (INIS)

    de la Cruz, F.

    1990-01-01

    The tendency of oxide superconductors to show granularity has been pointed out since the beginning of research on superconductivity in this type of materials. Nevertheless, only very recently the full phase diagram and characteristics of the grains have been determined. In this paper, the authors review and discuss the different critical fields and their relation to the transport of superconducting current. The superconducting response of single crystals of High Tc superconductors is discussed. Special attention is devoted to the behavior of the vortex lattice and, in particular, to the recent discovery of the quenching of H c1 in YBaCuO, several degrees below Tc

  3. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  4. Perturbation theory of a superconducting 0 - π impurity quantum phase transition.

    Science.gov (United States)

    Žonda, M; Pokorný, V; Janiš, V; Novotný, T

    2015-03-06

    A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.

  5. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  6. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    Science.gov (United States)

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  7. Phase separation of superconducting phases in the Penson–Kolb–Hubbard model

    International Nuclear Information System (INIS)

    Kapcia, Konrad Jerzy; Czart, Wojciech Robert; Ptok, Andrzej

    2016-01-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson–Kolb–Hubbard model for two dimensional square lattice within Hartree–Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed. (author)

  8. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    Science.gov (United States)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  9. Superconductivity in SrNi2P2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuscon [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory

    2009-01-01

    Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.

  10. Prediction of Chevrel superconducting phases

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Kiseleva, N.N.

    1978-01-01

    Made is an attempt of predicting the possibility of formation of compounds of Mo 3 Se 4 type structure having critical temperatures of transition into superconducting state more than 4.2 K. Cybernetic method of teaching an electronic computer to form notions is used for prediction. Prediction system constructs logic dependence of forming Chevrel superconducting phase of the Asub(x)Bsub(6)Ssub(8) composition (A being an element of the periodic system; B=Cr, Mo, W, Re) and Asub(x)Bsub(6)Ssub(8) compounds having a critical temperature of more than 4.2 K on the properties of A and B elements. A conclusion is made that W, Re, Cr do not form Chevrel phases of the Asub(x)Bsub(6)Ssub(8) composition as B component. Be, Hg, Ra, B, Ac are the reserve for obtaining Asub(x)Mosub(6)Ssub(8) phases. Agsub(x)Mosub(6)Ssub(8) compound may have a high critical temperature. The ways of a critical temperature increase for Chevrel phases are connected with the search of optimal technological conditions for already known superconducting compounds and also with introduction of impurities fixing a distance between sulfur cubes

  11. On the possibility of superconducting phase coherence through time barriers

    International Nuclear Information System (INIS)

    Barone, A.; Kulik, I.O.

    1993-01-01

    The possibility of the occurrence of weak coupling between the superconducting order parameters in a single superconductor before and after an ultrashot quenching of superconductivity, is analyzed. The time barrier corresponding to such a quenching of the order parameter has to be shorter than, or comparable with, the characteristic 'coherence time' τ ∼ = Δ. Such an effect is somewhat analogous to a Josephson effect in which phase difference is now considered in the time domain rather than in space. A qualitative derivation of the constitutive relation for such a weak time correlation is obtained which gives, by the duality condition, a dependence of the supercharge on the time phase difference. The role of high-T c superconductors in the detection of this coherent transient response appears to be quite relevant. 21 refs., 4 figs

  12. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  13. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  14. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Val’kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.

    2013-01-01

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d xy , p, s, and d x 2 -y 2 symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d x 2 -y 2 symmetry and high critical temperatures T c ∼ 100 K near the half-filling are determined

  15. Study of coexistence of ferromagnetism and superconductivity in single-crystal ErRh4B4

    International Nuclear Information System (INIS)

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.

    1981-01-01

    Neutron diffraction and resistivity measurements on single crystals of ErRh 4 B 4 have revealed that both superconductivity and ferromagnetic order coexist in this material between 0.71 and 1.2 0 K. In this intermediate phase, a linear polarized modulated structure with a wavelength of approximately 100 A is observed. The modulated moment increases faster than the ferromagnetic moment down to 0.71 K and then disappears suddenly, with loss of superconductivity and a transition to a normal ferromagnetic state. This transition is accompanied by temperature hysteresis of about 60 mK. The same hysteresis, in the inverse sense, is exhibited by the ferromagnetic component. We interpret the intermediate phase as being one of coexisting normal ferromagnetic domains and superconducting sinusoidally ordered domains. Evidence of a small percentage of small ferromagnetic regions of size approx. 100 A is also seen in both the intermediate and ferromagnetic phases. 3 figures

  16. Inhomogeneities and superconductivity in poly-phase Fe-Se-Te systems

    Science.gov (United States)

    Hartwig, S.; Schäfer, N.; Schulze, M.; Landsgesell, S.; Abou-Ras, D.; Blum, Ch. G. F.; Wurmehl, S.; Sokolowski, A.; Büchner, B.; Prokeš, K.

    2018-02-01

    The impact of synthesis conditions, post-preparation heating procedure, aging and influence of pressure on the superconducting properties of FeSe0.4Te0.6 crystals is reported. Two FeSe0.4Te0.6 single crystals were used in the study, prepared from stoichiometric melt but cooled down with very different cooling rates, and investigated using magnetic bulk and electrical-resistivity methods. The fast-cooled crystal contains large inclusions of Fe3Se2.1Te1.8 and exhibits bulk superconductivity in its as-prepared state, while the other is homogeneous and shows only traces of superconductivity. AC susceptibility measurements under hydrostatic pressure show that the superconducting transition temperature of the inhomogeneous crystal increases from 12.3 K at ambient pressure to Tsc = 17.9 K at 9 kbar. On the other hand, neither pressure nor mechanically-induced stress is sufficient to induce superconductivity in the homogeneous crystal. However, an additional heat treatment at 673 K followed by fast cooling down and/or long-term aging at ambient conditions leads to the appearance of bulk superconductivity also in the latter sample. This sample remains homogeneous on a scale down to few μm but shows an additional magnetic phase transition around 130 K suggesting that it must be inhomogeneous. For comparison also Fe3Se2.1Te1.8 polycrystals have been prepared and their magnetic properties have been studied. It appears that this phase is not superconducting by itself. It is concluded that nano-scale inhomogeneities that appear in the FeSexTe1-x system due to a spinodal decomposition in the solid state are necessary for bulk superconductivity, possibly due to minor changes in the crystal structure and microstructure. Macroscopic inclusions quenched by fast cooling from high temperatures lead obviously to strain and hence variations in the lattice constants, an effect that is further supported by application of pressure/stress.

  17. Optimization of the superconducting phase of hydrogen sulfide

    Science.gov (United States)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  18. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation); Val' kov, V. V.; Mitskan, V. A.; Korovuskin, M. M. [Russian Academy of Sciences, Kirenskii Physics Institute, Siberian Branch (Russian Federation)

    2013-10-15

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d{sub xy}, p, s, and d{sub x{sup 2}-y{sup 2}} symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d{sub x{sup 2}-y{sup 2}} symmetry and high critical temperatures T{sub c} {approx} 100 K near the half-filling are determined.

  19. Inducing phase decomposition and superconductivity of Bi2Sr2CaCu2Oy single crystals treated in sulphur atmosphere at low temperature

    International Nuclear Information System (INIS)

    Chen, Q.W.; China Univ. of Science and Technology, Hefei, AH; Wu, W.B.; Qian, Y.T.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Li, F.Q.; Zhou, G.E.; Chen, Z.Y.; Zhang, Y.H.

    1995-01-01

    As it has been pointed out, phase decomposition which may be hard to be detected in a polycrystalline system and is likely to correlate with changes in both oxygen content and microstructure, has been observed frequently in annealed single crystals especially at higher temperatures (> 500 C). This is still an open question to some degree because the mechanism of phase decomposition is very complex and is dominated by the composition of the Bi-2212 phase, the condition of heat treatment, and the atmosphere. Hence, inducing oxygen loss at low temperature to avoid the evaporation of Bi atoms and other undetected structure changes which would occur at higher temperature annealing undoubtedly provides important information about the relationship between oxygen loss and phase decomposition, as well as the relationship between oxygen content and superconductivity. In this note, we report on the results of treatments of Bi 2 Sr 2 CaCu 2 O y single crystals in sulphur atmosphere at 160 C. (orig.)

  20. Superconductivity in Chevrel phases

    International Nuclear Information System (INIS)

    Fischer, O.; Seeber, B.

    1979-01-01

    In the last years several ternary superconductors have been discovered, which possess unusual physical properties. Among them the molybdenum chalcogenides, which are often called Chevrel phases, have a special position. Some of these compounds have very high critical fields, which is of special interest for a technical application. In these substances the coexistence of magnetic ordering and superconductivity has been found for the first time, too. Recently it has become possible to prepare new compounds, which are interesting for superconductivity, by the appropriate coalescence of Mo 6 clusters. In the case of Tl 2 Mo 6 Se 6 (Tsub(c) = 3K) this development leads to a quasi-one-dimensional metallic system. (orig.)

  1. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  2. Superconductivity in the Nb-Ru-Ge σ phase

    Science.gov (United States)

    Carnicom, Elizabeth M.; Xie, Weiwei; Sobczak, Zuzanna; Kong, Tai; Klimczuk, Tomasz; Cava, R. J.

    2017-12-01

    We show that the previously unreported ternary σ -phase material N b20.4R u5.7G e3.9 (N b0.68R u0.19G e0.13 ) is a superconductor with a critical temperature of 2.2 K. Temperature-dependent magnetic susceptibility, resistance, and specific-heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for N b20.4R u5.7G e3.9 is 91 mJ mol f .u .-1K-2 (˜3 mJ mol ato m-1K-2 ) and the specific-heat anomaly at the superconducting transition, Δ C /γ Tc , is approximately 1.38. The zero-temperature upper critical field [μ0H c2(0 ) ] was estimated to be 2 T by resistance data. Field-dependent magnetization data analysis estimated μ0H c1(0 ) to be 5.5 mT. Thus, the characterization shows N b20.4R u5.7G e3.9 to be a type-II BCS superconductor. This material appears to be the first reported ternary phase in the Nb-Ru-Ge system, and the fact that there are no previously reported binary Nb-Ru, Nb-Ge, or Ru-Ge σ phases shows that all three elements are necessary to stabilize the material. An analogous σ phase in the Ta-Ru-Ge system did not display superconductivity above 1.7 K, which suggests that electron count cannot govern the superconductivity observed. Preliminary characterization of a possible superconducting σ phase in the Nb-Ru-Ga system is also reported.

  3. Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model

    Science.gov (United States)

    Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.

    2011-09-01

    Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.

  4. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.

    1988-01-01

    Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found

  5. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  6. Superfluid phase stiffness in electron doped superconducting Gd-123

    Science.gov (United States)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  7. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  8. 1D-transport properties of single superconducting lead nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...

  9. The microscopic twins and their crystal phase in the high Tc Y-Ba-Cu-O and Dy-Ba-Cu-O superconductive ceramics

    International Nuclear Information System (INIS)

    Zu, Z.J.; Chen, Y.L.

    1988-01-01

    Most consider that the structure of Y-Ba- Cu-O and Dy-Ba-Cu-O stable superconductive crystals with high Tc is associated with the right-angled phase. The superconductivity is closely connected with the right-angled character of the crystalline texture; the better the right- angled character, the better the superconductivity. From statistical investigations of examples the authors have discovered that most of the Y-Ba-Cu-O and Dy-Ba-Cu-O superconductivity with high Tc ceramic crystals is in the monoclinic phase, which, consists of microscopic, lamellar, single twins. The long-columnar grains consisting of lamellar twin slabs show the optical characteristics of right-angled phase. The microscopic twinning and grain morphologies are summarized in this paper

  10. Status of superconducting power transformer development

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P. [and others

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  11. Possibility of high temperature superconducting phases in PdH

    Science.gov (United States)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-01

    Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.

  12. A two-phase full-wave superconducting rectifier

    International Nuclear Information System (INIS)

    Ariga, T.; Ishiyama, A.

    1989-01-01

    A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed

  13. Superconductivity and Competing Ordered Phase in RuPn (Pn = As, P)

    Science.gov (United States)

    Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Yamamoto, Ayako; Takagi, Hidenori

    2011-03-01

    Unconventional superconductivity likely manifests itself when some competing electronic phases are suppressed down to zero temperature such as cuprates and iron-pnictide superconductors. Therefore, the correlated metallic state neighboring a competing electronic ordering can be a promising playground for unconventional superconductivity. Here we report superconductivity emerging adjacent to electronically ordered phases of RuPn (Pn = As, P). We found that RuAs(P) exhibits phase transitions at 240 (265) K, which is discerned as a drop of magnetic susceptibility or a resistivity upturn. Such anomalies can be suppressed by substituting Rh to the Ru site. Accompanied by the disappearance of the electronic order, superconductivity was found to emerge below 1.8 K and 3.8 K for RuAs and RuP, respectively. The superconductivity in Rh substituted RuPn, which neighbors a competing electronic order, might exhibit an exotic pairing state as seen in the unconventional superconductors known to date.

  14. Magnetism and superconductivity in CeFe2-xTxAs2 (T = Co and Ni) single crystals

    International Nuclear Information System (INIS)

    Thamizhavel, A.

    2010-01-01

    Single crystals of pure and transition metal doped CaFe 2- x T x As 2 (T = Co and Ni) have been grown by flux method using molten Sn as solvent. The magnetic and superconducting properties of the grown crystals were studied by measuring the electrical resistivity, magnetic susceptibility and neutron diffraction measurements. A spin density wave (SDW)/structural transition is observed at 170 K for the pure CaFe 2 As 2 single crystal and it gets suppressed with T (Co and Ni) doping. For an optimum dopant concentration of x = 0.06, the sample becomes superconducting. From the detailed studies on CaFe 2- x Ni x As 2 single crystals we have constructed a magnetic phase diagram. (author)

  15. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  16. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  17. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  18. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  19. Possibility of high temperature superconducting phases in PdH

    Energy Technology Data Exchange (ETDEWEB)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-15

    Possible new superconducting phases with a high critical transition temperature (T{sub c}) have been found in stable palladium-hydrogen (PdH{sub x}) samples for stoichiometric ratio x=H/Pd{>=}1, in addition to the well-known low critical transition temperature (0{<=}T{sub c}{<=}9) when x is in the range (0.75{<=}x{<=}1.00). Possible new measured superconducting phases with critical temperature in the range 51{<=}T{sub c}{<=}295 K occur. This T{sub c} varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density J{sub c}{>=}6.1x10{sup 4} A cm{sup -2} has been measured at 77 K with H{sub DC}=0 T.

  20. A high efficiency superconducting nanowire single electron detector

    NARCIS (Netherlands)

    Rosticher, M.; Ladan, F.R.; Maneval, J.P.; Dorenbos, S.N.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.; Lupa?cu, A.; Nogues, G.

    2010-01-01

    We report the detection of single electrons using a Nb0.7Ti0.3N superconducting wire deposited on an oxidized silicon substrate. While it is known that this device is sensitive to single photons, we show that it also detects single electrons with kilo-electron-volt energy emitted from the cathode of

  1. Magnetic imaging of antiferromagnetic and superconducting phases in R bxF e2 -yS e2 crystals

    Science.gov (United States)

    Hazi, J.; Mousavi, T.; Dudin, P.; van der Laan, G.; Maccherozzi, F.; Krzton-Maziopa, A.; Pomjakushina, E.; Conder, K.; Speller, S. C.

    2018-02-01

    High-temperature superconducting (HTS) cuprate materials, with the ability to carry large electrical currents with no resistance at easily reachable temperatures, have stimulated enormous scientific and industrial interest since their discovery in the 1980's. However, technological applications of these promising compounds have been limited by their chemical and microstructural complexity and the challenging processing strategies required for the exploitation of their extraordinary properties. The lack of theoretical understanding of the mechanism for superconductivity in these HTS materials has also hindered the search for new superconducting systems with enhanced performance. The unexpected discovery in 2008 of HTS iron-based compounds has provided an entirely new family of materials for studying the crucial interplay between superconductivity and magnetism in unconventional superconductors. Alkali-metal-doped iron selenide (AxF e2 -yS e2 , A =alkali metal ) compounds are of particular interest owing to the coexistence of superconductivity at relatively high temperatures with antiferromagnetism. Intrinsic phase separation on the mesoscopic scale is also known to occur in what were intended to be single crystals of these compounds, making it difficult to interpret bulk property measurements. Here, we use a combination of two advanced microscopy techniques to provide direct evidence of the magnetic properties of the individual phases. First, x-ray linear dichroism studies in a photoelectron emission microscope, and supporting multiplet calculations, indicate that the matrix (majority) phase is antiferromagnetic whereas the minority phase is nonmagnetic at room temperature. Second, cryogenic magnetic force microscopy demonstrates unambiguously that superconductivity occurs only in the minority phase. The correlation of these findings with previous microstructural studies and bulk measurements paves the way for understanding the intriguing electronic and magnetic

  2. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  3. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B., E-mail: verma@nist.gov; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2016-03-28

    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  4. Bulk Superconductivity and Disorder in Single Crystals of LaFePO

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, James G.; Chu, Jiun-Haw; Erickson, Ann S.; Kucharczyk, Chris; /Stanford U., Appl. Phys. Dept.; Serafin, Alessandro; Carrington, Antony; /Bristol U.; Cox, Catherine; Kauzlarich, Susan M.; Hope, Hakon; /UC, Davis. Dept. Chem.

    2010-02-15

    We have studied the intrinsic normal and superconducting properties of the oxypnictide LaFePO. These samples exhibit bulk superconductivity and the evidence suggests that stoichiometric LaFePO is indeed superconducting, in contrast to other reports. We find that superconductivity is independent of the interplane residual resistivity {rho}{sub 0} and discuss the implications of this on the nature of the superconducting order parameter. Finally we find that, unlike T{sub c}, other properties in single-crystal LaFePO including the resistivity and magnetoresistance, can be very sensitive to disorder.

  5. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  6. Towards phase-coherent caloritronics in superconducting circuits

    Science.gov (United States)

    Fornieri, Antonio; Giazotto, Francesco

    2017-10-01

    The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

  7. Quantum routing of single optical photons with a superconducting flux qubit

    Science.gov (United States)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  8. Superconducting resonator used as a beam phase detector

    Directory of Open Access Journals (Sweden)

    S. I. Sharamentov

    2003-05-01

    Full Text Available Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a “pure” (or reference rf and the beam-induced signal. A new method of circular phase rotation (CPR, allowing extraction of the beam phase information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1° (at 48 MHz for a beam current of 100 nA. The electronics design is described and experimental data are presented.

  9. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  10. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  11. Quenching of superconductivity in disordered thin films by phase fluctuations

    International Nuclear Information System (INIS)

    Hebard, A.F.; Palaanen, M.A.

    1992-01-01

    The amplitude Ψ 0 and phase Φ of the superconducting order parameter in thin-film systems are affected differently by disorder and dimensionality. With increasing disorder superconducting long range order is quenched in sufficiently thin films by physical processes driven by phase fluctuations. This occurs at both the zero-field vortex-antivortex unbinding transition and at the zero-temperature magnetic-field-tuned superconducting-insulating transition. At both of these transitions Ψ 0 is finite and constant, vanishing only when temperature, disorder, and/or magnetic field are increased further. Experimental results on amorphous-composite InO x films are presented to illustrate these points and appropriate comparisons are made to other experimental systems. (orig.)

  12. Signatures of topological phase transitions in mesoscopic superconducting rings

    International Nuclear Information System (INIS)

    Pientka, Falko; Romito, Alessandro; Duckheim, Mathias; Oppen, Felix von; Oreg, Yuval

    2013-01-01

    We investigate Josephson currents in mesoscopic rings with a weak link which are in or near a topological superconducting phase. As a paradigmatic example, we consider the Kitaev model of a spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions (MF) situated on both sides of the weak link even when fermion parity is not a good quantum number. In large rings, the MF hybridize only across the weak link. In this case, the Josephson current is h/e periodic in the flux threading the loop when fermion parity is a good quantum number but reverts to the more conventional h/2e periodicity in the presence of fermion-parity changing relaxation processes. In mesoscopic rings, the MF also hybridize through their overlap in the interior of the superconducting ring. We find that in the topological superconducting phase, this gives rise to an h/e-periodic contribution even when fermion parity is not conserved and that this contribution exhibits a peak near the topological phase transition. This signature of the topological phase transition is robust to the effects of disorder. As a byproduct, we find that close to the topological phase transition, disorder drives the system deeper into the topological phase. This is in stark contrast to the known behavior far from the phase transition, where disorder tends to suppress the topological phase. (paper)

  13. Quantum phase slip interference device based on a shaped superconducting nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander; Hongisto, Terhi [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2012-07-01

    As was predicted by Mooij and Nazarov, the superconducting nanowires may exhibit, depending on the impedance of external electromagnetic environment, not only quantum slips of phase, but also the quantum-mechanically dual effect of coherent transfer of single Cooper pairs. We propose and realize a transistor-like superconducting circuit including two serially connected segments of a narrow (10 nm by 18 nm) nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a high external impedance (>>h/e{sup 2}∼25.8 kΩ) and, eventually, a charge bias regime. Virtual quantum phase slips in two narrow segments of the wire lead in this case to quantum interference of voltages on these segments making this circuit dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUID) and remarkable periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUID). The obtained experimental results and the model of this QPS transistor will be presented.

  14. Spontaneous fluxoid formation in superconducting loops

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Rivers, R.

    2009-01-01

    We report on the experimental verification of the Zurek-Kibble scenario in an isolated superconducting ring over a wide parameter range. The probability of creating a single flux quantum spontaneously during the fast normal-superconducting phase transition of a wide Nb loop clearly follows...

  15. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  16. Superconducting and other phases in organic high polymers of polyacenic carbon skeletons. II. The mean field method

    International Nuclear Information System (INIS)

    Kimura, M.; Kawabe, H.; Nishikawa, K.; Aono, S.

    1986-01-01

    Ordered phases such as CDW, SDW, and the singlet superconductivity(SSC) are predicted by means of a mean field theory. The electronic Hamiltonian is linearized by introducing order parameters which are expected to arise, and these order parameters are determined self-consistently. The behaviors of gap, transition temperature, and condensation energy are greatly different from those of BCS theory. The coexistence of the various phases is discussed. Aside from a very special case the single phase is most stable

  17. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  18. Superconductivity of divalent Chevrel phases at very high pressures

    International Nuclear Information System (INIS)

    Yao, Y.S.; Guertin, R.P.; Hinks, D.G.; Jorgensen, J.; Capone II, D.W.

    1988-01-01

    The electrical resistivity and the superconducting transition temperatures were examined for three representative divalent Chevrel phase systems, SnMo 6 S 8 , EuMo 6 S 8 , and BaMo 6 S 8 , as a function of hydrostatic pressure to 2 GPa and in quasihydrostatic pressures to 10 GPa. In all systems, T/sub c/ is depressed to 0 K for sufficiently large pressures. For the Sn- and Eu-based systems, both highly purified samples and samples with controlled oxygen content were used. In an oxygenated SnMo 6 S 8 sample (less than 3% O 2 substituted for the S atoms) the pressure threshold and maximum T/sub c/ are 40% lower than in the pure sample, but for P>3.5 GPa the T/sub c/-P phase diagrams nearly coincide, with T/sub c/ reaching zero at an extrapolated pressure of about 12 GPa. In pure EuMo 6 S 8 , superconductivity appears only above a threshold pressure of about 1 GPa and is depressed to 0 K above 4.5 GPa. In an oxygenated sample the maximum T/sub c/ and the threshold pressure are depressed, and above about 3.5 GPa the T/sub c/-P phase diagrams coincide, as in the Sn-based system, although T/sub c/ is then rapidly depressed to 0 K at about 4.5 GPa. In a highly purified BaMo 6 S 8 sample superconductivity appears above about 2 GPa and is depressed to 0 K at extrapolated pressures above 12 GPa. A full transition to the zero-resistance superconducting state is observed in BaMo 6 S 8 . The data are discussed in terms of a model linking the rhombohedral-to-triclinic structural transition, the superconducting transition temperature, and the role of pressure in suppressing the structural transition

  19. Ultrathin NbN film superconducting single-photon detector array

    International Nuclear Information System (INIS)

    Smirnov, K; Korneev, A; Minaeva, O; Divochiy, A; Tarkhov, M; Ryabchun, S; Seleznev, V; Kaurova, N; Voronov, B; Gol'tsman, G; Polonsky, S

    2007-01-01

    We report on the fabrication process of the 2 x 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes

  20. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  1. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  2. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  3. Possible superconductivity in the Bismuth IV solid phase under pressure.

    Science.gov (United States)

    Valladares, Ariel A; Rodríguez, Isaías; Hinojosa-Romero, David; Valladares, Alexander; Valladares, Renela M

    2018-04-13

    The first successful theory of superconductivity was the one proposed by Bardeen, Cooper and Schrieffer in 1957. This breakthrough fostered a remarkable growth of the field that propitiated progress and questionings, generating alternative theories to explain specific phenomena. For example, it has been argued that Bismuth, being a semimetal with a low number of carriers, does not comply with the basic hypotheses underlying BCS and therefore a different approach should be considered. Nevertheless, in 2016 based on BCS we put forth a prediction that Bi at ambient pressure becomes a superconductor at 1.3 mK. A year later an experimental group corroborated that in fact Bi is a superconductor with a transition temperature of 0.53 mK, a result that eluded previous work. So, since Bi is superconductive in almost all the different structures and phases, the question is why Bi-IV has been elusive and has not been found yet to superconduct? Here we present a study of the electronic and vibrational properties of Bi-IV and infer its possible superconductivity using a BCS approach. We predict that if the Bi-IV phase structure were cooled down to liquid helium temperatures it would also superconduct at a T c of 4.25 K.

  4. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  5. Superconductivity in the Sr-Ca-Cu-O system and the phase with infinite-layer structure

    International Nuclear Information System (INIS)

    Shaked, H.; Shimakawa, Y.; Hunter, B.A.; Hitterman, R.L.; Jorgensen, J.D.; Han, P.D.; Payne, D.A.

    1995-01-01

    Superconductivity and structure in samples of (Sr,Ca)CuO 2 with the infinite-layer structure, prepared by high-pressure synthesis, have been studied using magnetic susceptibility measurements, small angle x-ray diffraction, and neutron diffraction. It is found that the superconducting (T c ∼100 K) samples in this system are phase impure and contain, in addition to the infinite-layer phase, members of the two homologous series Sr n-1 Cu n+1 O 2n (n=3,5,...; orthorhombic), and Sr n+1 Cu n O 2n+1+δ (n=1,2,...; tetragonal), as minor phases. Samples with larger phase fractions of the Sr n+1 Cu n O 2n+1+δ compounds showed higher superconducting fractions. Phase-pure infinite-layer samples are not superconducting. Based on these results, and results previously published in the literature, it is proposed that the superconductivity in these infinite-layer samples comes from the tetragonal Sr n+1 Cu n O 2n+1+δ compounds, not from the phase with the infinite-layer structure

  6. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; 1) lowering the density of helium in the magnet cooling tubes and 2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned

  7. Superconductivity in Sm-doped CaFe2As2 single crystals

    Science.gov (United States)

    Dong-Yun, Chen; Bin-Bin, Ruan; Jia, Yu; Qi, Guo; Xiao-Chuan, Wang; Qing-Ge, Mu; Bo-Jin, Pan; Tong, Liu; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    In this article, the Sm-doping single crystals Ca1 - x Sm x Fe2As2 (x = 0 ˜ 0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset T c varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x > 0.10. The doping dependences of the c-axis length and onset T c were summarized. The high-T c observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution. Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

  8. Single-particle spectra and magnetic field effects within precursor superconductivity

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.; Perali, A.

    2004-01-01

    We study the single-particle spectra below the superconducting critical temperature from weak to strong coupling within a precursor superconductivity scenario. The spectral-weight function is obtained from a self-energy that includes pairing-fluctuations within a continuum model representing the hot spots of the Brillouin zone. The effects of strong magnetic fields on the pseudogap temperature are also discussed within the same scenario

  9. Pairing fluctuation effects on the single-particle spectra for the superconducting state

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.

    2004-01-01

    Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors

  10. Modeling and Development of Superconducting Nanowire Single Photon Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a research project as the central component of a Ph.D. program focused on the device physics of superconducting nanowire single photon...

  11. The physics of nanowire superconducting single-photon detectors

    NARCIS (Netherlands)

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  12. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  13. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; (1) lowering the density of helium in the magnet cooling tubes and (2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned. 10 refs., 1 fig., 5 tabs

  14. Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2012-07-15

    In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.

  15. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  16. Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements

    NARCIS (Netherlands)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.

    2007-01-01

    We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast

  17. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  18. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  19. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  20. Suppression of superconductivity in a single Pb layer on Ag/Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Vanegas, Augusto; Kirschner, Juergen [Max Plank Instituet fuer Mikrostukturphysik (Germany); Martin Luther Univeristaet, Halle-Wittenberg (Germany); Caminale, Michael; Stepniak, Agnieszka; Oka, Hirofumi; Sanna, Antonio; Linscheid, Andreas; Sander, Dirk [Max Plank Instituet fuer Mikrostukturphysik (Germany)

    2015-07-01

    Recently, superconductivity was reported in a single layer of Pb on Si(111) with a critical temperature of 1.83 K. It has been proposed that the interaction of Pb with the Si substrate provides the electron phonon coupling to support superconductivity in this system. We have used a {sup 3}He-cooled STM with a vector magnetic field to study the effect of insertion of a Ag interlayer on the superconducting properties of a single Pb layer on Si(111). In contrast to the experiments on Pb/Si(111), the differential conductance of Pb/Ag/Si(111) does not show a gap indicative of superconductivity even at the lowest experimental temperature of 0.38 K. We ascribe this to the suppression of superconductivity. This result is explained by means of ab-initio calculations, showing that the effect of a chemical hybridization between Pb and Ag/Si occurring at the Fermi level dramatically reduces the strength of the electron phonon coupling. This contrasts with the case of Pb/Si(111), where no overlap between Pb and Si electronic states at the Fermi level is found in the calculations.

  1. Effect of lead addition on the formation of superconducting phases in Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Martinelli, A.E.

    1991-01-01

    Superconducting ceramics with starting composition Bi 2 - x Pb x Sr 2 Ca 2 Cu 3 O y (0,0 ≤ X ≤ 0,6) were prepared in order to investigate the effects of partial substitution of Pb for Bi and sintering time and atmosphere in the formation of superconducting phases. For all samples X-ray diffraction analyses were performed to estimate the amount of superconducting phases; superconductivity was analysed by dc electrical resistance and ac magnetic susceptibility measurements. The main results show that: a) the longer the sintering time (up to 168 h), the larger the volume fraction of superconducting phases with critical temperature (T c ) greater than the temperature of nitrogen liquefaction; b) by partially substituting Pb for Bi it is possible to restrain the formation of 2212 phase (T c = 80 K) and to enhance the amount of 2223 phase (T c = 105 K); C) a heat treatment under oxygen atmosphere before sintering enhances the formation of 2223 phase. (author)

  2. On the 22-23 K superconducting phase in the Y-Pd-B-C system

    International Nuclear Information System (INIS)

    Tominez, E.; Alleno, E.; Decamps, B.; Schiffmacher, G.; Godart, C.; Berger, P.; Bohn, M.

    1998-01-01

    Superconducting and non-superconducting (annealed) samples of YPd 5 B 3 C 0.35 have been investigated using electrical resistance and magnetization measurements, X-ray diffraction, electron diffraction with energy dispersive X-ray spectrometry and electron probe micro analysis (EPMA). In the superconducting sample, six phases were observed out of which two were clearly decomposed by annealing. Composition and unit cell of these phases were determined. The concentrations of boron and carbon are uncertain, due to the small atomic weight of these elements. Therefore, we report for the first time, nuclear probe micro analysis (NPMA) measurements. Preliminary results of NPMA are consistent with EPMA. At last, we suggest that the superconducting phase has a composition close to YPd 2 B 2 C and an I-centred tetragonal unit cell with a=3.751(1) and c=10.725(3) A. (orig.)

  3. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Directory of Open Access Journals (Sweden)

    A. C. Dexter

    2011-03-01

    Full Text Available The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  4. Superconductivity in the unconventional high pressure phase bismuth-III

    Energy Technology Data Exchange (ETDEWEB)

    Semeniuk, Konstantin; Brown, Philip; Vasiljkovic, Aleksandar; Grosche, Malte [University of Cambridge (United Kingdom)

    2015-07-01

    One of the most surprising developments in high pressure research was the realisation that many elements assume very unexpected high pressure structures, described in terms of extremely large or even infinite unit cells. Elemental bismuth, which has been known to undergo a series of pressure induced structural transitions between 25 kbar and 80 kbar, is an interesting example: the intermediate pressure Bi-III phase has a complex 'host-guest' structure consisting of two incommensurate sublattices. Since the unit cell is infinitely large, the description of electronic and lattice excitations is problematic. Apart from its metallic character and the observation of superconductivity at low temperature, little is known about the electronic structure in this phase. We investigate the electrical resistivity within the metallic Bi-III phase under high hydrostatic pressure and in applied magnetic field using a piston cylinder cell. Superconductivity is observed below 7.1 K, and we extract the temperature dependence of the upper critical field, which exceeds 2 T at low temperature. The normal state resistivity exhibits an approximately linear temperature dependence. This could be attributed to strong scattering from low-lying excitations, as caused by an unusually soft phonon spectrum. The results suggest that strong coupling superconductivity arises within the host-guest structure of Bi-III out of an unusual electronic state.

  5. High-$T_c$ superconductivity by phase cloning

    CERN Document Server

    Ilieva, N; Ilieva, Nevena; Thirring, Walter

    2007-01-01

    We consider a BCS-type model in the spin formalism and argue that the structure of the interaction provides a mechanism for control over directions of the spin $\\vect S$ other than $S_z$, which is being controlled via the conventional chemical potential. We also find the conditions for the appearance of a high-$T_c$ superconducting phase.

  6. Thermal history dependence of superconducting properties in La2CuO4+δ

    International Nuclear Information System (INIS)

    Hirayama, T.; Nakagawa, M.; Sumiyama, A.; Oda, Y.

    1998-01-01

    We studied the thermal history dependence of the superconducting properties below/above room temperature (RT) in the ceramic La 2 CuO 4-δ with excess oxygen. The phase separation (O-rich phase: superconducting and O-poor phase: antiferromagnetic) was concluded to occur above 373 K, in contrast with the usual report of the phase separation around 320 K. As for the superconducting phases, the well-known T c onset of 32 or 36 K, dependent on thermal history around 200 K, in the samples annealed in high-pressure oxygen gas, was not changed by thermal history between RT and 373 K. The samples electrochemically oxidized at RT included the phase with the high T c of 45 K, which was not changed by thermal history below RT, and the phase with the low T c of 32 or 36 K. The 45 K phase was changed into the low-T c phase by annealing at 373 K. The samples electrochemically oxidized at 333 K, which was accompanied with the diffusion of excess oxygen, showed gradual change of superconducting behavior: the single low-T c (32 or 36 K) phase (oxidation time = 24 h), coexistence of the low-T c phase and the high-T c (45 K) phase (36 h), and the single high T c phase (48 and 72 h). Thus, the single superconducting phase with the high T c of 45 K has been obtained, which showed a metallic behavior in normal resistivity and apparent changes of lattice constant in comparison with that of stoichiometric La 2 CuO 4 . (orig.)

  7. Correlation mediated superconductivity in a Spin Peierls Phase of the Hubbard Model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    The author explores the consequences of a mapping of the Hubbard Hamiltonian with a view to finding possible superconducting phases. The transformation pairs up all the sites and is therefore a much more natural starting point for describing a 'Spin Peierls' transition, generating enhanced singlet correlations for this pairing, than it is for describing the 'Resonating Valence Bond' state. It is shown that in the less than half filling case, an effective non-linear hopping Hamiltonian is quite useful in describing half of the electrons. This effective Hamiltonian can show a form of superconducting instability when nearest neighbour hopping is introduced to stabilise it. This superconducting phase seems to be a very unlikely possibility for the standard Hubbard model. (author)

  8. Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks

    Science.gov (United States)

    Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David

    2002-06-01

    We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.

  9. Phase relations and superconductivity in the binary Re-Si system

    International Nuclear Information System (INIS)

    Jorda, J.L.; Ishikawa, M.; Muller, J.

    1982-01-01

    The phase diagram of the Re-Si system was reinvestigated by means of high temperature methods of analysis. Several modifications were found to the existing diagram. An extended rhenium solid solution (up to 10 at.% Si) was established with a rapid quenching technique. Within this terminal solid solution, the superconducting transition temperature increased from 1.7 to 5.2 K. The phase corresponding to the Re 5 Si 3 compound was homogeneous at 33 at.% Si. The peritectically formed equiatomic compound decomposed eutectoidally at 1650 0 C and was superconducting at 1.5 K. The compound ReSi 2 was found to be off stoichiometric, occurring at the composition ReSisub(1.8). (Auth.)

  10. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    International Nuclear Information System (INIS)

    Green, M.A.; Yu, S.

    2001-01-01

    The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel

  11. Superconducting nanowire single-photon detectors (SNSPDs) on SOI for near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Trojan, Philipp; Il' in, Konstantin; Henrich, Dagmar; Hofherr, Matthias; Doerner, Steffen; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT) (Germany); Semenov, Alexey [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Huebers, Heinz-Wilhelm [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany)

    2013-07-01

    Superconducting nanowire single-photon detectors are promising devices for photon detectors with high count rates, low dark count rates and low dead times. At wavelengths beyond the visible range, the detection efficiency of today's SNSPDs drops significantly. Moreover, the low absorption in ultra-thin detector films is a limiting factor over the entire spectral range. Solving this problem requires approaches for an enhancement of the absorption range in feeding the light to the detector element. A possibility to obtain a better absorption is the use of multilayer substrate materials for photonic waveguide structures. We present results on development of superconducting nanowire single-photon detectors made from niobium nitride on silicon-on-insulator (SOI) multilayer substrates. Optical and superconducting properties of SNSPDs on SOI will be discussed and compared with the characteristics of detectors on common substrates.

  12. Superconducting nanowire single-photon detectors: physics and applications

    International Nuclear Information System (INIS)

    Natarajan, Chandra M; Tanner, Michael G; Hadfield, Robert H

    2012-01-01

    Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity. (topical review)

  13. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle

  14. Superconductivity and the existence of Nambu's three-dimensional phase space mechanics

    International Nuclear Information System (INIS)

    Angulo, R.; Gonzalez-Bernardo, C.A.; Rodriguez-Gomez, J.; Kalnay, A.J.; Perez-M, F.; Tello-Llanos, R.A.

    1984-01-01

    Nambu proposed a generalization of hamiltonian mechanics such that three-dimensional phase space is allowed. Thanks to a recent paper by Holm and Kupershmidt we are able to show the existence of such three-dimensional phase space systems in superconductivity. (orig.)

  15. Waveguide superconducting single-photon autocorrelators for quantum photonic applications

    NARCIS (Netherlands)

    Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.

    2013-01-01

    We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables

  16. Phase diagrams of superconducting materials: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Flukiger, R.

    1981-01-01

    Because a large number of investigations on superconducting material have been made on insufficiently characterized samples, and with temperature phase diagrams which contained serious errors, phase diagrams are studied. It is seen that the variation of critical temperature as a function of chemical composition for a given compound can be used as a supplementary tool in determining composition with greater accuracy. The consequent search for higher critical temperature value in specified materials has led to a new concept in determining high temperature phase diagrams. Most of this paper is devoted to the study of bulk binary, pseudobinary, or ternary superconductors at their equilibrium state. As will be shown in several cases, these data serve as standard values and are of great help in understanding the superconducting behavior in materials produced by non-equilibrium methods, i.e., splat-cooling, thin film preparation by either sputtering, co-evaporation, or CVD, and diffusion processes in multifilamentary composite wires. An example for the departure from thermal equilibrium is the retention of metastable composition by a fast quenching rate

  17. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation

    Science.gov (United States)

    George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.

    2017-10-01

    We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.

  18. Berry phase in superconducting charge qubits interacting with a cavity field

    International Nuclear Information System (INIS)

    Abdel-Aty, Mahmoud

    2009-01-01

    We propose a method for analyzing Berry phase for a multi-qubit system of superconducting charge qubits interacting with a microwave field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection found between the Berry phase and entanglement creations.

  19. New Generation of Superconducting Nanowire Single-Photon Detectors

    Directory of Open Access Journals (Sweden)

    Goltsman G.N.

    2015-01-01

    Full Text Available We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  20. Methodology and search for superconductivity in the La-Si-C system

    International Nuclear Information System (INIS)

    De la Venta, J; Basaran, Ali C; Schuller, Ivan K; Grant, T; Machado, A J S; Fisk, Z; Suchomel, M R; Weber, R T

    2011-01-01

    In this paper we describe a methodology for the search for new superconducting materials. This consists of a parallel synthesis of a highly inhomogeneous alloy which covers large areas of the metallurgical phase diagram combined with a fast, microwave-based method which allows non-superconducting portions of the sample to be discarded. Once an inhomogeneous sample containing a minority phase superconductor is identified, we revert to well-known thorough identification methods which include standard physical and structural methods. We show how a systematic structural study helps in avoiding misidentification of new superconducting materials when there are indications from other methods of new discoveries. These ideas are applied to the La-Si-C system which exhibits promising normal state properties which are sometimes correlated with superconductivity. Although this system shows indications for the presence of a new superconducting compound, the careful analysis described here shows that the superconductivity in this system can be attributed to intermediate binary and single phases of the system.

  1. Origin of the Nonsinusoidal current-phase relation of a superconducting bridge

    International Nuclear Information System (INIS)

    Sugahara, M.

    1977-01-01

    The current-phase relation of a long superconducting bridge is investigated with the use of the Aslamazov-Larkin model and the Ginzburg-Landau equation. The feedback effect of the supercurrent to the phase difference in the weak link is taken into consideration. The derived nonsinusoidal current-phase relation explains the experiments of Jackel et al. very well

  2. Imaging phase slip dynamics in micron-size superconducting rings

    Science.gov (United States)

    Polshyn, Hryhoriy; Naibert, Tyler R.; Budakian, Raffi

    2018-05-01

    We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures.

  3. Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe2As2 close to a first-order phase transition

    Science.gov (United States)

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann

    2018-01-01

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a phase-separated state, where each phase is equivalent to what is found on either side of the first-order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum phase transitions lead to nanometric-size phase separation under the influence of strain.

  4. Cryogenic particle detectors with superconducting phase transition thermometers

    International Nuclear Information System (INIS)

    Ferger, P.; Colling, P.; Bucci, C.; Nucciotti, A.; Buehler, M.; Cooper, S.; Feilitzsch, F. v.; Forster, G.; Gabutti, A.; Hoehne, J.; Igalson, J.; Kellner, E.; Loidl, M.; Meier, O.; Nagel, U.; Proebst, F.; Rulofs, A.; Schanda, U.; Seidel, W.; Sisti, M.; Stodolsky, L.; Stolovich, A.; Zerle, L.

    1996-01-01

    A tungsten superconducting phase transition thermometer on a 32 g sapphire crystal has given an energy resolution of 100 eV (FWHM) for 1.5 keV X-rays, increasing to 440 eV at 14 keV. A possibility to obtain similar resolution in much larger crystals by using Al films as phonon collectors is presented. (orig.)

  5. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  6. Nematicity, magnetism and superconductivity in FeSe.

    Science.gov (United States)

    Böhmer, Anna E; Kreisel, Andreas

    2018-01-17

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c , ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  7. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    Science.gov (United States)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  8. Quantitative analysis of Josephson-quasiparticle current in superconducting single-electron transistors

    International Nuclear Information System (INIS)

    Nakamura, Y.; Chen, C.D.; Tsai, J.S.

    1996-01-01

    We have investigated Josephson-quasiparticle (JQP) current in superconducting single-electron transistors in which charging energy E C was larger than superconducting gap energy Δ and junction resistances were much larger than R Q ≡h/4e 2 . We found that not only the shapes of the JQP peaks but also their absolute height were reproduced quantitatively with a theory by Averin and Aleshkin using a Josephson energy of Ambegaokar-Baratoff close-quote s value. copyright 1996 The American Physical Society

  9. Quantum phase slips and voltage fluctuations in superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Andrew G. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Zaikin, Andrei D. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2017-06-15

    We argue that quantum phase slips (QPS) may generate non-equilibrium voltage fluctuations in superconducting nanowires. In the low frequency limit we evaluate all cumulants of the voltage operator which obey Poisson statistics and show a power law dependence on the external bias. We specifically address quantum shot noise which power spectrum S{sub Ω} may depend non-monotonously on temperature. In the long wire limit S{sub Ω} decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T → 0. Our predictions can be directly tested in future experiments with superconducting nanowires. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Multiple superconducting gaps in MgB2 single crystals from magnetic torque

    International Nuclear Information System (INIS)

    Atsumi, Toshiyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2004-01-01

    We have measured the magnetic torque of an MgB 2 single crystal in the various different fields below 10 kG by using a torque magnetometer and a 4 K closed cycle refrigerator. The MgB 2 single crystal was synthesized by the vapor transport method. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature in 5 and 10 kG, but is dependent on field up to 60 kG. We consider that the field dependence of γ comes from the nature of the multiple superconducting gaps. The experimental results show that the π-band superconducting gaps have been deteriorated gradually up to a crossover field H * (π) ∼ 20 kG at 10 K when the magnetic field increases

  11. Misfit dislocations and phase transformations in high-T sub c superconducting films

    CERN Document Server

    Gutkin, M Y

    2002-01-01

    A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.

  12. Color superconductivity. Phase diagrams and Goldstone bosons in the color-flavor locked phase

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhaus, Verena

    2009-04-29

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  13. Color superconductivity: Phase diagrams and Goldstone bosons in the color-flavor locked phase

    International Nuclear Information System (INIS)

    Kleinhaus, Verena

    2009-01-01

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  14. A high gradient test of a single-cell superconducting radio frequency cavity with a feedback waveguide

    Science.gov (United States)

    Kostin, Roman; Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav; Kazakov, Sergey; Wu, Genfa; Khabiboulline, Timergali; Rowe, Allan; Rathke, John

    2015-09-01

    The most severe problem of the international linear collider (ILC-type) is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the collider. In current technology, the maximum acceleration gradient in superconducting (SC) structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, a superconducting traveling wave accelerating (STWA) structure is suggested. Utilization of STWA structure with small phase advance per cell for future high energy linear colliders such as ILCs may provide an accelerating gradient 1.2-1.4 times larger [1] than a standing wave structure. However, STWA structure requires a feedback waveguide for power redirecting from the end of the structure back to the front end of accelerating structure. Recent tests of a 1.3 GHz model of a single-cell cavity with waveguide feedback demonstrated an accelerating gradient comparable to the gradient of a single-cell ILC-type cavity from the same manufacturer [2]. In the present paper, high gradient test results are presented.

  15. Synthesis and superconductivity of molybdenum cluster compounds (Chevrel phase)

    International Nuclear Information System (INIS)

    Culetto, F.J.

    1979-05-01

    The discovery of superconductivity in ternary molybdenum sulfides (Chevrel phases) in 1972 has stimulated research on these compounds. Some of the phases show extremely high critical fields Hc 2 and might therefore find technical application as high field superconductors. In order to understand the electron-phonon-interaction in these substances, measurements of the superconducting isotope effect in 92-100 Mo 6 Se 8 , Mo 6 76-82 Se 8 , and 116-124 SnMo 6 S 8 have been performed. The corresponding isotope effect exponents β (βmo=0.27 +- 0.04, βSe=0.27 +- 0.05 and βSn 6 Se 8 . In case of the ternary Chevrel phase SnMo 6 S 8 , phonon modes connected with displacements of the Sn-ions have only minor influence on the transition temperature. This result can be explained by the weak overlap of the molybdenum dsub(x)2sub(-y)2 - orbitals with Sn-sites. Furthermore, we report experiments on the synthesis of new Chevrel phase materials. In order to optimize the valence electron concentration in some ternary molybdenum selenide compounds, chalcogen exchange reactions have been performed. A new Chevrel phase superconductor, Cusub(x)Mo 6 S 6 J 2 with x=0 - 1.2, has been synthesized by copper diffusion into the non occupied channels running between the Mo 6 S 6 J 2 -'molecules' of Mo 6 S 6 J 2 . (orig.)

  16. Ultrasonic attenuation in the superconducting and intermediate states of pure and doped type I superconductors

    International Nuclear Information System (INIS)

    Chaudhuri, K.D.; Singh, R.

    1982-01-01

    The attenuation of longitudinal ultrasonic waves has been measured in single crystals of indium (99.999%), indium doped with 0.003 at % of tin, and indium doped with 0.002 at % of bismuth in the intermediate and superconducting states over the frequency range 10--30 MHz. For the bismuth-doped indium specimen, measurements were taken for three different physical states, i.e., for three different dislocation densities, and for the indium and the tin-doped indium specimens, measurements were for one-physical state. For a particular measurement, the same physical state was maintained both in the intermediate and superconducting states. A temperature-dependent oscillatory behavior of the ultrasonic attenuation was observed in the intermediate state in all the three specimens, but in the superconducting state the oscillatory behavior was observed only in the bismuth-doped specimen. Two phases have been identified in the superconducting layers of the intermediate state and there is only one phase in the superconducting state of the bismuth-doped sample. The origin of the two phases in the intermediate state and that of the single phase in the superconducting state of the bismuth-doped sample are discussed. A qualitative explanation is presented for the occurrence of oscillatory attenuation in the intermediate state irrespective of the nature of the dopant and the selective occurrence of oscillatory attenuation in the superconducting state due to the nature of the dopant

  17. CT-QMC-simulations on the single impurity Anderson model with a superconducting bath

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Florian; Pruschke, Thomas [Institut fuer theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2016-07-01

    Coupling a heavy fermion impurity to a superconducting lead induces a competition between the Kondo effect and superconductivity in the low temperature regime. This situation has been modeled with a single impurity Anderson model, where the normal state bath is replaced by a BCS-type superconducting bath in mean field approximation. We study this model using a continuous-time quantum Monte Carlo hybridization expansion algorithm. Results include the impurity Green's functions as well as the corresponding spectral functions obtained from analytic continuation. Two side bands are observed which we discuss in the light of Yu-Shiba-Rusinov states.

  18. Investigation of alternating-phase focusing for superconducting linacs

    International Nuclear Information System (INIS)

    Sagalovsky, L.; Delayen, J.R.

    1992-01-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. Solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters; equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-β section of a proton linac. (author). 9 refs., 3 figs

  19. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.

    1985-08-01

    A closed circuit tubular cooling system for superconducting magnets offers advantages of limiting boiloff and containing high pressures during quenches. Proper location of automatic valves to lower pressures and protect the refrigerator in the event of quenches is described. Theoretical arguments and exprimental evidence are given against a previously suggested method to determine He two phase flow regimes. If loss of flow occurs due to some types of refrigeration failure and transfer lines have enough heat leak to warm up, quenches are induced when the flow is restored. Examples are taken from experience with the TPC magnet

  20. Modern aspects of Josephson dynamics and superconductivity electronics

    CERN Document Server

    Askerzade, Iman; Cantürk, Mehmet

    2017-01-01

    In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.

  1. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  2. Topological defect densities in type-I superconducting phase transitions

    International Nuclear Information System (INIS)

    Paramos, J.; Bertolami, O.; Girard, T.A.; Valko, P.

    2003-01-01

    We examine the consequences of a cubic term added to the mean-field potential of Ginzburg-Landau theory to describe first-order superconducting phase transitions. Constraints on its existence are obtained from experiment, which are used to assess its impact on topological defect creation. We find no fundamental changes in either the Kibble-Zurek or Hindmarsh-Rajantie predictions

  3. First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot

    Directory of Open Access Journals (Sweden)

    Romain Maurand

    2012-02-01

    Full Text Available We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device loop in order to investigate the competition of strong electron correlations with a proximity effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum dot will exhibit a positive or a negative supercurrent, referred to as a 0 or π Josephson junction, respectively. In the regime of a strong Coulomb blockade, the 0-to-π transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling amplitude, the Kondo effect develops for an odd-charge (magnetic dot in the normal state, and quenches magnetism. In this situation, we find that a first-order 0-to-π quantum phase transition can be triggered at a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The superconducting-quantum-interference-device geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, which we associate with the two accessible superconducting states. Our results finally demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far from the mixed-valence regime in odd-charge superconducting quantum dots.

  4. Antiferromagnetism and its relation to the superconducting phases of UPt3

    DEFF Research Database (Denmark)

    Isaacs, E.D.; Zschack, P.; Broholm, C.L.

    1995-01-01

    Using magnetic x-ray and neutron diffraction in UPt3, we find that a suppression of the antiferromagnetic scattering intensity in the superconducting phase is due to a reduction in the magnitude of the staggered moment with no change in symmetry. The existence of the suppression as well...... as the magnetic correlation lengths are not affected by the presence or absence of a visible splitting in the superconducting transition. The simplest models wherein antiferromagnetic order provides the symmetry-breaking field for the splitting do not provide a compete explanation of our results....

  5. Phase analysis of superconducting Nb-Sn materials by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Tomasich, M.; Cirak, J.; Prejsa, M.; Kruzliak, J.

    1978-01-01

    Moessbauer spectroscopy is used for the optimalization of superconducting Nb-Sn samples preparation in the form of foils. Pure phases of Nb 3 Sn, Nb 6 Sn 5 , and NbSn 2 are determined. Two series of samples are studied at 750 and 900 0 C tinning temperature respectively, and at 750, 860, 900, and 960 0 C heating temperatures. In the samples the phases Nb 3 Sn, Nb 6 Sn 5 , NbSn 2 , and the solid solution Nb-Sn phase are observed. The results from the phase analysis lead to the assumption that the percentage amount of the phases is preferentially dependent on the tinning temperature. (author)

  6. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    Science.gov (United States)

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  7. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different stru......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  8. Ultrathin NbN Films for Superconducting Single-Photon Detectors

    International Nuclear Information System (INIS)

    Slysz, W.; Guziewicz, M.; Borysiewicz, M.

    2011-01-01

    We present our research on fabrication and structural and transport characterization of ultrathin superconducting NbN layers deposited on both single-crystal Al 2 O 3 and Si wafers, and SiO 2 and Si 3 N 4 buffer layers grown directly on Si wafers. The thicknesses of our films varied from 6 nm to 50 nm and they were grown using reactive RF magnetron sputtering on substrates maintained at the temperature 850 o C. We have performed extensive morphology characterization of our films using the X-ray diffraction method and atomic force microscopy, and related the results to the type of the substrate used for the film deposition. Our transport measurements showed that even the thinnest, 6 nm thick NbN films had the superconducting critical temperature of 10-12 K, which was increased to 14 K for thicker films. (author)

  9. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies

    Directory of Open Access Journals (Sweden)

    Nicolas G. N. Constantino

    2018-06-01

    Full Text Available Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  10. Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model

    International Nuclear Information System (INIS)

    Toschi, A; Barone, P; Capone, M; Castellani, C

    2005-01-01

    The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function

  11. Possible nucleation of a 2D superconducting phase on WO3 single crystals surface doped with Na+

    International Nuclear Information System (INIS)

    Reich, S.; Tsabba, Y.

    1999-01-01

    WO 3 crystals with a surface composition of Na 0.05 WO 3 were grown. These crystals exhibit a sharp diamagnetic step in magnetization at 91 K, and a magnetic hysteresis below this temperature. As the temperature is lowered below 100 K in transport measurements, a sharp metal to insulator transition is observed, this is followed by a sharp decrease in the resistivity when the temperature is lowered to about 90 K. When the surface of the crystals was covered by gold the depth of the diamagnetic step had decreased considerably. These results indicate a possible nucleation of a superconducting phase on the surface of these crystals. This is a non cuprate system exhibiting a critical temperature in the HTS range. (orig.)

  12. Effects of a multi-quark interaction on color superconducting phase transition in an extended NJL model

    International Nuclear Information System (INIS)

    Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu

    2007-01-01

    We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu-Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the ω 2 interaction to either produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach

  13. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  14. Investigation on the phase transformation of Bi-2223/Ag superconducting tapes during heating

    International Nuclear Information System (INIS)

    Huang, K.-T.; Qu, T.-M.; Xie, P.; Han, Z.

    2013-01-01

    Highlights: • In situ resistance measurement was carried out on Bi-2223/Ag superconducting tapes. • The oxygen partial pressure of the outlet gas in the heating process was monitored continuously. • The samples quenched in the heating process were studied by XRD and T c measurements. • The heating process contains three procedures: oxygen diffusion, Pb-rich phase evolution and liquid phase formation. -- Abstract: The phase transformation of Bi-2223/Ag superconducting tapes during heating was investigated. The resistance of the ceramic core as a function of the heating temperature was measured in situ. The pO 2 of the outlet gas in the heating process was also monitored continuously. By comparing the heating process with the X-ray diffraction and T c measurements taken from samples quenched at different temperatures, we have identified that the heating process could be divided into the following regions: (1) the oxygen diffusion (OD) region, which is mainly influenced by OD; (2) the Pb-rich phase evolution (PbE) region, in which the formation and decomposition of the Pb-rich phases occur; (3) the liquid phase formation (LF) region, in which resistance increased rapidly with increasing temperature

  15. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  16. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  17. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  18. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    International Nuclear Information System (INIS)

    Casaburi, A; Heath, R M; Tanner, M G; Hadfield, R H; Cristiano, R; Ejrnaes, M; Nappi, C

    2014-01-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events. (paper)

  19. Towards a phase-locked superconducting integrated receiver: prospects and limitations

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Dmitriev, P.N.

    2002-01-01

    Presently a Josephson flux flow oscillator (FFO) appears to be the most developed superconducting on-chip local oscillator for integrated submillimeter-wave SIS receivers. The feasibility of phase locking the FFO to an external reference oscillator at all frequencies of interest has to be proven...... compared to theory in order to optimize the FFO design. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field, has been studied. Two integrated receiver concepts with phase...

  20. Magnetic and superconducting phase diagram of Nb/Gd/Nb trilayers

    Science.gov (United States)

    Khaydukov, Yu. N.; Vasenko, A. S.; Kravtsov, E. A.; Progliado, V. V.; Zhaketov, V. D.; Csik, A.; Nikitenko, Yu. V.; Petrenko, A. V.; Keller, T.; Golubov, A. A.; Kupriyanov, M. Yu.; Ustinov, V. V.; Aksenov, V. L.; Keimer, B.

    2018-04-01

    We report on a study of the structural, magnetic, and superconducting properties of Nb (25 nm ) /Gd (df) /Nb (25 nm ) hybrid structures of a superconductor/ ferromagnet (S/F) type. The structural characterization of the samples, including careful determination of the layer thickness, was performed using neutron and x-ray scattering with the aid of depth-sensitive mass spectrometry. The magnetization of the samples was determined by superconducting quantum interference device magnetometry and polarized neutron reflectometry, and the presence of magnetic ordering for all samples down to the thinnest Gd(0.8 nm) layer was shown. The analysis of the neutron spin asymmetry allowed us to prove the absence of magnetically dead layers in junctions with Gd interlayer thickness larger than one monolayer. The measured dependence of the superconducting transition temperature Tc(df) has a damped oscillatory behavior with well-defined positions of the minimum at df=3 nm and the following maximum at df=4 nm, in qualitative agreement with prior work [J. S. Jiang et al., Phys. Rev. B 54, 6119 (1996), 10.1103/PhysRevB.54.6119]. We use a theoretical approach based on the Usadel equations to analyze the experimental Tc(df) dependence. The analysis shows that the observed minimum at df=3 nm can be described by the so-called zero to π phase transitions of highly transparent S/F interfaces with a superconducting correlation length ξf≈4 nm in Gd. This penetration length is several times higher than for strong ferromagnets like Fe, Co, and Ni, thus simplifying the preparation of S/F structures with df˜ξf which are of topical interest in superconducting spintronics.

  1. The influence of Si on the superconducting properties of LiFeAs single crystals

    International Nuclear Information System (INIS)

    Shlyk, L; Bischoff, M; Niewa, R

    2012-01-01

    The results of Si doping on the superconducting transition temperature, critical current density, irreversibility field, upper critical field, coherence length and magnetic relaxation of LiFeAs single crystals are reported for H ∥ c. The superconducting transition temperature of the Si doped sample decreases by about of 6.4 K/at.%, which is likely due to the pair breaking effect. The presence of a secondary high-field fishtail maximum, which shifts progressively with temperature, is associated with the extrinsic pinning centers created by Si. The increase of the critical current densities in intermediate magnetic fields of about three times as compared to our undoped material indicates that very small amounts of Si act as effective pinning sites for the flux pinning enhancement in the material. Pinning force curves measured at different temperatures obey a normalized form of Kramer’s law, which indicates that the critical current density is limited by one predominant flux pinning mechanism. Analysis of the temperature and field dependences of the magnetic relaxation is consistent with the collective pinning model. The magnetic relaxation measurements combined with the peak position of the critical current density in the B–T phase diagram suggest an elastic–plastic transition of the vortex lattice at higher temperatures and fields. (paper)

  2. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  3. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  4. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  5. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    Science.gov (United States)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  6. Superconducting Submm Integrated Receiver for TELIS

    Energy Technology Data Exchange (ETDEWEB)

    Koshelets, V P [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Ermakov, A B [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Filippenko, L V [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Koryukin, O V [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Khudchenko, A V [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Sobolev, A S [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Torgashin, M Yu [Institute of Radio Engineering and Electronics (IREE) (Russian Federation); Yagoubov, P A [SRON National Institute for Space Research (Netherlands); Hoogeveen, R W M [SRON National Institute for Space Research (Netherlands); Vreeling, W J [SRON National Institute for Space Research (Netherlands); Wild, W [SRON National Institute for Space Research (Netherlands); Pylypenko, O M [State Research Center of Superconducting Electronics ' Iceberg' (Ukraine)

    2006-06-01

    In this report we present design and first experimental results for development of the submm superconducting integrated receiver spectrometer for Terahertz Limb Sounder (TELIS). TELIS is a collaborative European project to build up a three-channel heterodyne balloon-based spectrometer for measuring a variety of atmospheric constituents of the stratosphere. The 550 - 650 GHz channel of TELIS is based on a phase-locked Superconducting Integrated Receiver (SIR). SIR is an on-chip combination of a low-noise Superconductor-Insulator-Superconductor (SIS) mixer with quasioptical antenna, a superconducting Flux Flow Oscillator (FFO) acting as Local Oscillator (LO), and SIS harmonic mixer (HM) for FFO phase locking. A number of new solutions were implemented in the new generation of SIR chips. To achieve the wide-band performance of the spectrometer, a side-feed twin-SIS mixer and balanced SIS mixer with 0.8 {mu}m{sup 2} junctions integrated with a double-dipole (or double-slot) antenna is used. An improved design of the FFO for TELIS has been developed and optimized providing a free-running linewidth between 10 and 2 MHz in the frequency range 500 - 700 GHz. It is important to ensure that tuning of a phase-locked (PL) SIR can be performed remotely by telecommand. For this purpose a number of approaches for the PL SIR automatic computer control have been developed. All receiver components (including input optical elements and Martin-Puplett polarization rotating interferometer for single side band operation) will be mounted on a single 4.2 K plate inside a 40 x 180 x 80 mm{sup 3} box. First measurements give an uncorrected double side band (DSB) noise temperature below 250 K measured with the phase-locked FFO; more detailed results are presented at the conference.

  7. Superconducting Submm Integrated Receiver for TELIS

    International Nuclear Information System (INIS)

    Koshelets, V P; Ermakov, A B; Filippenko, L V; Koryukin, O V; Khudchenko, A V; Sobolev, A S; Torgashin, M Yu; Yagoubov, P A; Hoogeveen, R W M; Vreeling, W J; Wild, W; Pylypenko, O M

    2006-01-01

    In this report we present design and first experimental results for development of the submm superconducting integrated receiver spectrometer for Terahertz Limb Sounder (TELIS). TELIS is a collaborative European project to build up a three-channel heterodyne balloon-based spectrometer for measuring a variety of atmospheric constituents of the stratosphere. The 550 - 650 GHz channel of TELIS is based on a phase-locked Superconducting Integrated Receiver (SIR). SIR is an on-chip combination of a low-noise Superconductor-Insulator-Superconductor (SIS) mixer with quasioptical antenna, a superconducting Flux Flow Oscillator (FFO) acting as Local Oscillator (LO), and SIS harmonic mixer (HM) for FFO phase locking. A number of new solutions were implemented in the new generation of SIR chips. To achieve the wide-band performance of the spectrometer, a side-feed twin-SIS mixer and balanced SIS mixer with 0.8 μm 2 junctions integrated with a double-dipole (or double-slot) antenna is used. An improved design of the FFO for TELIS has been developed and optimized providing a free-running linewidth between 10 and 2 MHz in the frequency range 500 - 700 GHz. It is important to ensure that tuning of a phase-locked (PL) SIR can be performed remotely by telecommand. For this purpose a number of approaches for the PL SIR automatic computer control have been developed. All receiver components (including input optical elements and Martin-Puplett polarization rotating interferometer for single side band operation) will be mounted on a single 4.2 K plate inside a 40 x 180 x 80 mm 3 box. First measurements give an uncorrected double side band (DSB) noise temperature below 250 K measured with the phase-locked FFO; more detailed results are presented at the conference

  8. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    Science.gov (United States)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  9. AC Losses in Bi2Sr2Ca2Cu3O10+x Tapes and a 3.15-m-Long Single-Phase Cable

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard; Mølgaard, Esben Tore; Jensen, Jens

    2011-01-01

    The alternating-current losses in superconducting multifilament BiSCCO-2223 tapes and a 3.15-m single-phase test cable were measured at 77 K using an electrical transport method. The cable had an inner diameter of 42 mm; it was composed of a single layer of 31 multifilament tapes and had a critic...

  10. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    Kist, A.A.; Flitsiyan, E.S.

    1994-01-01

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  11. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  12. Progress in heavy-fermion superconductivity. Ce115 and related materials

    International Nuclear Information System (INIS)

    Thompson, Joe D.; Fisk, Zachary

    2012-01-01

    Ce115 and related Ce compounds are particularly suited to detailed studies of the interplay of antiferromagnetic order, unconventional superconductivity and quantum criticality due to their availability as high quality single crystals and their tunability by chemistry, pressure and magnetic field. Neutron-scattering, NMR and angle-resolved thermodynamic measurements have deepened the understanding of this interplay. Very low temperature experiments in pure and lightly doped CeCoIn 5 have elaborated the FFLO-like magnetic state near the field-induced quantum-critical point. New, related superconducting materials have broadened the phase space for discovering underlying principles of heavy-fermion superconductivity and its relationship to nearby states. (author)

  13. Perturbation theory of a superconducting 0−π impurity quantum phase transition

    Czech Academy of Sciences Publication Activity Database

    Žonda, M.; Pokorný, Vladislav; Janiš, Václav; Novotný, T.

    2015-01-01

    Roč. 5, Mar (2015), s. 8821 ISSN 2045-2322 R&D Projects: GA ČR GCP204/11/J042 Institutional support: RVO:68378271 Keywords : quantum dot * superconductivity * Josephson current * quantum phase transition * perturbation expansion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.228, year: 2015

  14. Single-flux-quantum circuit technology for superconducting radiation detectors

    International Nuclear Information System (INIS)

    Fujimaki, Akira; Onogi, Masashi; Matsumoto, Tomohiro; Tanaka, Masamitsu; Sekiya, Akito; Hayakawa, Hisao; Yorozu, Shinichi; Terai, Hirotaka; Yoshikawa, Nobuyuki

    2003-01-01

    We discuss the application of the single-flux-quantum (SFQ) logic circuits to multi superconducting radiation detectors system. The SFQ-based analog-to-digital converters (ADCs) have the advantage in current sensitivity, which can reach less than 10 nA in a well-tuned ADC. We have also developed the design technology of the SFQ circuits. We demonstrate high-speed operation of large-scale integrated circuits such as a 2x2 cross/bar switch, arithmetic logic unit, indicating that our present SFQ technology is applicable to the multi radiation detectors system. (author)

  15. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  16. Microscopic coexistence of ferromagnetism and superconductivity in single-crystal UCoGe

    International Nuclear Information System (INIS)

    Ohta, Tetsuya; Hattori, Taisuke; Ishida, Kenji; Nakai, Yusuke; Osaki, Eisuke; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2010-01-01

    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (T Curie -2.5 K and T SC -0.6 K) is reported from 59 Co nuclear quadrupole resonance (NQR). The 59 Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while the nuclear spin-lattice relaxation rate 1/T 1 in the ferromagnetic (FM) phase decreases below T SC due to the opening of the superconducting (SC) gap. The SC state is found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59 Co-NQR spectrum around T Curie shows that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order. (author)

  17. A superconducting microcalorimeter for low-flux detection of near-infrared single photons

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, Jan

    2014-07-01

    This thesis covers the development and the characterization of a single photon detector based on a superconducting microcalorimeter. The detector development is motivated by the Any Light Particle Search II (ALPS II) experiment at DESY in Hamburg, which searches for weakly interacting sub-eV particles (WISPs). Therefore, a detection of low-fluxes of 1064 nm light is required. The work is divided in three analyses: the characterization of a milli-kelvin (mK) cryostat, the characterization of superconducting sensors for single photon detection, and the determination of dark count rates concerning 1064 nm signals. Firstly, an adiabatic demagnetization refrigerator (ADR) is characterized, which allows to reach mK-temperatures. During commissioning, the ADR cryostat is optimized and prepared to stably cool superconducting sensors at 80 mK±25 μK. It is found that sensors can be continuously operated for ∝20 h before recharging the system in -4 s -1 . By operating a fiber-coupled TES, it is found that the dark count rate for 1064 nm signals is dominated by pile-up events of near-infrared thermal photons coming through the fiber from the warm environment. Considering a detection efficiency of ∝18 %, a dark count rate of 8.6 . 10 -3 s -1 is determined for 1064 nm ALPS photons.Concerning ALPS II, this results in a sensitivity gain compared to the ALPS I detector. Furthermore, this thesis is the starting point of TES detector development in Hamburg, Germany.

  18. Superconducting spiral phase in the two-dimensional t-J model

    International Nuclear Information System (INIS)

    Sushkov, Oleg P.; Kotov, Valeri N.

    2004-01-01

    We analyze the t-t ' -t '' -J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping δ1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t ' =t '' =0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t ' and t '' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations ('order from disorder' effect). We show that at δ≅0.119 the spiral is commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d, ellipsis (horizontal)) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,±1) directions

  19. Trapping control of phase development in zone melting of Bi-Sr-Ca-Cu-O superconducting fibres

    International Nuclear Information System (INIS)

    Costa, F M; Carrasco, M F; Silva, R F; Vieira, J M

    2003-01-01

    Highly-texturized polycrystalline fibres of the Bi-Sr-Ca-Cu-O system have been grown by the laser floating zone technique at seven different pulling rates: (1.1, 2.2, 4.17, 8.3, 16.7, 33.3, 60.5) x 10 -6 m s -1 . The assessment of the cation segregation at the solid/liquid interface allowed us to calculate their equilibrium and effective distribution coefficients. The equilibrium distribution coefficients (k 0,Bi = 0.55, k 0,Sr = 0.97, k 0,Ca = 1.67, k 0,Cu = 1.10) were estimated using the Burton, Primm and Slichter (BPS) theory by taking into account the determined effective values. The effective distribution coefficients tend to unity as long as the pulling rate increases. The composition profiles along the initial transient region of the solidified fibres show a fast approach to the nominal composition as the pulling rate increases. The outstanding effect of the growth speed on superconducting phase type development is explained based on the solute trapping phenomena. The sequence of crystallization for superconducting phases ('2212' → '4413' → '2201') with pulling rate is a spontaneous effect of the system thermodynamics in order to balance the Bi trapping. This phase sequence corresponds to the smallest change of Bi chemical potential from the liquid phase to the solid phase. A diagram of free energy curves of the interdendritic superconducting phases illustrates the partitionless solidification phenomena at the highest growth speed

  20. Hydrostatic pressure study of the structural phase transitions and superconductivity in single crystals of (Ba1-xKx)Fe2As2 (x=0 and 0.45) and CaFe2As2

    International Nuclear Information System (INIS)

    Torikachvili, M.S.; Bud'ko, S.L.; Ni Ni; Canfield, P.C.

    2009-01-01

    We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe 2 As 2 , BaFe 2 As 2 , and (Ba 0.55 K 0.45 )Fe 2 As 2 , by means of measurements of electrical resistivity (ρ) in the 1.8-300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe 2 As 2 and BaFe 2 As 2 (lightly doped with Sn) display structural phase transitions near 170 and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba 0.55 K 0.45 )Fe 2 As 2 is superconducting for T 2 As 2 is to shift the onset of the crystallographic transformation down in temperature at the rate of ∼-1.04 K/kbar, while shifting the whole ρ(T) curves downward, whereas its effect on superconducting (Ba 0.55 K 0.45 )Fe 2 As 2 is to shift the onset of superconductivity to lower temperatures at the rate of ∼-0.21 K/kbar. The effect of pressure on CaFe 2 As 2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P c2 ) data in (Ba 0.55 K 0.45 )Fe 2 As 2 and CaFe 2 As 2 are discussed.

  1. Interpretation of the T-H phase diagram of HTSC in the frame of superconductive granular layer model

    International Nuclear Information System (INIS)

    Burgij, A.I.; Shadura, V.N.

    1989-01-01

    The model of two-dimensional Coulomb gas on charge substrate is used to describe magnetic properties of high temperature superconductor LaBaCuO. The phase transition from the nonergodic superconducting state to the ergodic one is associated with the melting of Wigner's two-dimensional crystal into the liquid crystal-hexatic, and the phase transition from ergodic superconducting state to the normal one - with the melting of liquid crystal. The T c (H) dependence calculated within these concepts is consistent with that observed in experiment. 22 refs.; 3 figs

  2. Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e1 -xS ex films on SrTi O3

    Science.gov (United States)

    Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun

    2015-06-01

    Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.

  3. Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor

    Science.gov (United States)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke

    2018-06-01

    In superconducting quantum point contacts, multiple Andreev reflection (MAR), which describes the coherent transport of m quasiparticles each carrying an electron charge with m≥3, sets in at voltage thresholds eV = 2Δ /m. In single-electron transistors, Coulomb blockade, however, suppresses the current at low voltage. The required voltage for charge transport increases with the square of the effective charge eV∝ ( me) ^2. Thus, studying the charge transport in all-superconducting single-electron transistors (SSETs) sets these two phenomena into competition. In this article, we present the fabrication as well as a measurement scheme and transport data for a SSET with one junction in which the transmission and thereby the MAR contributions can be continuously tuned. All regimes from weak to strong coupling are addressed. We extend the Orthodox theory by incorporating MAR processes to describe the observed data qualitatively. We detect a new transport process the nature of which is unclear at present. Furthermore, we observe a renormalization of the charging energy when approaching the strong coupling regime.

  4. Synthesis, structure and superconductivity in Ba1-xKxBiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.

    1989-01-01

    Ba 1-x K x BiO 3 (with x = 0.4) has the highest T c (30 K) of any copperless compound. The superconducting transition temperature of this material is expected to be at the limit of conventional electron-phonon coupling. Since this material is much simpler than the copper containing high-T c superconductors (it is cubic in its superconducting state and only sp electrons are involved in the transport properties), it should be much easier to unravel the nature of the superconducting pairing mechanism in this system. Understanding this system may help explain superconductivity in the more complex copper-oxide materials. In this paper, the authors report on the development of a synthesis method which allows the preparation of stoichiometric, single-phase materials with x between 0.0 and 0.5. The structural phase diagram was determined using powder neutron diffraction as a function of both composition and temperature. Superconductivity only occurs in the cubic perovskite phase which is stable for x larger than 0.3. At a x = 0.3 composition the material undergoes a semiconductor to metal transition with a maximum value for T c . As the K content is further increased, T c is reduced

  5. Imaging orbitals and defects in superconducting FeSe/SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Jennifer [Harvard University, Cambridge, MA (United States); University of British Columbia, Vancouver (Canada); Huang, Dennis; Webb, Tatiana; Feng, Shiang; Kaxiras, Efthimios [Harvard University, Cambridge, MA (United States); Song, Can-Li [Harvard University, Cambridge, MA (United States); Tsinghua University, Beijing (China); Chang, Cui-Zu; Moodera, Jagadeesh [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2016-07-01

    Single-layer FeSe grown epitaxially on SrTiO{sub 3} has been shown to superconduct with T{sub c} as high as 100 K, more than a factor of 10 higher than bulk FeSe. This dramatic enhancement motivates intense efforts to understand the superconducting mechanism and to design and fabricate devices. Nematic order, breaking the 4-fold rotational symmetry of the crystal, has been proposed as an important factor in the superconducting phase diagram. Meanwhile, atomic defects, which may pin nematic fluctuations or otherwise perturb superconductivity, can provide important clues into the superconducting mechanism as well as practical routes to superconducting devices. Here we use scanning tunneling microscopy (STM) to search for orbital nematicity in single-layer FeSe/SrTiO{sub 3}, and to investigate atomic-scale defects which locally influence superconductivity. From quasiparticle interference (QPI) images, we disentangle scattering intensities from the orthogonal Fe 3d{sub xz} and 3d{sub yz} bands, and quantitatively exclude pinned nematic orbital order with domain size larger than δ r ∝ 20 nm. Furthermore, we identify a prevalent ''dumbbell''-shaped atomic-scale defect whose placement could be harnessed to define two-dimensional superconducting devices.

  6. Principles of superheated superconducting granules as a detector for dark matter and neutrinos

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.

    1993-01-01

    The interest in superconducting devices for particle detection is based on the very small quantum energies involved as compared to conventional ionization and semiconductor detectors. The use of superheated superconducting granules (SSG) as a particle detector is reviewed. Physical properties and experimental applications of SSG are discussed. The dynamic responses of the phase transition of superheated superconducting Sn, In, Al and Zn single granules (20-50μm in diameter) due to an applied magnetic field exceeding the superheating threshold are presented. A status report on further experimental development is given. (orig.)

  7. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  8. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current......-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce-the inductive...... voltage. The 1 mu V cm(-1) critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6 +/- 0.15 W m(-1). This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far...

  9. Superconducting transition and low-field magnetoresistance of a niobium single crystal at 4.2 deg. K

    International Nuclear Information System (INIS)

    Perriot, G.

    1967-01-01

    We report the study of the electrical resistance of a niobium single crystal, at 4.2 deg. K, from the beginning of the superconductive transition to 80 kilo oersteds. Critical fieldsH c2 and H c3 have been determined. Influences on superconductive transition of current density, field-current angle, crystal orientation and magnetoresistance have been studied. Variation laws of low-field transverse and longitudinal magneto-resistances have been determined. (author) [fr

  10. Chevrel phases superconductive and ultrafine powders synthesis and characterization; Synthese et caracterisation de poudres ultrafines supraconductrices de phases de Chevrel

    Energy Technology Data Exchange (ETDEWEB)

    Even-Boudjada, S

    1994-12-01

    This work deals with the Chevrel phases superconductive and ultrafine powders synthesis and characterization. The first part of this study presents some new way of synthesis (precipitation, coprecipitation) of Chevrel phases precursors powders (PbS, SnS, MoS{sub 2}) and their characterizations (X-ray fluorescence analysis, ICP mass spectroscopy, scanning electron microscopy, transmission electron microscopy and laser granulometry). These new synthesis methods lead to quasi spherical morphology grains and very weak size grains (0.2 to 0.5 {mu}m) whereas the chemical preparation from the solid state elements gives very different morphology grains (small plates) with a size of 1 to 20 {mu}m. In the second part is shown the interest of the binary Mo{sub 6} S{sub 8} as precursor in the synthesis of ternary superconductive phases (Li, Ni, Cu, Pb). The last part presents the formation reaction of the phase PbMo{sub 6} S{sub 8} and its main chemical and physical properties. Thus some calorimetric measures associated with X-ray diffraction analysis have been realized and have allowed to understand the different reactions occurring during the PbMo{sub 6}S{sub 8} synthesis. (O.L.). 100 refs., figs., tabs.

  11. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  12. Determination of the fraction of amorphous phases in superconducting samples

    International Nuclear Information System (INIS)

    Gomes Junior, G.G.; Ogasawara, T.; Amorim, H.S.

    2010-01-01

    The study phase formation of high critical temperature superconducting (Bi, Pb) - 2223 by partial melting and recrystallization aims to improve the microstructure of the material. Was used for X-ray diffraction characterization of the phases present. The DDM method (Derivative Difference Minimization) was used for the refinement of structures, quantification of the phases and determination the fraction of this amorphous. The advantage this method is not necessary to introduce an internal standard to determine the amorphous fraction. Were observed in the powder precursor phases (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x (Bi, Pb) -2223, 93% of the sample, Bi 2 Sr 2 CaCu 2 O y (Bi-2212) and Bi 2 Sr 2 CuO z (Bi-2201). The powder precursor was heat treated at 820-870 deg C. To minimize volatilization of lead, the material was placed in silver crucibles closed. To get a high recovery of (Bi, Pb) - 2223, the material was cooled slowly, due to slow kinetic of formation of this phase. We observed a partial recovery phase (Bi, Pb) -2223. (author)

  13. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  14. Superconductivity in the Bi-Sr-Ca-Cu-O compounds some characteristics

    International Nuclear Information System (INIS)

    Escudero, R.

    1989-01-01

    The authors have prepared 90% single phase bulk samples of the 110K superconducting phase of the Bi-Sr- Ca-Cu-O compounds with different Pb amounts. This paper presents critical superconducting temperatures (zero resistance) of up to 109K were measured in the bulk samples. X-ray powder diffraction patterns of the almost isolated 110K phase. Computer simulated diffractograms were obtained, which are in general agreement with the measured ones. A discussion of the role of Pb in the stability of the 110K phase in this compounds is presented. Tunnelling measurements were made using Bi-based material. The authors studied break junctions and point contact junctions. The energy gap was determined to be about 25.5 meV and the ratio 2Δ/KBTc = 7.5. The data also show structure at energies of 67 and 120 meV

  15. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  16. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  17. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  18. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  19. Growth, characterization, and physical properties of Bi-Sr-Ca-Cu-O superconducting whiskers

    International Nuclear Information System (INIS)

    Kraak, W.; Thiele, P.

    1996-01-01

    Single crystal whiskers of the Bi-based high-T c superconductors have been grown directly from the stoichiometric melt. Conditions for the preferable growth of the (2212) phase and annealing conditions for the conversion from the (2212) phase to the (2223) and (2234) Bi-based superconducting phases are achieved. The orientation and chemical composition of the crystals were characterized by X-ray diffractometry and energy dispersive X-ray analysis. Characteristic structural properties of the whiskers (incommensurable modulation in b-direction, peculiarities of dislocation networks) have been revealed by transmission electron microscopy and electron diffraction. Some special features of the broad superconducting transition in multiphase whiskers have been examined by spatially resolved measurements using low-temperature scanning electron microscopy. (orig.)

  20. Magnetism and superconductivity in a heavy-fermion superconductor, CePt3Si

    International Nuclear Information System (INIS)

    Takeuchi, T; Hashimoto, S; Yasuda, T; Shishido, H; Ueda, T; Yamada, M; Obiraki, Y; Shiimoto, M; Kohara, H; Yamamoto, T; Sugiyama, K; Kindo, K; Matsuda, T D; Haga, Y; Aoki, Y; Sato, H; Settai, R; Onuki, Y

    2004-01-01

    We have studied the magnetic and thermal properties of a single crystal of CePt 3 Si, which is a recently reported heavy-fermion superconductor with a superconducting transition temperature T c = 0.75 K and a Neel temperature T N = 2.2 K. The overall experimental data are principally explained on the basis of the crystalline electric field (CEF) scheme. Even in the antiferromagnetic state, the CEF model applies well to the characteristic features in the magnetization curve. These results indicate the existence of a localized magnetic moment at the Ce site, with a considerably reduced ordered moment of 0.16 μ B /Ce, and the strongly correlated conduction electrons are condensed into the superconducting state. We have also constructed the magnetic phase diagram including the superconducting phase for H parallel [110] and [001]. (letter to the editor)

  1. Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure

    International Nuclear Information System (INIS)

    Canfield, P.C.; Bud'ko, S.L.; Ni, N.; Kreyssig, A.; Goldman, A.I.; McQueeney, R.J.; Torikachvili, M.S.; Argyriou, D.N.; Luke, G.; Yu, W.

    2009-01-01

    At ambient pressure CaFe 2 As 2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T ∼ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ∼0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ∼1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe 2 As 2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.

  2. Influence of material and geometry on the performance of superconducting nanowire single-photon detectors

    CERN Document Server

    Henrich, Dagmar

    2013-01-01

    Superconducting Nanowire Single-Photon Detectors offer the capability to detect electromagnetic waves on a single photon level in a wavelength range that far exceeds that of alternative detector types. However, above a certain threshold wavelength, the efficiency of those detectors decreases stronlgy, leading to a poor performance in the far-infrared range. Influences on this threshold are studied and approaches for improvement are verified experimentally by measurement of the device performance.

  3. Bi2(Sr, Ln)2CuOz (Ln = Nd, Sm) phases: stability, crystal growth and superconducting properties

    International Nuclear Information System (INIS)

    Faqir, H.; Kikuchi, M.; Syono, Y.; Mansori, M.; Satre, P.; Sebaoun, A.; Vacquier, G.

    2000-01-01

    Bi 2 (Sr,Ln) 2 CuO z (Ln = Nd, Sm) single crystals were successfully grown by a self-flux method from stoichiometric and (Bi, Cu)-rich melts. Thermal analysis and thermogravimetry were used to determine stability and the melting sequence of Bi 2 (Sr,Ln) 2 CuO z phases in air. As-grown crystals of the ideal Bi 2 (Sr,Ln) 2 CuO z phase, of dimensions 1x0.5x0.03 mm 3 , exhibit superconducting behaviour with critical temperature T c = 21 K for the Bi 1.9 Sr 1.6 Nd 0.6 CuO z crystal and Tc = 14 K for the Bi 1.8 Sr 1.6 Sm 0.6 CuO z crystal. The compositions of these crystals were homogeneous and close to the stoichiometric composition. We report on the growth of Bi 2 Sr 2-x Sm x CuO z single crystals of large dimensions 9x3x0.03 mm 3 using Bi 2 Sr 1.5 Sm 0.5 CuO z as precursor and Bi 2 CuO 4 as flux. (author)

  4. Aperiodic superconducting phase boundary of periodic micronetworks in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.

    1988-01-01

    We study flux quantization in periodic arrays with two elementary cells having an irrational ratio of areas. In particular, we calculate the superconducting-normal phase boundary T/sub c/(H) and we analyze the origin of its overall and fine structure as a function of the network size. We discuss our theoretical results, exploiting the electronic tight-binding analogy to the Ginzburg-Landau equations, and compare them with the experimental ones

  5. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    Science.gov (United States)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  6. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  7. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    International Nuclear Information System (INIS)

    Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents

  8. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Simone; Kahl, Oliver [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Kovalyuk, Vadim [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Goltsman, Gregory N. [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000 (Russian Federation); Korneev, Alexander [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Moscow Institute of Physics and Technology (State University), Moscow 141700 (Russian Federation); Pernice, Wolfram H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Department of Physics, University of Münster, 48149 Münster (Germany)

    2015-04-13

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

  9. Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials

    Science.gov (United States)

    Shapourian, Hassan; Wang, Yuxuan; Ryu, Shinsei

    2018-03-01

    We study the intrinsic fully gapped odd-parity superconducting order in doped nodal-loop materials with a torus-shaped Fermi surface. We show that the mirror symmetry, which protects the nodal loop in the normal state, also protects the superconducting state as a topological crystalline superconductor. As a result, the surfaces preserving the mirror symmetry host gapless Majorana cones. Moreover, for a Weyl-loop system (twofold degenerate at the nodal loop), the surfaces that break the mirror symmetry (those parallel to the bulk nodal loop) contribute a Chern (winding) number to the quasi-two-dimensional system in a slab geometry, which leads to a quantized thermal Hall effect and a single Majorana zero mode bound at a vortex line penetrating the system. This Chern number can be viewed as a higher-order topological invariant, which supports hinge modes in a cubic sample when mirror symmetry is broken. For a Dirac-loop system (fourfold degenerate at the nodal loop), the fully gapped odd-parity state can be either time-reversal symmetry-breaking or symmetric, similar to the A and B phases of 3He. In a slab geometry, the A phase has a Chern number two, while the B phase carries a nontrivial Z2 invariant. We discuss the experimental relevance of our results to nodal-loop materials such as CaAgAs.

  10. Tuning of External Q And Phase for The Cavities of A Superconducting Linear Accelerator

    CERN Document Server

    Katalev, V V

    2004-01-01

    The RF power required for a certain gradient of a superconducting cavity depends on the beam current and coupling between the cavity and waveguide. The coupling with the cavity may be changed by variation of Qext. Different devices can be used to adjust Qext or phase. In this paper three stub and E-H tuners are compared and their usability for the RF power distribution system for the superconducting accelerator of the European Xray laser and the TESLA linear collider is considered. The tuners were analyzed by using the scattering matrix. Advantages and limitations of the devices are presented.

  11. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  12. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  13. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Ming [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)], E-mail: cheng896@hotmail.com; Su Wupei [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)

    2008-12-15

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling.

  14. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    International Nuclear Information System (INIS)

    Cheng Ming; Su Wupei

    2008-01-01

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling

  15. Tetracritical point and current circulations in superconducting state

    International Nuclear Information System (INIS)

    Belyavskij, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2005-01-01

    Phase diagram reflecting the key peculiar features of the standard diagram of the cuprate superconductors was studied in terms of the Ginzburg-Landau phenomenology near the tetracritical point resulting from the competition of superconducting and dielectric channels of pairing. Two-component parameter of order the relative phase of which is associated with antiferromagnetic dielectric ordering corresponds to the superconducting pairing at repulsion. In case of slight doping the dielectric order coexists with superconductivity below the temperature of superconducting phase transition and manifests itself as a slight pseudoslit above the mentioned temperature. A segment of pseudoslit region adjacent to the superconducting state corresponds to the matured fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and may be interpreted as a region of a strong pseudoslit. At increase of doping one observes a phase transition from the coexistence region and the orbital antiferromagnetism to the conventional superconducting state covering the region of matured fluctuations of the order parameter in the form of quasi-stationary states of the noncorrelated orbital circulation currents adjacent to the line of phase transition [ru

  16. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  17. Phase stability of superconductive Y1Ba2Cu4O8

    International Nuclear Information System (INIS)

    Hegde, M.S.; Kumaraswamy, B.V.; Pandey, S.P.; Narlikar, A.V.

    1997-01-01

    The stability of the 124 superconductive phase YBa 2 Cu 4 O 8 upon exposure to air and saturated humidity at ambient temperature has been studied by thermogravimetry, X-ray diffraction, and ac susceptometry. Extent of phase conversion was monitored by TG and confirmed by XRD and ac susceptometry. 124 samples upon prolonged exposure to air were found to be no longer phase-pure, with partial conversion to 123 and CuO. On oxygen annealing, reconversion of 123 + GuO to 124 was observed. However, upon prolonged exposure to saturated humid conditions, phase-pure 124 dissociated irreversibly into 211, GuO, and a highly disordered 124-like structure with planar defects along many hkl indices and was found to be nonsuperconducting even up to 60 K

  18. Superconducting quantum circuits theory and application

    OpenAIRE

    Deng, Xiuhao

    2015-01-01

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification.The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to a...

  19. Induction shimming: A new shimming concept for superconductive undulators

    Directory of Open Access Journals (Sweden)

    D. Wollmann

    2008-10-01

    Full Text Available Undulators are the most advanced sources for the generation of synchrotron radiation. The photons generated by a single electron add up coherently along the electron trajectory. In order to do so, the oscillatory motion of the electron has to be in phase with the emitted photons along the whole undulator. Small magnetic errors can cause unwanted destructive interferences. In standard permanent magnet undulators, the magnetic errors are reduced by applying shimming techniques. Superconductive undulators have higher magnetic fields than permanent magnet undulators but shimming is more complex. In this paper it is shown that coupled superconductive loops installed along the surface of the superconductive undulator coil can significantly reduce the destructive effect of the field errors. This new idea might allow the building of undulators with a superior field quality.

  20. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    Science.gov (United States)

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  1. Optimised quantum hacking of superconducting nanowire single-photon detectors

    Science.gov (United States)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  2. Phases and structural characteristics of high Tc superconducting oxide in (Bi, Pb)-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chen, Zuyano; Li, Zhengrong; Qian, Yitai; Zhou, Quien; Cheng, Tingzhu

    1989-01-01

    The various phases, which are responsible for variant maximum d-value including 18.5 angstrom, 15.4 angstrom, 12.2 angstrom, 6.2 angstrom, 3.2 angstrom and possible 9.1 angstrom respectively, observed in high Tc superconducting complex oxide of (Bi,Pb)-Sr-Ca-Cu-O system are reported in this paper according to the result of X-ray diffraction on platelike crystals or crystallites synthesized under different preparation conditions. The phase of tetragonal system with c=3.21 angstrom, a=3.86 angstrom is possible parent structural unit and it is of great significance to the structure constitution of various phases with large lattice parameter c and structural characteristics of superconducting oxide. In view of the above a model of two-dimension stack-up which causes a stack in variant styles along c-axis and constitute various phases with different lattice parameter c is proposed and discussed

  3. Superconducting, magnetic and magnetotransport properties of FeTe1-xSex single crystals

    Science.gov (United States)

    Kumar, Rohit; Sudesh, Varma, G. D.

    2018-05-01

    The single crystalline samples with compositions FeTe1-xSex (0.25 ≤ x ≤ 0.50) have been prepared via self-flux method and the superconducting, magnetic and magnetotransport properties of the grown crystals were investigated. The superconducting onset temperatures have been determined from the measurements of zero field cooled magnetization and resistance with temperatures. In the present case, highest superconducting transition temperature TC (onset) ˜ 15 K has been obtained for x=0.5. The HC2 (T=0 K) values have been estimated by fitting the experimental HC2 - T plots with WHH model. The highest HC2(0) has been obtained for x=0.5. The activation energy of the thermally activated flux flow has been found from the broadening of superconducting transition in an applied magnetic field using the Arrhenius law. Our results show that the activation energy (U0) decreases with the increasing magnetic field. Furthermore, the magnetization measurements for x=0.4 and 0.5 samples have been performed at T=5 K in the magnetic field range ±7 T to estimate critical current density at different applied magnetic fields using Bean formula. We see that the sample x=0.5 has higher values of JC as compared to that of x=0.4 at all magnetic fields. This is in conformity with the behavior of U0-H plots.

  4. Theory of high-T sub c superconductivity based on the fermion-condensation quantum phase transition

    CERN Document Server

    Amusia, M Ya; Shaginyan, V R

    2001-01-01

    A theory of high temperature superconductivity based on the combination of the fermion-condensation quantum phase transition and the conventional theory of superconductivity is presented. This theory describes maximum values of the superconducting gap which can be as big as DELTA sub 1 approx 0.1 epsilon sub F , with epsilon sub F being the Fermi level. It is shown that the critical temperature 2T sub c approx = DELTA sub 1. If there exists the pseudogap above T sub c then 2T* approx = DELTA sub 1 , and T* is the temperature at which the pseudogap vanished. A discontinuity in the specific heat at T sub c is calculated. The transition from conventional superconductors to high-T sub c ones as a function of the doping level is investigated

  5. Superconducting Qubit with Integrated Single Flux Quantum Controller Part II: Experimental Characterization

    Science.gov (United States)

    Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.

  6. Fabrication of Superconducting Traction Transformer for Railway Rolling Stock

    International Nuclear Information System (INIS)

    Kamijo, H; Hata, H; Fujimoto, H; Inoue, A; Nagashima, K; Ikeda, K; Yamada, H; Sanuki, Y; Tomioka, A; Uwamori, K; Yoshida, S; Iwakuma, M; Funaki, K

    2006-01-01

    We designed a floor type single-phase 4 MVA superconducting traction transformer for Shinkansen rolling stock. In this study, we fabricated a prototype superconducting traction transformer based on this design. This transformer of the core-type design has a primary winding, four secondary windings and a tertiary winding. The windings are wound by Bi2223 superconducting tapes and cooled by subcooled liquid nitrogen. The core is kept at room temperature. The cryostat is made of GFRP with two holes to pass core legs through. The outer dimensions are about 1.2m x 0.7m x 1.9m excluding the compressor. Its weight is 1.71t excluding that of refrigerator and compressor. The transformer was tested according to Japanese Industrial Standards (JIS)-E5007. We confirmed that the performance of transformer has been achieved almost exactly as planned. The rated capacity is equivalent to 3.5MVA in the superconducting state

  7. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Barnes, P.; Belomestnykh, S.; Chojnacki, E.; Ehrlich, R.; Flynn, G.; Graber, J.; Hartung, W.; Hays, T.; Kaplan, R.; and others.

    1996-01-01

    The decision was made to try to increase the luminosity of CESR as high as possible with a single magnet ring. This, the Phase-III plan, can yield a luminosity of 1 x 10 33 with 45 bunches in each beam for a total current in each beam of 0.5 amperes. This plan utilizes four superconducting, single cell cavities. The use of only four SC accelerating cells as compared to the present twenty normal conducting cells decreases both the broad band and narrow band impedances sufficiently to allow stable operation at these half ampere current levels. (R.P.)

  8. Fabrication and testing of a superconducting coil: Phase 3 of the Maglev development program

    Energy Technology Data Exchange (ETDEWEB)

    Fife, A A; Lee, S; Tillotson, M [CTF Systems Inc., Port Coquitlam, BC (Canada)

    1989-03-01

    This report documents developmental research on superconducting magnet technology suitable for the levitation and propulsion units of the Canadian Maglev vehicle. The contract work involved the design, fabrication and testing of a racetrack coil fabricated using epoxy-impregnated windings of copper stabilized NbTi wire. The following results were achieved: successful fabrication and testing of a superconducting racetrack magnet with strength {gt} 400,000 A-turns integrated in a support frame; selection and characterization of cryogenic strain gauges; characterization of strain in solenoidal and racetrack superconducting magnets; design, fabrication and testing of high current persistent switches; and operation of superconducting magnets in persistent mode. The racetrack coil reached the design current after the third quench and short sample critical current after the eighth quench. This behavior is essentially identical to that observed with a superconducting solenoid fabricated during a previous phase. The strain measured perpendicular to the straight sides of the racetrack coil was proportional to the square of the energizing current. Persistent switches were fabricated, one type with low resistance (10{sup -2} ohm) and the other with high resistance (1.2 ohm) in their normal states. The low resistance switch could be operated in 1-Tesla fields with stabel characteristics up to about 800A drive current and the high resistance switch to 475A.

  9. Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction

    Science.gov (United States)

    Cao, Xiaodong; Ayral, Thomas; Zhong, Zhicheng; Parcollet, Olivier; Manske, Dirk; Hansmann, Philipp

    2018-04-01

    Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice, including 1 /r long-range interaction. Employing the recently proposed TRILEX method, we find an unconventional superconducting phase of chiral d -wave symmetry in hole-doped systems. Contrary to usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.

  10. A superconducting microcalorimeter for low-flux detection of near-infrared single photons

    Energy Technology Data Exchange (ETDEWEB)

    Dreyling-Eschweiler, Jan

    2014-07-15

    This thesis covers the development and the characterization of a single photon detector based on a superconducting microcalorimeter. The detector development is motivated by the Any Light Particle Search II (ALPS II) experiment at DESY in Hamburg, which searches for weakly interacting sub-eV particles (WISPs). Therefore, a detection of low-fluxes of 1064 nm light is required. The work is divided in three analyses: the characterization of a milli-kelvin (mK) cryostat, the characterization of superconducting sensors for single photon detection, and the determination of dark count rates concerning 1064 nm signals. Firstly, an adiabatic demagnetization refrigerator (ADR) is characterized, which allows to reach mK-temperatures. During commissioning, the ADR cryostat is optimized and prepared to stably cool superconducting sensors at 80 mK±25 μK. It is found that sensors can be continuously operated for ∝20 h before recharging the system in <2 h. Furthermore, the adiabatic system reaches a chance of success of ∝80 % for a recharge without technical problems. Secondly, superconducting sensors are analyzed. The focus is on microcalorimetric transition-edge sensors (TESs) based on 20 nm Tungsten (W) films fabricated by the U.S. National Institute of Standards and Technology (NIST). NIST TESs have a near unity detection efficiency for 1064 nm light (literature value). The energy resolution for 1064 nm signals is measured to be <8 %. The exponential falling time of a photon pulse is 1.5 μs. Furthermore, by determining TES parameters, it is found that the linear TES theory describes measured photon pulses well. The TES response is read out by a superconducting quantum interference device (SQUID) fabricated by Physikalisch-Technische Bundesanstalt (PTB). The system bandwidth is measured to be 0.9 MHz. Finally, the operation in the ADR cryostat as well as the ALPS II laboratory is optimized. This setup forms the ALPS TES detector. Thirdly, the background is measured to

  11. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    Science.gov (United States)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  12. Superconductivity and transport properties in LaRu4Sb12 single crystals probed by radiation-induced disordering

    International Nuclear Information System (INIS)

    Goshchitskii, B.; Naumov, S.; Kostromitina, N.; Karkin, A.

    2007-01-01

    Resistivity ρ(T) and Hall coefficient R H (T) in magnetic fields H up to 14 T were studied in superconducting (T c = 3.3 K) LaRu 4 Sb 12 single crystals disordered by fast neutron irradiation. Atomic disordering leads to increase in residual resistivity ρ 0 , decrease of Hall number and suppression of superconductivity. The upper critical field slope -dH c2 /dT increases approximately linear with ρ 0 . The irradiation effects are almost recovered after annealing at 500 deg. C. The observed radiation-induced effects in LaRu 4 Sb 12 are compared with those in PrOs 4 Sb 12 in terms of unconventional mechanisms of superconductivity

  13. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  14. 0 - π Quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy

    Science.gov (United States)

    Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.

    2018-05-01

    In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.

  15. Changing electronic density in sites of crystalline lattice under superconducting of phase transition

    International Nuclear Information System (INIS)

    Turaev, N.Yu.; Turaev, E.Yu.; Khuzhakulov, E.S.; Seregin, P.P.

    2006-01-01

    Results of electron density change calculations for sites of the one-dimensional Kronig-Penny lattice at the superconducting phase transition have been presented. The transition from normal state to super conducting one is accompanied by the rise of the electron density at the unit cell centre. It is agreement with Moessbauer spectroscopy data. (author)

  16. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    Science.gov (United States)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  17. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  18. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  19. Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing; Liu, Liyao; Xu, Wei; Zhu, Daoben [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhang, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Yu, Lei [Department of Chemistry, University of Kentucky, Lexington, KY (United States); Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2018-01-02

    A highly crystalline copper(II) benzenehexathiolate coordination polymer (Cu-BHT) has been prepared. The two-dimensional kagome structure has been confirmed by powder X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy. The as-prepared sample exhibits bulk superconductivity at about 0.25 K, which is confirmed by the zero resistivity, AC magnetic susceptibility, and specific heat measurements. Another diamagnetic transition at about 3 K suggests that there is a second superconducting phase that may be associated with a single layer or few layers of Cu-BHT. It is the first time that superconductivity has been observed in a coordination polymer. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Proposed experimental test of the theory of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu

    2016-06-15

    Highlights: • The conventional theory of superconductivity predicts no charge flow when the normal-superconductor phase boundary moves. • The theory of hole superconductivity predicts flow and counterflow of charge. • An experiment to measure a voltage is proposed. • No voltage will be measured if the conventional theory is correct. • A voltage will be measured if the theory of hole superconductivity is correct. - Abstract: The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  1. Superconductivity in an anomalously tetragonal YB2C3O6.62 single crystal: A possible singularity in the structural phase diagram

    DEFF Research Database (Denmark)

    Frello, T.; Andersen, N.H.; Baziljevich, M.

    2003-01-01

    superconducting. This makes the sample highly anomalous in two respects: with a stoichiometry of YBa2Cu3O6.62 the sample should have an orthorhombic symmetry, and a tetragonal undoped sample should not be superconducting at all. Our results corroborate previous findings of Topnikov [JETP Lett. 46, 577 (1987......)] of a tetragonal superconducting YBCO crystal with x=0.62....

  2. Hydrostatic Pressure Study on 3-K Phase Superconductivity in Sr2RuO4-Ru Eutectic Crystals by AC Magnetic Susceptibility Measurements

    International Nuclear Information System (INIS)

    Yaguchi, Hiroshi; Watanabe, Hiromichi; Sakaue, Akira

    2012-01-01

    We have investigated the effect of hydrostatic pressure on 3-K phase superconductivity in Sr 2 RuO 4 -Ru eutectic crystals by means of AC magnetic susceptibility measurements. We have found that the application of hydrostatic pressure suppresses the superconducting transition temperature T c of the 3-K phase with a pressure coefficient of dT c /dP ≈ −0.2 K/GPa, similar to the case of the 1.5-K phase. We have also observed that the effect of hydrostatic pressure on the 3-K phase seems to be elastic whilst that of uniaxial pressure is plastic.

  3. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  4. A superconducting radio-frequency cavity for manipulating the phase space of pion beams at LAMPF

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J.M.; Davis, J.; DeHaven, R.A.; Gray, E.; Johnson, R.; Lomax, R.E.; McCloud, B.J.; McGill, J.A.; Morris, C.L.; Novak, J.; Rusnak, B.; Tubb, G. (Los Alamos National Lab., Los Alamos, NM (United States)); Applegate, J.M.; Averett, T.D.; Beck, J.; Ritchie, B.G. (Arizona State Univ., Tempe, AZ (United States)); Haebel, E. (CERN, Geneva (Switzerland)); Kiehlmann, D.; Klein, U.; Peniger, M.; Schaefer, P.; Vogel, H. (Siemens AG, Accelerator and Magnet Technology, Bergisch Gladbach (Germany)); Ward, H.; Moore, C.F. (Univ. of Texas, Austin, TX (United States))

    1992-07-15

    The SCRUNCHER is a superconducting radio-frequency cavity for manipulating the longitudinal phase space of the secondary pion beam from the low energy pion channel at LAMPF. Test results of the cavity performance and initial results from in-beam tests are presented. (orig.).

  5. A superconducting radio-frequency cavity for manipulating the phase space of pion beams at LAMPF

    Science.gov (United States)

    O'Donnell, J. M.; Davis, J.; DeHaven, R. A.; Gray, E.; Johnson, R.; Lomax, R. E.; McCloud, B. J.; McGill, J. A.; Morris, C. L.; Novak, J.; Rusnak, B.; Tubb, G.; Applegate, J. M.; Averett, T. D.; Beck, J.; Ritchie, B. G.; Haebel, E.; Kiehlmann, D.; Klein, U.; Peiniger, M.; Schäfer, P.; Vogel, H.; Ward, H.; Fred Moore, C.

    1992-07-01

    The SCRUNCHER is a superconducting radio-frequency cavity for manipulating the longitudinal phase space of the secondary pion beam from the low energy pion channel at LAMPF. Test results of the cavity performance and initial results from in-beam tests are presented.

  6. Reentrant behavior in the superconducting phase-dependent resistance of a disordered two-dimensional electron gas

    NARCIS (Netherlands)

    den Hartog, S.G.; Wees, B.J.van; Klapwijk, T.M; Nazarov, Y.V.; Borghs, G.

    1997-01-01

    We have investigated the bias-voltage dependence of the phase-dependent differential resistance of a disordered T-shaped two-dimensional electron gas coupled to two superconducting terminals. The resistance oscillations first increase upon lowering the energy. For bias voltages below the Thouless

  7. Superconductivity in Multiple Phase Sr2Ln1–xCaxGaCu2O7 and Characterization of La2–xSrxCaCu2O6+δ

    NARCIS (Netherlands)

    Cava, R.J.; Dover, R.B. van; Batlogg, B.; Krajewski, J.J.; Schneemeyer, L.F.; Siegrist, T.; Hessen, B.; Chen, H.; Peck, Jr.; Rupp, Jr. L.W.

    1991-01-01

    We have observed the occurrance of superconductivity at temperatures between 40 and 50K for multiple phase samples of Sr2Ln1–xCaxGaCu2O7 treated at 950-1000°C at 25 atmospheres oxygen pressure. We have not been able to find conditions at oxygen pressures of 25 atmospheres or below which make single

  8. Can magnetism and superconductivity coexist

    International Nuclear Information System (INIS)

    Ishikawa, M.

    1982-01-01

    Recent syntheses of rare earth (RE) ternary superconductors such as (RE)Mo 6 X 8 (X=S or Se) and (RE)Rh 4 B 4 have provided the first opportunity to explore the interaction between magnetism and superconductivity in detail owing to their particular crystal structure. The regular sublattice of the rare-earth ions in these new ternary compounds undergoes a ferro- or antiferromagnetic phase transition in the superconducting state. If the transition is antiferromagnetic, the superconductivity is preserved so that true coexistence results. If it is ferromagnetic, on the other hand, the superconductivity eventually gives way to uniform ferromagnetism at low temperatures. However, recent theories predict several possible states of coexistence even in ferromagnetic superconductors. This article reviews aspects of these new phase transitions in ternary superconductors. (author)

  9. Rise time of voltage pulses in NbN superconducting single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  10. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  11. Effect of short-range ordering on the electrical conductivity and superconducting properties of Nb6C5 single crystals

    International Nuclear Information System (INIS)

    Utkina, T.G.

    1995-01-01

    Niobium carbide, NbC x , belongs to the family of so called interstital phases. Metal atoms form a face-centered cubic lattice, whose octahedral interstices are occupied by carbon atoms. The fraction (1 - x) of interstices remain vacant, and this determines the nonstoichiometry of these phases: most of them are characterized by a wide homogeneity range, 0.70 m ≅ 3308 - 3886 K). In contrast, the metalloid atoms exhibit high mobility at relatively low temperatures. For compositions close to Nb 6 C 5 (0.81 O-D ≅ 1300 K. The presence of vacancies in the carbon sublattice considerably affects the physical properties of carbides, which depend not only on total vacancy concentration but also on their distribution, i.e., on the degree of ordering (both short-range and long-range order) in the metalloid sublattice. The purpose of this work is to study the effects of such ordering on the superconducting properties of Nb 6 C 5 single crystals

  12. Superconducting states and depinning transitions of Josephson ladders

    International Nuclear Information System (INIS)

    Barahona, M.; Strogatz, S.H.; Orlando, T.P.

    1998-01-01

    We present analytical and numerical studies of pinned superconducting states of open-ended Josephson ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturbatively, we find analytical approximations for three of these superconducting states emdash the no-vortex, fully frustrated, and single-vortex states emdash as functions of the dc bias current I and the frustration f. Bifurcation theory is used to derive formulas for the depinning currents and critical frustrations at which the superconducting states disappear or lose dynamical stability as I and f are varied. These results are combined to yield a zero-temperature stability diagram of the system with respect to I and f. To highlight the effects of the edges, we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances. copyright 1998 The American Physical Society

  13. Vacuum system design for a superconducting X-ray lithography light source

    International Nuclear Information System (INIS)

    Schuchman, J.C.

    1990-01-01

    A superconducting electron storage ring for X-ray lithography (SXLS) is to be built at Brookhaven National Laboratory (BNL). The goal is to design and construct a light source specifically dedicated to X-ray lithography production and which would be used as a prototype in a technology transfer to American industry. The machine will be built in two phases: phase I, a low energy ring (200 MeV, 500 mA) using all room temperature magnets which will be used primarily for low energy injection studies. Phase II will be a full energy machine (690 MeV, 500 mA) where the room temperature 180 0 dipole magnets of phase I will be replaced with superconducting magnets. The machine, with a racetrack shape and a circumference of 8.5 m, is designed to be portable and replaceable as a single unit. This paper will discuss the vacuum system design for both phases; i.e. gas desorption, warm bore vs cold bore, ion trapping, clearing electrodes, and diagnostic instrumentation. (author)

  14. Phase-locking of a terahertz solid-state source using a superconducting hot-electron bolometer mixer

    International Nuclear Information System (INIS)

    Miao, W; Zhang, W; Zhou, K M; Li, S L; Zhang, K; Duan, W Y; Yao, Q J; Shi, S C

    2013-01-01

    We report on a scheme whereby the local-oscillator (LO) of a THz heterodyne receiver can be phase-locked by the mixer of the heterodyne receiver. This scheme is demonstrated for the phase-locking of an 847.6 GHz Gunn oscillator and multiplier chain combined source with a superconducting hot-electron bolometer (HEB) mixer. We show that with this technique the phase-locked beat signal can reach a signal-to-noise ratio higher than 70 dB in a resolution bandwidth (RBW) of 1 Hz. This phase-locking scheme should find good use in THz heterodyne spectrometers. (paper)

  15. The investigation of the phase-locking stability in linear arrays of Josephson junctions and arrays closed into a superconducting loop

    International Nuclear Information System (INIS)

    Darula, M.; Seidel, P.; Misanik, B.; Busse, F.; Heinz, E.; Benacka, S.

    1994-01-01

    The phase-locking stability is investigated theoretically in two structures: linear arrays of Josephson junctions shunted by resistive load and arrays closed into superconducting loop. In both cases the quasi-identical junctions are supposed to be in arrays. The stability as a function of spread in Josephson junction parameters as well as a function of other circuit parameters is investigated. Using Floquet theory it is shown that spread in critical currents of Josephson junction limit the stability of phase-locking state. From the simulations it follows that the phase-locking in arrays closed into superconducting loop is more stable against the spread in junction parameters than in the case of linear array of Josephson junctions. (orig.)

  16. A calorimetric particle detector using an iridium superconducting phase transition thermometer

    International Nuclear Information System (INIS)

    Frank, M.; Dummer, D.; Cooper, S.; Igalson, J.; Proebst, F.; Seidel, W.

    1994-01-01

    We report on a calorimetric particles detector consisting of an 18.3 g silicon crystal and an iridium superconducting phase transition thermometer. The cryogenic calorimeter and the associated apparatus are described in detail. The pulses from irradiation with an α-particle source have a large unexpected overshoot in addition to the component expected from a naive thermal model. The pulse height spectrum displays an energy resolution of 1 percent FWHM at 6 MeV and good linearity. The noise, electrothermal feedback, and position dependence are discussed. (orig.)

  17. Preliminary study on AC superconducting machines

    International Nuclear Information System (INIS)

    Yamamoto, M.; Ishigohka, T.; Shimohka, T.; Mizukami, N.; Yamaguchi, M.

    1988-01-01

    This paper describes the issues involved in developing AC superconducting machines. In the first phase, as a preliminary experiment, a 4kVa AC superconducting coil which employs 100A class 50/60Hz superconductors is made and tested. And, in the second phase, as an extension of the 4kVa coil, a model superconducting transformer is made and examined. The transformer has a novel quench protection system with an auxiliary coil only in the low voltage side. The behavior of the overcurrent protection system is confirmed

  18. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    Science.gov (United States)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  19. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    OpenAIRE

    Keefe, Peter

    2004-01-01

    Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of tradi...

  20. Mapping the Superconducting Anti-ferromagnetic C4 Phase in Iron-Pnictides

    Science.gov (United States)

    Stadel, Ryan; Taddei, Keith; Bugaris, Dan; Lapidus, Saul; Claus, Helmut; Phelan, Daniel; Chung, Duck Young; Kanatzidis, Mercouri; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar

    Following the discovery of the microscopic coexistence of antifermagnetic spin density waves and superconductivity in Ba1-xKxFe2As2 and the low temperature re-entrance to the novel magnetic C4 tetragonal phase in Ba1-xNaxFe2As2, there has been significant interest in developing an understanding of the properties and formation of these phases and analyzing their dependence on temperature and composition in hole-doped 122 alkaline earth metal/iron-pnictides. We describe the mapping of various Ba, Sr, and Ca 122 phase diagrams with systematically controlled levels of hole-doping of alkaline metal onto the alkaline earth metal site, which was investigated via x-ray and neutron diffraction. Our elaborate synthesis, diffraction work, and analysis maps and firmly establishes the C4 phase space in these ternary diagrams as well as the boundary lines that separate the individual phases, and provides natural clues as well as a framework to investigate the stability and formation of the C4 domes that shift location with doping contents in the phase diagrams. Work at Argonne was supported by US DOE, Office of Science, Materials Sciences and Engineering Division.

  1. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    International Nuclear Information System (INIS)

    Heath, Robert M.; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-01-01

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime

  2. Superconducting phases of phosphorus hydride under pressure. Stabilization by mobile molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Tiange; Miller, Daniel P.; Shamp, Andrew; Zurek, Eva [Department of Chemistry, State University of New York, Buffalo, NY (United States)

    2017-08-14

    At 80 GPa, phases with the PH{sub 2} stoichiometry, which are composed of simple cubic like phosphorus layers capped with hydrogen atoms and layers of H{sub 2} molecules, are predicted to be important species contributing to the recently observed superconductivity in compressed phosphine. The electron-phonon coupling in these phases results from the motions of the phosphorus atoms and the hydrogen atoms bound to them. The role of the mobile H{sub 2} layers is to decrease the Coulomb repulsion between the negatively charged hydrogen atoms capping the phosphorus layers. An insulating PH{sub 5} phase, the structure and bonding of which is reminiscent of diborane, is also predicted to be metastable at this pressure. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  4. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  5. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    International Nuclear Information System (INIS)

    Lu Xin; Park, W K; Greene, L H; Yuan, H Q; Chen, G F; Luo, G L; Wang, N L; Sefat, A S; McGuire, M A; Jin, R; Sales, B C; Mandrus, D; Gillett, J; Sebastian, Suchitra E

    2010-01-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe 2 As 2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba 0.6 K 0.4 )Fe 2 As 2 and Ba(Fe 0.9 Co 0.1 ) 2 As 2 , and the other with a V 2/3 background conductance universally observed, extending even up to 100 meV for Sr 0.6 Na 0.4 Fe 2 As 2 and Sr(Fe 0.9 Co 0.1 ) 2 As 2 . The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe 2 As 2 and superconducting (Ba 0.6 K 0.4 )Fe 2 As 2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba 0.6 K 0.4 Fe 2 As 2 , double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ∼ 3.0-4.0 meV with 2Δ 0 /k B T c ∼ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe 0.9 Co 0.1 ) 2 As 2 , the G(V) curves typically display a zero-bias conductance peak.

  6. Construction and test of a superconducting phase-transition thermometer for bolometric cryodetectors

    International Nuclear Information System (INIS)

    Meier, H.J.

    1990-10-01

    In the framework of a project for the study of bolometric cryodetectors for the detection of heavy ions a superconducting phase-transition thermometer for the detection of heavy ions was constructed and tested with α particles. The thermometer consists of a 10 nm thick aluminium film, which was evaporated on a sapphire absorber with a typical magnitude of 2.5x2.5 x 0.33 mm 3 . By the method of photolithography the aluminium film was structured in form of a meander. By this at the working point of the thermometer resistances of up to 60 kΩ resulted, so that the signal acquisition was possible with usual readout electronics. Several of these thermometers were constructed, characterized in their properties, and tested. For the study of the detector properties of the thermometers in characterization measurements the width of the phase transitions dT ≅ 2 mK, the temperature dependence of the resistance to dR/dT ≅ 10MΩ/K, the thermal conductivity of the thermal coupling to the cooling bath, and the heat capacity of the bolometers to C ≅ 2 nJ/K were determined.The best energy resolution, which was reached with one of the superconducting phase-transition thermometers, amounts to 50 keV for 5.5 MeV α particles, which corresponds to a relative resolution of 0,9%. By this in the order of magnitude the quality of semiconductor detectors was reached. The best temperature resolution amounts to about 1 μK. (orig./HSI) [de

  7. Electromagnetic behaviour of the shield in turbogenerators with superconducting solenoids

    International Nuclear Information System (INIS)

    Del Vecchio, P.; Veca, G.M.; Sacerdoti, G.

    1975-11-01

    The structure of turbogenerators with superconducting solenoids is analyzed and the investigation of electromagnetic behaviour of the rotating shield is presented. The cases considered are: (a) An hypothetical operation with a single phase with nominal current; (b) Steady-state operation in inverse sequence with 10% of the nominal current; (c) A step variation of the magnetic field intensity in the shield

  8. Temperature dependence of the magnetic anisotropy of metallic Y-Ba-Cu-O single crystals in the normal phase

    International Nuclear Information System (INIS)

    Miljak, M.; Zlatic, V.; Kos, I.; Aviani, I.; Hamzic, A.; Collin, G.

    1990-01-01

    The magnetic anisotropy measurements of metallic Y-Ba-Cu-O compounds in the normal phase reveal a temperature-dependent diamagnetic component of the susceptibility that increases with decreasing temperature. The temperature variation of the susceptibility anisotropy and its total change do not seem to be much affected by the presence of the superconductivity at some lower temperature and could not be accounted for by superconducting fluctuations. Rather, the data remind one of the behavior of some quasi-two-dimensional metals with anisotropic Fermi surfaces, reflecting the properties of the low-energy excitations in the normal phase. The anisotropy measurements above the bulk superconducting transition temperature T c reveal the nonlinear effects, which are due to the onset of superconductivity in disconnected grains. The existence of a two-step transition, typical for granular superconductors, should be taken into consideration if the normal-phase susceptibility data are compared with the theoretical predictions in the vicinity of T c

  9. Thermodynamic study and intrinsic type II superconductivity in the A-15 compound V3Si

    International Nuclear Information System (INIS)

    Muto, Y.; Toyota, N.; Noto, K.; Akutsu, K.; Isino, M.; Fukase, T.

    1979-01-01

    The specific heat of a single crystal of the A-15-type compound V 3 Si in the normal, mixed, and superconducting states has been measured from 4 to 30 K in magnetic fieldsup to 50 kOe. The analysis has been performed in a self-consistent way based on the second-order phase transition from the normal to the superconducting state. The thermodynamic critical field and then various physical parameters characterizing the superconducting and normal states are almost consistently derived from the thermodynamcis and the microscopic BCS-GLAG theory. It is confirmed that V 3 Si is an intrinsic type II superconductor with a high intrinsic GL parameter k 0

  10. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  11. Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication

    Science.gov (United States)

    Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.

  12. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    International Nuclear Information System (INIS)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-01-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described

  13. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source.

    Science.gov (United States)

    MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A

    2004-11-01

    At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  14. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-08-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  15. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  16. Performance of the phase I superconducting x-ray lithography source (SXLS) at BNL

    International Nuclear Information System (INIS)

    Murphy, J.B.; Biscardi, R.; Halama, H.; Heese, R.; Kramer, S.; Nawrocky, R.; Krishnaswamy, J.

    1992-01-01

    The Phase I SXLS electron storage ring has a circumference of 8.5 meters, it uses conventional dipole magnets, B ≤ 1.1 T and ρ=60 cm, and it is capable of operating in the range of 50-250 MeV. It is the forerunner of the Phase II SXLS ring which will operate at 700 MeV and will make use of superconducting dipoles, B 0 =3.87 Tesla, as a source of λ c =10 angstrom x-rays for proximity printing lithography. The Phase I storage ring has been successfully commissioned; stored currents in excess of one ampere have been achieved. A report on the performance of the machine is presented. (author) 4 refs.; 4 figs.; 2 tabs

  17. Electrodeposition of some metals and niobium superconducting alloys from molten fluorides

    International Nuclear Information System (INIS)

    Cohen, U.

    1978-01-01

    The major goal of this thesis was to study the feasibility of electrodeposition from molten fluorides of the pure elements niobium, aluminium, tin, germanium and silicon, and the niboium superconducting intermetallic compounds with these elements, and to prepare and study films of these materials in the form of coherent and uniform coatings. Decomposition potential measurements with a gold anode were carried out on the alkali fluoride solvent and the fluoride salt solutions of niobium, aluminum, tin, and germanium to provide important initial thermodynamic data. Attempts to codeposit niobium and aluminum invariably failed, niobium being the exclusive deposit in all cases. Codeposition of niobium--tin alloys was demonstrated. Of the four intermetallic compounds of the niobium--germanium system, three were obtained as single-phase coatings. The superconducting compound (A15 phase) was not successfully electrodeposited in a single-phase form. It was obtained, however, in phase-mixture coatings. Application of alternating square wave pulses produced substantial changes in the morphology of niobium deposits. Silicon electrocrystallization epitaxy (ECE) was demonstrated for the first time. Uniform, coherent, and well adherent coatings of polycrystalline Si with a grain diameter of up to 40 to 50 μm were plated onto nonalloying metal substrates, such as silver and tungsten.These processes offer some attractive features for both integrated circuit technology and silicon solar cell fabrication. Aluminum, tin, and germanium were also electrodeposited from molten fluorides

  18. Magnetic tunable confinement of the superconducting condensate in superconductor/ferromagnet hybrids

    International Nuclear Information System (INIS)

    Aladyshkin, A.Yu.; Gillijns, W.; Silhanek, A.V.; Moshchalkov, V.V.

    2008-01-01

    The effect of a nonuniform magnetic field induced by a ferromagnet on the magnetoresistance of thin-film superconductor/ferromagnet hybrid structures was investigated experimentally. Two different magnetic textures with out-of-plane magnetization were considered: a plain ferromagnetic film with bubble domains and a regular array of ferromagnetic dots. The stray fields of the structures are able to affect the spatial profile of the superconducting condensate, leading to a modification of the dependence of the critical temperature T c on an external magnetic field H. We showed how the standard linear T c (H) dependence with a single maximum at H=0 can be continuously transformed into so-called reentrant phase boundary with two T c peaks. We demonstrated that both domain-wall superconductivity and field-induced superconductivity are different manifestations of the magnetic confinement effect in various magnetic patterns

  19. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    International Nuclear Information System (INIS)

    Krueger Olsen, S.; Kuehle, A.; Traeholt, C.; C Rasmussen, C.; Toennesen, O.; Daeumling, M.; Rasmussen, C.N.; Willen, D.W.A.

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current and the voltage over the cable close to 90 degrees. This has the effect that the loss cannot be derived directly using most commercial lock-in amplifiers due to their limited absolute accuracy. However, by using two lock-in amplifiers and an appropriate correction scheme the high relative accuracy of such lock-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce the inductive voltage. The 1 μV cm -1 critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6±0.15 W m -1 . This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far at these high currents. (author)

  20. Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation

    International Nuclear Information System (INIS)

    Zegrodnik, M; Spałek, J; Bünemann, J

    2013-01-01

    An orbitally degenerate two-band Hubbard model is analyzed with the inclusion of the Hund's rule-induced spin-triplet even-parity paired states and their coexistence with magnetic ordering. The so-called statistically consistent Gutzwiller approximation (SGA) has been applied to the case of a square lattice. The superconducting gaps, the magnetic moment and the free energy are analyzed as a function of the Hund's rule coupling strength and the band filling. Also, the influence of the intersite hybridization on the stability of paired phases is discussed. In order to examine the effect of correlations the results are compared with those calculated earlier within the Hartree–Fock (HF) approximation combined with the Bardeen–Cooper–Schrieffer (BCS) approach. Significant differences between the two methods used (HF + BCS versus SGA + real-space pairing) appear in the stability regions of the considered phases. Our results supplement the analysis of this canonical model used widely in the discussions of pure magnetic phases with the detailed elaboration of the stability of the spin-triplet superconducting states and the coexistent magnetic-superconducting states. At the end, we briefly discuss qualitatively the factors that need to be included for a detailed quantitative comparison with the corresponding experimental results. (paper)

  1. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  2. Three-flavor color superconductivity

    International Nuclear Information System (INIS)

    Malekzadeh, H.

    2007-12-01

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3 He), the A and A * phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A * phase is favored. It is shown that the 2SC phase is identical to the A * phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  3. Unconventional superconductivity of the heavy fermion compound UNi2Al3

    International Nuclear Information System (INIS)

    Zakharov, Andrey

    2008-01-01

    The heavy fermion compound UNi 2 Al 3 exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi 2 Al 3 has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl 2 impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi 2 Al 3 single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi 2 Al 3 were grown on single crystalline YAlO 3 substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi 2 Al 3 thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity ρ(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi 2 Al 3 . The initial slope of the upper critical field H' c2 (T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi 2 Al 3 directly by means of tunnelling spectroscopy many planar junctions of different design

  4. Growth rate of YBCO-Ag superconducting single grains

    Science.gov (United States)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  5. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  6. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  7. Chiral classical states in a rhombus and a rhombi chain of Josephson junctions with two-band superconducting elements

    CERN Document Server

    Dias, R G; Coutinho, B C; Martins, L P

    2014-01-01

    We present a study of Josephson junctions arrays with two-band superconducting elements in the highcapacitance limit. We consider two particular geometries for these arrays: a single rhombus and a rhombi chain with two-band superconducting elements at the spinal positions. We show that the rhombus shaped JJ circuit and the rhombi chain can be mapped onto a triangular JJ circuit and a JJ two-leg ladder, respectively, with zero effective magnetic flux, but with Josephson couplings that are magnetic flux dependent. If the two-band superconductors are in a sign-reversed pairing state, one observes transitions to or from chiral phase configurations in the mapped superconducting arrays when magnetic flux or temperature are varied. The phase diagram for these chiral configurations is discussed. When half-flux quantum threads each rhombus plaquette, new phase configurations of the rhombi chain appear that are characterized by the doubling of the periodicity of the energy density along the chain, with every other two-...

  8. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  9. Mechanism of high-T{sub c} superconductivity studied by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazuyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science

    1998-03-01

    La{sub 2-x}Sr{sub x}CuO{sub 4} is one of the typical high-T{sub c} cuprates where Sr-doping creates many phases from the Mott insulator at x=0 nonsuperconducting metal for x>0.26; the high-T{sub c} superconductivity appears for 0.06{<=}x{<=}0.26. We have grown large single crystals of La{sub 2-x}Sr{sub x}CuO{sub 4} over a wide the doping rate up to x=0.3 and performed systematic neutron scattering experiments for the first time. We obtained several results indicating an intimate relation between the dynamical spin correlations and the superconductivity. Incommensurate spatial modulation appears in the antiferromagnetic spin correlations beyond x=0.05 close to the lower boundary of the superconducting phase. We found that the degree of the spatial modulation or the incommensurability {delta} increases with doping and T{sub c} is linearly scaled with {delta} for x{<=}0.15. A well-defined spin excitation gap was observed only for x=0.15 where the T{sub c} reaches the maximum value. And the dynamical spin coherence degrades upon doping with x>>0.15. There results strongly suggest the essential role of the magnetically correlated region and the spatial spin modulation in the CuO{sub 2} planes to sustain or create the superconductivity. (author)

  10. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  11. Effect of strain on the martensitic phase transition in superconducting Nb3Sn

    International Nuclear Information System (INIS)

    Hoard, R.W.; Scanlan, R.M.; Smith, G.S.; Farrell, C.L.

    1980-01-01

    The connection between the cubic-to-tetragonal martensitic phase transformation and the phenomenon of superconductivity in A15 compounds is being investigated. The degradation of the critical parameters, such as T/sub c/, H/sub c2/, and J/sub c/, with mechanical straining is of particular interest. Low-temperature x-ray diffraction experiments are performed on Nb 3 Sn ribbons (with the bronze layers etched off) mounted on copper and indium sample stages. The cryostat used is unique in that it has a vacuum mechanical insert which allows the superconductor to be placed under both compressive and tensile strains while at low temperatures. Preliminary results indicate that the martensitic phase transition temperature, T/sub m/, increases with compressive strains. Other effects of strain on tetragonal phase production are also discussed

  12. Studies on Bi-Sr-Ca-Cu-O glasses and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Singh, R.; Zacharias, E.

    1991-01-01

    Bi-Sr-Ca-Cu-O glasses and glass ceramics of various compositions were synthesised. The glass transition temperature varies from 396 to 422degC depending on the glass composition. The bulk glass ceramics of 4334, 4336, 2223 and 4246 compositions show superconductivity when the corresponding glass samples were heat-treated in air at 820degC for 3, 9, 12 and 24 h respectively. X-ray diffraction studies show that the superconducting phase present in all these compositions is Bi 2 Sr 2 Ca 1 Cu 2 O x . The 4334 glass ceramic is almost a single-phase material with a preferred orientation such that the c axis is normal to the sample surface. The 2223 glass ceramic has a higher T c (onset) than the other three compositions indicating the presence of high T c phase (110 K) also. ESR studies on the glass samples indicate the existence of Cu 2+ . The effect of heat treatment on ESR shows that the intensity of resonance decreases with increase in heat-treatment duration. This effect is more pronounced for the 4334 and 2223 compositions. The advantages of synthesizing superconducting materials by glass route are discussed in view of practical applications. (author). 9 refs., 6 figs

  13. A study on the development of high Tc superconducting materials

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1990-01-01

    The microstructure, crystal structure and formation kinetics for the superconducting phases were studied in the lead-doped BiSrCaCuO system. The formation kinetics was also investigated in the samples with different Pb/Bi ratio and it was observed that the 30 % Pb addition is most perferable for the formation of the high T c phase. The formation of the high T c phase was delayed by the excessive addition of Pb. The lattice parameter (c) of the unit cell of both low T c and high T c phases increased with increasing Pb content. Superconducting thin film was sucessfully prepared by chemical vapor deposition (CVD). Film deposited on MgO substrate showed a T c , onset of 85 K and did not reach to zero resistivity down to 77 K. Superconducting 124 phase in Y-system, which is more stable than 123 phase at high temperature showed a T c , onser of 84 K. Additionally, 0.1 mole of Pb, Sn and Ca was substituted for yttrium in 124 phase, respectively. For Pb and Sn-subsituted specimens, 124 phase was formed and for Ca substituted specimen, 124 phase was not formed and revealed no superconductivity down to 77 K. For Sn-substituted specimens, 124 phase was formed but showed no superconductivity down to 77 K. (author)

  14. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  15. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    Science.gov (United States)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  16. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  17. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phase...... slip centers in a quasi-one-dimensional wire. The competition between two relaxations times (relaxation time of the absolute value of the order parameter τ and relaxation time of the phase of the order parameter in the phase slip center τ) governs the phase slip process. Phase slips, as periodic...... oscillations in time of the order parameter, are only possible if the gradient of the phase grows faster than the value of the order parameter in the phase slip center, or equivalently if τ≤ τ....

  18. Superconducting magnets for HERA

    International Nuclear Information System (INIS)

    Wolff, S.

    1987-01-01

    The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets

  19. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  20. The single-phase multiferroic oxides: from bulk to thin film

    International Nuclear Information System (INIS)

    Prellier, W; Singh, M P; Murugavel, P

    2005-01-01

    Complex perovskite oxides exhibit a rich spectrum of properties, including magnetism, ferroelectricity, strongly correlated electron behaviour, superconductivity and magnetoresistance, which have been research areas of great interest among the scientific and technological community for decades. There exist very few materials which exhibit multiple functional properties; one such class of materials is called the multiferroics. Multiferroics are interesting because they exhibit simultaneously ferromagnetic and ferroelectric polarizations and a coupling between them. Due to the nontrivial lattice coupling between the magnetic and electronic domains (the magnetoelectric effect), the magnetic polarization can be switched by applying an electric field; likewise the ferroelectric polarization can be switched by applying a magnetic field. As a consequence, multiferroics offer rich physics and novel devices concepts, which have recently become of great interest to researchers. In this review article the recent experimental status, for both the bulk single phase and the thin film form, has been presented. Current studies on the ceramic compounds in the bulk form including Bi(Fe,Mn)O 3 , REMnO 3 and the series of REMn 2 O 5 single crystals (RE = rare earth) are discussed in the first section and a detailed overview on multiferroic thin films grown artificially (multilayers and nanocomposites) is presented in the second section. (topical review)

  1. Diamagnetism in quasicrystalline superconducting networks

    International Nuclear Information System (INIS)

    Qian Niu; Nori, F.

    1990-01-01

    In this paper, we review recent results on superconducting structures with quasicrystalline geometry. Specifically, we consider the superconducting-normal phase boundaries of a variety of wire networks and Josephson junction arrays. We have computed the mean field phase diagrams for a number of geometries and compared them to the corresponding experimental data. We have introduced an analytical approach to the analysis of the structures present in the phase boundaries. Furthermore, we have shown in great detail how the gross structure is determined by the statistical distributions of the cell areas, and how the fine structures are determined by correlations among neighboring cells in the lattices. (author). 12 refs, 2 figs

  2. Superconductivity and magnetic fluctuations developing in the vicinity of strong first-order magnetic transition in CrAs

    International Nuclear Information System (INIS)

    Kotegawa, H; Matsushima, K; Nakahara, S; Tou, H; Kaneyoshi, J; Nishiwaki, T; Matsuoka, E; Sugawara, H; Harima, H

    2017-01-01

    We report single crystal preparation, resistivity, and nuclear quadrupole resonance (NQR) measurements for new pressure-induced superconductor CrAs. In the first part, we present the difference between crystals made by different thermal sequences and methods, and show the sample dependence of superconductivity in CrAs. In the latter part, we show NQR data focusing the microscopic electronic state at the phase boundary between the helimagnetic and the paramagnetic phases. They suggest strongly that a quantum critical point is absent on the pressure-temperature phase diagram of CrAs, because of the strong first-order character of the magnetic transition; however, the spin fluctuations are observed in the paramagnetic phase. The close relationship between the spin fluctuations and superconductivity can be seen even in the vicinity of the first-order magnetic transition in CrAs. (paper)

  3. Single Crystal Growth and Superconducting Properties of Antimony-Substituted NdO0.7F0.3BiS2

    Directory of Open Access Journals (Sweden)

    Satoshi Demura

    2017-12-01

    Full Text Available Antimony (Sb substitution of less than 8% was examined on a single crystal of a layered superconductor NdO0.7F0.3BiS2. The superconducting transition temperature of the substituted samples decreased as Sb concentration increased. A lattice constant along the c-axis showed a large decrease compared with that along the a-axis. Since in-plane chemical pressure monotonically decreased as Sb concentration increased, the suppression of the superconductivity is attributed to the decrease in the in-plane chemical pressure.

  4. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  5. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  6. Radiofrequency amplifier based on a DC superconducting quantum interference device

    International Nuclear Information System (INIS)

    Martinis, J.M.; Hilbert, C.; Clarke, J.

    1986-01-01

    A method is described of amplifying a radiofrequency signal consisting of: disposing a single symmetrically biased dc SQUID and an input coil within a superconducting shield, the dc SQUID having a superconducting ring interrupted by two shunted Josephson junctions, and the input coil being inductively coupled solely to the ring of the single SQUID, establishing a constant magnetic flux threading the SQUID ring, applying the radiofrequency signal to the input coil from outside of the superconducting shield, obtaining an amplified radiofrequency signal solely from across the ring of the single SQUID, transmitting the amplified radiofrequency signal from across the SQUID ring to the outside of the superconducting shield

  7. Materials and mechanisms of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-01-15

    We study the applicability of the model of hole superconductivity to materials. Both conventional and unconventional materials are considered. Many different classes of materials are discussed. The theory is found suitable to describe all of them. No other theory of superconductivity can describe all these classes of materials. The theory of hole superconductivity proposes that there is a single mechanism of superconductivity that applies to all superconducting materials. This paper discusses several material families where superconductivity occurs and how they can be understood within this theory. Materials discussed include the elements, transition metal alloys, high T{sub c} cuprates both hole-doped and electron-doped, MgB{sub 2}, iron pnictides and iron chalcogenides, doped semiconductors, and elements under high pressure.

  8. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  9. Microstructural development of superconducting phases in Pb-BSCCO system derived from sol-gel technique

    International Nuclear Information System (INIS)

    Qureshi, A.H.; Hussain, N.; Durrani, S.K.; Waqas, H.; Arshad, M.

    2010-01-01

    Sol-gel processing technique has been utilized to produce the gel of Pb-BSCCO system (Bi/sub 2/-xPbxSr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10/+-y, where x 0.2, 0.4, and 0.8, are the mole fraction of Pb substituted against Bi). The gel samples were subsequently heated to 800 deg. C for 2 h to obtain the powders which were then pressed and sintered at 845 deg. C for 60 h. The morphologies in the Pb-BSCCO gel, powder and sintered products were observed with scanning electron microscope (SEM) and optical microscope. The plate-like growths of the superconducting phases are evident from the SEM micrographs. The optical micrographs of sintered samples showed that the samples containing 0.2 and 0.8 mole fraction of Pb mainly consisted of dark grey and white regions, while sample having 0.4 mole fraction of Pb comprised of dark grey, light grey, and white regions. The different regions were analyzed by using energy dispersive X-rays (EDX) analyzer attached with SEM. The results revealed that the dark grey regions in all the samples represented the Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8/ +- y (2212) phase whereas, light grey regions in sample (x = 0.4) constituted the Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10/ +- y (2223) phase. The white regions in all samples depicted the presence of CuO. The best result in term of larger fraction of superconducting phase (2223) has been observed in sample containing 0.4 mole fraction of Pb. (author)

  10. Testing of the large bore single aperture 1-meter superconducting dipoles made with phenolic inserts

    CERN Document Server

    Boschmann, H; Dubbeldam, R L; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Taylor, T M; Vanenkov, I; Weterings, W

    1998-01-01

    Two identical single aperture 1-metre superconducting dipoles have been built in collaboration with HMA Power Systems and tested at CERN. The 87.8 mm aperture magnets feature a single layer coil wound using LHC main dipole outer layer cable, phenolic spacer type collars, and a keyed two part structural iron yoke. The magnets are designed as models of the D1 separation dipole in the LHC experimental insertions, whose nominal field is 4.5 T at 4.5 K. In this report we present the test results of the two magnets at 4.3 K and 1.9 K.

  11. Superconducting classes in heavy fermions systems

    International Nuclear Information System (INIS)

    Volovik, G.E.; Gor'kov, L.P.

    1985-01-01

    A mathematical method for constructing of the superconductivity classes for nontrivial superconductors is described. All superconducting phases which can arise directly on transition from the normal state for cubic, hexagonal and tetragonal symmetries are enumerated. It is shown that in the triplet case the types of zeros in the energy gap always correspond to points on the Fermi surface, whereas for signlet pairing the whole zero lines are possible. For the phases with zeros on the lines or points, the low-temperature specific heat varies as T 2 on T 3 respectivelty. The superconducting phases which arise from the multydimensional representations may possess a magnetic moment which induces currents on the surface of a monodomain sample even in the absence of an external magnetic field. The specific case of a domain wall is considered and it is shown that large magnetic currents of magnetization are present in the wall

  12. Superconductivity in the background of disordered flux state of spins

    International Nuclear Information System (INIS)

    Feng Shiping; Guo Rui; Han Fei

    1992-01-01

    The phase diagram of the copper oxide materials with the antiferromagnetic and the superconducting properties as a function of doping δ is obtained in the framework of the t-J model by using the Schwinger boson-slave fermion theory. The results show that the spiral order of spins competes and coexists with superconductivity for small doping δ. For large doping δ, superconductivity appears, which may be caused by the occurrence of a disordered flux state of spins. The phase diagram suggests a strong relationship between antiferromagnetism and superconductivity. (orig.)

  13. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  14. Impacts of Co-doping on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystal studied by the electrical transport.

    Science.gov (United States)

    Urata, Takahiro; Tanabe, Yoichi; Heguri, Satoshi; Tanigaki, Katsumi

    2015-03-01

    In the FeSe with the simplest crystal structure in the Fe-based superconductor families, although both the superconductivity and the orbital ordering states are investigated, the relation between them is still unclear. Here, we report Co doping effects on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystals. The electrical transport measurements demonstrated that the superconductivity vanishes at 4 % Co doping while the orbital ordering state may be robust against Co doping. Present results suggest that the orbital ordering state is not related to the emergence of the superconductivity in FeSe.

  15. Superconducting properties of La{sub 2-x}Ba{sub 2}CuO{sub 4} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schottenhamel, Wolf; Wolter-Giraud, Anja; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Huecker, Markus [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY (United States)

    2016-07-01

    La{sub 2-x}Ba{sub 2}CuO{sub 4} displays an anomalous doping dependence associated with a deep suppression of superconductivity at the hole concentration x=1/8. The so-called 1/8-anomaly is accompanied by a structural transition in the average rotational symmetry of the CuO{sub 2} planes coinciding with the onset of a charge stripe order. It has been claimed that static stripe order destroys the superconducting phase coherence, while dynamic stripe correlations may promote superconductivity. In order to achieve more information about the relationship between superconductivity, stripe order and crystal structure we performed magnetization measurements under pressure up to 3 GPa on the single crystalline La{sub 2-x}Ba{sub 2}CuO{sub 4} with 0.095 ≤ x ≤ 0.125. Moreover, we relate the magnetization data to pressure dependent X-Ray diffraction studies. This way, we show that the specific superconducting properties as function of pressure are clearly correlated to structural changes.

  16. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  17. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  18. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  19. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  20. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    Science.gov (United States)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  1. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  2. Correlation of the superconducting transition to oxygen stoichiometry in single-crystal Ba1-xKxBiO3-y

    Science.gov (United States)

    Mosley, W. D.; Dykes, J. W.; Klavins, P.; Shelton, R. N.; Sterne, P. A.; Howell, R. H.

    1993-07-01

    Temperature-dependent positron-lifetime experiments have been performed from room temperature to 15 K on single crystals of the oxide superconductor Ba1-xKxBiO3-y. Results indicate that the filling of oxygen vacancies has a marked impact on the superconducting properties of this system. Cation defect concentrations were below the detectable limit of positron-annihilation-analysis techniques in this material, which is in sharp contrast to identical studies on polycrystalline samples. We find that the positron lifetime in these electrochemically deposited single crystals is determined by the oxygen stoichiometry of the lattice, but there is no experimental signature of strong positron localization. By performing a subsequent oxygen anneal on the crystals, the superconducting transition is sharpened and the onset is raised. The observed change in positron lifetime associated with this annealing procedure is in quantitative agreement with theory.

  3. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    Science.gov (United States)

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  4. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  5. The study of superconducting order parameter dynamics

    International Nuclear Information System (INIS)

    Goldman, A.M.

    1988-01-01

    Flux quantization experiments have demonstrated the importance of long range phase coherence in the description of the superconducting state, an idea originally proposed as an integral part of the phenomenological theory of the Meissner-Ochsenfeld effect. The most striking experimental demonstration of the phase coherence of the superconducting state is that the maximum dc Josephson current in a thin-film tunneling junction exhibits a Fraunhofer-like dependence on magnetic field

  6. NQR study in superconducting La2CuO4+δ

    International Nuclear Information System (INIS)

    Ueda, K.; Sugata, T.; Kohori, Y.; Oda, Y.; Kohara, T.

    1992-01-01

    Cu NQR signals were observed around 33.1 and 36.0 MHz together with the antiferromagnetic Cu NMR signals in the superconducting La 2 CuO 4+ δ obtained by annealing in high pressure oxygen gas. The NQR intensity increases with increasing oxygen contents. The nuclear spin-lattice relaxation time, T 1 , of Cu NQR indicates that the paramagnetic phase is in the superconducting state at low temperatures. These results show that the NQR and NMR signals were coming from the Cu sites in the superconducting phase and the antiferromagnetic phase, respectively. No appreciable differences were observed in the Cu NQR spectrum and the relaxation time between the superconducting La 2 CuO 4 + δ samples annealed under the oxygen pressure of 400 ≅ 1200 bar. (orig.)

  7. Topological superconductivity in the extended Kitaev-Heisenberg model

    Science.gov (United States)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  8. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  9. Zinc substitution effects on the superconducting properties of Nd1.85Ce0.15CuO4-δ

    International Nuclear Information System (INIS)

    Garcia-Vazquez, V.; Mazumdar, S.; Falco, C.M.; Barlingay, C.; Risbud, S.H.

    1990-01-01

    With the discovery of the electron superconductors, a new dimension was added to research in the field of high-temperature superconductivity. Studies of these materials should help elucidate the mechanism responsible for high-temperature superconductivity, as well as improve strategies for finding new superconductors. In this paper, we discuss the superconducting structural properties of Nd 1.85 Ce 0.15 (Cu 1-y Zn y )O 4 as a function of the Zn concentration y. Detailed comparisons with previous results of similar substitution studies in the single-CuO 2 -layer hole superconductor La 1.85 Sr 0.15 CuO 4 also are made. We have found that the non-magnetic element Zn has a detrimental effect on the T'-phase electron superconductor, and that this effect is as strong as in the T-phase hole superconductor. Theoretical implications and the question of electron-hole symmetry are also discussed

  10. Effect of disorder on the superconducting properties of materials

    International Nuclear Information System (INIS)

    Brouers, F.; Derenne, M.

    1982-01-01

    The effect of the variation of the density states at the Fermi level on the critical superconductivity temperature TC of transition metal compounds is studied. This paper suggests using the technique of calculating the 5-fold degenerate d-band density of states from a continued fraction extension of a tight-binding Green function to study the relative importance of one dimensionality chain coupling, three dimensional interactions and the effect of disorder on the electronic and superconducting properties of complex phase and in particular A15 phases. The first results obtained for A15 phases density of states indicate that an extension of the suggested method can be of great interest to analyze the effect of disorder on superconductivity properties of complex phases

  11. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    International Nuclear Information System (INIS)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle

  12. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

    Science.gov (United States)

    Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi

    2018-04-01

    The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

  13. Growth of high T/sub c/ superconducting Bi4(Ca,Sr)6Cu4O/sub 16+//sub x/ crystals

    International Nuclear Information System (INIS)

    Morris, P.A.; Bonner, W.A.; Bagley, B.G.; Hull, G.W.; Stoffel, N.G.; Greene, L.H.; Meagher, B.; Giroud, M.

    1988-01-01

    To determine intrinsic properties of the newly discovered Bi-Ca-Sr-Cu-O high T/sub c/ superconductors, single crystals are necessary. Compositions in this system have been heat treated to survey the melting temperatures and phase field in which superconductivity is detected. The nucleation and growth of the 85 K phase from the melted composition Bi 4 Ca 3 Sr 3 Cu 4 O/sub 16+//sub x/ is observed to be a kinetically slow process which can be precluded by a sufficiently rapid quench, but post-anneals produce the 85 and 110 K phases in the quenched material. The melted composition (23% Bi 2 O 3 -46% CaO,SrO-31% CuO), after subsequent slow cooling, results in large discrete crystals of the 85 K superconducting phase and a residual flux

  14. Unconventional superconductivity of the heavy fermion compound UNi{sub 2}Al{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Andrey

    2008-07-01

    The heavy fermion compound UNi{sub 2}Al{sub 3} exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi{sub 2}Al{sub 3} has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl{sub 2} impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi{sub 2}Al{sub 3} single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi{sub 2}Al{sub 3} were grown on single crystalline YAlO{sub 3} substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi{sub 2}Al{sub 3} thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity {rho}(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi{sub 2}Al{sub 3}. The initial slope of the upper critical field H'{sub c2}(T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi{sub 2}Al{sub 3

  15. A digital closed loop control system for automatic phase locking of superconducting cavities of IUAC Linac

    International Nuclear Information System (INIS)

    Dutt, R.N.; Rai, A.; Pandey, A.; Sahu, B.K.; Patra, P.; Karmakar, J.; Chaudhari, G.K.; Mathur, Y.; Ghosh, S.; Kanjilal, D.

    2013-01-01

    A closed loop digital control system has been designed and tested to automate the tuning process of superconducting resonators of LINAC at Inter-University Accelerator Centre, New Delhi. The mechanism controls the proportional valves of the He gas based pneumatic tuner in response to the phase and frequency errors of the cavity RF field. The main RF phase lock loop (PLL) is automatically closed once the resonant frequency is within locking range of the resonator PLL. The digital control scheme was successfully tested on few resonators of LINAC cryostat 1. A high stability of phase lock was observed. The details of the digital automation system are presented in the paper. (author)

  16. On the origin of the double superconducting transition in overdoped YBa2Cu3O x

    International Nuclear Information System (INIS)

    Lortz, R.; Tomita, T.; Wang, Y.; Junod, A.; Schilling, J.S.; Masui, T.; Tajima, S.

    2006-01-01

    The superconducting transition in a single overdoped, detwinned YBa 2 Cu 3 O x (YBCO) crystal is studied using four different probes. Whereas the AC and DC magnetic susceptibilities find a dominant transition at 88 K with a smaller effect near 92 K, the specific heat and electrical resistivity reveal only a single transition at 88 K and 92 K, respectively. Under hydrostatic pressures to 0.60 GPa these two transitions shift in opposite directions, their separation increasing. The present experiments clearly show that the bulk transition lies at 88 K and originates from fully oxygenated YBCO; the 92 K transition likely arises from filamentary superconductivity in a minority optimally doped phase (<1%) of YBCO located at or near the crystal surface

  17. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  18. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  19. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  20. On anyon superconductivity--

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.

    1989-01-01

    We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology

  1. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb$_{3}$Sn for realizing Higher Field - NbTi to Nb$_{3}$Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb$_{3}$Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb$_{3}$Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb$_{3}$Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phase...

  2. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  3. Superconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s±) or orbital (s++) fluctuation

    Science.gov (United States)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.

    2016-01-01

    In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.

  4. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    International Nuclear Information System (INIS)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-01-01

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion

  5. Earlier and recent aspects of superconductivity

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Muller, K.A.

    1990-01-01

    Contemporary knowledge of superconductivity is set against its historical background in this book. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechanisms, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This overview of superconductivity is completed by a discussion of properties related to the coherence length

  6. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  7. Anomalous superconductivity in black phosphorus under high pressures

    International Nuclear Information System (INIS)

    Kawamura, H.; Tachikawa, K.

    1984-01-01

    Pressure induced superconductivity in single crystals of black phosphorus has been studied. Maximum onset Tsub(c) was near 13 K. The anomalous superconductivity may be explained in terms of excitonic mechanism. (author)

  8. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  9. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    International Nuclear Information System (INIS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  10. Obstacles to superconductivity in CsCl phases

    International Nuclear Information System (INIS)

    Matthias, B.T.; Corenzwit, E.; Vandenberg, J.M.; Barz, H.; Maple, M.B.; Shelton, R.N.

    1976-01-01

    Reasons are put forward for why the CsCl structure is not a structure which is favorable for high-temperature superconductivity. The transition temperatures of several binary and ternary intermetallic compounds are given to illustrate the arguments. (B.R.H.)

  11. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  12. Uniaxial-Strain-Orientation Dependence of the Competition between Mott and Charge Ordered Phases and their Corresponding Superconductivity of β-(BDA-TTP)2I3

    Science.gov (United States)

    Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo

    2012-12-01

    We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.

  13. Kinetic study of the formation of the superconducting A15 phase in the Nb-Al-Si system

    International Nuclear Information System (INIS)

    Binh-Phung.

    1978-12-01

    So far, aluminum-containing superconductors showed excellent critical fields and temperatures. Powder Metallurgy shows the most promise in producing these particular kinds of superconductors in the near future. The scope of this research is to apply a kinetic study to observe the behavior of the Nb(Al,Si) system at elevated temperatures. From such observations, an optimized method of obtaining the A15 superconducting phase can be achieved. This study has resulted in a two step heat treatment to obtain the A15 phase. For the primary heat treatment of infiltrated rods, 600 0 C for 11 hours or 650 0 C for 1 hour was found suitable to form a barrier of intermetallic compound around the pores. For the secondary heat treatment, 1700 0 C for 15 seconds resulted in the formation of the A15 superconducting phase with a critical temperature of 18.25 0 K. A15 formation for wires is similar to infiltrated rods. The only difference is the diffusion path which is now much shorter. 600 0 C for 1 hour was found suitable for the primary heat treatment and 1700 0 C for 15 seconds was the most suitable for the secondary heat treatment. The highest critical temperature found thus far was 18.78 0 K

  14. Growth of Ba1-zSrzBiO3-y single crystals and the prospects for its application for liquid phase epitaxy of Ba1-xKxBiO3-δ superconductor

    International Nuclear Information System (INIS)

    Soldatov, A.G.; Barilo, S.N.; Shiryaev, S.V.; Finskaya, V.M.

    2002-01-01

    In order to get a substrate for liquid phase epitaxy of the Ba 1-x K x BiO 3-δ (BKBO) superconducting films a possibility to grow single crystals of the Ba 1-z Sr z BiO 3-y (BSBO) solid solution series was investigated. The BSBO crystals with z = 0; 0.2; 0.29; 0.45; 0.49; 0.50; 0.54; 0.58 were obtained by crystallization from melt. The temperature versus composition phase diagram of the BaO · 1/2Bi 2 O 3 -SrO · 1/2Bi 2 O 3 system was constructed. A comparative analysis of the effect of cation composition and oxygen nonstoichiometry on the BSBO lattice parameters was carried out. The growth features of superconducting BKBO films onto BSBO substrates are discussed [ru

  15. Superconducting detectors for semiconductor quantum photonics

    International Nuclear Information System (INIS)

    Reithmaier, Guenther M.

    2015-01-01

    In this thesis we present the first successful on-chip detection of quantum light, thereby demonstrating the monolithic integration of superconducting single photon detectors with individually addressable semiconductor quantum dots in a prototypical quantum photonic circuit. Therefore, we optimized both the deposition of high quality superconducting NbN thin films on GaAs substrates and the fabrication of superconducting detectors and successfully integrated these novel devices with GaAs/AlGaAs ridge waveguides loaded with self-assembled InGaAs quantum dots.

  16. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  17. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  18. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  19. Gossamer superconductivity, new paradigm?

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)

    2006-01-01

    We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    Directory of Open Access Journals (Sweden)

    Peter Keefe

    2004-03-01

    Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.

  1. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    He, R.-H.; Hashimoto, M.; Karapetyan, H.; Koralek, J.D.; Hinton, J.P.; Testaud, J.P.; Nathan, V.; Yoshida, Y.; Yao, H.; Tanaka, K.; Meevasana, W.; Moore, R.G.; Lu, D.H.; Mo, S.-K.; Ishikado, M.; Eisaki, H.; Hussain, Z.; Devereaux, T.P.; Kivelson, S.A.; Orenstein, J.; Kapitulnik, A.

    2011-11-08

    The nature of the pseudogap phase of cuprate high-temperature superconductors is one of the most important unsolved problems in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally-doped Bi2201 crystals. We observe the coincident onset at T* of a particle-hole asymmetric antinodal gap, a non-zero Kerr rotation, and a change in the relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T{sub c}), entangled in an energy-momentum dependent fashion with the pre-existing pseudogap features.

  2. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.

    Science.gov (United States)

    You, Lixing; Wu, Junjie; Xu, Yingxin; Hou, Xintong; Fang, Wei; Li, Hao; Zhang, Weijun; Zhang, Lu; Liu, Xiaoyu; Tong, Limin; Wang, Zhen; Xie, Xiaoming

    2017-12-11

    High-performance superconducting nanowire single-photon detectors (SNSPDs) have facilitated numerous experiments and applications, particularly in the fields of modern quantum optics and quantum communication. Two kinds of optical coupling methods have thus far been developed for SNSPDs: one produces standard fiber-coupled SNSPDs in which the fibers vertically illuminate the meandered nanowires; the other produces waveguide-coupled SNSPDs in which nanowires are fabricated on the surface of a waveguide that guides photons, and the fibers are coupled to the waveguide. In this paper, we report on first experimental demonstration of a new type of SNSPD that is coupled with a microfiber (MF). Photons are guided by the MF and are evanescently absorbed by the nanowires of the SNSPD when the MF is placed on top of superconducting NbN nanowires. Room-temperature optical experiments indicated that this device has a coupling efficiency of up to 90% when a 1.3 μm-diameter MF is used for light with wavelength of 1550 nm. We were also able to demonstrate that our MF-coupled detector achieved system detection efficiencies of 50% and 20% at incident wavelengths of 1064 and 1550 nm, respectively, for a 2 μm-diameter MF at 2.2K. We expect that MF-coupled SNSPDs may show both high efficiency and broadband characteristics upon optimization and will be used for various novel applications, such as micro/nano-fiber optics.

  3. New world of Gossamer superconductivity

    International Nuclear Information System (INIS)

    Maki, Kazumi; Haas, Stephan; Parker, David; Won, Hyekyung; Dora, Balazs; Virosztek, Attila

    2006-01-01

    Since the discovery of the high-T c cuprate superconductor La 2-x BaCuO 4 in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T c cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  5. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  6. Fluctuation mechanisms in superconductors nanowire single-photon counters, enabled by effective top-down manufacturing

    CERN Document Server

    Bartolf, Holger

    2016-01-01

    Holger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formulæ that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of...

  7. INTERLAYER OPTICAL CONDUCTIVITY OF A SUPERCONDUCTING BILAYER

    NARCIS (Netherlands)

    GARTSTEIN, YN; RICE, MJ; VANDERMAREL, D

    1994-01-01

    We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to

  8. Distinctive behavior of superconducting fluctuations and pseudogap in nearly optimally doped single crystal of HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Grbic, M.S.; Barisic, N.; Dulcic, A.; Kupcic, I.; Li, Y.; Zhao, X.; Yu, G.; Dressel, M.; Greven, M.; Pozek, M.

    2010-01-01

    We have applied an unconventional microwave measurement approach to a nearly optimally doped HgBa 2 CuO 4+δ single crystal. The sample geometry assured the total lateral penetration of microwaves due to weak c-axis screening currents. With this configuration, one can achieve excellent sensitivity to small changes in conductivity. The data show that the pseudogap opens at T*=185(15)K, which is almost twice the superconducting critical temperature T c =94.3 K. In contrast, the superconducting fluctuation regime is clearly confined to a narrow temperature range T c ' ∼105(2)K, far below T*. This is confirmed by the magnetic field dependence of the microwave absorption. Hence, our results support the distinction between the physical processes of pseudogap and the superconducting ordering.

  9. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  10. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  11. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  12. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  13. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  14. Superconducting and other phases in organic high polymers of polyacenic carbon skeletons. I. The method of sum of divergent perturbation series

    International Nuclear Information System (INIS)

    Kimura, M.; Kawabe, H.; Nishikawa, K.; Aono, S.

    1986-01-01

    The instabilities of a normal molecular orbital state of polyacenic materials are studied within RPA with a g model for an electronic interaction. The condensed states predicted are singlet superconducting (SSC), charge density wave (CDW), and spin density wave (SDW) ones, and their phase diagram is shown. In contrast to usual one-dimensional (1D) conductors, there reveals a wide range of superconducting state, which is not overcome by CDW transition. Weakness of Peierls distortion of the present model is also contrasted with the case of polyacetylene

  15. Measurement of unique magnetic and superconducting phases in oxygen-doped high-temperature superconductors La2-xSrxCuO4+y

    DEFF Research Database (Denmark)

    Udby, Linda; Larsen, Jacob; Christensen, Niels Bech

    2013-01-01

    We present a combined magnetic neutron scattering and muon spin rotation study of the nature of the magnetic and superconducting phases in electronically phase separated La2-xSrxCuO4+y, x=0.04, 0.065, 0.09. For all samples, we find long-range modulated magnetic order below TN≃Tc=39 K. In sharp co...

  16. Single-flavor color superconductivity with color-sextet pairing

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš

    2005-01-01

    Roč. 55, č. 1 (2005), s. 9-16 ISSN 0011-4626 R&D Projects: GA ČR(CZ) GA202/02/0847 Keywords : color superconductivity * spontaneous symmetry breaking Subject RIV: BE - Theoretical Physics Impact factor: 0.360, year: 2005

  17. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    DEFF Research Database (Denmark)

    Bernhard, C.; Wang, C. N.; Nuccio, L.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsu......Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity....... In the nonsuperconducting samples at 0 demonstrated by μSR at x = 0.055 [P. Marsik et al., Phys. Rev. Lett. 105...

  18. A superconducting phase-locked local oscillator for a submillimetre integrated receiver

    International Nuclear Information System (INIS)

    Koshelets, V P; Shitov, S V; Filippenko, L V; Dmitriev, P N; Ermakov, A B; Sobolev, A S; Torgashin, M Yu; Pankratov, A L; Kurin, V V; Yagoubov, P; Hoogeveen, R

    2004-01-01

    Comprehensive measurements of the flux flow oscillator (FFO) radiation linewidth are performed using an integrated harmonic SIS mixer; the FFO linewidth and spectral line profile are compared to a theory. An essential dependence of the FFO linewidth on frequency is found; a possible explanation is proposed. The results of the numerical solution of the perturbed sine-Gordon equation qualitatively confirm this assumption. To optimize the FFO design, the influence of the FFO parameters on the radiation linewidth is studied. A novel FFO design at a moderate current density has resulted in a free-running FFO linewidth of about 10 MHz in the flux flow regime up to 712 GHz, limited only by the gap frequency of Nb. This relatively narrow free-running linewidth (along with implementation of a wide-band phase locking loop system) allows continuous phase locking of the FFO in the wide frequency range of 500-710 GHz. These results are the basis for the development of a 550-650 GHz integrated receiver for the terahertz limb sounder (TELIS) intended for atmosphere study and scheduled to fly on a balloon in 2005. We report here also on the design of the second generation of the phase-locked superconducting integrated receiver chip for TELIS

  19. Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice

    Science.gov (United States)

    Winik, Roni; Holzman, Itamar; Dalla Torre, Emanuele G.; Buks, Eyal; Ivry, Yachin

    2018-03-01

    Controlling both the amplitude and the phase of the superconducting quantum order parameter (" separators="|ψ ) in nanostructures is important for next-generation information and communication technologies. The lack of electric resistance in superconductors, which may be advantageous for some technologies, hinders convenient voltage-bias tuning and hence limits the tunability of ψ at the microscopic scale. Here, we demonstrate the local tunability of the phase and amplitude of ψ, obtained by patterning with a single lithography step a Nb nano-superconducting quantum interference device (nano-SQUID) that is biased at its nanobridges. We accompany our experimental results by a semi-classical linearized model that is valid for generic nano-SQUIDs with multiple ports and helps simplify the modelling of non-linear couplings among the Josephson junctions. Our design helped us reveal unusual electric characteristics with effective zero inductance, which is promising for nanoscale magnetic sensing and quantum technologies.

  20. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  1. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel

    2005-01-01

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study

  2. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  3. {sup 119}Sn-NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}: Evidence for multigap superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajibsarkarsinp@gmail.com [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany); Brückner, F.; Günther, M. [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany); Wang, Kefeng; Petrovic, C. [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Biswas, P.K.; Luetkens, H.; Morenzoni, E.; Amato, A. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Klauss, H-H. [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany)

    2015-12-15

    We report bulk superconductivity (SC) in Ca{sub 3}Ir{sub 4}Sn{sub 13} by means of {sup 119}Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T{sub 1}), namely the Hebel–Slichter coherence peak just below the T{sub c}, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of {sup 119}Sn Knight shift below T{sub c} indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate {sup 119}(1/T{sub 1}) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  4. Superconducting and Structural Transitions in the β-Pyrochlore Oxide KOs2O6 under High Pressure

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Izawa, Koichi; Yamaura, Jun-ichi; Ohishi, Yasuo; Tsutsui, Satoshi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-11-01

    Rattling-induced superconductivity in the β-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperature Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural transition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.

  5. Development of Pb-rich (Bi, Pb) sub 3 Sr sub 2 Ca sub 2 Cu sub 1 O sub x phase during reformation of lead doped 2223 superconducting phase from melt quenched glass. [BiPbSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Oezkan, N; Glowacki, B A [IRC in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-05-01

    The reformation process of the lead doped superconducting 2223 phase from the melt quenched glass was investigated. It was shown that during the crystallisation of the glass a new lead rich phase, Bi{sub 0.5}Pb{sub 3}Sr{sub 2}Ca{sub 2}Cu{sub 1}O{sub x}, was formed and severe copper segregation was observed. The volume fraction of the high Tc 2223 phase increased with annealing time for an annealing temperature of 840degC. A glass sample annealed at 840degC for 150 h showed two superconducting transitions Tc = 107 K and Tc = 70 K. (orig.).

  6. New world of Gossamer superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Kazumi; Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Won, Hyekyung [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187, Dresden (Germany); Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Dora, Balazs; Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary)

    2006-09-15

    Since the discovery of the high-T {sub c} cuprate superconductor La{sub 2-x}BaCuO{sub 4} in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T{sub c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  8. 30 CFR 77.905 - Connection of single-phase loads.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  9. 30 CFR 77.806 - Connection of single-phase loads.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...

  10. Giant Overlap between the Magnetic and Superconducting Phases of CeAu_{2}Si_{2} under Pressure

    Directory of Open Access Journals (Sweden)

    Z. Ren

    2014-09-01

    Full Text Available High pressure provides a powerful means for exploring unconventional superconductivity which appears mostly on the border of magnetism. Here, we report the discovery of pressure-induced heavy-fermion superconductivity up to 2.5 K in the antiferromanget CeAu_{2}Si_{2} (T_{N}≈10  K. Remarkably, the magnetic and superconducting phases are found to overlap across an unprecedentedly wide pressure interval from 11.8 to 22.3 GPa. Moreover, both the bulk T_{c} and T_{M} are strongly enhanced when increasing the pressure from 16.7 to 20.2 GPa. T_{c} reaches a maximum at a pressure slightly below p_{c}≈22.5  GPa, at which magnetic order disappears. Furthermore, the scaling behavior of the resistivity provides evidence for a continuous delocalization of the Ce 4f electrons associated with a critical end point lying just above p_{c}. We show that the maximum T_{c} of CeAu_{2}Si_{2} actually occurs at almost the same unit-cell volume as that of CeCu_{2}Si_{2} and CeCu_{2}Ge_{2}, and when the Kondo and crystal-field splitting energies become comparable. Dynamical mean-filed theory calculations suggest that the peculiar behavior in pressurized CeAu_{2}Si_{2} might be related to its Ce-4f orbital occupancy. Our results not only provide a unique example of the interplay between superconductivity and magnetism, but also underline the role of orbital physics in understanding Ce-based heavy-fermion systems.

  11. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  12. Quasiclassical studies of phase-coherent transport in superconducting nanostructures

    International Nuclear Information System (INIS)

    Seviour, R.F.

    1999-07-01

    In chapter two we introduce the quasiclassical technique and analysis the subgap conductance in S/N structures with barriers (zero bias and finite bias anomalies). We also analyse an Andreev interferometer. Also we present the results of studies on the Josephson effect in 4 terminal S/N/S contacts and on the possible sign reversal of the Josephson critical current (Published in Superlattices and Microstructures, Vol. 25, No. 5/6, p. 647 (1999)). In chapters three and four using the quasiclassical technique in conjunction with a numerical scattering approach (see Appendix) we consider a normal-superconducting-normal structure. In these chapters we consider the effects of the interface resistance between the Normal reservoirs and the normal film and the interface resistance between the superconductor and the normal film. This work has been published in J.Phys.Conds.Mat. 10 (1998), L615 and PHYS REV B 1 Nov 98. In Chapter 5 using the techniques discussed above we shown that for normal-superconducting-normal structure a new peek may arise in the temperature dependence of the conductance when the temperature is approximately equal to the transition temperature of the superconducting (Published PHYS. Rev.13, 1999, v.59, No.9, p. 6031). In chapter 6 we analyse the first ever experimental results showing the new peak in the conductance as discussed in chapter 5 (Submitted to PRL). Chapter 7 uses the numerical technique discussed in the appendix. to examine the phenomena of conductance suppression in 4 probe normal superconducting structures (Published Superlattices and Microstructures, Vol. 25, No.5, p. 640 (1999)). (author)

  13. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  14. Beam heating studies on an early model is a superconducting cosine theta magnet

    International Nuclear Information System (INIS)

    Bozoki, G.; Bunce, G.; Danby, G.; Foelsche, H.; Jackson, J.; Prodell, A.; Soukas, A.; Stevens, A.; Stoehr, R.; Weisenbloom, J.

    1980-01-01

    Superconducting magnets for accelerators can be accidentally quenched by heat resulting from beam losses in the magnet. The threshold for such quenches is determined by the time structure of the beam loss and by details of the magnet application, construction and cooling. A 4.25 m long superconducting cosine theta dipole magnet, MARK VI, constructed during the research and development phase of the ISABELLE Project at BNL was installed in the 28.5 GeV/c primary proton beam line from the AGS. By energizing the magnet, the proton beam could be deflected into the magnet. The beam intensity required to quench the magnet was observed for different beam sizes and at several values of magnet current up to 2400 A or approximately 70% of the highest magnet operating current. The maximum current was limited by the gas-cooled power lead flow available using pool-boiling helium rather than single phase forced-flow helium at 5 atm for which the magnet system was designed. Details of the experimental setup including the magnet and cryogenic system, the beam-monitoring equipment and instrumentation are described. The measurements are discussed and compared with beam heating measurements made on another superconducting magnet and interpreted using the Cascade Simulation Program, CASIM

  15. A superconducting large-angle magnetic suspension. Final report

    International Nuclear Information System (INIS)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible

  16. Impurity effects in superconducting UPt3

    International Nuclear Information System (INIS)

    Aronson, M.C.; Vorenkamp, T.; Koziol, Z.; de Visser, A.; Bakker, K.; Franse, J.J.M.; Smith, J.L.

    1991-01-01

    Superconducting UPt 3 is characterized by a novel and complex magnetic field-temperature phase diagram, with two superconducting transitions at T c1 and T c2 in zero field. We have studied the effects of Pd and Y impurities on the zero field superconducting properties of UPt 3 . Resistance measurements show that both dopants increase the residual resistivity and decrease the spin fluctuation temperature in the normal state. T c1 is depressed by both dopants, but more effectively by Pd. |T c1 - T c2 | is essentially unaffected by Y doping, but increases dramatically with Pd doping

  17. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  18. Technology of RF superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams

  19. From superconductivity near a quantum phase transition to superconducting graphite

    Directory of Open Access Journals (Sweden)

    S. S. Saxena

    2006-09-01

    Full Text Available   The collapse of antiferromagnetic order as a function of some quantum tuning parameter such as carrier density or hydrostatic pressure is often accompanied by a region of superconductivity. The corresponding phenomenon in the potentially simpler case of itinerant-electron ferromagnetism, however, remains more illusive. In this paper we consider the reasons why this may be so and summaries evidence suggesting that the obstacles to observing the phenomenon are apparently overcome in a few metallic ferromagnets. A new twist to the problem presented by the recent discoveries in ferroelectric symmetric systems and new graphite intercalate superconductors will also be discussed.

  20. On the origin of the double superconducting transition in overdoped YBa{sub 2}Cu{sub 3}O {sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lortz, R. [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland)]. E-mail: Rolf.Lortz@physics.unige.ch; Tomita, T. [Department of Physics, Washington University, CB 1105, One Brookings Dr., St. Louis, MO 63130 (United States); Wang, Y. [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Junod, A. [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Schilling, J.S. [Department of Physics, Washington University, CB 1105, One Brookings Dr., St. Louis, MO 63130 (United States); Masui, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Tajima, S. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2006-02-15

    The superconducting transition in a single overdoped, detwinned YBa{sub 2}Cu{sub 3}O {sub x} (YBCO) crystal is studied using four different probes. Whereas the AC and DC magnetic susceptibilities find a dominant transition at 88 K with a smaller effect near 92 K, the specific heat and electrical resistivity reveal only a single transition at 88 K and 92 K, respectively. Under hydrostatic pressures to 0.60 GPa these two transitions shift in opposite directions, their separation increasing. The present experiments clearly show that the bulk transition lies at 88 K and originates from fully oxygenated YBCO; the 92 K transition likely arises from filamentary superconductivity in a minority optimally doped phase (<1%) of YBCO located at or near the crystal surface.

  1. Low AC-Loss Superconducting Cable Technology for Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of low AC loss magnesium diboride (MgB2) superconducting wires enables much lighter weight superconducting stator coils than with any other metal or...

  2. Entropy generation and momentum transfer in the superconductor-normal and normal-superconductor phase transformations and the consistency of the conventional theory of superconductivity

    Science.gov (United States)

    Hirsch, J. E.

    2018-05-01

    Since the discovery of the Meissner effect, the superconductor to normal (S-N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N-S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S-N transition and the N-S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.

  3. An improved phase-control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  4. An improved phase-control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  5. Field-induced magnetic instability within a superconducting condensate

    DEFF Research Database (Denmark)

    Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis

    2017-01-01

    The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...

  6. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  7. High-pressure phases of S, Se, and P hydrides and their superconducting properties. Predictions from ab-initio theory

    Energy Technology Data Exchange (ETDEWEB)

    Gross, E.K.U. [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)

    2016-07-01

    The quest for novel high-temperature superconductors in the family of hydrogen-rich compounds has recently been crowned with the experimental discovery of a record critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa. In the present contribution, we investigate the phase diagram of the H-S system, comparing the stability of H{sub n}S (n = 1,2,3,4) by means of the minima hopping method for structure prediction. Our extensive crystal structure search confirms the H{sub 3}S stoichiometry as the most stable configuration at high pressure. Superconducting properties are calculated using the fully ab-initio parameter-free approach of density functional theory for superconductors. We find a T{sub c} of 180 K at 200 GPa, in excellent agreement with experiment. We also show that Se-H has a phase diagram similar to its sulfur counterpart. We predict H{sub 3}Se to be superconducting at temperatures higher than 120 K at 100 GPa. We furthermore investigate the phase diagram of PH{sub n} (n = 1,2,3,4,5,6). The results of our crystal-structure search do not support the existence of thermodynamically stable PH{sub n} compounds, which exhibit a tendency for elemental decomposition at high pressure. Although the lowest energy phases of PH{sub n=1,2,3} display T{sub c} values comparable to experiment, it remains uncertain if the measured values of T{sub c} can be fully attributed to a phase-pure compound of PH{sub n}.

  8. High-Tc superconductivity in the d-p electron system

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zaitsev, R.A.

    1991-01-01

    The relaxation time with spin flip τ s and the parameters ξ, δ, χ of superconducting phase have been calculated on the basis of the kinematical mechanism of superconductivity in strongly correlated oxide models. An inter-relation between the superconducting gap Δ o and the specific heat jump Δ c allowing the experimental verification was obtained and the Ginsburg-Landau equation derived. (author). 8 refs., 2 figs

  9. A superconducting nanowire can be modeled by using SPICE

    Science.gov (United States)

    Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.

    2018-05-01

    Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.

  10. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    Science.gov (United States)

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  11. Unexpectedly normal phase behavior of single homopolymer chains

    International Nuclear Information System (INIS)

    Paul, W.; Strauch, T.; Rampf, F.; Binder, K.

    2007-01-01

    Employing Monte Carlo simulations, we show that the topology of the phase diagram of a single flexible homopolymer chain changes in dependence on the range of an attractive square well interaction between the monomers. For a range of attraction larger than a critical value, the equilibrium phase diagram of the single polymer chain and the corresponding polymer solution phase diagram exhibit vapor (swollen coil, dilute solution), liquid (collapsed globule, dense solution), and solid phases. Otherwise, the liquid-vapor transition vanishes from the equilibrium phase diagram for both the single chain and the polymer solution. This change in topology of the phase diagram resembles the behavior known for colloidal dispersions. The interplay of enthalpy and conformational entropy in the polymer case thus can lead to the same topology of phase diagrams as the interplay of enthalpy and translational entropy in simple liquids

  12. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  13. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  14. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  15. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  16. Experimental and Computational Studies of the Superconducting Phase Transition of Quasi 1D Superconductors

    Science.gov (United States)

    Wong, Chi Ho

    In this PhD project, the feasibility of establishing a state with vanishing resistance in quasi-1D superconductors are studied. In the first stage, extrinsic quasi-1D superconductors based on composite materials made by metallic nanowire arrays embedded in mesoporous silica substrates, such as Pb-SBA-15 and NbN-SBA-15 (fabricated by a Chemical Vapor Deposition technique) are investigated. Two impressive outcomes in Pb-SBA-15 are found, including an enormous enhancement of the upper critical field from 0.08T to 14T and an increase of the superconducting transition temperature onset s from 7.2 to 11K. The second stage is to apply Monte Carlo simulations to model the quasi-1D superconductor, considering its penetration depth, coherence length, defects, electron mean free path, tunneling barrier and insulating width between the nanowires. The Monte Carlo results provide a clear picture to approach to stage 3, which represents a study of the intrinsic quasi-1D superconductor Sc3CoC4, which contains parallel arrays of 1D superconducting CoC4 ribbons with weak transverse Josephson or Proximity interaction, embedded in a Sc matrix. According to our previous work, a BKT transition in the lateral plane is believed to be the physics behind the vanishing resistance of quasi-1D superconductors, because it activates a dimensional crossover from a 1D fluctuating superconductivity at high temperature to a 3D bulk phase coherent state in the entire material at low temperatures. Moreover, we decided to study thin 1D Sn nanowires without substrate, which display very similar superconducting properties to Pb-SBA-15 with a strong critical field and Tc enhancement. Finally, a preliminary research on a novel quasi-2D superconductor formed by parallel 2D mercury sheets that are separated by organic molecules is presented. The latter material may represent a model system to study the effect of a layered structure, which is believed to be an effective ingredient to design high temperature

  17. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.

    Science.gov (United States)

    Qiu, Jiawei; Xia, Haiyun; Shangguan, Mingjia; Dou, Xiankang; Li, Manyi; Wang, Chong; Shang, Xiang; Lin, Shengfu; Liu, Jianjiang

    2017-11-01

    An all-fiber, eye-safe and micro-pulse polarization lidar is demonstrated with a polarization-maintaining structure, incorporating a single superconducting nanowire single-photon detector (SNSPD) at 1.5 μm. The time-division multiplexing technique is used to achieve a calibration-free optical layout. A single piece of detector is used to detect the backscatter signals at two orthogonal states in an alternative sequence. Thus, regular calibration of the two detectors in traditional polarization lidars is avoided. The signal-to-noise ratio of the lidar is guaranteed by using an SNSPD, providing high detection efficiency and low dark count noise. The linear depolarization ratio (LDR) of the urban aerosol is observed horizontally over 48 h in Hefei [N31°50'37'', E117°15'54''], when a heavy air pollution is spreading from the north to the central east of China. Phenomena of LDR bursts are detected at a location where a building is under construction. The lidar results show good agreement with the data detected from a sun photometer, a 532 nm visibility lidar, and the weather forecast information.

  18. Phase identification and superconducting transitions in Sr-doped Pr1.85Ce0.15CuO4+δ

    International Nuclear Information System (INIS)

    Varela, A.; Vallet-Regi, M.; Gonazalez-Calbet, J.M.

    1997-01-01

    Sr-doped Pr 1.85 Ce 0.15 CuO 4+δ samples have been prepared with accurate control of the oxygen content. The stability of both T ' and T * phases is strongly dependent on Sr and oxygen content. An electron diffraction study indicates that, in some cases, anionic vacancies are ordered leading to a pseudo-tetragonal superlattice with unit cell parameters 2√2a t xc t . Structural transitions and superconducting phases created by hole doping in such a system are also reported. copyright 1997 Materials Research Society

  19. Single-phase high-entropy alloys. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Roksolana; Steurer, Walter [ETH Zurich (Switzerland). Lab. of Crystallography; Sologubenko, Alla [ETH Zurich (Switzerland). Lab. of Nanotechnology

    2015-02-01

    The term 'high-entropy alloys (HEAs)' first appeared about 10 years ago defining alloys composed of n=5-13 principal elements with concentrations of approximately 100/n at.% each. Since then many equiatomic (or near equiatomic) single- and multi-phase multicomponent alloys were developed, which are reported for a combination of tunable properties: high hardness, strength and ductility, oxidation and wear resistance, magnetism, etc. In our paper, we focus on probably single-phase HEAs (solid solutions) out of all HEAs studied so far, discuss ways of their prediction, mechanical properties. In contrast to classical multielement/multiphase alloys, only single-phase multielement alloys (solid solutions) represent the basic concept underlying HEAs as mixing-entropy stabilized homogenous materials. The literature overview is complemented by own studies demonstrating that the alloys CrFeCoNi, CrFeCoNiAl{sub 0.3} and PdFeCoNi homogenized at 1300 and 1100 C, respectively, for 1 week are not single-phase HEAs, but a coherent mixture of two solid solutions.

  20. Color superconductivity in dense quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schaefer, Thomas

    2008-01-01

    Matter at high density and low temperature is expected to be a color superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can be used, even at more moderate densities, to describe its physical properties. At lower densities the CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and comparison with the competing alternative phases, which may break translation and/or rotation invariance, is done using phenomenological models. We review the calculations that underlie these results and then discuss transport properties of several color-superconducting phases and their consequences for signatures of color superconductivity in neutron stars.

  1. Controlled initialization of superconducting π-phaseshifters and possible applications

    International Nuclear Information System (INIS)

    Mielke, Olaf; Ortlepp, Thomas; Toepfer, Hannes; Kunert, Juergen; Meyer, Hans-Georg

    2010-01-01

    The rapid single-flux quantum electronics (RSFQ) is a superconducting, naturally digital circuit family which is currently close to being commercially applied. RSFQ is outstanding because of its very low switching energy resulting in very low power consumption. This advantage causes, however, a significant influence of thermal noise. For industrial applications, a certain noise immunity is required which is still a challenge, especially for circuits of higher complexity. Integrating phase-shifting elements is a new concept for further improvements concerning stability against the influence of thermal noise. We have already shown that the implementation of phase-shifting elements significantly reduces the influence of thermal noise on circuit behavior by experimentally analyzing the bit-error rate (Mielke et al 2009 IEEE Trans. Appl. Supercond. 19 621-5). Concepts which are easily implementable in standard niobium technology are especially promising. The π-phaseshifter consists of a superconducting loop which is able to store a single flux quantum. The loop current related to the stored flux creates a well-defined phase shift. To achieve the correct functionality of complex circuits it is essential to store exactly one flux quantum in each π-phaseshifter during the cooling down of the chip. Thus, for studying the feasibility of this new approach, the initialization reliability of the π-phaseshifter needs to be verified. We present an experimental investigation of this reliability to obtain a general assessment for the application of the π-phaseshifter in niobium technology. Furthermore, we compare the configuration shielded by a solid ground plane with a configuration with a ground-plane hole below the π-phaseshifter. Justified by the experimental results we suggest programmable RSFQ circuits based on π-phaseshifters. The characteristics of these devices can be influenced by a controlled initialization of the π-phaseshifter. The fabrication was performed by

  2. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  3. Multigap superconductivity and Shubnikov-de Haas oscillations in single crystals of the layered boride OsB2

    Science.gov (United States)

    Singh, Yogesh; Martin, C.; Bud'Ko, S. L.; Ellern, A.; Prozorov, R.; Johnston, D. C.

    2010-10-01

    Single crystals of superconducting OsB2 [Tc=2.10(5)K] have been grown using a Cu-B eutectic flux. We confirm that OsB2 crystallizes in the reported orthorhombic structure (space group Pmmn ) at room temperature. Both the normal and superconducting state properties of the crystals are studied using various techniques. Heat capacity versus temperature C(T) measurements yield the normal state electronic specific heat coefficient γ=1.95(1)mJ/molK2 and the Debye temperature ΘD=539(2)K . The measured frequencies of Shubnikov-de Haas oscillations are in good agreement with those predicted by band structure calculations. Magnetic susceptibility χ(T,H) , electrical resistivity ρ(T) , and C(T,H) measurements ( H is the magnetic field) demonstrate that OsB2 is a bulk low- κ [κ(Tc)=2(1)] type-II superconductor that is intermediate between the clean and dirty limits [(ξ(T=0)/ℓ=0.97)] with a small upper critical magnetic field Hc2(T=0)=186(4)Oe . The penetration depth is λ(T=0)=0.300μm . An anomalous (not single-gap BCS) T dependence of λ was fitted by a two-gap model with Δ1(T=0)/kBTc=1.9 and Δ2(T=0)/kBTc=1.25 , respectively. The discontinuity in the heat capacity at Tc , ΔC/γTc=1.32 , is smaller than the weak-coupling BCS value of 1.43, consistent with the two-gap nature of the superconductivity in OsB2 . An anomalous increase in ΔC at Tc of unknown origin is found in finite H ; e.g., ΔC/γTc≈2.5 for H≈25Oe .

  4. Superconducting properties of single-crystal Nb sphere formed by large-undercooling solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Takeya, H.; Sung, Y.S.; Hirata, K.; Togano, K

    2003-10-15

    An electrostatic levitation (ESL) system has been used for investigating undercooling effects on superconducting materials. In this report, preliminary experiments on Nb (melting temperature: T{sub m}=2477 deg. C) have been performed by melting Nb in levitation using 150 and 250 W Nd-YAG lasers. Since molten Nb is solidified without any contact in a high vacuum condition, a significantly undercooled state up to 400 deg. C is maintained before recalescence followed by solidification. Spherical single crystals of Nb are formed by the ESL process due to the suppression of heterogeneous nucleation. The field dependence of magnetization of Nb shows a reversible behavior as an ideal type II superconductor, implying that it contains almost no flux-pinning centers.

  5. The new proposal to the mechanism of superconductivity Part 1: principle

    International Nuclear Information System (INIS)

    Huang Shiming

    2001-01-01

    The concept of hulun electron and collective potential are proposed based on plenty of experimental facts. The superconductivity is due to the collective behavior of the hulun electron's ordered phases. At 0 K, all hulun electrons must be existed in ordered phases. All the solids containing hulun electrons will become superconductors as the temperature approaches to 0 K. The solids not containing hulun electrons will never become superconductors. For the solids containing only one hulun electron phase, phase change occurs only one time as the temperature rises up from 0 K, this is the first kind superconductors. The superconducting temperature TC is the temperature at which the phase change occurs. For solids containing two or more hulun electron phases, as temperature rises up from 0 K, the hulun electron phases's change will begin from the lowest stablized phase, then the higher. As long as there is just one hulun electron phase retaining in ordered state, the solids is still a superconductor. The superconducting transition temperature T C is the temperature at which the most stable hulun electron phase occurs phase change. This is the second kind superconductors

  6. Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Koch, R.H.; Foglietti, V.; Gallagher, W.J.; Koren, G.; Gupta, A.; Fisher, M.P.A.

    1989-01-01

    We demonstrate experimentally the existence of a continuous phase transition between a normal and a true superconducting phase (with zero linear resistivity) in epitaxial films of Y-Ba-Cu-O in strong magnetic fields fields, H much-gt H c1 . The nonlinear I-V curves show scaling behavior near the transition and the relevant critical exponents are extracted. These exponents are consistent with values expected for freezing into a superconducting vortex-glass phase

  7. Two Magnon Raman Scattering as Indicator for Superconducting to Antiferromagnetic Phase Transition Upon Hydrogenation of YBCO

    International Nuclear Information System (INIS)

    Biton, Y.; Shuker, R.

    1999-01-01

    Raman spectra of Hydrogenated YBa 2 Cu 3 O 7-x + H y , where y = 0.45 and 0.19 is the number of Hydrogen atoms per units cell. The spectra exhibit important changes in the electronic scattering. Upon progressive doping with Hydrogen two magnon scattering features emerge. This coincides with the transition of YBa 2 Cu 3 O 7x +H y from superconducting to antiferromagnetic phase. Exchange energy values were obtained from two magnon Raman scattering of the y = 0.45 material. It has been found that for y= 0.19 the sample has not lost its superconductivity, and indeed two-magnon scattering has not been observed. However, the situation changed substantially when the doping of the Hydrogen atoms was 0.45. The two-magnon scattering has been observed at different temperatures down to 20K. The two-magnon energy density exhibits two peak values around 2100cm -1 and 3000cm -1

  8. Upgraded phase control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Added, N.

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K

  9. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. (Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear); Clifft, B.E.; Shepard, K.W. (Argonne National Lab., IL (United States))

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  10. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. [Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear; Clifft, B.E.; Shepard, K.W. [Argonne National Lab., IL (United States)

    1992-09-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  11. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    Science.gov (United States)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

  12. Effect of β-phase decomposition on the superconducting properties of Ti-27 at percent Nb solid solution

    International Nuclear Information System (INIS)

    Hariharan, Y.; Valsakumar, M.C.; Radhakrishnan, T.S.

    1980-01-01

    The effect of β-phase decomposition on the superconducting transition temperature (Tsub(c)) of a Ti-27 at % Nb solid solution has been studied by the resistive technique. The samples were β-quenched from 900deg C and cold rolled to 30%. Annealing at 400deg C for various times upto 15 hours causes Ti-rich phases to precipitate out of the matrix. This decomposition of the β-phase is seen to lead to a progressive enhancement in Tsub(c) from 7.7 K in the β-quenched state to 8.8 K in the sample annealed for 15 hours; further, the width Δ Tsub(c) of the superconducting transition (=90 mK in the β-quenched state) reaches a maximum value (360 mK) for a 10-hour anneal. The conjecture that the enhancement in Tsub(c) occurs as a result of precipitation and the consequent enrichment of the Nb content of the matrix is examined. It is estimated that to account for the large observed enhancement of Tsub(c), the Nb enrichment would have to be of the order of 5-6%; whereas a TEM study has revealed the enrichment to be of the order of 0.2% only. Analysis of the X-ray diffractograms is also not in favour of this hypothesis. Hence alternative mechanisms to account for the Tsub(c) enhancement are currently under investigation. Also discussed is the calculation of Tsub(c) using McMillan's formula for strongly coupled superconductors. (author)

  13. Chiral and color-superconducting phase transitions with vector interaction in a simple model

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio

    2002-01-01

    We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)

  14. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  15. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  16. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  17. Superconductivity in strongly correlated electron systems: successes and open questions

    International Nuclear Information System (INIS)

    Shastry, B. Sriram

    2000-01-01

    Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems

  18. Structure re-determination and superconductivity observation of bulk 1T MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuqiang; He, Jianqiao; Bu, Kejun [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing (China); Pan, Jie; Wang, Dong; Che, Xiangli; Zhao, Wei; Lin, Tianquan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); Luo, Ruichun; Liu, Pan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Mu, Gang; Zhang, Hui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai (China); Huang, Fuqiang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing (China)

    2018-01-26

    2H MoS{sub 2} has been intensively studied because of its layer-dependent electronic structures and novel physical properties. Though the metastable 1T MoS{sub 2} with a [MoS{sub 6}] octahedron was observed over the microscopic area, the true crystal structure of 1T phase has not been strictly determined. Moreover, the true physical properties have not been demonstrated from experiments owing to the challenge for the preparation of pure 1T MoS{sub 2} crystals. 1T MoS{sub 2} single crystals were successfully synthesized and the crystal structure of 1T MoS{sub 2} re-determined from single-crystal X-ray diffraction. 1T MoS{sub 2} crystallizes in the space group P anti 3m1 with a cell of a=b=3.190(3) Aa and c=5.945(6) Aa. The individual MoS{sub 2} layer consists of MoS{sub 6} octahedra sharing edges with each other. More surprisingly, the bulk 1T MoS{sub 2} crystals undergo a superconducting transition of T{sub c}=4 K, which is the first observation of superconductivity in pure 1T MoS{sub 2} phase. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Fe-vacancy and superconductivity in FeSe-based superconductors

    Science.gov (United States)

    Wang, C. H.; Chen, T. K.; Chang, C. C.; Lee, Y. C.; Wang, M. J.; Huang, K. C.; Wu, P. M.; Wu, M. K.

    2018-06-01

    This review summarizes recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high Tcs observed and for many similar features to the high Tc cuprate superconductors. These similarities suggest that understanding the FeSe based compounds could potentially help our understanding of the cuprates. We shall first review the common features observed in the FeSe-based system. It was found that with a careful control of material synthesizing processes, numerous rich phases have been observed in the FeSe-based system. Detailed studies show that the Fe-vacancy ordered phases found in the FeSe based compounds, which are non-superconducting Mott insulators, are the parent compounds of the superconductors. Superconductivity emerges from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Recent high temperature X-ray diffraction experiments show that the degree of structural distortion associated with the disorder of Fe-vacancy is closely related to volume fraction of the superconductivity observed. These results suggest the strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe based superconductors.

  20. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  1. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  2. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  3. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

  4. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  5. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  6. Characterization of superconducting coil for fault current limitation

    International Nuclear Information System (INIS)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres; Gomes Junior, George; Amorim, Helio Salim

    2010-01-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  7. Conventional superconductivity at 203 K at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander; Eremets, Mikhail; Troyan, Ivan [Max-Planck-Institut fuer Chemie, Hahn-Meitner-Weg 1, 55128 Mainz (Germany); Ksenofontov, Vadim; Shylin, Sergii [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitet Mainz, Staudingerweg 9, 55099 Mainz (Germany)

    2016-07-01

    A search for high, room temperature conventional superconductivity is promising as the Bardeen-Cooper-Schrieffer (BCS) theory in the Eliashberg formulation puts no apparent limits on T{sub c}. Materials with light elements are especially favorable as they provide high frequencies in the phonon spectrum. However only a moderately high T{sub c} = 39 K has been found in this search in MgB{sub 2}. We systematically studied metallic hydrogen and covalent hydrogen dominant compounds and found the record T{sub c} of 203 K at pressure 140 GPa in sulfur hydride. We proved occurrence of superconductivity by the sharp drop of the resistivity to zero; the decrease of T{sub c} with magnetic field; the pronounce isotope shift of T{sub c} in D{sub 2}S which evidences of a major role of phonons in the superconductivity; and the magnetic susceptibility measurements. The X-ray diffraction data confirmed that the superconductive phase has the predicted bcc structure. This phase can be considered as an atomic hydrogen superconductor stabilized by sulfur.

  8. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  9. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    -TC superconductors (Tamegai et al, and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al.We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.

  10. Synthesis of the phase with T sub c =110 K in Bi(Pb)-Sr-Ca-Cu-O superconducting ceramics. Sintez fazy T sub c =110 K sverkhprovodyashchej keramiki sostava Bi(Pb)-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Dubovitskij, A V; Makarov, E F; Makova, M K; Merzhanov, V A; Topnikov, V N [AN SSSR, Moscow (USSR). Inst. Khimicheskoj Fiziki

    1991-05-01

    Synthesis of 110 K single-phase bismuth ceramics (BiPb){sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub x} was conducted in narrow temperature and time range. Diffusion of bismuth ions is proposed to be the decisive factor of synthesis of bismuth ceramics. The diffusion depends on prehistory of basic burden preparation and on its dispersivity and homogeneity in particluar. Optimal time of synthesis for lead doped ceramics of 2223 composition, synthesized from initial nitrate components, is equal to 65 h at 850 deg C. The role of Pb{sup 2+} ions is probably reduced to decrease of diffusion mobility of Bi{sup 3+} ions over the bismuth sublattice. Ceramics doping with CdO and CdCl{sub 2} compounds instead of lead stabilizes superconductivity in bismuth ceramics, but with worth superconducting parameters.

  11. Fault-current limiter using a superconducting coil

    International Nuclear Information System (INIS)

    Boenig, H.J.; Paice, D.A.

    1982-01-01

    A novel circuit, consisting of solid-state diodes and a biased superconducting coil, for limiting the fault currents in three-phase ac systems is presented. A modification of the basic circuit results in a solid-state ac breaker with current-limiting features. The operating characteristics of the fault-current limiter and the ac breaker are analyzed. An optimization procedure for sizing the superconducting coil is derived

  12. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  13. Growth and superconducting properties of Bi2Sr2Ca2Cu3O10 single crystals

    International Nuclear Information System (INIS)

    Clayton, N; Musolino, N; Giannini, E; Garnier, V; Fluekiger, R

    2004-01-01

    Single crystals of Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) have been grown using the travelling solvent floating zone technique in an image furnace. Annealing the crystals under high pressures of O 2 increased their critical temperature to 109 K, and resulted in sharp superconducting transitions of ΔT c = 1 K. The superconducting anisotropy of Bi-2223 was found to be ∼ 50, from measurements of the lower critical field with the magnetic field applied parallel and perpendicular to the c-axis. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212), and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy

  14. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  15. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  16. Correlation effects in superconducting quantum dot systems

    Science.gov (United States)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  17. Concurrence of superconductivity and structure transition in Weyl semimetal TaP under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yufeng; Zhou, Yonghui; Guo, Zhaopeng; Han, Fei; Chen, Xuliang; Lu, Pengchao; Wang, Xuefei; An, Chao; Zhou, Ying; Xing, Jie; Du, Guan; Zhu, Xiyu; Yang, Huan; Sun, Jian; Yang, Zhaorong; Yang, Wenge; Mao, Ho-Kwang; Zhang, Yuheng; Wen, Hai-Hu

    2017-12-01

    Weyl semimetal defines a material with three-dimensional Dirac cones, which appear in pair due to the breaking of spatial inversion or time reversal symmetry. Superconductivity is the state of quantum condensation of paired electrons. Turning a Weyl semimetal into superconducting state is very important in having some unprecedented discoveries. In this work, by doing resistive measurements on a recently recognized Weyl semimetal TaP under pressures up to about 100 GPa, we show the concurrence of superconductivity and a structure transition at about 70 GPa. It is found that the superconductivity becomes more pronounced when decreasing pressure and retains when the pressure is completely released. High-pressure x-ray diffraction measurements also confirm the structure phase transition from I41md to P-6m2 at about 70 GPa. More importantly, ab-initial calculations reveal that the P-6m2 phase is a new Weyl semimetal phase and has only one set of Weyl points at the same energy level. Our discovery of superconductivity in TaP by high pressure will stimulate investigations on superconductivity and Majorana fermions in Weyl semimetals.

  18. SUPERCONDUCTING RADIO-FREQUENCY MODULES TEST FACILITY OPERATING EXPERIENCE

    International Nuclear Information System (INIS)

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.

    2008-01-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R and D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service the SRF R and D needs. The project's first stage has been successfully completed, which allows for distribution of cryogens for a single-cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at Meson Detector Building (MDB) results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project

  19. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  20. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  1. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  2. Quantum memristor in a superconducting circuit

    Science.gov (United States)

    Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique

    Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.

  3. Coexistence of superconductivity and density waves in quasi-two-dimensional metals

    Energy Technology Data Exchange (ETDEWEB)

    Ismer, Jan-Peter

    2011-06-03

    This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.

  4. Multi-channeled NbN superconducting single photon detectors (SSPDs) system with NbN meander nanowires

    International Nuclear Information System (INIS)

    Fujiwara, Mikio; Sasaki, Masahide; Miki, Shigehito; Wang Zhen

    2009-01-01

    A superconducting single photon detector (SSPD) is promising candidate of the detector in a quantum key distribution (QKD) system, because of its low dark count and high speed repetition rate. We have developed the SSPD system cooled by a GM cryocooler. In this system, and the work surface can be cooled 2.95 K and up to 6 SSPDs can be installed. The active areas of SSPDs are 10x10 μm 2 or 20x20 μm 2 , and the system detection efficiency at dark count rate of 100 Hz reached 2.6% at a wavelength of 1550 nm.

  5. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  6. Bulk viscosity of spin-one color superconducting strange quark matter

    International Nuclear Information System (INIS)

    Wang Xinyang; Shovkovy, Igor A.

    2010-01-01

    The bulk viscosity in spin-one color superconducting strange quark matter is calculated by taking into account the interplay between the nonleptonic and semileptonic week processes. In agreement with previous studies, it is found that the inclusion of the semileptonic processes may result in non-negligible corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the semileptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A phases, about 25 in the planar phase, and about 29 in the color-spin-locked (CSL) phase. This factor is determined by the suppression of the nonleptonic rate in color superconducting matter and, therefore, may be even larger if all quark quasiparticles happen to be gapped.

  7. Exploring the Fragile Antiferromagnetic Superconducting Phase in CeCoIn5

    DEFF Research Database (Denmark)

    Blackburn, E.; Das, P.; Eskildsen, M.R.

    2010-01-01

    CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis...... to the c axis are not related to this magnetic order. We discuss the implications of this finding. © 2010 The American Physical Society...

  8. Permanent magnet design for high-speed superconducting bearings

    Science.gov (United States)

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  9. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  10. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  11. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  12. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  13. Film boiling from spheres in single- and two-phase flow

    International Nuclear Information System (INIS)

    Liu, C.; Theofanous, T.G.; Yuen, W.W.

    1992-01-01

    Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique

  14. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  15. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  16. Permanent magnet design for high-speed superconducting bearings

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs

  17. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    Science.gov (United States)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  18. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... architecture and its power management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of the PSU is mainly to realize the power exchange and coordinated...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...

  19. Quasiparticles in the superconducting state of high-Tc metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2003-01-01

    The behavior of quasiparticles in the superconducting state of high-T c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition is considered. It is shown that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau-Fermi liquid. These observations are in good agreement with recent experimental facts [ru

  20. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  1. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  2. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  3. Charge imbalance waves and nonequilibrium dynamics near a superconducting phase-slip center

    International Nuclear Information System (INIS)

    Kadin, A.M.; Smith, L.N.; Skocpol, W.J.

    1980-01-01

    Using a generalized two-fluid picture to describe a quasi-one-dimensional superconductor near T/sub c/, we provide a heuristic derivation for a set of equations governing the temporal and spatial evolution of the charge imbalance (or branch imbalance) in the quasiparticles. We show that these equations are isomorphic to those that describe a simple electrical transmission line, so that charge imbalance waves may propagate in the superconductor in analogy with electrical signals that propagate down the transmission line. We propose as a model for a phase-slip center in a superconducting filament a localized Josephson oscillator coupled to the transmission line. Applying standard transmission-line theory to solve the problem, we show that the Josephson oscillations in the center generate charge imbalance waves that the propagate out to a frequency-dependent distance of the order of the quasiparticle diffusion length GAMMA/sub Q/*= (Dtau/sub Q/*)/sup 1/2/ before they damp out. The time-averaged behavior of the model reduces to the earlier model of Skocpol, Beasley, and Tinkham. A novel consequence of the model is a prediction of intrinsic hysteresis in the dc current--voltage relation. The model also provides a convenient framework for dealing with ac effects in phase-slip centers, including resonance and synchronization in systems of closely spaced phase-slip centers and microbridges

  4. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  5. Investigation of superconducting properties of nanowires prepared by template synthesis

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowires is small enough to ensure a one-dimensional superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have a uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter...

  6. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC.

    Directory of Open Access Journals (Sweden)

    Zachary F Phillips

    Full Text Available We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC, is a single-shot variant of Differential Phase Contrast (DPC, which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  7. Performance and Characterization of a Modular Superconducting Nanowire Single Photon Detector System for Space-to-Earth Optical Communications Links

    Science.gov (United States)

    Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.

    2018-01-01

    Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.

  8. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    OpenAIRE

    Bernhard, C.; Wang, C. N.; Nuccio, L.; Schulz, L.; Zaharko, O.; Larsen, Jacob; Aristizabal, C.; Willis, M.; Drew, A. J.; Varma, G. D.; Wolf, T.; Niedermayer, Ch.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsuperconducting samples at 0 superconductivity this suppression becomes faster and it is most rapid ...

  9. Single-shot femtosecond-pulsed phase-shifting digital holography.

    Science.gov (United States)

    Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2012-08-27

    Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

  10. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N [Sao Paulo Univ., SP (Brazil); Clifft, B E; Shepard, K W [Argonne National Lab., IL (United States)

    1992-11-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs.

  11. Upgraded phase control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Added, N.; Clifft, B.E.; Shepard, K.W.

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs

  12. Y-junction of superconducting Josephson chains

    International Nuclear Information System (INIS)

    Giuliano, Domenico; Sodano, Pasquale

    2009-01-01

    We show that, for pertinent values of the fabrication and control parameters, an attractive finite coupling fixed point emerges in the phase diagram of a Y-junction of superconducting Josephson chains. The new fixed point arises only when the dimensionless flux f piercing the central loop of the network equals π and, thus, does not break time-reversal invariance; for f≠π, only the strongly coupled fixed point survives as a stable attractive fixed point. Phase slips (instantons) have a crucial role in establishing this transition: we show indeed that, at f=π, a new set of instantons-the W-instantons-comes into play to destabilize the strongly coupled fixed point. Finally, we provide a detailed account of the Josephson current-phase relationship along the arms of the network, near each one of the allowed fixed points. Our results evidence remarkable similarities between the phase diagram accessible to a Y-junction of superconducting Josephson chains and the one found in the analysis of quantum Brownian motion on frustrated planar lattices

  13. {sup 57}Fe Mössbauer spectroscopic studies of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yuu, E-mail: tsuchiya.yuu1990@gmail.com; Ikeda, Shugo; Kobayashi, Hisao [University of Hyogo (Japan)

    2016-12-15

    We have investigated the physical properties of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2} samples using {sup 57}Fe Mössbauer spectroscopy. The observed {sup 57}Fe Mössbauer spectra were reconstructed using a major antiferromagnetic ordered K{sub 2}Fe{sub 4}Se{sub 5} phase and a minor paramagnetic phase down to 5 K, despite being superconducting below 32.2 K in K{sub x}Fe{sub 2-y}Se{sub 2}. The analysis of {sup 57}Fe Mössbauer spectrum for K{sub x}Fe{sub 2-y}S{sub 2} at 290 K confirms the presence of a major antiferromagnetic ordered K{sub 2}Fe{sub 4}S{sub 5} phase and a minor paramagnetic phase in the K{sub x}Fe{sub 2-y}S{sub 2} single crystal. The derived hyperfine interaction parameters of the paramagnetic phase in K{sub x}Fe{sub 2-y}S{sub 2} suggest that the microstructure of this phase in K{sub x}Fe{sub 2-y}S{sub 2} is similar to that of the superconducting phase in K{sub x}Fe{sub 2-y}Se{sub 2} although the K{sub x}Fe{sub 2-y}S{sub 2} single crystals exhibit no superconductivity down to 5 K.

  14. Possible universal cause of high-Tc superconductivity in different metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2002-01-01

    Using the theory of the high temperature superconductivity based on the idea of the fermion condensation quantum phase transition (FCQPT) it is shown that neither the d-wave pairing symmetry, nor the pseudogap phenomenon, nor the presence of the Cu-O 2 planes are of decisive importance for the existence of the high-T c superconductivity. The analysis of recent experimental data on this type of superconductivity in different materials is carried out. It is shown that these facts can be understood within the theory of superconductivity based on the FCQPT. The main features of a room-temperature superconductor are discussed [ru

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  16. Anomalous electron doping independent two-dimensional superconductivity

    Science.gov (United States)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  17. Detection of Resistive Transitions in LHC Superconducting Components

    CERN Document Server

    Denz, R

    2001-01-01

    The LHC has entered the construction phase. It will incorporate a large number of superconducting components like magnets, current leads and busbars. All these components require protection means in case of a transition from the superconducting to the resistive state, the so-called quench. Key elements in the protection system are electronic quench detectors, which have to be able to identify a quench in any state of the powering cycle of the accelerator. According to the different properties and characteristics of the superconducting elements and circuits, a set of quench detectors adapted to their specific tasks has been developed.

  18. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  19. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe

    Science.gov (United States)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2015-10-01

    We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.

  20. Low field anisotropic properties of a single crystals of superconducting YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Hammann, J.; Ocio, M.; Vincent, E.; Bertinotti, A.; Luzet, D.

    1987-09-01

    Low field (0.4G≤H≤3G) magnetization measurements have been performed on small single crystals of superconducting YBa 2 Cu 3 O 7.δ using a SQUID magnetometer. They revealed anisotropic properties in the temperature dependences of the shielding and the Meissner effects. A sharp unique transition at 95 K is observed with the field parallel to c. In the perpendicular direction a second transition line seems to be crossed at T* = 84 K. This temperature T* remains constant in the range of fields investigated

  1. Electronic Identification of the Parental Phases and Mesoscopic Phase Separation of K_{x}Fe_{2-y}Se_{2} Superconductors

    Directory of Open Access Journals (Sweden)

    F. Chen

    2011-12-01

    Full Text Available The nature of the parent compound of a high-temperature superconductor (HTS often plays a pivotal role in determining its superconductivity. The parent compounds of the cuprate HTSs are antiferromagnetically ordered Mott insulators, while those of the iron-pnictide HTSs are metals with spin-density-wave order. Here we report the electronic identification of two insulating parental phases and one semiconducting parental phase of the newly discovered family of K_{x}Fe_{2-y}Se_{2} superconductors. The two insulating phases exhibit Mott-insulator-like signatures, and one of the insulating phases is even present in the superconducting and semiconducting K_{x}Fe_{2-y}Se_{2} compounds. However, it is mesoscopically phase-separated from the superconducting or semiconducting phase. Moreover, we find that both the superconducting and semiconducting phases are free of the magnetic and vacancy orders present in the insulating phases, and that the electronic structure of the superconducting phase could be developed by doping the semiconducting phase with electrons. The rich electronic properties discovered in these parental phases of the K_{x}Fe_{2-y}Se_{2} superconductors provide the foundation for studying the anomalous behavior in this new class of iron-based superconductors.

  2. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    Science.gov (United States)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  3. Interactions between two superconducting weak links in the stationary (V = 0) states

    International Nuclear Information System (INIS)

    Way, Y.S.; Hsu, K.S.; Kao, Y.H.

    1977-01-01

    Effects of interaction between two superconducting weak links (SWL) at V = 0 have been calculated using the Ginzburg-Landau theory. Variations of the critical current of one SWL affected by dc current in a neighboring SWL are found in good qualitative agreement with a recent experiment. The current-phase relation of the combined system is computed for various separations between the two SWL7's; it is shown explicitly that the system behaves as a single SWL when the spacing between links is comparable to the coherence length

  4. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Keywords: Active power filter (APF), current source type of harmonic load ... Single phase active filters could attract less attention than three phase due to its low ..... Generalised single-phase p-q theory for active power filtering: simulation and.

  5. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B = 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  6. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    Science.gov (United States)

    Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian

    2018-04-01

    Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  7. Geometrical resonance effects in thin superconducting films

    International Nuclear Information System (INIS)

    Nedellec, P.

    1977-01-01

    Electron tunneling density of states measurements on thick and clear superconducting films (S 1 ) backed by films in the normal or superconducting state (S 2 ) show geometrical resonance effects associated with the spatial variation of Δ(x), the pair potential, near the interface S 1 -S 2 . The present understanding of this so-called 'Tomasch effect' is described. The dispersion relation and the nature of excitations in the superconducting state are introduced. It is shown that the introduction of Green functions give a general description of the superconducting state. The notion of Andreev scattering at the S 1 -S 2 interface is presented and connect the geometrical resonance effects to interference process between excitations. The different physical parameters involved are defined and used in the discussion of some experimental results: the variation of the period in energy with the superconducting thickness is connected to the renormalized group velocity of excitations traveling perpendicular to the film. The role of the barrier potential at the interface on the Tomasch effect is described. The main results discussed are: the decrease of the amplitude of the Tomasch structures with energy is due to the loss of the mixed electron-hole character of the superconducting excitations far away from the Fermi level; the variation of the pair potential at the interface is directly related to the amplitude of the oscillations; the tunneling selectivity is an important parameter as the amplitude as well as the phase of the oscillations are modified depending on the value of the selectivity; the phase of the Tomasch oscillations is different for an abrupt change of Δ at the interface and for a smooth variation. An ambiguity arises due to the interplay between these parameters. Finally, some experiments, which illustrate clearly the predicted effects are described [fr

  8. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2

    NARCIS (Netherlands)

    Saxena, SS; Ahilan, K; Grosche, FM; Haselwimmer, RKW; Steiner, MJ; Pugh, E; Walker, IR; Julian, [No Value; Monthoux, P; Lonzarich, GG; Huxley, A; Sheikin, [No Value; Braithwaite, D; Flouquet, J

    2000-01-01

    The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in

  9. The use of superconductivity in the USA transportation programme

    International Nuclear Information System (INIS)

    Borcherts, R.H.

    1974-01-01

    US government-sponsored programmes on magnetic suspension, from the Department of Transportation and the National Science Foundation, began in 1971. However, previous work by the Ford Motor Company and the Stanford Research Institute (SRI) had demonstrated the feasibility of magnetic lift-to-drag ratio of 50 to 60 at 134m/s. Current research projects include: SRI's test sled vehicle; a tracked magnetic levitation research vehicle; Magnetic Corporation of America's design study for a superconducting magnet; the linear synchronous motor; and two rotary superconducting machines, the superconducting paddlewheel and the superconducting helix. The next phase of the programme will be a high-speed rocket-propelled test sled to operate on a 1km section of guideway. (author)

  10. Two-step superconducting transition in Cu-V-Si alloys

    International Nuclear Information System (INIS)

    Sharma, R.G.; Krishna, M.M.; Narlikar, A.V.

    1980-01-01

    Copper ternary alloys containing small amounts of vanadium and silicon exhibit a two-step superconducting resistive transition. The first transition occurs around 17 K, the transition temperature of β-W V 3 Si, followed by a plateau and a second transition around 10 K. The resistivity, however, does not drop to zero down to 2.5 K. Reduction of the wire diameter causes the two transitions to shift to lower temperatures. Complete superconductivity in these specimens is absent for two reasons. Firstly, the superconducting volume fraction present in these alloy-wires is below the threshold given by either the effective-medium theory or the site percolation theory. Secondly, the superconducting phase V 3 Si does not precipitate in copper matrix in a fine structure and the proximity effect does not operate strongly. Annealing causes the superconducting particles to coalesce and grow in size and suppresses the proximity effect and superconductivity further in these alloy wires. (author)

  11. Beam tests and operation of superconducting cavities

    International Nuclear Information System (INIS)

    Akai, Kazunori

    1990-01-01

    Beam tests and operation of superconducting cavities conducted since the third workshop on RF superconductivity (Argonne, Sep. 1987) are reported in this paper. The paper is concerned particularly with electron machines. Storage and acceleration of the beam are discussed, focusing on the CERN test in SPS, the DESY test in PETRA, the superconducting injector at Darmstadt, and the KEK beam tests in T-AR. Then, long-term performance of the cavity in the ring is discussed focusing on Eacc (max) and O-value, environmental conditions, and operational experience in T-MR. RF controllability is addressed, centering on the Robinson stability, cavity tuning loop, quench detection and interlocks, recovery procedure, field calibration, and phase adjustment. Higher order modes are also discussed. Superconducting cavities have been operated successfully in accelerators. It has been confirmed that the superconducting cavities can be used stably for experimental use. For more than 5000 hours the cavities have indicated no essential degradation of the cavity performance. The study of long-term performance should be continued in longer range of period. (N.K.)

  12. Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe

    Science.gov (United States)

    Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre

    2018-01-01

    In most unconventional superconductors, like the high-Tc cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.

  13. Modeling and comparison of superconducting linear actuators for highly dynamic motion

    Directory of Open Access Journals (Sweden)

    Bruyn B.J.H. de

    2015-12-01

    Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

  14. LEP superconducting cavities go into storage

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Superconducting radio-frequency cavities from the LEP-2 phase (1996-2000) are put into storage in the tunnel that once housed the Intersecting Storage Rings (ISR), the world’s first proton collider, located at CERN.

  15. Superconducting Tunnel Junction Arrays for UV Photon Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method is described for the fabrication of superconducting tunnel junction (STJ) detector arrays offering true "three dimensional" imaging throughout...

  16. Enhanced superconductivity and anisotropy of FeTe0.6Se0.4 single crystals with Li -NH3 intercalation

    Science.gov (United States)

    Li, Chenghe; Sun, Shanshan; Wang, Shaohua; Lei, Hechang

    2017-10-01

    We report a systematic study of anisotropy resistivity, magnetoresistance, and Hall effect of Li0.32(NH3)yFe2Te1.2Se0.8 single crystals. When compared to the parent compound FeTe0.6Se0.4 , the Li-NH3 intercalation not only increases the superconducting transition temperature but also enhances the electronic anisotropy in both normal and superconducting states. Moreover, in contrast to the parent compound, the Hall coefficient RH becomes negative at low temperature, indicating electron-type carriers are dominant due to Li doping. On the other hand, the sign reverse of RH at high temperature and the failure of scaling behavior of magnetoresistance imply that hole pockets may be still crossing or just below the Fermi energy level, leading to the multiband behavior in Li0.32(NH3)yFe2Te1.2Se0.8 .

  17. Phase transition in a modified square Josephson-junction array

    CERN Document Server

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  18. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  19. High-Tc Superconducting Thick-Film Spiral Magnet: Development and Characterization of a Single Spiral Module

    National Research Council Canada - National Science Library

    McGinnis, W

    1997-01-01

    The objective of this project was to make characterized and numerically model prototype modules of a new type of superconducting electromagnet based on stacked spirals of superconducting thick films...

  20. Review of the Initial Phases of the LHC Power Converter Commissioning

    CERN Document Server

    Nisbet, D

    2008-01-01

    The LHC requires more than 1700 power converter systems that supply between 60A and 13kA of precisely regulated current to the superconducting magnets. For the first time at CERN these converters have been installed underground in close proximity to many other accelerator systems. In addition to the power converters themselves, many utilities such as air and water cooling, electrical power, communication networks and magnet safety systems needed to be installed and commissioned as a single system. Due to the complexity of installing and commissioning such a large infrastructure, with inevitable interaction between the different systems, a three phase test strategy was developed. The first phase comprised the manufacture, integration and reception tests of all converter sub-systems necessary for powering. The second phase covered the commissioning of all the power converters installed in their final environment with the utilities. The third phase will add the superconducting magnets and will not be covered by ...